1
|
Kim JP, Heo SC, Lee DH, Bae JS, Shin YK, Son SH, Park IY, Kim HW, Lee JH, Kim KW. Efficacy of cold and cryo-preserved nerve allografts with low-dose FK506 for motor nerve regeneration: a preclinical study. J Orthop Surg Res 2024; 19:859. [PMID: 39702298 DOI: 10.1186/s13018-024-05343-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Despite their ability to regenerate as well as autografts, the use of nerve allografts is limited by the need for immunosuppression and the risk of disease transmission. Further, decellularized allografts lacking Schwann cells limit axonal regeneration in long nerve defects. This study evaluated sciatic nerve regeneration in rats implanted with cold- or cryopreserved allografts, and examined the effects of FK506, an immunosuppressant that targets calcineurin function, on motor recovery. METHODS Sixty-five male Lewis rats were divided into five groups of 13, each with a 10-mm sciatic nerve gap. Group I received an autograft, whereas Groups II and III received allografts pretreated with cryopreservation and cold preservation, respectively. Groups IV and V were also implanted with cryo- and cold-preserved allografts, but were treated with a low dose of FK506. Motor regeneration was assessed at 20 weeks by the measurement of ankle contracture, compound muscle action potential, maximal isometric tetanic force, wet muscle weight of the tibialis anterior, peroneal nerve histomorphometry, and immunohistochemistry of the reconstructed sciatic nerve. RESULTS Similar motor recovery was observed between the autografts and both types of allografts. The groups treated with FK506 showed improved recovery, particularly in terms of ankle angle and tibialis anterior muscle weight. Histomorphometry revealed a superior myelinated fiber area and nerve ratio in the cold-preserved allograft group, while Group II displayed a less well-organized morphology. CONCLUSION This study demonstrates that cold- or cryopreserved nerve allografts represent effective alternatives to autografts for peripheral nerve reconstruction, with low-dose FK506 enhancing motor recovery without necessitating immunosuppression. LEVEL OF EVIDENCE I Basic Science Level I.
Collapse
Affiliation(s)
- Jong Pil Kim
- Department of Orthopaedic Surgery, Naeunpil Hospital, Cheonan, Republic of Korea
| | - Soon Chul Heo
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119, Dandae-ro, Cheonan-si, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| | - Dae Hee Lee
- Department of Orthopaedic Surgery, Dankook University Hospital, Dankook University College of Medicine, 201, Manghyang-ro, Dongnam-gu, Cheonan-si, Republic of Korea
| | - Jun Sang Bae
- Beckman Laser Institute Korea, Dankook University College of Medicine, Cheonan, Republic of Korea
- Medical Laser Research Center, Dankook University, Cheonan, Republic of Korea
| | - Young Kwang Shin
- Department of Orthopaedic Surgery, Dankook University Hospital, Dankook University College of Medicine, 201, Manghyang-ro, Dongnam-gu, Cheonan-si, Republic of Korea
| | - Su Hyeok Son
- Department of Orthopaedic Surgery, Dankook University Hospital, Dankook University College of Medicine, 201, Manghyang-ro, Dongnam-gu, Cheonan-si, Republic of Korea
| | - Il Yong Park
- Department of Biomedical Engineering, Dankook University College of Medicine, Cheonan, 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119, Dandae-ro, Cheonan-si, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 Four NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jun Hee Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119, Dandae-ro, Cheonan-si, 31116, Republic of Korea.
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea.
- Department of Nanobiomedical Science and BK21 Four NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea.
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea.
| | - Kyung Wook Kim
- Department of Orthopaedic Surgery, Dankook University Hospital, Dankook University College of Medicine, 201, Manghyang-ro, Dongnam-gu, Cheonan-si, Republic of Korea.
| |
Collapse
|
2
|
Redolfi Riva E, Özkan M, Contreras E, Pawar S, Zinno C, Escarda-Castro E, Kim J, Wieringa P, Stellacci F, Micera S, Navarro X. Beyond the limiting gap length: peripheral nerve regeneration through implantable nerve guidance conduits. Biomater Sci 2024; 12:1371-1404. [PMID: 38363090 DOI: 10.1039/d3bm01163a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Peripheral nerve damage results in the loss of sensorimotor and autonomic functions, which is a significant burden to patients. Furthermore, nerve injuries greater than the limiting gap length require surgical repair. Although autografts are the preferred clinical choice, their usage is impeded by their limited availability, dimensional mismatch, and the sacrifice of another functional donor nerve. Accordingly, nerve guidance conduits, which are tubular scaffolds engineered to provide a biomimetic environment for nerve regeneration, have emerged as alternatives to autografts. Consequently, a few nerve guidance conduits have received clinical approval for the repair of short-mid nerve gaps but failed to regenerate limiting gap damage, which represents the bottleneck of this technology. Thus, it is still necessary to optimize the morphology and constituent materials of conduits. This review summarizes the recent advances in nerve conduit technology. Several manufacturing techniques and conduit designs are discussed, with emphasis on the structural improvement of simple hollow tubes, additive manufacturing techniques, and decellularized grafts. The main objective of this review is to provide a critical overview of nerve guidance conduit technology to support regeneration in long nerve defects, promote future developments, and speed up its clinical translation as a reliable alternative to autografts.
Collapse
Affiliation(s)
- Eugenio Redolfi Riva
- The Biorobotic Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy.
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Melis Özkan
- Institute of Materials, école Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Bertarelli Foundation Chair in Translational Neural Engineering, Center for Neuroprosthetics and Institute of Bioengineering, école Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Estefania Contreras
- Integral Service for Laboratory Animals (SIAL), Faculty of Veterinary, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain.
| | - Sujeet Pawar
- Institute of Materials, école Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Ciro Zinno
- The Biorobotic Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy.
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Enrique Escarda-Castro
- Complex Tissue Regeneration Department, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Jaehyeon Kim
- Complex Tissue Regeneration Department, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Paul Wieringa
- Complex Tissue Regeneration Department, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Francesco Stellacci
- Institute of Materials, école Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Institute of Materials, Department of Bioengineering and Global Health Institute, École Polytechnique Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne, Switzerland
| | - Silvestro Micera
- The Biorobotic Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy.
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
- Bertarelli Foundation Chair in Translational Neural Engineering, Center for Neuroprosthetics and Institute of Bioengineering, école Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Xavier Navarro
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
- Institute Guttmann Foundation, Hospital of Neurorehabilitation, Badalona, Spain
| |
Collapse
|
3
|
Hsu MW, Chen SH, Tseng WL, Hung KS, Chung TC, Lin SC, Koo J, Hsueh YY. Physical processing for decellularized nerve xenograft in peripheral nerve regeneration. Front Bioeng Biotechnol 2023; 11:1217067. [PMID: 37324430 PMCID: PMC10267830 DOI: 10.3389/fbioe.2023.1217067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 05/23/2023] [Indexed: 06/17/2023] Open
Abstract
In severe or complex cases of peripheral nerve injuries, autologous nerve grafts are the gold standard yielding promising results, but limited availability and donor site morbidity are some of its disadvantages. Although biological or synthetic substitutes are commonly used, clinical outcomes are inconsistent. Biomimetic alternatives derived from allogenic or xenogenic sources offer an attractive off-the-shelf supply, and the key to successful peripheral nerve regeneration focuses on an effective decellularization process. In addition to chemical and enzymatic decellularization protocols, physical processes might offer identical efficiency. In this comprehensive minireview, we summarize recent advances in the physical methods for decellularized nerve xenograft, focusing on the effects of cellular debris clearance and stability of the native architecture of a xenograft. Furthermore, we compare and summarize the advantages and disadvantages, indicating the future challenges and opportunities in developing multidisciplinary processes for decellularized nerve xenograft.
Collapse
Affiliation(s)
- Ming-Wei Hsu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Szu-Han Chen
- Division of Plastic and Reconstructive Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Cell Therapy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- International Research Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
| | - Wan-Ling Tseng
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Tainan Hospital, Ministry of Health and Welfare, Tainan, Taiwan
| | - Kuo-Shu Hung
- Division of Plastic and Reconstructive Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tzu-Chun Chung
- Department of Orthopedic Surgery, E-Da Hospital, Kaohsiung, Taiwan
| | - Sheng-Che Lin
- Division of Plastic Surgery, Department of Surgery, An-Nan Hospital, China Medical University, Tainan, Taiwan
| | - Jahyun Koo
- School of Biomedical Engineering, Korea University, Seoul, Republic of Korea
| | - Yuan-Yu Hsueh
- Division of Plastic and Reconstructive Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Cell Therapy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- International Research Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
4
|
Wang Y, Li J, Qian J, Sun Y, Xu J, Sun J. Comparison of the biological properties between 3D-printed and decellularized tracheal grafts. Bioprocess Biosyst Eng 2023:10.1007/s00449-023-02867-4. [PMID: 37171579 DOI: 10.1007/s00449-023-02867-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/21/2023] [Indexed: 05/13/2023]
Abstract
This study sought to characterize the differences between the 3D-printed and decellularized tracheal grafts, providing the basis for the synthesis of the more reasonable and effective tissue-engineered trachea. We compared the biomechanical properties and biocompatibility of the 3D-printed tracheal graft and decellularized tracheal graft in vitro and evaluated the biocompatibility, immune rejection and inflammation of the two materials through in vivo implantation experiments. Compared with the decellularized tracheal graft, the 3D-printed tracheal graft was associated with obviously higher biomechanical properties. The results demonstrated enhanced growth of BMSCs in the decellularized tracheal graft compared to the 3D-printed one when co-culture with two tracheal graft groups. Moreover, the CCK-8 assay demonstrated significant cell proliferation on the decellularized tracheal graft. Serum IgG and IgM measured in vivo by implantation testing indicated that the 3D-Printed tracheal graft exhibited the most significant inflammatory response. HE staining indicated that the inflammatory response in the 3D-printed tracheal graft consisted mainly of eosinophils, while little inflammatory cell infiltrates were observed in the decellularized tracheal graft. CD68 immunohistochemical analysis indicated that the infiltration of macrophages was not significant in both tracheal grafts. Our findings suggest that the biomechanical properties of the 3D-printed tracheal grafts are better than the decellularized tracheal grafts. Nonetheless, the decellularized tracheal graft exhibited better biocompatibility than the 3D-printed tracheal graft.
