1
|
Vidali S, Gerlini R, Thompson K, Urquhart JE, Meisterknecht J, Aguilar‐Pimentel JA, Amarie OV, Becker L, Breen C, Calzada‐Wack J, Chhabra NF, Cho Y, da Silva‐Buttkus P, Feichtinger RG, Gampe K, Garrett L, Hoefig KP, Hölter SM, Jameson E, Klein‐Rodewald T, Leuchtenberger S, Marschall S, Mayer‐Kuckuk P, Miller G, Oestereicher MA, Pfannes K, Rathkolb B, Rozman J, Sanders C, Spielmann N, Stoeger C, Szibor M, Treise I, Walter JH, Wurst W, Mayr JA, Fuchs H, Gärtner U, Wittig I, Taylor RW, Newman WG, Prokisch H, Gailus‐Durner V, Hrabě de Angelis M. Characterising a homozygous two-exon deletion in UQCRH: comparing human and mouse phenotypes. EMBO Mol Med 2021; 13:e14397. [PMID: 34750991 PMCID: PMC8649870 DOI: 10.15252/emmm.202114397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/27/2022] Open
Abstract
Mitochondrial disorders are clinically and genetically diverse, with isolated complex III (CIII) deficiency being relatively rare. Here, we describe two affected cousins, presenting with recurrent episodes of severe lactic acidosis, hyperammonaemia, hypoglycaemia and encephalopathy. Genetic investigations in both cases identified a homozygous deletion of exons 2 and 3 of UQCRH, which encodes a structural complex III (CIII) subunit. We generated a mouse model with the equivalent homozygous Uqcrh deletion (Uqcrh-/- ), which also presented with lactic acidosis and hyperammonaemia, but had a more severe, non-episodic phenotype, resulting in failure to thrive and early death. The biochemical phenotypes observed in patient and Uqcrh-/- mouse tissues were remarkably similar, displaying impaired CIII activity, decreased molecular weight of fully assembled holoenzyme and an increase of an unexpected large supercomplex (SXL ), comprising mostly of one complex I (CI) dimer and one CIII dimer. This phenotypic similarity along with lentiviral rescue experiments in patient fibroblasts verifies the pathogenicity of the shared genetic defect, demonstrating that the Uqcrh-/- mouse is a valuable model for future studies of human CIII deficiency.
Collapse
|
2
|
Jahan S, Fatima A, Alam I, Ullah A, Rehman H, Afsar T, Almajwal A, Razak S. Effects of dietary supplements on selected hematological and biochemical parameters of Pakistani athletes. BMC Nutr 2018; 4:41. [PMID: 32153902 PMCID: PMC7050892 DOI: 10.1186/s40795-018-0250-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 09/28/2018] [Indexed: 11/18/2022] Open
Abstract
Background CDC’s (Centers for Disease Control and Prevention) National Center for Health statistics recent reports have shown that an upsurge has occurred in the use of dietary supplements among age of 20 years since 1994 and this use shown regular increase. The purpose of our study was to investigate the effect of supplements on the reproductive health on male athletes in Pakistan. Methods A total of 150 adult male with mean age of 25.78 ± 0.56 years were included in this study and divided into four groups: Non-athlete control (n = 57), Non supplemental athlete control (n = 40), Supplemental athlete group I (n = 28) and supplemental athlete group II (n = 25). Blood (10 ml) was taken from each subject. Complete blood count was performed and 5 ml of blood was centrifuged to separate plasma and then analyzed for antioxidant enzyme (CAT, POD, GR and GSH) activities, Lipid peroxidation (TBARS), electrolyte, metal (sodium, potassium and zinc) and Luteinizing hormone (LH) concentration. Results Complete blood count results showed normal RBC, WBC, Platelets, Hemoglobin, Hematocrit, Mean corpuscular hemoglobin and Mean corpuscular hemoglobin concentration. Antioxidant enzymes (CAT, POD, GR, GSH) increased significantly in supplemental athletes as compared to control groups. Sodium and potassium showed significant increase (p < 0.001) in supplemental athlete group I, while TBARS also showed significant increase (p < 0.05) in supplemental group I and II as compared to non athlete control while non supplemental athletes showed significant increase (p < 0.05) in TBARS concentration as compared to non athlete control. LH concentration was found to be decreased significantly (p < 0.05) in supplemental group I and II as compared to control groups. Conclusion It is therefore concluded from the present results that oxidative stress was considerably elevated in response to supplement consumption among athletes which may affect their health haematological parameters and reproductive hormones.
Collapse
|
3
|
Manini TM, Buford TW, Kairalla JA, McDermott MM, Vaz Fragoso CA, Fielding RA, Hsu FC, Johannsen N, Kritchevsky S, Harris TB, Newman AB, Cummings SR, King AC, Pahor M, Santanasto AJ, Tranah GJ. Meta-analysis identifies mitochondrial DNA sequence variants associated with walking speed. GeroScience 2018; 40:497-511. [PMID: 30338417 DOI: 10.1007/s11357-018-0043-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/06/2018] [Indexed: 12/25/2022] Open
Abstract
Declines in walking speed are associated with a variety of poor health outcomes including disability, comorbidity, and mortality. While genetic factors are putative contributors to variability in walking, few genetic loci have been identified for this trait. We examined the role of mitochondrial genomic variation on walking speed by sequencing the entire mitochondrial DNA (mtDNA). Data were meta-analyzed from 1758 Lifestyle Interventions and Independence for Elders (LIFE) Study and replication data from 730 Health, Aging, and Body Composition (HABC) Study participants with baseline walking speed information. Participants were 69+ years old of diverse racial backgrounds (African, European, and other race/ethnic groups) and had a wide range of mean walking speeds [4-6 m (0.78-1.09 m/s) and 400 m (0.83-1.24 m/s)]. Meta-analysis across studies and racial groups showed that m.12705C>T, ND5 variant was significantly associated (p < 0.0001) with walking speed at both short and long distances. Replication and meta-analysis also identified statistically significant walking speed associations (p < 0.0001) between the m.5460.G>A, ND2 and m.309C>CT, HV2 variants at short and long distances, respectively. All results remained statistically significant after multiple comparisons adjustment for 499 mtDNA variants. The m.12705C>T variant can be traced to the beginnings of human global migration and that cells carrying this variant display altered tRNA expression. Significant pooled effects related to stopping during the long-distance walk test were observed across OXPHOS complexes I (p = 0.0017) and III (p = 0.0048). These results suggest that mtDNA-encoded variants are associated with differences in walking speed among older adults, potentially identifying those at risk of developing mobility impairments.
Collapse
Affiliation(s)
- Todd M Manini
- Department of Aging and Geriatric Research, University of Florida, 2004 Mowry Rd., Gainesville, FL, 32611, USA.
| | - Thomas W Buford
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - John A Kairalla
- Department of Biostatistics, University of Florida, Gainesville, FL, USA
| | - Mary M McDermott
- General Internal Medicine and Geriatrics and Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Carlos A Vaz Fragoso
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Roger A Fielding
- Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Fang-Chi Hsu
- The Department of Biostatistical Sciences, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Neil Johannsen
- Preventive Medicine Department, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Stephen Kritchevsky
- Sticht Center on Aging, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Tamara B Harris
- Intramural Research Program, Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Bethesda, MD, USA
| | - Anne B Newman
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steven R Cummings
- California Pacific Medical Center Research Institute, San Francisco, CA, 94107, USA
| | - Abby C King
- Department of Health Research and Policy - Epidemiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Marco Pahor
- Department of Aging and Geriatric Research, University of Florida, 2004 Mowry Rd., Gainesville, FL, 32611, USA
| | - Adam J Santanasto
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gregory J Tranah
- California Pacific Medical Center Research Institute, San Francisco, CA, 94107, USA.