Collapse
Affiliation(s)
- Yao Wang
- Department of Cardiothoracic Surgery, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, 224005, China
| | - Jianfeng Li
- Yizheng Hospital, Drum Tower Hospital Group of Nanjing, Yizheng, 211900, China
| | - Jun Qian
- Department of Cardiothoracic Surgery, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, 224005, China
| | - Yunhao Sun
- Department of Cardiothoracic Surgery, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, 224005, China
| | - Jianning Xu
- Department of Cardiothoracic Surgery, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, 224005, China
| | - Jian Sun
- Department of Cardiothoracic Surgery, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, 224005, China.
| |
Collapse
|
5
|
Kim DH, Shin SH, Lee MK, Lee JJ, Kim JK, Chung YG. Effectiveness and Biocompatibility of Decellularized Nerve Graft Using an In Vivo Rat Sciatic Nerve Model. Tissue Eng Regen Med 2021; 18:797-805. [PMID: 34386942 DOI: 10.1007/s13770-021-00353-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Decellularized nerve allografting is one of promising treatment options for nerve defect. As an effort to develop more efficient nerve graft, recently we have developed a new decellularization method for nerve allograft. The aim of this study was to evaluate the effectiveness and biocompatibility of nerve graft decellularized by our newly developed method. METHODS Forty-eight inbred male Lewis rats were divided into two groups, Group I (autograft group, n = 25), Group II (decellularized isograft group, n = 23). Decellularized nerve grafts were prepared with our newly developed methods using amphoteric detergent and nuclease treatment. Serum cytokine level measurements at 0, 2, and 4 weeks and histologic evaluation for inflammatory cell infiltration at 6 and 16 weeks after nerve graft. RESULTS There was no significant difference in mean maximum isometric tetanic force and weight of tibialis anterior muscle or ankle angle at toe-off phase between two groups at 6 and 16 weeks survival time points (p > 0.05). There was no inflammatory cell infiltration in either group and histomorphometric assessments of 6- and 16-week specimens of the isograft group did not differ from those in the autograft group with regard to number of fascicle, cross sectional area, fascicle area ratio, and number of regenerated nerve cells. CONCLUSION Based on inflammatory reaction, axonal regeneration, and functional outcomes, our newly developed decellularized nerve grafts were fairly biocompatible and had comparable effectiveness to autografts for nerve regeneration, which suggested it would be suitable for nerve reconstruction as an alternative to autograft.
Collapse
Affiliation(s)
- Dong Hyun Kim
- Department of Orthopedic Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Banpo-daero 222, Seocho-gu, Seoul, 06591, Korea
| | - Seung-Han Shin
- Department of Orthopedic Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Banpo-daero 222, Seocho-gu, Seoul, 06591, Korea
| | - Myeong-Kyu Lee
- Department of Research and Development, Korea Public Tissue Bank, 37 Sagimakgol-ro 62beon-gil, Jungwon-gu, Seongnam-si, Gyeonggi-do, 13211, Korea
| | - Jae-Jin Lee
- Department of Orthopedic Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Banpo-daero 222, Seocho-gu, Seoul, 06591, Korea
| | - Jae Kwang Kim
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-Gu, Seoul, 05505, Korea
| | - Yang-Guk Chung
- Department of Orthopedic Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Banpo-daero 222, Seocho-gu, Seoul, 06591, Korea.
| |
Collapse
|
6
|
Selim OA, Lakhani S, Midha S, Mosahebi A, Kalaskar DM. Three-Dimensional Engineered Peripheral Nerve: Toward a New Era of Patient-Specific Nerve Repair Solutions. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:295-335. [PMID: 33593147 DOI: 10.1089/ten.teb.2020.0355] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Reconstruction of peripheral nerve injuries (PNIs) with substance loss remains challenging because of limited treatment solutions and unsatisfactory patient outcomes. Currently, nerve autografting is the first-line management choice for bridging critical-sized nerve defects. The procedure, however, is often complicated by donor site morbidity and paucity of nerve tissue, raising a quest for better alternatives. The application of other treatment surrogates, such as nerve guides, remains questionable, and it is inefficient in irreducible nerve gaps. More importantly, these strategies lack customization for personalized patient therapy, which is a significant drawback of these nerve repair options. This negatively impacts the fascicle-to-fascicle regeneration process, critical to restoring the physiological axonal pathway of the disrupted nerve. Recently, the use of additive manufacturing (AM) technologies has offered major advancements to the bioengineering solutions for PNI therapy. These techniques aim at reinstating the native nerve fascicle pathway using biomimetic approaches, thereby augmenting end-organ innervation. AM-based approaches, such as three-dimensional (3D) bioprinting, are capable of biofabricating 3D-engineered nerve graft scaffolds in a patient-specific manner with high precision. Moreover, realistic in vitro models of peripheral nerve tissues that represent the physiologically and functionally relevant environment of human organs could also be developed. However, the technology is still nascent and faces major translational hurdles. In this review, we spotlighted the clinical burden of PNIs and most up-to-date treatment to address nerve gaps. Next, a summarized illustration of the nerve ultrastructure that guides research solutions is discussed. This is followed by a contrast of the existing bioengineering strategies used to repair peripheral nerve discontinuities. In addition, we elaborated on the most recent advances in 3D printing and biofabrication applications in peripheral nerve modeling and engineering. Finally, the major challenges that limit the evolution of the field along with their possible solutions are also critically analyzed.
Collapse
Affiliation(s)
- Omar A Selim
- Department of Surgical Biotechnology, Division of Surgery and Interventional Sciences, Royal Free Hospital, University College London (UCL), London, United Kingdom
| | - Saad Lakhani
- Department of Surgical Biotechnology, Division of Surgery and Interventional Sciences, Royal Free Hospital, University College London (UCL), London, United Kingdom
| | - Swati Midha
- Department of Surgical Biotechnology, Division of Surgery and Interventional Sciences, Royal Free Hospital, University College London (UCL), London, United Kingdom.,Department of Surgical Biotechnology, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Afshin Mosahebi
- Department of Plastic Surgery, Royal Free Hospital, University College London (UCL), London, United Kingdom
| | - Deepak M Kalaskar
- Department of Surgical Biotechnology, Division of Surgery and Interventional Sciences, Royal Free Hospital, University College London (UCL), London, United Kingdom.,Department of Surgical Biotechnology, Institute of Orthopaedics and Musculoskeletal Science, Royal National Orthopaedic Hospital, University College London (UCL), Stanmore, United Kingdom
| |
Collapse
|
7
|
Pedrini FA, Boriani F, Bolognesi F, Fazio N, Marchetti C, Baldini N. Cell-Enhanced Acellular Nerve Allografts for Peripheral Nerve Reconstruction: A Systematic Review and a Meta-Analysis of the Literature. Neurosurgery 2020; 85:575-604. [PMID: 30247648 DOI: 10.1093/neuros/nyy374] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 07/18/2018] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Peripheral nerve reconstruction is a difficult problem to solve. Acellular nerve allografts (ANAs) have been widely tested and are a promising alternative to the autologous gold standard. However, current reconstructive methods still yield unpredictable and unsuccessful results. Consequently, numerous studies have been carried out studying alternatives to plain ANAs, but it is not clear if nerve regeneration potential exists between current biological, chemical, and physical enrichment modes. OBJECTIVE To systematically review the effects of cell-enhanced ANAs on regeneration of peripheral nerve injuries. METHODS PubMed, ScienceDirect, Medline, and Scopus databases were searched for related articles published from 2007 to 2017. Inclusion criteria of selected articles consisted of (1) articles written in English; (2) the topic being cell-enhanced ANAs in peripheral nerve regeneration; (3) an in vivo study design; and (4) postgrafting neuroregenerative assessment of results. Exclusion criteria included all articles that (1) discussed central nervous system ANAs; (2) consisted of xenografts as the main topic; and (3) consisted of case series, case reports or reviews. RESULTS Forty papers were selected, and categorization included the animal model; the enhancing cell types; the decellularization method; and the neuroregenerative test performed. The effects of using diverse cellular enhancements combined with ANAs are discussed and also compared with the other treatments such as autologous nerve graft, and plain ANAs. CONCLUSION ANAs cellular enhancement demonstrated positive effects on recovery of nerve function. Future research should include clinical translation, in order to increase the level of evidence available on peripheral nerve reconstruction.
Collapse
Affiliation(s)
- Francesca Alice Pedrini
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Filippo Boriani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Department of Plastic and Hand Surgery, Koelliker Hospital, Turin, Italy
| | - Federico Bolognesi
- Maxillofacial Surgery Unit, S. Orsola-Malpighi Hospital, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Nicola Fazio
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Claudio Marchetti
- Maxillofacial Surgery Unit, S. Orsola-Malpighi Hospital, Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Nicola Baldini
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
8
|
Lee JY, Park JH, Cho DW. Comparison of tracheal reconstruction with allograft, fresh xenograft and artificial trachea scaffold in a rabbit model. J Artif Organs 2018; 21:325-331. [PMID: 29752586 DOI: 10.1007/s10047-018-1045-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 05/04/2018] [Indexed: 12/31/2022]
Abstract
This study evaluated the possibility of tracheal reconstruction with allograft, pig-to-rabbit fresh xenograft or use of a tissue-engineered trachea, and compared acute rejection of three different transplanted tracheal segments in rabbits. Eighteen healthy New Zealand White rabbits weighing 2.5-3.1 kg were transplanted with three different types of trachea substitutes. Two rabbits and two alpha 1, 3-galactosyltransferase gene-knockout pigs weighing 5 kg were used as donors. The rabbits were divided into three groups: an allograft control group consisting of rabbit-to-rabbit allotransplantation animals (n = 6), a fresh xenograft group consisting of pig-to-rabbit xenotransplantation animals (n = 6), and an artificial trachea scaffold group (n = 6). All animals were monitored for 4 weeks for anastomotic complications or infection. The recipients were sacrificed at 28 days after surgery and the grafts were evaluated. On bronchoscopy, all of the fresh xenograft group animals showed ischemic and necrotic changes at 28 days after trachea replacement. The allograft rabbits and the tissue-engineered rabbits showed mild mucosal granulation. The levels of interleukin-2 and interferon-γ in the fresh xenograft group were higher than in other groups. Histopathologic examination of the graft in the fresh xenograft rabbits showed ischemic and necrotic changes, including a loss of epithelium, mucosal granulation, and necrosis of cartilaginous rings. The pig-to-rabbit xenografts showed more severe acute rejection within a month than the rabbits with allograft or artificial trachea-mimetic graft. In addition, the artificial tracheal scaffold used in the present experiment is superior to fresh xenograft and may facilitate tracheal reconstruction in the clinical setting.
Collapse
Affiliation(s)
- Jae Yeon Lee
- Department of Mechanical Engineering, POSTECH, Pohang, 790-784, Republic of Korea
| | - Jeong Hun Park
- Department of Mechanical Engineering, POSTECH, Pohang, 790-784, Republic of Korea
| | - Dong-Woo Cho
- Department of Mechanical Engineering, POSTECH, Pohang, 790-784, Republic of Korea.
| |
Collapse
|
9
|
Hundepool CA, Nijhuis THJ, Kotsougiani D, Friedrich PF, Bishop AT, Shin AY. Optimizing decellularization techniques to create a new nerve allograft: an in vitro study using rodent nerve segments. Neurosurg Focus 2017; 42:E4. [DOI: 10.3171/2017.1.focus16462] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE
Commercially available processed nerve allografts have been shown to be inferior to autografts in previous animal studies. The authors hypothesized that combining different processing and storage techniques will result in improved nerve ultrastructure preservation, lower immunogenicity, and minimized cellular debris. Different processing protocols were evaluated using chemical detergents, enzymes, and irradiation, with the addition the of enzyme elastase, were used. Additionally, the difference between cold and frozen storage was investigated. The goal of this study was to create an optimized nerve allograft.
METHODS
Fifty rat nerves were decellularized with modifications of previous protocols and the addition of elastase. Subsequently, the nerve segments were stored at either 4°C or −80°C. Both processed and fresh control nerves were analyzed with confocal microscopy using immunohistochemical staining on the basal lamina (laminin γ-1), Schwann cells (S100 protein), and immunogenicity using major histocompatibility complex–I (MHCI) staining. Morphology of the ultrastructure and amount of cellular debris were analyzed on cross-sections of the nerves stained with toluidine blue and H & E, and by using electron microscopy.
RESULTS
Nerve ultrastructure was preserved with all decellularization protocols. Storage at −80°C severely altered nerve ultrastructure after any decellularization method. Elastase was found to significantly reduce the immunogenicity and amount of Schwann cells, while maintaining good structural properties.
CONCLUSIONS
Reduced immunogenicity, diminished cellular debris, and the elimination of Schwann cells was observed when elastase was added to the nerve processing while maintaining ultrastructure. Storage at −80°C after the decellularization process heavily damaged the nerve ultrastructure as compared with cold storage. Further in vivo studies are needed to prove the nerve regenerative capacity of these optimized allografts.
Collapse
Affiliation(s)
- Caroline A. Hundepool
- 1Department of Orthopedic Surgery, Microvascular Research Laboratory, Mayo Clinic, Rochester, Minnesota; and
- 2Department of Plastic, Reconstructive and Hand Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Tim H. J. Nijhuis
- 2Department of Plastic, Reconstructive and Hand Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Dimitra Kotsougiani
- 1Department of Orthopedic Surgery, Microvascular Research Laboratory, Mayo Clinic, Rochester, Minnesota; and
| | - Patricia F. Friedrich
- 1Department of Orthopedic Surgery, Microvascular Research Laboratory, Mayo Clinic, Rochester, Minnesota; and
| | - Allen T. Bishop
- 1Department of Orthopedic Surgery, Microvascular Research Laboratory, Mayo Clinic, Rochester, Minnesota; and
| | - Alexander Y. Shin
- 1Department of Orthopedic Surgery, Microvascular Research Laboratory, Mayo Clinic, Rochester, Minnesota; and
| |
Collapse
|
10
|
Yoshizawa H, Senda D, Natori Y, Tanaka R, Mizuno H, Hayashi A. End-to-Side Neurorrhaphy as Schwann Cells Provider to Acellular Nerve Allograft and Its Suitable Application. PLoS One 2016; 11:e0167507. [PMID: 27907118 PMCID: PMC5132318 DOI: 10.1371/journal.pone.0167507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/15/2016] [Indexed: 11/23/2022] Open
Abstract
Axonal regeneration relies on support from proliferating host Schwann cells (SCs), and previous studies on acellular nerve allografts (ANGs) suggest that axons can regenerate into ANGs within a limited distance. Numerous studies have demonstrated that the supplementation of ANGs with exogenous factors, such as cultured SCs, stem cells, and growth factors, promote nerve regeneration in ANGs. However, there are several problems associated with their utilization. In this study, we investigated whether end-to-side (ETS) neurorrhaphy, which is an axonal provider, could be useful as an SC provider to support axonal elongation in ANGs. We found that ETS neurorrhaphy effectively promoted SC migration into ANGs when an epineurium window combined with partial neurectomy was performed, and the effectiveness increased when it was applied bilaterally. When we transplanted ANGs containing migrated SCs via ETS neurorrhaphy (hybrid ANGs) to the nerve gap, hybrid ANGs increased the number of regenerated axons and facilitated rapid axonal elongation, particularly when ETS neurorrhaphy was applied to both edges of the graft. This approach may represent a novel application of ETS neurorrhaphy and lead to the development of hybrid ANGs, making ANGs more practical in a clinical setting.