| |
Collapse
|
4
|
Almeida FM, Oliveira-Junior MC, Souza RA, Petroni RC, Soto SF, Soriano FG, de Carvalho PTC, Albertini R, Damaceno-Rodrigues NR, Castro-Faria-Neto HC, Martins MA, Dolhnikoff M, Pazetti R, Vieira RP. Creatine supplementation attenuates pulmonary and systemic effects of lung ischemia and reperfusion injury. J Heart Lung Transplant 2016. [PMID: 26215332 DOI: 10.1016/j.healun.2015.06.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
5
|
Tranah GJ, Santaniello A, Caillier SJ, D'Alfonso S, Martinelli Boneschi F, Hauser SL, Oksenberg JR. Mitochondrial DNA sequence variation in multiple sclerosis. Neurology 2015; 85:325-30. [PMID: 26136518 DOI: 10.1212/wnl.0000000000001744] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 04/07/2015] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To assess the influence of common mitochondrial DNA (mtDNA) sequence variation on multiple sclerosis (MS) risk in cases and controls part of an international consortium. METHODS We analyzed 115 high-quality mtDNA variants and common haplogroups from a previously published genome-wide association study among 7,391 cases from the International Multiple Sclerosis Genetics Consortium and 14,568 controls from the Wellcome Trust Case Control Consortium 2 project from 7 countries. Significant single nucleotide polymorphism and haplogroup associations were replicated in 3,720 cases and 879 controls from the University of California, San Francisco. RESULTS An elevated risk of MS was detected among haplogroup JT carriers from 7 pooled clinic sites (odds ratio [OR] = 1.15, 95% confidence interval [CI] = 1.07-1.24, p = 0.0002) included in the discovery study. The increased risk of MS was observed for both haplogroup T (OR = 1.17, 95% CI = 1.06-1.29, p = 0.002) and haplogroup J carriers (OR = 1.11, 95% CI = 1.01-1.22, p = 0.03). These haplogroup associations with MS were not replicated in the independent sample set. An elevated risk of primary progressive (PP) MS was detected for haplogroup J participants from 3 European discovery populations (OR = 1.49, 95% CI = 1.10-2.01, p = 0.009). This elevated risk was borderline significant in the US replication population (OR = 1.43, 95% CI = 0.99-2.08, p = 0.058) and remained significant in pooled analysis of discovery and replication studies (OR = 1.43, 95% CI = 1.14-1.81, p = 0.002). No common individual mtDNA variants were associated with MS risk. CONCLUSIONS Identification and validation of mitochondrial genetic variants associated with MS and PPMS may lead to new targets for treatment and diagnostic tests for identifying potential responders to interventions that target mitochondria.
Collapse
Affiliation(s)
- Gregory J Tranah
- From the California Pacific Medical Center Research Institute (G.J.T.), San Francisco, CA; Department of Neurology (A.S., S.J.C., S.L.H., J.R.O.), University of California, San Francisco; Department of Health Sciences (S.D.), UPO and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Eastern Piedmont, Avogadro, Novara, Italy; and Department of Neuro-rehabilitation and INSPE (Institute of Experimental Neurology) (F.M.B.), Scientific Institute San Raffaele, Milan, Italy.
| | - Adam Santaniello
- From the California Pacific Medical Center Research Institute (G.J.T.), San Francisco, CA; Department of Neurology (A.S., S.J.C., S.L.H., J.R.O.), University of California, San Francisco; Department of Health Sciences (S.D.), UPO and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Eastern Piedmont, Avogadro, Novara, Italy; and Department of Neuro-rehabilitation and INSPE (Institute of Experimental Neurology) (F.M.B.), Scientific Institute San Raffaele, Milan, Italy
| | - Stacy J Caillier
- From the California Pacific Medical Center Research Institute (G.J.T.), San Francisco, CA; Department of Neurology (A.S., S.J.C., S.L.H., J.R.O.), University of California, San Francisco; Department of Health Sciences (S.D.), UPO and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Eastern Piedmont, Avogadro, Novara, Italy; and Department of Neuro-rehabilitation and INSPE (Institute of Experimental Neurology) (F.M.B.), Scientific Institute San Raffaele, Milan, Italy
| | - Sandra D'Alfonso
- From the California Pacific Medical Center Research Institute (G.J.T.), San Francisco, CA; Department of Neurology (A.S., S.J.C., S.L.H., J.R.O.), University of California, San Francisco; Department of Health Sciences (S.D.), UPO and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Eastern Piedmont, Avogadro, Novara, Italy; and Department of Neuro-rehabilitation and INSPE (Institute of Experimental Neurology) (F.M.B.), Scientific Institute San Raffaele, Milan, Italy
| | - Filippo Martinelli Boneschi
- From the California Pacific Medical Center Research Institute (G.J.T.), San Francisco, CA; Department of Neurology (A.S., S.J.C., S.L.H., J.R.O.), University of California, San Francisco; Department of Health Sciences (S.D.), UPO and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Eastern Piedmont, Avogadro, Novara, Italy; and Department of Neuro-rehabilitation and INSPE (Institute of Experimental Neurology) (F.M.B.), Scientific Institute San Raffaele, Milan, Italy
| | - Stephen L Hauser
- From the California Pacific Medical Center Research Institute (G.J.T.), San Francisco, CA; Department of Neurology (A.S., S.J.C., S.L.H., J.R.O.), University of California, San Francisco; Department of Health Sciences (S.D.), UPO and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Eastern Piedmont, Avogadro, Novara, Italy; and Department of Neuro-rehabilitation and INSPE (Institute of Experimental Neurology) (F.M.B.), Scientific Institute San Raffaele, Milan, Italy
| | - Jorge R Oksenberg
- From the California Pacific Medical Center Research Institute (G.J.T.), San Francisco, CA; Department of Neurology (A.S., S.J.C., S.L.H., J.R.O.), University of California, San Francisco; Department of Health Sciences (S.D.), UPO and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Eastern Piedmont, Avogadro, Novara, Italy; and Department of Neuro-rehabilitation and INSPE (Institute of Experimental Neurology) (F.M.B.), Scientific Institute San Raffaele, Milan, Italy
| |
Collapse
|
6
|
Tranah GJ, Yokoyama JS, Katzman SM, Nalls MA, Newman AB, Harris TB, Cesari M, Manini TM, Schork NJ, Cummings SR, Liu Y, Yaffe K. Mitochondrial DNA sequence associations with dementia and amyloid-β in elderly African Americans. Neurobiol Aging 2014; 35:442.e1-8. [PMID: 24140124 PMCID: PMC4019378 DOI: 10.1016/j.neurobiolaging.2013.05.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 05/25/2013] [Accepted: 05/26/2013] [Indexed: 10/26/2022]
Abstract
Mitochondrial dysfunction occurs early in the course of several neurodegenerative diseases, and is potentially related to increased oxidative damage and amyloid-β (Aβ) formation in Alzheimer's disease. The goals of this study were to assess mtDNA sequence associations with dementia risk, 10-year cognitive change, and markers of oxidative stress and Aβ among 1089 African-Americans in the population-based Health, Aging, and Body Composition Study. Participants were free of dementia at baseline, and incidence was determined in 187 (18%) cases over 10 to 12 follow-up years. Haplogroup L1 participants were at increased risk for developing dementia (odds ratio = 1.88, 95% confidence interval = 1.23-2.88, p = 0.004), lower plasma Aβ42 levels (p = 0.03), and greater 10-year decline on the Digit Symbol Substitution Test (p = 0.04) when compared with common haplogroup L3. The p.V193I, ND2 substitution was associated with significantly higher Aβ42 levels (p = 0.0012), and this association was present in haplogroup L3 (p = 0.018) but not L1 (p = 0.90) participants. All associations were independent of potential confounders, including APOEε4 status and nuclear genetic ancestry. Identification of mtDNA sequence variation associated with dementia risk and cognitive decline may contribute to the development of new treatment targets and diagnostic tests that identify responders to interventions targeting mitochondria.