Collapse
Affiliation(s)
- Hidekazu Yoshizawa
- Department of Plastic and Reconstructive Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Daiki Senda
- Department of Plastic and Reconstructive Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Yuhei Natori
- Department of Plastic and Reconstructive Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Rica Tanaka
- Department of Plastic and Reconstructive Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Hiroshi Mizuno
- Department of Plastic and Reconstructive Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Ayato Hayashi
- Department of Plastic and Reconstructive Surgery, Juntendo University School of Medicine, Tokyo, Japan
- * E-mail:
| |
Collapse
|
11
|
Poppler LH, Ee X, Schellhardt L, Hoben GM, Pan D, Hunter DA, Yan Y, Moore AM, Snyder-Warwick AK, Stewart SA, Mackinnon SE, Wood MD. Axonal Growth Arrests After an Increased Accumulation of Schwann Cells Expressing Senescence Markers and Stromal Cells in Acellular Nerve Allografts. Tissue Eng Part A 2016; 22:949-61. [PMID: 27297909 DOI: 10.1089/ten.tea.2016.0003] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Acellular nerve allografts (ANAs) and other nerve constructs do not reliably facilitate axonal regeneration across long defects (>3 cm). Causes for this deficiency are poorly understood. In this study, we determined what cells are present within ANAs before axonal growth arrest in nerve constructs and if these cells express markers of cellular stress and senescence. Using the Thy1-GFP rat and serial imaging, we identified the time and location of axonal growth arrest in long (6 cm) ANAs. Axonal growth halted within long ANAs by 4 weeks, while axons successfully regenerated across short (3 cm) ANAs. Cellular populations and markers of senescence were determined using immunohistochemistry, histology, and senescence-associated β-galactosidase staining. Both short and long ANAs were robustly repopulated with Schwann cells (SCs) and stromal cells by 2 weeks. Schwann cells (S100β(+)) represented the majority of cells repopulating both ANAs. Overall, both ANAs demonstrated similar cellular populations with the exception of increased stromal cells (fibronectin(+)/S100β(-)/CD68(-) cells) in long ANAs. Characterization of ANAs for markers of cellular senescence revealed that long ANAs accumulated much greater levels of senescence markers and a greater percentage of Schwann cells expressing the senescence marker p16 compared to short ANAs. To establish the impact of the long ANA environment on axonal regeneration, short ANAs (2 cm) that would normally support axonal regeneration were generated from long ANAs near the time of axonal growth arrest ("stressed" ANAs). These stressed ANAs contained mainly S100β(+)/p16(+) cells and markedly reduced axonal regeneration. In additional experiments, removal of the distal portion (4 cm) of long ANAs near the time of axonal growth arrest and replacement with long isografts (4 cm) rescued axonal regeneration across the defect. Neuronal culture derived from nerve following axonal growth arrest in long ANAs revealed no deficits in axonal extension. Overall, this evidence demonstrates that long ANAs are repopulated with increased p16(+) Schwann cells and stromal cells compared to short ANAs, suggesting a role for these cells in poor axonal regeneration across nerve constructs.
Collapse
Affiliation(s)
- Louis H Poppler
- 1 Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine , St. Louis, Missouri
| | - Xueping Ee
- 1 Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine , St. Louis, Missouri
| | - Lauren Schellhardt
- 1 Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine , St. Louis, Missouri
| | - Gwendolyn M Hoben
- 1 Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine , St. Louis, Missouri
| | - Deng Pan
- 1 Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine , St. Louis, Missouri
| | - Daniel A Hunter
- 1 Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine , St. Louis, Missouri
| | - Ying Yan
- 1 Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine , St. Louis, Missouri
| | - Amy M Moore
- 1 Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine , St. Louis, Missouri
| | - Alison K Snyder-Warwick
- 1 Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine , St. Louis, Missouri
| | - Sheila A Stewart
- 2 Division of Cell Biology and Physiology, Washington University , St. Louis, Missouri
| | - Susan E Mackinnon
- 1 Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine , St. Louis, Missouri
| | - Matthew D Wood
- 1 Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine , St. Louis, Missouri
| |
Collapse
|
12
|
Ma L, Zhang H, Hu K, Lv G, Fu Y, Ayana DA, Zhao P, Jiang Y. The imbalance between Tregs, Th17 cells and inflammatory cytokines among renal transplant recipients. BMC Immunol 2015; 16:56. [PMID: 26400627 PMCID: PMC4581081 DOI: 10.1186/s12865-015-0118-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 09/02/2015] [Indexed: 12/21/2022] Open
Abstract
Background A significant barrier to organ transplantation is the cellular rejection that occurs and mediated by antibodies, T cells, and innate immune cells. This study was aimed to determine the number of CD4+CD25+Foxp3+ Treg, CD4+IFN-γ−IL-17+ Th17, CD4+IFN-γ+IL-17− Th1 and CD4+IFN-γ+IL-17+ Th1/17 cells in renal transplant recipients (RTR). Methods Renal transplantation was performed for a total of 35 patients with end-stage renal failure. The number of CD4+CD25+Foxp3+ Treg, CD4+IFN-γ−IL-17+ Th17, CD4+IFN-γ+IL-17− Th1 and CD4+IFN-γ+IL-17+ Th1/17 cells, and the serum level of IFN-γ, TNF-α, IL-2, IL-4, IL-6, IL-10, and IL-17 were measured in pre- and post-transplant patients and 10 healthy controls (HC) using flow cytometry and Cytometric Bead Array (CBA). The association between the number of different subsets of CD4+ T-cells and clinical parameters were analyzed among the pre- and post-transplant patients, and the healthy controls. Results The number of CD4+IFN-γ−IL-17+ Th17, CD4+IFN-γ+IL-17− Th1 and CD4+IFN-γ+IL-17+ Th1/17 cells were significantly increased in patients with End-Stage Renal Failure (ESRF) compared to the HC. Stratification analysis indicated that AMR (Acute antibody mediated acute rejection), AR (acute rejection) and CR (chronic rejection) groups displayed greater number of CD4+IFN-γ−IL-17+ Th17, CD4+IFN-γ+IL-17− Th1 and CD4+IFN-γ+IL-17+ Th1/17 cells as well as high level of serum IL-2, IFN-γ, TNF-α and IL-17. But, the AMR, AR and CR groups have shown lower level of CD4+CD25+Foxp3+ T cells and serum IL-10 compared to transplant stable (TS) patients. Moreover, the number of Tregs were negatively correlated with the number of Th17 cells in RTR patients. The number of Tregs and Th17 cells were positively correlated with the eGFR and serum creatinine values, respectively. Conclusion The imbalance between different types of CD4+ T cells and dysregulated inflammatory cytokines may contribute towards renal transplantation rejection.
Collapse
Affiliation(s)
- Liang Ma
- Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, 130021, China. .,Department of Gastroenterology, The First People's Hospital of Changzhou, Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, 213003, China.
| | - Huimao Zhang
- Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Kebang Hu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Guoyue Lv
- Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Yaowen Fu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, 130021, China.
| | | | - Pingwei Zhao
- Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, 130021, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Yanfang Jiang
- Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, 130021, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|
13
|
Demir Y. Epineural Sheath Grafts for Nerve Regeneration. Plast Reconstr Surg 2015. [DOI: 10.1007/978-1-4471-6335-0_56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Chai H, Yang L, Gao L, Guo Y, Li H, Fan X, Wu B, Xue S, Cai Y, Jiang X, Qin B, Zhang S, Ke Y. Decreased percentages of regulatory T cells are necessary to activate Th1-Th17-Th22 responses during acute rejection of the peripheral nerve xenotransplantation in mice. Transplantation 2014; 98:729-37. [PMID: 25093516 DOI: 10.1097/tp.0000000000000319] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND T cells have major functions in the initiation and perpetuation of nerve graft rejection. Our study aimed to investigate the function of regulatory T cells (Treg)-Th1-Th17-Th22 cells in the rejection of peripheral nerve xenotransplantation. METHODS Adult male C57 BL/6 mice were used as the recipient for nerve xenotransplantation, and Sprague-Dawley rats were used as the donor. These nerve xenotransplanted mice were used as the experimental groups, and those that received autograft transplant were chosen as the control group. All of the animals were pretreated with interferon (IFN)-γ, interleukin (IL)-17, and IL-22 before the experiment was conducted. The percentages of spleen Treg-Th1-Th17-Th22 cells were evaluated by flow cytometry 1, 3, 7, 14, and 28 days after transplantation. Serum levels of IFN-γ, IL-17, and IL-22 were assessed by enzyme-linked immunosorbent assay. Statistical analysis was performed by Wilcoxon rank sum and Spearman correlation test. RESULTS During acute rejection, the percentages of Th1-Th17-Th22 cells in the spleen and serum IFN-γ, IL-17, and IL-22 levels in the experimental group increased compared with those in the control group. By contrast, CD4CD25Foxp3 T cell level decreased. The rejection of xenograft was significantly prevented after the mice were treated with IL-17-neutralizing, IL-22-neutralizing, and IFN-γ-neutralizing antibodies. Moreover, the percentage of CD4CD25Foxp3 Treg was negatively correlated with the percentages of Th1-Th17-Th22 cells and levels of IL-17, IL-22, and IFN-γ. CONCLUSION These results suggested that the Treg-Th1-Th17-Th22 cells involved in xenotransplant rejection and imbalance between Tregs and Th1-Th17-Th22 cells contribute to the acute rejection of peripheral nerve xenotransplant.
Collapse
Affiliation(s)
- Huihui Chai
- 1 Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China. 2 The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, China. 3 Department of Orthopedic Surgery, Jilin University, Third Hospital (China-Japan Union Hospital) of Jilin University, Changchun, China. 4 Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China. 5 Formerly Department of Functional Neurology and Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China; currently Department of Neurology, Guangdong General Hospital, Guangdong Academy of Medical Science, Guangdong Neuroscience Institute, Guangzhou, China 6 Address correspondence to: Yanwu Guo, Ph.D., Department of Neurosurgery, Zhujiang Hospital, National Key Clinic Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Southern Medical University, 253 Gongye Road, Guangzhou, 510282, China. 7 Address correspondence to: Bing Qin, Ph.D., Department of Neurology, Guangdong General Hospital, Guangdong Academy of Medical Science, Guangdong Neuroscience Institute, Guangzhou, 510080, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Hu K, Zhou H, Zheng G, Wang G, Fu Y, Jiang Y. Imbalance of different types of CD4(+)Foxp3(+) T cells in renal transplant recipients. Immunol Invest 2014; 43:838-50. [PMID: 24927378 DOI: 10.3109/08820139.2014.909458] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AIMS To determine the number of CD4(+)CD25(-)Foxp3(+), CD4(+)CD25(+)Foxp3(+) and CD4(+)CXCR5(+)Foxp3(+) T cells in renal transplant recipients that are transplanted stable (TS), or experiencing accelerated rejection (ALR), or acute rejection (AR). METHODS Renal transplantation was conducted in 28 patients with end-stage renal failure (ESRF). The number of peripheral CD4(+)CD25(-)Foxp3(+), CD4(+)CD25(+)Foxp3(+), or CD4(+)CXCR5(+)Foxp3(+) T cells and the serum levels of interleukin-10 (IL-10) were measured in pre- and post-transplant patients and these results were compared to 10 healthy controls (HC). Correlation between CD4(+)CD25(+)Foxp3(+) and estimated glomerular filtration rate (eGFR), CD4(+)CD25(-)Foxp3(+) and serum creatinine (Cr) levels, or Cr and IL-10 levels in TS patients was also determined. RESULTS The number of CD4(+)CD25(-)Foxp3(+) T cells was significantly increased in patients with ESRF, as compared to HC. Stratification analysis demonstrated that TS patients contained greater numbers of CD4(+)CD25(+)Foxp3(+) and CD4(+)CXCR5(+)Foxp3(+) T cells, higher levels of serum IL-10, and fewer numbers of CD4(+)CD25(-)Foxp3(+) T cells than ESRF patients. In contrast, ALR and AR patients contained fewer numbers of CD4(+)CD25(+)Foxp3(+) and CD4(+)CXCR5(+)Foxp3(+) T cells, greater numbers of CD4(+)CD25(-)Foxp3(+) T cells, and lower levels of serum IL-10 than ESRF patients. In TS patients, the numbers of CD4(+)CD25(+)Foxp3(+) and CD4(+)CD25(-)Foxp3(+) T cells were positively correlated with eGFR and serum Cr levels, respectively. CONCLUSION An imbalance of different types of CD4(+)Foxp3(+) T cells might be involved in renal transplant rejection.
Collapse
Affiliation(s)
- Kebang Hu
- Key Laboratory of Zoonosis Research, Ministry of Education, The First Hospital of Jilin University , Changchun , China and
| | | | | | | | | | | |
Collapse
|
16
|
Carriel V, Alaminos M, Garzón I, Campos A, Cornelissen M. Tissue engineering of the peripheral nervous system. Expert Rev Neurother 2014; 14:301-18. [DOI: 10.1586/14737175.2014.887444] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Jesuraj NJ, Santosa KB, Macewan MR, Moore AM, Kasukurthi R, Ray WZ, Flagg ER, Hunter DA, Borschel GH, Johnson PJ, Mackinnon SE, Sakiyama-Elbert SE. Schwann cells seeded in acellular nerve grafts improve functional recovery. Muscle Nerve 2013; 49:267-76. [PMID: 23625513 DOI: 10.1002/mus.23885] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2013] [Indexed: 12/14/2022]
Abstract
INTRODUCTION This study evaluated whether Schwann cells (SCs) from different nerve sources transplanted into cold-preserved acellular nerve grafts (CP-ANGs) would improve functional regeneration compared with nerve isografts. METHODS SCs isolated and expanded from motor and sensory branches of rat femoral and sciatic nerves were seeded into 14mm CP-ANGs. Growth factor expression, axonal regeneration, and functional recovery were evaluated in a 14-mm rat sciatic injury model and compared with isografts. RESULTS At 14 days, motor or sensory-derived SCs increased expression of growth factors in CP-ANGs versus isografts. After 42 days, histomorphometric analysis found CP-ANGs with SCs and isografts had similar numbers of regenerating nerve fibers. At 84 days, muscle force generation was similar for CP-ANGs with SCs and isografts. SC source did not affect nerve fiber counts or muscle force generation. CONCLUSIONS SCs transplanted into CP-ANGs increase functional regeneration to isograft levels; however SC nerve source did not have an effect.
Collapse
Affiliation(s)
- Nithya J Jesuraj
- Department of Biomedical Engineering, Washington University, Campus Box 1097, One Brookings Drive, St. Louis, Missouri, 63130, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Squintani G, Bonetti B, Paolin A, Vici D, Cogliati E, Murer B, Stevanato G. Nerve regeneration across cryopreserved allografts from cadaveric donors: a novel approach for peripheral nerve reconstruction. J Neurosurg 2013; 119:907-13. [DOI: 10.3171/2013.6.jns121801] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
The use of allografts from cadaveric donors has attracted renewed interest in recent years, and pretreatment with cryopreservation and immunosuppression methods has been investigated to maximize axonal regrowth and minimize allograft rejection. The authors wanted to assess the outcome of treatments of brachial plexus stretch injuries with cryopreserved allografts from cadaveric donors in nonimmunosuppressed patients.
Methods
Ten patients with brachial plexus lesions were submitted to electromyography (EMG) testing 1 and 3 months after a traumatic event and 1 week before surgery to localize and identify the type of lesion. Intraoperative EMG recordings were performed for intraoperative monitoring to select the best surgical strategy, and postoperative EMG was used to follow up patients and determine surgical outcomes. If nerve action potentials (NAPs) were present intraoperatively, neurolysis was performed, whereas muscular/nerve neurotization was performed if NAPs were absent. Cryopreserved allografts obtained from selected cadaveric donors and provided by the tissue bank of Treviso were used for nerve reconstruction in patients who were not treated with immunosuppressive drugs.
Results
The surgical strategy was selected according to the type and site of the nerve lesion and on the basis of IOM results: 14 cryopreserved allografts were used for 7 muscular neurotizations and for 7 nerve neurotizations, and 5 neurolysis procedures were performed. All of the patients had regained motor function at the 1- and 2-year follow-ups.
Conclusions
Some variables may affect functional recovery after allograft surgery, and the outcome of peripheral nerve reconstruction is more favorable when patients are carefully evaluated and selected for the surgery. The authors demonstrated that using cryopreserved allografts from cadaveric donors is a valid surgical strategy to restore function of the damaged nerve without the need for any immunosuppressive treatments. This approach offers new perspectives on procedures for extensive reconstruction of brachial and lumbosacral plexuses.
Collapse
Affiliation(s)
- Giovanna Squintani
- 1Unità Operativa Neurologia, Azienda Ospedaliera Universitaria Integrata, Verona
| | - Bruno Bonetti
- 2Dipartimento di Neuroscienze, Università di Verona, Verona
| | | | - Daniela Vici
- 3Banca dei Tessuti, Ospedale di Treviso, Treviso
| | | | - Bruno Murer
- 4Servizio di Anatomia Patologica, Ospedale dell'Angelo, Mestre, Venice; and
| | - Giorgio Stevanato
- 5Unità Operativa Neurochirurgia, Ospedale dell'Angelo, Mestre, Venice, Italy
| |
Collapse
|
19
|
Li W, Jia Z, Zhang S, Lin X, Yang R, He Q, Ruan D. The cellular immune mechanism after transfer of chemically extracted acellular nerve xenografts. PLoS One 2013; 8:e68806. [PMID: 23874771 PMCID: PMC3714289 DOI: 10.1371/journal.pone.0068806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 05/28/2013] [Indexed: 11/19/2022] Open
Abstract
Severe peripheral nerve defect by injuries causing functional loss require nerve grafting. Autograft has limitations for clinical use because it results in the creation of a new nerve injury and the generation of donor site morbidity. Based on these limitations, nerve allografts and xenografts provide a readily accessible alternative strategy. The aim of the present study was to observe the immune mechanism underlying the rejection of chemically extracted acellular nerve xenografts, and further evaluate immunogenicity of chemically treated acellular nerve grafts for clinical applications. A total of 160 BALB/c mice were randomly divided into a negative contrast group (NC, 40 mice), a fresh autograft group (AG, 40 mice), a fresh xenogeneic nerve group (FXN, 40 mice) and a chemically extracted acellular xenogeneic nerve group (CEXN, 40 mice). Various types of nerve grafts were implanted into the thigh muscle of BALB/C mice in the corresponding groups. At 3, 7, 14 and 28 days post-operation, the mice (10 mice from each group) were sacrificed and their spleens were extracted. The spleens were ground into paste. The erythrocytes and other cells were lysed using distilled water and the T lymphocytes were collected. Fluorescein isothiocyanate (FITC) -labeled monoclonal antibodies (CD3, CD4, CD8, CD25, IL-2, IFN-γ and TNF-α) were then added to the solution. The Fluorescence Activated Cell Sorting (FACS) was used to determine the positivity rate of the cells combined with the monoclonal antibodies above. No significant statistical differences were observed between the CEXN, NC and AG groups, so that no obvious immune rejections were observed among the chemically extracted acellular nerve xenografts.