Collapse
Affiliation(s)
- Gregory J Tranah
- California Pacific Medical Center Research Institute-San Francisco, San Francisco, CA, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
BACKGROUND Progressive muscle weakness is a main symptom of most hereditary and acquired muscle diseases. Creatine improves muscle performance in healthy individuals. This is an update of our 2007 Cochrane review that evaluated creatine treatment in muscle disorders. Previous updates were in 2009 and 2011. OBJECTIVES To evaluate the efficacy of creatine compared to placebo for the treatment of muscle weakness in muscle diseases. SEARCH METHODS On 11 September 2012, we searched the Cochrane Neuromuscular Disease Group Specialized Register, CENTRAL (2012, Issue 9 in The Cochrane Library), MEDLINE (January 1966 to September 2012) and EMBASE (January 1980 to September 2012) for randomised controlled trials (RCTs) of creatine used to treat muscle diseases. SELECTION CRITERIA RCTs or quasi-RCTs of creatine treatment compared to placebo in hereditary muscle diseases or idiopathic inflammatory myopathies. DATA COLLECTION AND ANALYSIS Two authors independently applied the selection criteria, assessed trial quality and extracted data. We obtained missing data from investigators. MAIN RESULTS A total of 14 trials, including 364 randomised participants, met the selection criteria. The risk of bias was low in most studies. Only one trial had a high risk of selection, performance and detection bias. No new studies were identified at this update.Meta-analysis of six trials in muscular dystrophies including 192 participants revealed a significant increase in muscle strength in the creatine group compared to placebo, with a mean difference of 8.47%; (95% confidence intervals (CI) 3.55 to 13.38). Pooled data of four trials including 115 participants showed that a significantly higher number of participants felt better during creatine treatment compared to placebo with a risk ratio of 4.51 (95% CI 2.33 to 8.74). One trial in 37 participants with idiopathic inflammatory myopathies also showed a significant improvement in functional performance. No trial reported any clinically relevant adverse event.In metabolic myopathies, meta-analyses of three cross-over trials including 33 participants revealed no significant difference in muscle strength. One trial reported a significant deterioration of activities of daily living (mean difference 0.54 on a 1 to 10 scale; 95% CI 0.14 to 0.93) and an increase in muscle pain during high-dose creatine treatment in McArdle disease. AUTHORS' CONCLUSIONS High quality evidence from RCTs shows that short- and medium-term creatine treatment increases muscle strength in muscular dystrophies. There is also evidence that creatine improves functional performance in muscular dystrophy and idiopathic inflammatory myopathy. Creatine is well tolerated in these people. High quality but limited evidence from RCTs does not show significant improvement in muscle strength in metabolic myopathies. High-dose creatine treatment impaired activities of daily living and increased muscle pain in McArdle disease.
Collapse
Affiliation(s)
- Rudolf A Kley
- Department of Neurology, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany.
| | | | | |
Collapse
|
8
|
Mitochondrial DNA variations in Madras motor neuron disease. Mitochondrion 2013; 13:721-8. [PMID: 23419391 DOI: 10.1016/j.mito.2013.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 02/06/2013] [Accepted: 02/08/2013] [Indexed: 11/20/2022]
Abstract
Although the Madras motor neuron disease (MMND) was found three decades ago, its genetic basis has not been elucidated, so far. The symptom at onset was impaired hearing, upper limb weakness and atrophy. Since some clinical features of MMND overlap with mitochondrial disorders, we analyzed the complete mitochondrial genome of 45 MMND patients and found 396 variations, including 13 disease-associated, 2 mt-tRNA and 33 non-synonymous (16 MT-ND, 10 MT-CO, 3 MT-CYB and 4 MT-ATPase). A rare variant (m.8302A>G) in mt-tRNA(Leu) was found in three patients. We predict that these variation(s) may influence the disease pathogenesis along with some unknown factor(s).
Collapse
|
9
|
Meunier B, Fisher N, Ransac S, Mazat JP, Brasseur G. Respiratory complex III dysfunction in humans and the use of yeast as a model organism to study mitochondrial myopathy and associated diseases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1827:1346-61. [PMID: 23220121 DOI: 10.1016/j.bbabio.2012.11.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 11/21/2012] [Accepted: 11/28/2012] [Indexed: 11/25/2022]
Abstract
The bc1 complex or complex III is a central component of the aerobic respiratory chain in prokaryotic and eukaryotic organisms. It catalyzes the oxidation of quinols and the reduction of cytochrome c, establishing a proton motive force used to synthesize adenosine triphosphate (ATP) by the F1Fo ATP synthase. In eukaryotes, the complex III is located in the inner mitochondrial membrane. The genes coding for the complex III have a dual origin. While cytochrome b is encoded by the mitochondrial genome, all the other subunits are encoded by the nuclear genome. In this review, we compile an exhaustive list of the known human mutations and associated pathologies found in the mitochondrially-encoded cytochrome b gene as well as the fewer mutations in the nuclear genes coding for the complex III structural subunits and accessory proteins such as BCS1L involved in the assembly of the complex III. Due to the inherent difficulties of studying human biopsy material associated with complex III dysfunction, we also review the work that has been conducted to study the pathologies with the easy to handle eukaryotic microorganism, the yeast Saccharomyces cerevisiae. Phenotypes, biochemical data and possible effects due to the mutations are also discussed in the context of the known three-dimensional structure of the eukaryotic complex III. This article is part of a Special Issue entitled: Respiratory complex III and related bc complexes.
Collapse
Affiliation(s)
- B Meunier
- CNRS, Centre de Génétique Moléculaire, UPR 3404, Gif-sur-Yvette, F-91198, France
| | | | | | | | | |
Collapse
|
10
|
Tranah GJ, Lam ET, Katzman SM, Nalls MA, Zhao Y, Evans DS, Yokoyama JS, Pawlikowska L, Kwok PY, Mooney S, Kritchevsky S, Goodpaster BH, Newman AB, Harris TB, Manini TM, Cummings SR. Mitochondrial DNA sequence variation is associated with free-living activity energy expenditure in the elderly. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1691-700. [PMID: 22659402 DOI: 10.1016/j.bbabio.2012.05.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 05/19/2012] [Accepted: 05/24/2012] [Indexed: 01/11/2023]
Abstract
The decline in activity energy expenditure underlies a range of age-associated pathological conditions, neuromuscular and neurological impairments, disability, and mortality. The majority (90%) of the energy needs of the human body are met by mitochondrial oxidative phosphorylation (OXPHOS). OXPHOS is dependent on the coordinated expression and interaction of genes encoded in the nuclear and mitochondrial genomes. We examined the role of mitochondrial genomic variation in free-living activity energy expenditure (AEE) and physical activity levels (PAL) by sequencing the entire (~16.5 kilobases) mtDNA from 138 Health, Aging, and Body Composition Study participants. Among the common mtDNA variants, the hypervariable region 2 m.185G>A variant was significantly associated with AEE (p=0.001) and PAL (p=0.0005) after adjustment for multiple comparisons. Several unique nonsynonymous variants were identified in the extremes of AEE with some occurring at highly conserved sites predicted to affect protein structure and function. Of interest is the p.T194M, CytB substitution in the lower extreme of AEE occurring at a residue in the Qi site of complex III. Among participants with low activity levels, the burden of singleton variants was 30% higher across the entire mtDNA and OXPHOS complex I when compared to those having moderate to high activity levels. A significant pooled variant association across the hypervariable 2 region was observed for AEE and PAL. These results suggest that mtDNA variation is associated with free-living AEE in older persons and may generate new hypotheses by which specific mtDNA complexes, genes, and variants may contribute to the maintenance of activity levels in late life.