Collapse
Affiliation(s)
- Wei Li
- Department of Orthopaedics, Navy General Hospital, Beijing, China.
| | | | | | | | | | | | | |
Collapse
|
20
|
Johnson PJ, Wood MD, Moore AM, Mackinnon SE. Tissue engineered constructs for peripheral nerve surgery. Eur Surg 2013; 45. [PMID: 24385980 DOI: 10.1007/s10353-013-0205-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Tissue engineering has been defined as "an interdisciplinary field that applies the principles of engineering and life sciences toward the development of biological substitutes that restore, maintain, or improve tissue function or a whole organ". Traumatic peripheral nerve injury resulting in significant tissue loss at the zone of injury necessitates the need for a bridge or scaffold for regenerating axons from the proximal stump to reach the distal stump. METHODS A review of the literature was used to provide information on the components necessary for the development of a tissue engineered peripheral nerve substitute. Then, a comprehensive review of the literature is presented composed of the studies devoted to this goal. RESULTS Extensive research has been directed toward the development of a tissue engineered peripheral nerve substitute to act as a bridge for regenerating axons from the proximal nerve stump seeking the distal nerve. Ideally this nerve substitute would consist of a scaffold component that mimics the extracellular matrix of the peripheral nerve and a cellular component that serves to stimulate and support regenerating peripheral nerve axons. CONCLUSIONS The field of tissue engineering should consider its challenge to not only meet the autograft "gold standard" but also to understand what drives and inhibits nerve regeneration in order to surpass the results of an autograft.
Collapse
Affiliation(s)
- P J Johnson
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, 660 South Euclid, 8238, Saint Louis, MO 63110, USA
| | - M D Wood
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, 660 South Euclid, 8238, Saint Louis, MO 63110, USA
| | - A M Moore
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, 660 South Euclid, 8238, Saint Louis, MO 63110, USA
| | - S E Mackinnon
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, 660 South Euclid, 8238, Saint Louis, MO 63110, USA
| |
Collapse
|
21
|
Saheb-Al-Zamani M, Yan Y, Farber SJ, Hunter DA, Newton P, Wood MD, Stewart SA, Johnson PJ, Mackinnon SE. Limited regeneration in long acellular nerve allografts is associated with increased Schwann cell senescence. Exp Neurol 2013; 247:165-77. [PMID: 23644284 DOI: 10.1016/j.expneurol.2013.04.011] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 04/22/2013] [Accepted: 04/25/2013] [Indexed: 12/25/2022]
Abstract
Repair of large nerve defects with acellular nerve allografts (ANAs) is an appealing alternative to autografting and allotransplantation. ANAs have been shown to be similar to autografts in supporting axonal regeneration across short gaps, but fail in larger defects due to a poorly-understood mechanism. ANAs depend on proliferating Schwann cells (SCs) from host tissue to support axonal regeneration. Populating longer ANAs places a greater proliferative demand on host SCs that may stress host SCs, resulting in senescence. In this study, we investigated axonal regeneration across increasing isograft and ANA lengths. We also evaluated the presence of senescent SCs within both graft types. A sciatic nerve graft model in rats was used to evaluate regeneration across increasing isograft (~autograft) and ANA lengths (20, 40, and 60 mm). Axonal regeneration and functional recovery decreased with increased graft length and the performance of the isograft was superior to ANAs at all lengths. Transgenic Thy1-GFP rats and qRT-PCR demonstrated that failure of the regenerating axonal front in ANAs was associated with increased levels of senescence related markers in the graft (senescence associated β-galactosidase, p16(INK4A), and IL6). Lastly, electron microscopy (EM) was used to qualitatively assess senescence-associated changes in chromatin of SCs in each graft type. EM demonstrated an increase in the presence of SCs with abnormal chromatin in isografts and ANAs of increasing graft length. These results are the first to suggest that SC senescence plays a role in limited axonal regeneration across nerve grafts of increasing gap lengths.
Collapse
Affiliation(s)
- Maryam Saheb-Al-Zamani
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8238, St. Louis, MO 63110, USA
| | - Ying Yan
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8238, St. Louis, MO 63110, USA
| | - Scott J Farber
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8238, St. Louis, MO 63110, USA
| | - Daniel A Hunter
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8238, St. Louis, MO 63110, USA
| | - Piyaraj Newton
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8238, St. Louis, MO 63110, USA
| | - Matthew D Wood
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8238, St. Louis, MO 63110, USA
| | - Sheila A Stewart
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8228, St. Louis, MO 63110, USA
| | - Philip J Johnson
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8238, St. Louis, MO 63110, USA
| | - Susan E Mackinnon
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8238, St. Louis, MO 63110, USA
| |
Collapse
|
22
|
Santosa KB, Jesuraj NJ, Viader A, MacEwan M, Newton P, Hunter DA, Mackinnon SE, Johnson PJ. Nerve allografts supplemented with schwann cells overexpressing glial-cell-line-derived neurotrophic factor. Muscle Nerve 2012; 47:213-23. [PMID: 23169341 DOI: 10.1002/mus.23490] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2012] [Indexed: 12/14/2022]
Abstract
INTRODUCTION We sought to determine whether supplementation of acellular nerve allografts (ANAs) with Schwann cells overexpressing GDNF (G-SCs) would enhance functional recovery after peripheral nerve injury. METHODS SCs expanded in vitro were infected with a lentiviral vector to induce GDNF overexpression. Wild-type SCs (WT-SCs) and G-SCs were seeded into ANAs used to repair a 14-mm nerve gap defect. Animals were harvested after 6 and 12 weeks for histomorphometric and muscle force analysis. RESULTS At 6 weeks, histomorphometry revealed that ANAs supplemented with G-SCs promoted similar regeneration compared with isograft at midgraft. However, G-SCs failed to promote regeneration into the distal stump. At 12 weeks, ANAs with G-SCs had lower maximum and specific force production compared with controls. CONCLUSIONS The combined results suggest that consistent overexpression of GDNF by G-SCs trapped axons in the graft and prevented functional regeneration.
Collapse
Affiliation(s)
- Katherine B Santosa
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Szynkaruk M, Kemp SWP, Wood MD, Gordon T, Borschel GH. Experimental and clinical evidence for use of decellularized nerve allografts in peripheral nerve gap reconstruction. TISSUE ENGINEERING PART B-REVIEWS 2012; 19:83-96. [PMID: 22924762 DOI: 10.1089/ten.teb.2012.0275] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite the inherent capability for axonal regeneration, recovery following severe peripheral nerve injury remains unpredictable and often very poor. Surgeons typically use autologous nerve grafts taken from the patient's own body to bridge long nerve gaps. However, the amount of suitable nerve available from a given patient is limited, and using autologous grafts leaves the patient with scars, numbness, and other forms of donor-site morbidity. Therefore, surgeons and engineers have sought off-the-shelf alternatives to the current practice of autologous nerve grafting. Decellularized nerve allografts have recently become available as an alternative to traditional nerve autografting. In this review, we provide a critical analysis comparing the advantages and limitations of the three major experimental models of decellularized nerve allografts: cold preserved, freeze-thawed, and chemical detergent based. Current tissue engineering-based techniques to optimize decellularized nerve allografts are discussed. We also evaluate studies that supplement decellularized nerve grafts with exogenous factors such as Schwann cells, stem cells, and growth factors to both support and enhance axonal regeneration through the decellularized allografts. In examining the advantages and disadvantages of the studies of decellularized allografts, we suggest that experimental methods, including the animal model, graft length, follow-up time, and outcome measures of regenerative progress and success be consolidated. Finally, all clinical studies in which decellularized nerve allografts have been used to bridge nerve gaps in patients are reviewed.
Collapse
Affiliation(s)
- Mark Szynkaruk
- Division of Plastic and Reconstructive Surgery, Department of Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
24
|
Yu X, Jiang Y, Lu L, Gong X, Sun X, Xuan Z, Lu L. A crucial role of IL-17 and IFN-γ during acute rejection of peripheral nerve xenotransplantation in mice. PLoS One 2012; 7:e34419. [PMID: 22479627 PMCID: PMC3316676 DOI: 10.1371/journal.pone.0034419] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Accepted: 02/28/2012] [Indexed: 11/23/2022] Open
Abstract
Nerve injuries causing segmental loss require nerve grafting. However, autografts and allografts have limitations for clinical use. Peripheral nerve xenotransplantation has become an area of great interest in clinical surgery research as an alternative graft strategy. However, xenotransplant rejection is severe with cellular immunity, and Th1 cells play an important role in the process. To better understand the process of rejection, we used peripheral nerve xenografts from rats to mice and found that mononuclear cells expressing IFN-γ and IL-17 infiltrated around the grafts, and IFN-γ and IL-17 producing CD4+ and CD8+ T cells increased during the process of acute rejection. The changes of IL-4 level had no significant difference between xenotransplanted group and sham control group. The rejection of xenograft was significantly prevented after the treatment of IL-17 and IFN-γ neutralizing antibodies. These data suggest that Th17 cells contribute to the acute rejection process of peripheral nerve xenotransplant in addition to Th1 cells.
Collapse
Affiliation(s)
- Xin Yu
- Department of Hand Surgery, First Hospital, Jilin University, Changchun, China
| | - Yanfang Jiang
- Department of Central Laboratory, the Second Part of First Hospital, Jilin University, Changchun, China
| | - Lu Lu
- Department of Hand Surgery, First Hospital, Jilin University, Changchun, China
| | - Xu Gong
- Department of Hand Surgery, First Hospital, Jilin University, Changchun, China
| | - Xiguang Sun
- Department of Hand Surgery, First Hospital, Jilin University, Changchun, China
| | - Zhaopeng Xuan
- Department of Hand Surgery, First Hospital, Jilin University, Changchun, China
| | - Laijin Lu
- Department of Hand Surgery, First Hospital, Jilin University, Changchun, China
| |
Collapse
|
25
|
Giusti G, Willems WF, Kremer T, Friedrich PF, Bishop AT, Shin AY. Return of motor function after segmental nerve loss in a rat model: comparison of autogenous nerve graft, collagen conduit, and processed allograft (AxoGen). J Bone Joint Surg Am 2012; 94:410-7. [PMID: 22398734 DOI: 10.2106/jbjs.k.00253] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND An effective alternative to nerve autograft is needed to minimize morbidity and solve limited-availability issues. We hypothesized that the use of processed allografts and collagen conduits would allow recovery of motor function that is equivalent to that seen after the use of autografts. METHODS Sixty-five Lewis rats were divided into three experimental groups. In each group, a unilateral 10-mm sciatic nerve defect was repaired with nerve autograft, allograft treated by AxoGen Laboratories, or a 2.0-mm-inner-diameter collagen conduit. The animals were studied at twelve and sixteen weeks postoperatively. Evaluation included bilateral measurement of the tibialis anterior muscle force and muscle weight, electrophysiology, assessment of ankle contracture, and peroneal nerve histomorphometry. Muscle force was measured with use of our previously described and validated method. Results were expressed as a percentage of the values on the contralateral side. Two-way analysis of variance (ANOVA) corrected by the Ryan-Einot-Gabriel-Welsch multiple range test was used for statistical investigation (α = 0.05). RESULTS At twelve weeks, the mean muscle force (and standard deviation), as compared with that on the contralateral (control) side, was 45.2% ± 15.0% in the autograft group, 43.4% ± 18.0% in the allograft group, and 7.0% ± 9.2% in the collagen group. After sixteen weeks, the recovered muscle force was 65.5% ± 14.1% in the autograft group, 36.3% ± 15.7% in the allograft group, and 12.1% ± 16.0% in the collagen group. Autograft was statistically superior to allograft and the collagen conduit at sixteen weeks with regard to all parameters except histomorphometric characteristics (p < 0.05). The collagen-group results were inferior. All autograft-group outcomes improved from twelve to sixteen weeks, with the increase in muscle force being significant. CONCLUSIONS The use of autograft resulted in better motor recovery than did the use of allograft or a collagen conduit for a short nerve gap in rats. A longer evaluation time of sixteen weeks after segmental nerve injuries in rats would be beneficial as more substantial muscle recovery was seen at that time.
Collapse
Affiliation(s)
- Guilherme Giusti
- Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|
26
|
Moore AM, MacEwan M, Santosa KB, Chenard KE, Ray WZ, Hunter DA, Mackinnon SE, Johnson PJ. Acellular nerve allografts in peripheral nerve regeneration: a comparative study. Muscle Nerve 2011; 44:221-34. [PMID: 21660979 DOI: 10.1002/mus.22033] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2011] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Processed nerve allografts offer a promising alternative to nerve autografts in the surgical management of peripheral nerve injuries where short deficits exist. METHODS Three established models of acellular nerve allograft (cold-preserved, detergent-processed, and AxoGen-processed nerve allografts) were compared with nerve isografts and silicone nerve guidance conduits in a 14-mm rat sciatic nerve defect. RESULTS All acellular nerve grafts were superior to silicone nerve conduits in support of nerve regeneration. Detergent-processed allografts were similar to isografts at 6 weeks postoperatively, whereas AxoGen-processed and cold-preserved allografts supported significantly fewer regenerating nerve fibers. Measurement of muscle force confirmed that detergent-processed allografts promoted isograft-equivalent levels of motor recovery 16 weeks postoperatively. All acellular allografts promoted greater amounts of motor recovery compared with silicone conduits. CONCLUSION These findings provide evidence that differential processing for removal of cellular constituents in preparing acellular nerve allografts affects recovery in vivo.
Collapse
Affiliation(s)
- Amy M Moore
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, Campus Box 8238, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Elkwood AI, Holland NR, Arbes SM, Rose MI, Kaufman MR, Ashinoff RL, Parikh MA, Patel TR. Nerve allograft transplantation for functional restoration of the upper extremity: case series. J Spinal Cord Med 2011; 34:241-7. [PMID: 21675363 PMCID: PMC3066509 DOI: 10.1179/107902611x12972448729521] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
BACKGROUND Major trauma to the spinal cord or upper extremity often results in severe sensory and motor disturbances from injuries to the brachial plexus and its insertion into the spinal cord. Functional restoration with nerve grafting neurotization and tendon transfers is the mainstay of treatment. Results may be incomplete due to a limited supply of autologous material for nerve grafts. The factors deemed most integral for success are early surgical intervention, reconstruction of all levels of injury, and maximization of the number of axonal conduits per nerve repair. OBJECTIVE To report the second series of nerve allograft transplantation using cadaveric nerve graft and our experience with living-related nerve transplants. PARTICIPANTS Eight patients, seven men and one woman, average age 23 years (range 18-34), with multi-level brachial plexus injuries were selected for transplantation using either cadaveric allografts or living-related donors. METHODS Grafts were harvested and preserved in the University of Wisconsin Cold Storage Solution at 5 degrees C for up to 7 days. The immunosuppressive protocol was initiated at the time of surgery and was discontinued at approximately 1 year, or when signs of regeneration were evident. Parameters for assessment included mechanism of injury, interval between injury and treatment, level(s) of deficit, post-operative return of function, pain relief, need for revision surgery, complications, and improvement in quality of life. RESULTS Surgery was performed using living-related donor grafts in six patients, and cadaveric grafts in two patients. Immunosuppression was tolerated for the duration of treatment in all but one patient in whom early termination occurred due to non-compliance. There were no cases of graft rejection as of most recent followup. Seven patients showed signs of regeneration, demonstrated by return of sensory and motor function and/or a migrating Tinel's sign. One patient was non-compliant with the post-operative regimen and experienced minimal return of function despite a reduction in pain. CONCLUSIONS Despite the small number of subjects, it appears that nerve allograft transplantation may be performed safely, permitting non-prioritized repair of long-segment peripheral nerve defects and maximizing the number of axonal conduits per nerve repair. For patients with long, multi-level brachial plexus injuries or combined upper and lower extremity nerve deficits, the use of nerve allograft allows a more complete repair that may translate into greater functional restoration than autografting alone.
Collapse
Affiliation(s)
- Andrew I. Elkwood
- Institute for Advanced Reconstruction, The Plastic Surgery Center, Shrewsbury, NJ, USA,Monmouth Medical Center, Long Branch, NJ, USA
| | - Neil R. Holland
- Monmouth Medical Center, Long Branch, NJ, USA,Neurology Specialists of Monmouth County, West Long Branch, NJ, USA,Department of Neurology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Spiros M. Arbes
- Monmouth Medical Center, Long Branch, NJ, USA,Hypertension and Nephrology Associates, Eatontown, NJ, USA
| | - Michael I. Rose
- Institute for Advanced Reconstruction, The Plastic Surgery Center, Shrewsbury, NJ, USA,Monmouth Medical Center, Long Branch, NJ, USA
| | - Matthew R. Kaufman
- Institute for Advanced Reconstruction, The Plastic Surgery Center, Shrewsbury, NJ, USA,Monmouth Medical Center, Long Branch, NJ, USA,Correspondence to: Matthew R. Kaufman.