Collapse
Affiliation(s)
- Gregory J Tranah
- California Pacific Medical Center Research Institute, San Francisco, San Francisco, CA 94107, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Tranah GJ, Nalls MA, Katzman SM, Yokoyama JS, Lam ET, Zhao Y, Mooney S, Thomas F, Newman AB, Liu Y, Cummings SR, Harris TB, Yaffe K. Mitochondrial DNA sequence variation associated with dementia and cognitive function in the elderly. J Alzheimers Dis 2012; 32:357-72. [PMID: 22785396 PMCID: PMC4156011 DOI: 10.3233/jad-2012-120466] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mitochondrial dysfunction is a prominent hallmark of Alzheimer's disease (AD). Mitochondrial DNA (mtDNA) damage may be a major cause of abnormal reactive oxidative species production in AD or increased neuronal susceptibility to oxidative injury during aging. The purpose of this study was to assess the influence of mtDNA sequence variation on clinically significant cognitive impairment and dementia risk in the population-based Health, Aging, and Body Composition (Health ABC) Study. We first investigated the role of common mtDNA haplogroups and individual variants on dementia risk and 8-year change on the Modified Mini-Mental State Examination (3MS) and Digit Symbol Substitution Test (DSST) among 1,631 participants of European genetic ancestry. Participants were free of dementia at baseline and incidence was determined in 273 cases from hospital and medication records over 10-12 follow-up years. Participants from haplogroup T had a statistically significant increased risk of developing dementia (OR = 1.86, 95% CI = 1.23, 2.82, p = 0.0008) and haplogroup J participants experienced a statistically significant 8-year decline in 3MS (β = -0.14, 95% CI = -0.27, -0.03, p = 0.0006), both compared with common haplogroup H. The m.15244A>G, p.G166G, CytB variant was associated with a significant decline in DSST score (β = -0.58, 95% CI -0.89, -0.28, p = 0.00019) and the m.14178T>C, p.I166V, ND6 variant was associated with a significant decline in 3MS score (β = -0.87, 95% CI -1.31, -3.86, p = 0.00012). Finally, we sequenced the complete ~16.5 kb mtDNA from 135 Health ABC participants and identified several highly conserved and potentially functional nonsynonymous variants unique to 22 dementia cases and aggregate sequence variation across the hypervariable 2-3 regions that influences 3MS and DSST scores.
Collapse
Affiliation(s)
- Gregory J Tranah
- California Pacific Medical Center Research Institute, San Francisco, CA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Wallimann T, Tokarska-Schlattner M, Schlattner U. The creatine kinase system and pleiotropic effects of creatine. Amino Acids 2011; 40:1271-96. [PMID: 21448658 PMCID: PMC3080659 DOI: 10.1007/s00726-011-0877-3] [Citation(s) in RCA: 483] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Accepted: 12/02/2010] [Indexed: 11/24/2022]
Abstract
The pleiotropic effects of creatine (Cr) are based mostly on the functions of the enzyme creatine kinase (CK) and its high-energy product phosphocreatine (PCr). Multidisciplinary studies have established molecular, cellular, organ and somatic functions of the CK/PCr system, in particular for cells and tissues with high and intermittent energy fluctuations. These studies include tissue-specific expression and subcellular localization of CK isoforms, high-resolution molecular structures and structure–function relationships, transgenic CK abrogation and reverse genetic approaches. Three energy-related physiological principles emerge, namely that the CK/PCr systems functions as (a) an immediately available temporal energy buffer, (b) a spatial energy buffer or intracellular energy transport system (the CK/PCr energy shuttle or circuit) and (c) a metabolic regulator. The CK/PCr energy shuttle connects sites of ATP production (glycolysis and mitochondrial oxidative phosphorylation) with subcellular sites of ATP utilization (ATPases). Thus, diffusion limitations of ADP and ATP are overcome by PCr/Cr shuttling, as most clearly seen in polar cells such as spermatozoa, retina photoreceptor cells and sensory hair bundles of the inner ear. The CK/PCr system relies on the close exchange of substrates and products between CK isoforms and ATP-generating or -consuming processes. Mitochondrial CK in the mitochondrial outer compartment, for example, is tightly coupled to ATP export via adenine nucleotide transporter or carrier (ANT) and thus ATP-synthesis and respiratory chain activity, releasing PCr into the cytosol. This coupling also reduces formation of reactive oxygen species (ROS) and inhibits mitochondrial permeability transition, an early event in apoptosis. Cr itself may also act as a direct and/or indirect anti-oxidant, while PCr can interact with and protect cellular membranes. Collectively, these factors may well explain the beneficial effects of Cr supplementation. The stimulating effects of Cr for muscle and bone growth and maintenance, and especially in neuroprotection, are now recognized and the first clinical studies are underway. Novel socio-economically relevant applications of Cr supplementation are emerging, e.g. for senior people, intensive care units and dialysis patients, who are notoriously Cr-depleted. Also, Cr will likely be beneficial for the healthy development of premature infants, who after separation from the placenta depend on external Cr. Cr supplementation of pregnant and lactating women, as well as of babies and infants are likely to be of benefit for child development. Last but not least, Cr harbours a global ecological potential as an additive for animal feed, replacing meat- and fish meal for animal (poultry and swine) and fish aqua farming. This may help to alleviate human starvation and at the same time prevent over-fishing of oceans.
Collapse
Affiliation(s)
- Theo Wallimann
- Institute of Cell Biology, ETH Zurich, Zurich, Switzerland.
| | | | | |
Collapse
|
13
|
Creatine as a therapeutic strategy for myopathies. Amino Acids 2011; 40:1397-407. [PMID: 21399918 DOI: 10.1007/s00726-011-0876-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Accepted: 11/26/2010] [Indexed: 12/12/2022]
Abstract
Myopathies are genetic or acquired disorders of skeletal muscle that lead to varying degrees of weakness, atrophy, and exercise intolerance. In theory, creatine supplementation could have a number of beneficial effects that could enhance function in myopathy patients, including muscle mass, strength and endurance enhancement, lower calcium levels, anti-oxidant effects, and reduced apoptosis. Patients with muscular dystrophy respond to several months of creatine monohydrate supplementation (~0.075-0.1 g/kg/day) with greater strength (~9%) and fat-free mass (~0.63 kg). Patients with myotonic dystrophy do not show as consistent an effect, possibly due to creatine transport issues. Creatine monohydrate supplementation shows modest benefits only at lower doses and possibly negative effects (cramping) at higher doses in McArdle's disease patients. Patients with MELAS syndrome show some evidence of benefit from creatine supplementation in exercise capacity, with the effects in patients with CPEO being less robust, again, possibly due to limited muscle creatine uptake. The evidence for side effects or negative impact upon serological metrics from creatine supplementation in all groups of myopathy patients is almost non-existent and pale in comparison to the very substantial and well-known side effects from our current chemotherapeutic interventions for some myopathies (i.e., corticosteroids).
Collapse
|
14
|
Abstract
BACKGROUND Progressive muscle weakness is a main symptom of most hereditary and acquired muscle diseases. Creatine improves muscle performance in healthy individuals. This is an update of our 2007 Cochrane review that evaluated creatine treatment in muscle disorders. OBJECTIVES To evaluate the efficacy of creatine compared to placebo for the treatment of muscle weakness in muscle diseases. SEARCH STRATEGY We searched the Cochrane Neuromuscular Disease Group Specialized Register (4 October 2010), the Cochrane Central Register of Controlled Trials (11 October 2010, Issue 4, 2010 in The Cochrane Library), MEDLINE (January 1966 to September 2010) and EMBASE (January 1980 to September 2010) for randomised controlled trials (RCT) of creatine used to treat muscle diseases. SELECTION CRITERIA RCTs or quasi-RCTs of creatine treatment compared to placebo in hereditary muscle diseases or idiopathic inflammatory myopathies. DATA COLLECTION AND ANALYSIS Two authors independently applied the selection criteria, assessed trial quality and extracted data. We obtained missing data from investigators. MAIN RESULTS The updated searches identified two new studies. A total of 14 trials, including 364 randomised participants, met the selection criteria. Meta-analysis of six trials in muscular dystrophies including 192 participants revealed a significant increase in muscle strength in the creatine group compared to placebo, with a weighted mean difference of 8.47%; (95% confidence intervals (CI) 3.55 to 13.38). Pooled data of four trials including 115 participants showed that a significantly higher number of patients felt better during creatine treatment compared to placebo with a risk ratio of 4.51 (95% CI 2.33 to 8.74). One trial in 37 participants with idiopathic inflammatory myopathies also showed a significant improvement in functional performance. No trial reported any clinically relevant adverse event. In metabolic myopathies, meta-analyses of three cross-over trials including 33 participants revealed no significant difference in muscle strength. One trial reported a significant deterioration of ADL (mean difference 0.54 on a 1 to 10 scale; 95% CI 0.14 to 0.93) and an increase in muscle pain during high-dose creatine treatment in McArdle disease. AUTHORS' CONCLUSIONS High quality evidence from RCTs shows that short- and medium-term creatine treatment increases muscle strength in muscular dystrophies. There is also evidence that creatine improves functional performance in muscular dystrophy and idiopathic inflammatory myopathy. Creatine is well tolerated in these people. High quality but limited evidence from RCTs does not show significant improvement in muscle strength in metabolic myopathies. High-dose creatine treatment impaired ADL and increased muscle pain in McArdle disease.
Collapse
Affiliation(s)
- Rudolf A Kley
- Department of Neurology, University Hospital Bergmannsheil, Ruhr University Bochum, Buerkle-de-la-Camp-Platz 1, Bochum, Germany, 44789
| | | | | |
Collapse
|
15
|
Kingsley M, Cunningham D, Mason L, Kilduff LP, McEneny J. Role of creatine supplementation on exercise-induced cardiovascular function and oxidative stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2011; 2:247-54. [PMID: 20716911 PMCID: PMC2763263 DOI: 10.4161/oxim.2.4.9415] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many degenerative diseases are associated with increased oxidative stress. Creatine has the potential to act as an indirect and direct antioxidant; however, limited data exist to evaluate the antioxidant capabilities of creatine supplementation within in vivo human systems. This study aimed to investigate the effects of oral creatine supplementation on markers of oxidative stress and antioxidant defenses following exhaustive cycling exercise. Following preliminary testing and two additional familiarization sessions, 18 active males repeated two exhaustive incremental cycling trials (T1 and T2) separated by exactly 7 days. The subjects were assigned, in a double-blind manner, to receive either 20 g of creatine (Cr) or a placebo (P) for the 5 days preceding T2. Breath-by-breath respiratory data and heart rate were continually recorded throughout the exercise protocol and blood samples were obtained at rest (preexercise), at the end of exercise (postexercise), and the day following exercise (post24 h). Serum hypdroperoxide concentrations were elevated at postexercise by 17 ± 5% above preexercise values (p = 0.030). However, supplementation did not influence lipid peroxidation (serum hypdroperoxide concentrations), resistance of low density lipoprotein to oxidative stress (t1/2max LDL oxidation) and plasma concentrations of non-enzymatic antioxidants (retinol, α-carotene, β-carotene, α-tocopherol, γ-tocopherol, lycopene and vitamin C). Heart rate and oxygen uptake responses to exercise were not affected by supplementation. These findings suggest that short-term creatine supplementation does not enhance non-enzymatic antioxidant defence or protect against lipid peroxidation induced by exhaustive cycling in healthy males.
Collapse
|
16
|
Sikorska M, Sandhu JK, Simon DK, Pathiraja V, Sodja C, Li Y, Ribecco-Lutkiewicz M, Lanthier P, Borowy-Borowski H, Upton A, Raha S, Pulst SM, Tarnopolsky MA. Identification of ataxia-associated mtDNA mutations (m.4052T>C and m.9035T>C) and evaluation of their pathogenicity in transmitochondrial cybrids. Muscle Nerve 2009; 40:381-94. [PMID: 19626676 DOI: 10.1002/mus.21355] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The potential pathogenicity of two homoplasmic mtDNA point mutations, 9035T>C and 4452T>C, found in a family afflicted with maternally transmitted cognitive developmental delay, learning disability, and progressive ataxia was evaluated using transmitochondrial cybrids. We confirmed that the 4452T>C transition in tRNA(Met) represented a polymorphism; however, 9035T>C conversion in the ATP6 gene was responsible for a defective F(0)-ATPase. Accordingly, mutant cybrids had a reduced oligomycin-sensitive ATP hydrolyzing activity. They had less than half of the steady-state content of ATP and nearly an 8-fold higher basal level of reactive oxygen species (ROS). Mutant cybrids were unable to cope with additional insults, i.e., glucose deprivation or tertiary-butyl hydroperoxide, and they succumbed to either apoptotic or necrotic cell death. Both of these outcomes were prevented by the antioxidants CoQ(10) and vitamin E, suggesting that the abnormally high levels of ROS were the triggers of cell death. In conclusion, the principal metabolic defects, i.e., energy deficiency and ROS burden, resulted from the 9035T>C mutation and could be responsible for the development of clinical symptoms in this family. Furthermore, antioxidant therapy might prove helpful in the management of this disease.
Collapse
Affiliation(s)
- Marianna Sikorska
- Neurogenesis and Brain Repair Group M54, Institute for Biological Sciences, National Research Council Canada, 1200 Montreal Road, Ottawa, Ontario, K1A 0R6, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
A neonatal polyvisceral failure linked to a de novo homoplasmic mutation in the mitochondrially encoded cytochrome b gene. Mitochondrion 2009; 9:346-52. [PMID: 19563916 DOI: 10.1016/j.mito.2009.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 04/25/2009] [Accepted: 06/19/2009] [Indexed: 11/22/2022]
Abstract
Mutations within the mitochondrially encoded cytochrome b (MTCYB) gene are heteroplasmic and lead to severe exercise intolerance. We describe an unusual clinical presentation secondary to a novel homoplasmic mutation within MTCYB. The m.15635T>C transition (S297P) was carried by a newborn who presented with a polyvisceral failure. This mutation was responsible for a complex III deficiency. It was homoplasmic in all tissues tested and was undetectable in patient's mother. Functional analyses, including studies on patient's cybrid cell lines, demonstrate the pathogenicity of this variant. Our data show that mutations within MTCYB can be responsible for severe phenotype at birth.
Collapse
|
18
|
Azevedo L, Carneiro J, van Asch B, Moleirinho A, Pereira F, Amorim A. Epistatic interactions modulate the evolution of mammalian mitochondrial respiratory complex components. BMC Genomics 2009; 10:266. [PMID: 19523237 PMCID: PMC2711975 DOI: 10.1186/1471-2164-10-266] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Accepted: 06/13/2009] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The deleterious effect of a mutation can be reverted by a second-site interacting residue. This is an epistatic compensatory process explaining why mutations that are deleterious in some species are tolerated in phylogenetically related lineages, rendering evident that those mutations are, by all means, only deleterious in the species-specific context. Although an extensive and refined theoretical framework on compensatory evolution does exist, the supporting evidence remains limited, especially for protein models. In this current study, we focused on the molecular mechanism underlying the epistatic compensatory process in mammalian mitochondrial OXPHOS proteins using a combination of in-depth structural and sequence analyses. RESULTS Modeled human structures were used in this study to predict the structural impairment and recovery of deleterious mutations alone and combined with an interacting compensatory partner, respectively. In two cases, COI and COIII, intramolecular interactions between spatially linked residues restore the folding pattern impaired by the deleterious mutation. In a third case, intermolecular contact between mitochondrial CYB and nuclear CYT1 encoded components of the cytochrome bc1 complex are likely to restore protein binding. Moreover, we observed different modes of compensatory evolution that have resulted in either a quasi-simultaneous occurrence of a mutation and corresponding compensatory partner, or in independent occurrences of mutations in distinct lineages that were always preceded by the compensatory site. CONCLUSION Epistatic interactions between individual replacements involving deleterious mutations seems to follow a parsimonious model of evolution in which genomes hold pre-compensating states that subsequently tolerate deleterious mutations. This phenomenon is likely to have been constraining the variability at coevolving sites and shaping the interaction between the mitochondrial and the nuclear genome.
Collapse
Affiliation(s)
- Luísa Azevedo
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - João Carneiro
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Faculty of Sciences of the University of Porto, Porto, Portugal
| | - Barbara van Asch
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Faculty of Sciences of the University of Porto, Porto, Portugal
| | - Ana Moleirinho
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Filipe Pereira
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Faculty of Sciences of the University of Porto, Porto, Portugal
| | - António Amorim
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Faculty of Sciences of the University of Porto, Porto, Portugal
| |
Collapse
|
19
|
Devries MC, Tarnopolsky MA. Muscle Physiology in Healthy Men and Women and Those with Metabolic Myopathies. Phys Med Rehabil Clin N Am 2009; 20:101-31, viii-ix. [DOI: 10.1016/j.pmr.2008.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Abstract
Many of the neuromuscular (e.g., muscular dystrophy) and neurometabolic (e.g., mitochondrial cytopathies) disorders share similar final common pathways of cellular dysfunction that may be favorably influenced by creatine monohydrate (CrM) supplementation. Studies using the mdx model of Duchenne muscular dystrophy have found evidence of enhanced mitochondrial function, reduced intra-cellular calcium and improved performance with CrM supplementation. Clinical trials in patients with Duchenne and Becker's muscular dystrophy have shown improved function, fat-free mass, and some evidence of improved bone health with CrM supplementation. In contrast, the improvements in function in myotonic dystrophy and inherited neuropathies (e.g., Charcot-Marie-Tooth) have not been significant. Some studies in patients with mitochondrial cytopathies have shown improved muscle endurance and body composition, yet other studies did not find significant improvements in patients with mitochondrial cytopathy. Lower-dose CrM supplementation in patients with McArdle's disease (myophosphorylase deficiency) improved exercise capacity, yet higher doses actually showed some indication of worsened function. Based upon known cellular pathologies, there are potential benefits from CrM supplementation in patients with steroid myopathy, inflammatory myopathy, myoadenylate deaminase deficiency, and fatty acid oxidation defects. Larger randomized control trials (RCT) using homogeneous patient groups and objective and clinically relevant outcome variables are needed to determine whether creatine supplementation will be of therapeutic benefit to patients with neuromuscular or neurometabolic disorders. Given the relatively low prevalence of some of the neuromuscular and neurometabolic disorders, it will be necessary to use surrogate markers of potential clinical efficacy including markers of oxidative stress, cellular energy charge, and gene expression patterns.
Collapse
Affiliation(s)
- Mark A Tarnopolsky
- Department of Pediatrics and Medicine (Neurology and Rehabilitation), Neuromuscular and Neurometabolic Clinic, Rm 2H26, McMaster University Medical Center, 1200 Main St. W., Hamilton, Ontario, Canada, L8N 3Z5
| |
Collapse
|
21
|
Functions and effects of creatine in the central nervous system. Brain Res Bull 2008; 76:329-43. [DOI: 10.1016/j.brainresbull.2008.02.035] [Citation(s) in RCA: 254] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Revised: 02/15/2008] [Accepted: 02/25/2008] [Indexed: 12/12/2022]
|
22
|
Tuñón T, Guerrero D, Urchaga A, Nishino I, Ayuso T, Matsuda Y, Caballero MC, Berjón J, Imizcoz MA. Danon disease: a novel Lamp-2 gene mutation in a family with four affected members. Neuromuscul Disord 2008; 18:167-74. [PMID: 18061453 DOI: 10.1016/j.nmd.2007.09.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 09/05/2007] [Accepted: 09/12/2007] [Indexed: 11/26/2022]
Abstract
This is a report of a family with four members affected with Danon disease and variable clinical presentations, including cardiomyopathy, skeletal muscle pathology, and hepatopathy. Analysis by electron microscopy of the quadriceps muscle from the proband and his brother showed abnormal mitochondria, and immunohistochemistry revealed no expression of LAMP-2 protein. This defect is due to a yet undescribed mutation located at the second nucleotide in the intron 8 of the Lamp-2 gene (c.1093+2 T>A) that generated exon 8 skipping confirmed at RNA level in the proband.
Collapse
Affiliation(s)
- T Tuñón
- Department of Pathology, Hospital of Navarra, Navarra Health Service, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Muscle Physiology in Healthy Men and Women and Those with Metabolic Myopathies. Neurol Clin 2008; 26:115-48; ix. [DOI: 10.1016/j.ncl.2007.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Safdar A, Yardley NJ, Snow R, Melov S, Tarnopolsky MA. Global and targeted gene expression and protein content in skeletal muscle of young men following short-term creatine monohydrate supplementation. Physiol Genomics 2007; 32:219-28. [PMID: 17957000 DOI: 10.1152/physiolgenomics.00157.2007] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Creatine monohydrate (CrM) supplementation has been shown to increase fat-free mass and muscle power output possibly via cell swelling. Little is known about the cellular response to CrM. We investigated the effect of short-term CrM supplementation on global and targeted mRNA expression and protein content in human skeletal muscle. In a randomized, placebo-controlled, crossover, double-blind design, 12 young, healthy, nonobese men were supplemented with either a placebo (PL) or CrM (loading phase, 20 g/day x 3 days; maintenance phase, 5 g/day x 7 days) for 10 days. Following a 28-day washout period, subjects were put on the alternate supplementation for 10 days. Muscle biopsies of the vastus lateralis were obtained and were assessed for mRNA expression (cDNA microarrays + real-time PCR) and protein content (Kinetworks KPKS 1.0 Protein Kinase screen). CrM supplementation significantly increased fat-free mass, total body water, and body weight of the participants (P < 0.05). Also, CrM supplementation significantly upregulated (1.3- to 5.0-fold) the mRNA content of genes and protein content of kinases involved in osmosensing and signal transduction, cytoskeleton remodeling, protein and glycogen synthesis regulation, satellite cell proliferation and differentiation, DNA replication and repair, RNA transcription control, and cell survival. We are the first to report this large-scale gene expression in the skeletal muscle with short-term CrM supplementation, a response that suggests changes in cellular osmolarity.
Collapse
Affiliation(s)
- Adeel Safdar
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | |
Collapse
|
25
|
Abstract
More than 200 disease-related mitochondrial DNA (mtDNA) point mutations have been reported in the Mitomap (http://www.mitomap.org) database. These mutations can be divided into two groups: mutations affecting mitochondrial protein synthesis, including mutations in tRNA and rRNA genes; and mutations in protein-encoding genes (mRNAs). This review focuses on mutations in mitochondrial genes that encode proteins. These mutations are involved in a broad spectrum of human diseases, including a variety of multisystem disorders as well as more tissue-specific diseases such as isolated myopathy and Leber hereditary optic neuropathy (LHON). Because the mitochondrial genome contains a large number of apparently neutral polymorphisms that have little pathogenic significance, along with secondary homoplasmic mutations that do not have primary disease-causing effect, the pathogenic role of all newly discovered mutations must be rigorously established. A scoring system has been applied to evaluate the pathogenicity of the mutations in mtDNA protein-encoding genes and to review the predominant clinical features and the molecular characteristics of mutations in each mtDNA-encoded respiratory chain complex.
Collapse
Affiliation(s)
- Lee-Jun C Wong
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, NAB2015, Houston, Texas 77030, USA.
| |
Collapse
|
26
|
Abstract
Creatine and phosphocreatine serve not only as an intracellular buffer for adenosine triphosphate, but also as an energy shuttle for the movement of high-energy phosphates from mitochondrial sites of production to cytoplasmic sites of utilization. The spontaneous loss of creatine and of phosphocreatine to creatinine requires that creatine be continuously replaced; this occurs by a combination of diet and endogenous synthesis. Vegetarians obtain almost no dietary creatine. Creatine synthesis makes major demands on the metabolism of glycine, arginine, and methionine. Large doses of creatine monohydrate are widely taken, particularly by athletes, as an ergogenic supplement; creatine supplements are also taken by patients suffering from gyrate atrophy, muscular dystrophy, and neurodegenerative diseases. Children with inborn errors of creatine synthesis or transport present with severe neurological symptoms and a profound depletion of brain creatine. It is evident that creatine plays a critical, though underappreciated, role in brain function.
Collapse
Affiliation(s)
- John T Brosnan
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland, Canada.
| | | |
Collapse
|
27
|
Kong QP, Bandelt HJ, Sun C, Yao YG, Salas A, Achilli A, Wang CY, Zhong L, Zhu CL, Wu SF, Torroni A, Zhang YP. Updating the East Asian mtDNA phylogeny: a prerequisite for the identification of pathogenic mutations. Hum Mol Genet 2006; 15:2076-86. [PMID: 16714301 DOI: 10.1093/hmg/ddl130] [Citation(s) in RCA: 305] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Knowledge about the world phylogeny of human mitochondrial DNA (mtDNA) is essential not only for evaluating the pathogenic role of specific mtDNA mutations but also for performing reliable association studies between mtDNA haplogroups and complex disorders. In the past few years, the main features of the East Asian portion of the mtDNA phylogeny have been determined on the basis of complete sequencing efforts, but representatives of several basal lineages were still lacking. Moreover, some recently published complete mtDNA sequences did apparently not fit into the known phylogenetic tree and conflicted with the established nomenclature. To refine the East Asian mtDNA tree and resolve data conflicts, we first completely sequenced 20 carefully selected mtDNAs--likely representatives of novel sub-haplogroups--and then, in order to distinguish diagnostic mutations of novel haplogroups from private variants, we applied a 'motif-search' procedure to a large sample collection. The novel information was incorporated into an updated East Asian mtDNA tree encompassing more than 1000 (near-) complete mtDNA sequences. A reassessment of the mtDNA data from a series of disease studies testified to the usefulness of such a refined mtDNA tree in evaluating the pathogenicity of mtDNA mutations. In particular, the claimed pathogenic role of mutations G3316A, T3394C, A4833G and G15497A appears to be most questionable as those initial claims were derived from anecdotal findings rather than e.g. appropriate association studies. Following a guideline based on the phylogenetic knowledge as proposed here could help avoiding similar problems in the future.
Collapse
Affiliation(s)
- Qing-Peng Kong
- Laboratory of Cellular and Molecular Evolution, and Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Tarnopolsky MA, Raha S. Mitochondrial myopathies: diagnosis, exercise intolerance, and treatment options. Med Sci Sports Exerc 2006; 37:2086-93. [PMID: 16331134 DOI: 10.1249/01.mss.0000177341.89478.06] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mitochondrial myopathies are caused by genetic mutations that directly influence the functioning of the electron transport chain (ETC). It is estimated that 1 of 8,000 people have pathology inducing mutations affecting mitochondrial function. Diagnosis often requires a multifaceted approach with measurements of serum lactate and pyruvate, urine organic acids, magnetic resonance spectroscopy (MRS), muscle histology and ultrastructure, enzymology, genetic analysis, and exercise testing. The ubiquitous distribution of the mitochondria in the human body explains the multiple organ involvement. Exercise intolerance is a common but often an overlooked hallmark of mitochondrial myopathies. The muscle consequences of ETC dysfunction include increased reliance on anaerobic metabolism (lactate generation, phosphocreatine degradation), enhanced free radical production, reduced oxygen extraction and electron flux through ETC, and mitochondrial proliferation or biogenesis (see article by Hood in current issue). Treatments have included antioxidants (vitamin E, alpha lipoic acid), electron donors and acceptors (coenzyme Q10, riboflavin), alternative energy sources (creatine monohydrate), lactate reduction strategies (dichloroacetate) and exercise training. Exercise is a particularly important modality in diagnosis as well as therapy (see article by Taivassalo in current issue). Increased awareness of these disorders by exercise physiologists and sports medicine practitioners should lead to more accurate and more rapid diagnosis and the opportunity for therapy and genetic counseling.
Collapse
|
29
|
Schlattner U, Tokarska-Schlattner M, Wallimann T. Mitochondrial creatine kinase in human health and disease. Biochim Biophys Acta Mol Basis Dis 2006; 1762:164-80. [PMID: 16236486 DOI: 10.1016/j.bbadis.2005.09.004] [Citation(s) in RCA: 439] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2005] [Revised: 08/09/2005] [Accepted: 09/13/2005] [Indexed: 01/23/2023]
Abstract
Mitochondrial creatine kinase (MtCK), together with cytosolic creatine kinase isoenzymes and the highly diffusible CK reaction product, phosphocreatine, provide a temporal and spatial energy buffer to maintain cellular energy homeostasis. Mitochondrial proteolipid complexes containing MtCK form microcompartments that are involved in channeling energy in form of phosphocreatine rather than ATP into the cytosol. Under situations of compromised cellular energy state, which are often linked to ischemia, oxidative stress and calcium overload, two characteristics of mitochondrial creatine kinase are particularly relevant: its exquisite susceptibility to oxidative modifications and the compensatory up-regulation of its gene expression, in some cases leading to accumulation of crystalline MtCK inclusion bodies in mitochondria that are the clinical hallmarks for mitochondrial cytopathies. Both of these events may either impair or reinforce, respectively, the functions of mitochondrial MtCK complexes in cellular energy supply and protection of mitochondria form the so-called permeability transition leading to apoptosis or necrosis.
Collapse
Affiliation(s)
- Uwe Schlattner
- Institute of Cell Biology, Swiss Federal Institute of Technology (ETH Zürich), Hönggerberg HPM, CH-8093 Zürich, Switzerland
| | | | | |
Collapse
|
30
|
Tarnopolsky MA. What can metabolic myopathies teach us about exercise physiology? Appl Physiol Nutr Metab 2006; 31:21-30. [PMID: 16604138 DOI: 10.1139/h05-008] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exercise physiologists are interested in metabolic myopathies because they demonstrate how knocking out a component of a specific biochemical pathway can alter cellular metabolism. McArdle's disease (myophosphorylase deficiency) has often been studied in exercise physiology to demonstrate the influence of removing the major anaerobic energy supply to skeletal muscle. Studies of patients with McArdle's disease have shown the increased reliance on blood-borne fuels, the importance of glycogen to maximal aerobic capacity, and the use of nutritional strategies to bypass metabolic defects. Myoadenylate deaminase deficiency is the most common metabolic enzyme deficiency in human skeletal muscle. It is usually compensated for endogenously and does not have a major influence on high-energy power output. Nutritional interventions such as carbohydrate loading and carbohydrate supplementation during exercise are essential components of therapy for patients with fatty acid oxidation defects. Cases of mitochondrial myopathies illustrate the importance of peripheral oxygen extraction for maximal aerobic capacity and show how both exercise and nutritional interventions can partially compensate for these mutations. In summary, metabolic myopathies provide important insights into regulatory and nutritional aspects of the major biochemical pathways of intermediary metabolism in human skeletal muscle. Key words: myoadenylate deaminase deficiency, MELAS syndrome, McArdle's disease, mitochondrial disease, inborn errors of metabolism.
Collapse
Affiliation(s)
- Mark A Tarnopolsky
- Department of Pediatrics and Medicine, Division of Neurology, McMaster University Medical Centre, Hamilton, ON, Canada.
| |
Collapse
|
31
|
Sandhu J, Sodja C, Mcrae K, Li Y, Rippstein P, Wei YH, Lach B, Lee F, Bucurescu S, Harper ME, Sikorska M. Effects of nitric oxide donors on cybrids harbouring the mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) A3243G mitochondrial DNA mutation. Biochem J 2006; 391:191-202. [PMID: 15969653 PMCID: PMC1276916 DOI: 10.1042/bj20050272] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Reactive nitrogen and oxygen species (O2*-, H2O2, NO* and ONOO-) have been strongly implicated in the pathophysiology of neurodegenerative and mitochondrial diseases. In the present study, we examined the effects of nitrosative and/or nitrative stress generated by DETA-NO {(Z)-1-[2-aminoethyl-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate}, SIN-1 (3-morpholinosydnonimine hydrochloride) and SNP (sodium nitroprusside) on U87MG glioblastoma cybrids carrying wt (wild-type) and mutant [A3243G (Ala3243-->Gly)] mtDNA (mitochondrial genome) from a patient suffering from MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes). The mutant cybrids had reduced activity of cytochrome c oxidase, significantly lower ATP level and decreased mitochondrial membrane potential. However, endogenous levels of reactive oxygen species were very similar in all cybrids regardless of whether they carried the mtDNA defects or not. Furthermore, the cybrids were insensitive to the nitrosative and/or nitrative stress produced by either DETA-NO or SIN-1 alone. Cytotoxicity, however, was observed in response to SNP treatment and a combination of SIN-1 and glucose-deprivation. The mutant cybrids were significantly more sensitive to these insults compared with the wt controls. Ultrastructural examination of dying cells revealed several characteristic features of autophagic cell death. We concluded that nitrosative and/or nitrative stress alone were insufficient to trigger cytotoxicity in these cells, but cell death was observed with a combination of metabolic and nitrative stress. The vulnerability of the cybrids to these types of injury correlated with the cellular energy status, which were compromised by the MELAS mutation.
Collapse
Affiliation(s)
- Jagdeep K. Sandhu
- *Neurogenesis and Brain Repair Group, M54, Institute for Biological Sciences, National Research Council Canada, 1200 Montreal Road, Ottawa, ON, Canada K1A 0R6
- Correspondence may be addressed to either of the authors (email and )
| | - Caroline Sodja
- *Neurogenesis and Brain Repair Group, M54, Institute for Biological Sciences, National Research Council Canada, 1200 Montreal Road, Ottawa, ON, Canada K1A 0R6
| | - Kevan Mcrae
- *Neurogenesis and Brain Repair Group, M54, Institute for Biological Sciences, National Research Council Canada, 1200 Montreal Road, Ottawa, ON, Canada K1A 0R6
| | - Yan Li
- *Neurogenesis and Brain Repair Group, M54, Institute for Biological Sciences, National Research Council Canada, 1200 Montreal Road, Ottawa, ON, Canada K1A 0R6
| | - Peter Rippstein
- †Department of Pathology and Laboratory Medicine, The Ottawa Hospital-Civic Campus, Ottawa, ON, Canada K1Y 4E9
| | - Yau-Huei Wei
- ‡Department of Biochemistry and Center for Cellular and Molecular Biology, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Boleslaw Lach
- §Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Fay Lee
- ∥Health Canada, Banting Research Center, Ottawa, ON, Canada K1A 0L2
| | - Septimiu Bucurescu
- ¶Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada K1H 8M5
| | - Mary-Ellen Harper
- ¶Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada K1H 8M5
| | - Marianna Sikorska
- *Neurogenesis and Brain Repair Group, M54, Institute for Biological Sciences, National Research Council Canada, 1200 Montreal Road, Ottawa, ON, Canada K1A 0R6
- Correspondence may be addressed to either of the authors (email and )
| |
Collapse
|
32
|
Bürklen TS, Schlattner U, Homayouni R, Gough K, Rak M, Szeghalmi A, Wallimann T. The creatine kinase/creatine connection to Alzheimer's disease: CK-inactivation, APP-CK complexes and focal creatine deposits. J Biomed Biotechnol 2006; 2006:35936. [PMID: 17047305 PMCID: PMC1510941 DOI: 10.1155/jbb/2006/35936] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Revised: 02/28/2006] [Accepted: 02/28/2006] [Indexed: 12/12/2022] Open
Abstract
Cytosolic brain-type creatine kinase (BB-CK), which is coexpressed with ubiquitous mitochondrial uMtCK, is significantly inactivated by oxidation, in Alzheimer's disease (AD) patients. Since CK has been shown to play a fundamental role in cellular energetics of the brain, any disturbance of this enzyme may exasperate the AD disease process. Mutations in amyloid precursor protein (APP) are associated with early onset AD and result in abnormal processing of APP, and accumulation of A beta peptide, the main constituent of amyloid plaques in AD brain. Recent data on a direct interaction between APP and the precursor of uMtCK support an emerging relationship between AD, cellular energy levels and mitochondrial function. In addition, recently discovered creatine (Cr) deposits in the brain of transgenic AD mice, as well as in the hippocampus from AD patients, indicate a direct link between perturbed energy state, Cr metabolism and AD. Here, we review the roles of Cr and Cr-related enzymes and consider the potential value of supplementation with Cr, a potent neuroprotective substance. As a hypothesis, we consider whether Cr, if given at an early time point of the disease, may prevent or delay the course of AD-related neurodegeneration.
Collapse
Affiliation(s)
- Tanja S. Bürklen
- Institute of Cell Biology, ETH Zurich,
Hönggerberg HPM, 8093 Zurich, Switzerland
| | - Uwe Schlattner
- Institute of Cell Biology, ETH Zurich,
Hönggerberg HPM, 8093 Zurich, Switzerland
- Laboratory of Fundamental and Applied Bioenergetics,
INSERM E0221, Joseph Fourier University, 38041 Grenoble, Cedex 9, France
| | - Ramin Homayouni
- Department of Neurology, University of Tennessee
Health Science Center, Memphis, TN 38163, USA
| | - Kathleen Gough
- Department of Chemistry, University of Manitoba,
Winnipeg, Manitoba, Canada R3T 2N2
| | - Margaret Rak
- Department of Chemistry, University of Manitoba,
Winnipeg, Manitoba, Canada R3T 2N2
| | - Adriana Szeghalmi
- Department of Chemistry, University of Manitoba,
Winnipeg, Manitoba, Canada R3T 2N2
| | - Theo Wallimann
- Institute of Cell Biology, ETH Zurich,
Hönggerberg HPM, 8093 Zurich, Switzerland
| |
Collapse
|
33
|
Ryu H, Rosas HD, Hersch SM, Ferrante RJ. The therapeutic role of creatine in Huntington's disease. Pharmacol Ther 2005; 108:193-207. [PMID: 16055197 DOI: 10.1016/j.pharmthera.2005.04.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Accepted: 04/07/2005] [Indexed: 12/12/2022]
Abstract
Huntington's disease (HD) is an autosomal dominant and fatal neurological disorder characterized by a clinical triad of progressive choreiform movements, psychiatric symptoms, and cognitive decline. HD is caused by an expanded trinucleotide CAG repeat in the gene coding for the protein huntingtin. No proven treatment to prevent the onset or to delay the progression of HD currently exists. While a direct causative pathway from the gene mutation to the selective neostriatal neurodegeneration remains unclear, it has been hypothesized that interactions of the mutant huntingtin protein or its fragments may result in a number of interrelated pathogenic mechanisms triggering a cascade of molecular events that lead to the untimely neuronal death observed in HD. One putative pathological mechanism reported to play a prominent role in the pathogenesis of HD is mitochondrial dysfunction and the subsequent reduction of cellular energy. Indeed, if mitochondrial impairment and reduced energy stores play roles in the neuronal loss in HD, then a therapeutic strategy that buffers intracellular energy levels may ameliorate the neurodegenerative process. Sustained ATP levels may have both direct and indirect importance in ameliorating the severity of many of the pathogenic mechanisms associated with HD. Creatine, a guanidino compound produced endogenously and acquired exogenously through diet, is a critical component in maintaining much needed cellular energy. As such, creatine is one of a number of ergogens that may provide a relatively safe and immediately available therapeutic strategy to HD patients that may be the cornerstone of a combined treatment necessary to delay the relentless progression of HD.
Collapse
Affiliation(s)
- Hoon Ryu
- Experimental Neuropathology Unit and Translational Therapeutics Laboratory, Geriatric Research Education Clinical Center, Bedford VA Medical Center, MA 01730, USA
| | | | | | | |
Collapse
|
34
|
Berneburg M, Gremmel T, Kürten V, Schroeder P, Hertel I, von Mikecz A, Wild S, Chen M, Declercq L, Matsui M, Ruzicka T, Krutmann J. Creatine supplementation normalizes mutagenesis of mitochondrial DNA as well as functional consequences. J Invest Dermatol 2005; 125:213-20. [PMID: 16098029 DOI: 10.1111/j.0022-202x.2005.23806.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mutations of mitochondrial (mt) DNA play a role in neurodegeneration, normal aging, premature aging of the skin (photoaging), and tumors. We and others could demonstrate that mtDNA mutations can be induced in skin cells in vitro and in normal human skin in vivo by repetitive, sublethal ultraviolet (UV)-A-irradiation. These mutations are mediated by singlet oxygen and persist in human skin as long-term biomarkers of UV exposure. Although mtDNA exclusively encodes for the respiratory chain, involvement of the energy metabolism in mtDNA mutagenesis and a protective role of the energy precursor creatine have thus far not been shown. We assessed the amount of a marker mutation of mtDNA, the so-called common deletion, by real-time PCR. Induction of the common deletion was paralleled by a measurable decrease of oxygen consumption, mitochondrial membrane potential, and ATP content, as well as an increase of matrix metalloproteinase-1. Mitochondrial mutagenesis as well as functional consequences could be normalized by increasing intracellular creatine levels. These data indicate that increase of the energy precursor creatine protects from functionally relevant, aging-associated mutations of mitochondrial DNA.
Collapse
Affiliation(s)
- Mark Berneburg
- Molecular Oncology and Aging, Department of Dermatology, Eberhard Karls University, Tuebingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|