| | - Russell L. Ashinoff
- Institute for Advanced Reconstruction, The Plastic Surgery Center, Shrewsbury, NJ, USA,Monmouth Medical Center, Long Branch, NJ, USA
| | - Mona A. Parikh
- Institute for Advanced Reconstruction, The Plastic Surgery Center, Shrewsbury, NJ, USA
| | - Tushar R. Patel
- Institute for Advanced Reconstruction, The Plastic Surgery Center, Shrewsbury, NJ, USA,Monmouth Medical Center, Long Branch, NJ, USA
| |
Collapse
|
28
|
Jesuraj NJ, Santosa KB, Newton P, Liu Z, Hunter DA, Mackinnon SE, Sakiyama-Elbert SE, Johnson PJ. A systematic evaluation of Schwann cell injection into acellular cold-preserved nerve grafts. J Neurosci Methods 2011; 197:209-15. [PMID: 21354206 DOI: 10.1016/j.jneumeth.2011.02.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 02/17/2011] [Accepted: 02/17/2011] [Indexed: 01/06/2023]
Abstract
Peripheral nerve regeneration after injury depends on environmental cues and trophic support. Schwann cells (SCs) secrete trophic factors that promote neuronal survival and help guide axons during regeneration. The addition of SCs to acellular nerve grafts is a promising strategy for enhancing peripheral nerve regeneration; however, inconsistencies in seeding parameters have led to varying results. The current work sought to establish a systematic approach to seeding SCs in cold-preserved acellular nerve grafts. Studies were undertaken to (1) determine the needle gauge for optimal cell survival and minimal epineurial disruption during injection, (2) track the seeded SCs using a commercially available dye, and (3) evaluate the seeding efficiency of SCs in nerve grafts. It was determined that seeding with a 27-gauge needle resulted in the highest viability of SCs with the least damage to the epineurium. In addition, Qtracker(®) dye, a commercially available quantum dot nanocrystal, was used to label SCs prior to transplantation, which allowed visualization of the seeded SCs in nerve grafts. Finally, stereological methods were used to evaluate the seeding efficiency of SCs in nerve grafts immediately after injection and following a 1- or 3-day in vitro incubation in SC growth media. Using a systematic approach, the best needle gauge and a suitable dye for SC visualization in acellular nerve grafts were identified. Seeding efficiency in these grafts was also determined. The findings will lead to improvements ability to assess injection of cells (including SCs) for use with acellular nerve grafts to promote nerve regeneration.
Collapse
Affiliation(s)
- Nithya J Jesuraj
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
|
30
|
Wahee P, Aggarwal A, Harjeet K, Sahni D. Surgical anatomy of sensory portion of superficial fibular nerve for harvesting nerve grafts from fetuses. Clin Anat 2010; 23:726-31. [DOI: 10.1002/ca.21005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
31
|
Kasukurthi R, Brenner MJ, Moore AM, Moradzadeh A, Ray WZ, Santosa KB, Mackinnon SE, Hunter DA. Transcardial perfusion versus immersion fixation for assessment of peripheral nerve regeneration. J Neurosci Methods 2009; 184:303-9. [DOI: 10.1016/j.jneumeth.2009.08.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 08/22/2009] [Accepted: 08/24/2009] [Indexed: 10/20/2022]
|
32
|
Immune responses following mouse peripheral nerve xenotransplantation in rats. J Biomed Biotechnol 2009; 2009:412598. [PMID: 19829758 PMCID: PMC2761006 DOI: 10.1155/2009/412598] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 07/24/2009] [Indexed: 02/07/2023] Open
Abstract
Xenotransplantation offers a potentially unlimited source for tissues and organs for transplantation, but the strong xenoimmune responses pose a major obstacle to its application in the clinic. In this study, we investigate the rejection of mouse peripheral nerve xenografts in rats. Severe intragraft mononuclear cell infiltration, graft distension, and necrosis were detected in the recipients as early as 2 weeks after mouse nerve xenotransplantation. The number of axons in xenografts reduced progressively and became almost undetectable at week 8. However, mouse nerve xenotransplantation only led to a transient and moderate increase in the production of Th1 cytokines, including IL-2, IFN-gamma, and TNF-alpha. The data implicate that cellular immune responses play a critical role in nerve xenograft rejection but that further identification of the major effector cells mediating the rejection is required for developing effective means to prevent peripheral nerve xenograft rejection.
Collapse
|
33
|
Hayashi A, Moradzadeh A, Tong A, Wei C, Tuffaha SH, Hunter DA, Tung TH, Parsadanian A, Mackinnon SE, Myckatyn TM. Treatment modality affects allograft-derived Schwann cell phenotype and myelinating capacity. Exp Neurol 2008; 212:324-36. [PMID: 18514192 PMCID: PMC2806227 DOI: 10.1016/j.expneurol.2008.04.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 03/28/2008] [Accepted: 04/04/2008] [Indexed: 01/23/2023]
Abstract
We used peripheral nerve allografts, already employed clinically to reconstruct devastating peripheral nerve injuries, to study Schwann cell (SC) plasticity in adult mice. By modulating the allograft treatment modality we were able to study migratory, denervated, rejecting, and reinnervated phenotypes in transgenic mice whose SCs expressed GFP under regulatory elements of either the S100b (S100-GFP) or nestin (Nestin-GFP) promoters. Well-differentiated SCs strongly expressed S100-GFP, while Nestin-GFP expression was stimulated by denervation, and in some cases, axons were constitutively labeled with CFP to enable in vivo imaging. Serial imaging of these mice demonstrated that untreated allografts were rejected within 20 days. Cold preserved (CP) allografts required an initial phase of SC migration that preceded axonal regeneration thus delaying myelination and maturation of the SC phenotype. Mice immunosuppressed with FK506 demonstrated mild subacute rejection, but the most robust regeneration of myelinated and unmyelinated axons and motor endplate reinnervation. While characterized by fewer regenerating axons, mice treated with the co-stimulatory blockade (CSB) agents anti-CD40L mAb and CTLAIg-4 demonstrated virtually no graft rejection during the 28 day experiment, and had significant increases in myelination, connexin-32 expression, and Akt phosphorylation compared with any other group. These results indicate that even with SC rejection, nerve regeneration can occur to some degree, particularly with FK506 treatment. However, we found that co-stimulatory blockade facilitate optimal myelin formation and maturation of SCs as indicated by protein expression of myelin basic protein (MBP), connexin-32 and phospho-Akt.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Alexander Parsadanian
- Department of Neurology and Hope Center for Neurological Disorders, Box 8518, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
34
|
Moradzadeh A, Borschel GH, Luciano JP, Whitlock EL, Hayashi A, Hunter DA, Mackinnon SE. The impact of motor and sensory nerve architecture on nerve regeneration. Exp Neurol 2008; 212:370-6. [PMID: 18550053 DOI: 10.1016/j.expneurol.2008.04.012] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 04/03/2008] [Accepted: 04/10/2008] [Indexed: 10/22/2022]
Abstract
Sensory nerve autografting is the standard of care for injuries resulting in a nerve gap. Recent work demonstrates superior regeneration with motor nerve grafts. Improved regeneration with motor grafting may be a result of the nerve's Schwann cell basal lamina tube size. Motor nerves have larger SC basal lamina tubes, which may allow more nerve fibers to cross a nerve graft repair. Architecture may partially explain the suboptimal clinical results seen with sensory nerve grafting techniques. To define the role of nerve architecture, we evaluated regeneration through acellular motor and sensory nerve grafts. Thirty-six Lewis rats underwent tibial nerve repairs with 5 mm double-cable motor or triple-cable sensory nerve isografts. Grafts were harvested and acellularized in University of Wisconsin solution. Control animals received fresh motor or sensory cable isografts. Nerves were harvested after 4 weeks and histomorphometry was performed. In 6 animals per group from the fresh motor and sensory cable graft groups, weekly walking tracks and wet muscle mass ratios were performed at 7 weeks. Histomorphometry revealed more robust nerve regeneration in both acellular and cellular motor grafts. Sensory groups showed poor regeneration with significantly decreased percent nerve, fiber count, and density (p<0.05). Walking tracks revealed a trend toward improved functional recovery in the motor group. Gastrocnemius wet muscle mass ratios show a significantly greater muscle mass recovery in the motor group (p<0.05). Nerve architecture (size of SC basal lamina tubes) plays an important role in nerve regeneration in a mixed nerve gap model.
Collapse
Affiliation(s)
- Arash Moradzadeh
- Department of Otolaryngology-Head and Neck Surgery, Washington University, Saint Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Piquilloud G, Christen T, Pfister LA, Gander B, Papaloïzos MY. Variations in glial cell line-derived neurotrophic factor release from biodegradable nerve conduits modify the rate of functional motor recovery after rat primary nerve repairs. Eur J Neurosci 2007; 26:1109-17. [PMID: 17767490 DOI: 10.1111/j.1460-9568.2007.05748.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Accelerating axonal regeneration to shorten the delay of reinnervation and improve functional recovery after a peripheral nerve lesion is a clinical demand and an experimental challenge. We developed a resorbable nerve conduit (NC) for controlled release of glial cell line-derived neurotrophic factor (GDNF) with the aim of assessing motor functional recovery according to the release kinetics of this factor in a short gap model. Different types of resorbable NCs were manufactured from a collagen tube and multiple coating layers of poly(lactide-coglycolide), varying in poly(lactide-coglycolide) type and coating thickness to afford three distinct release kinetics of the neurotrophic factor. GDNF release was quantified in vitro. End-to-end suture and GDNF-free NC served as controls. Thirty-five Wistar rats underwent surgery. Motor recovery was followed from 1 to 12 weeks after surgery by video gait analysis. Morphometrical data were obtained at mid-tube level and distal to the NC. NCs were completely resorbed within 3 months with minimal inflammation. GDNF induced a threefold overgrowth of fibers at mid-tube level. However, the number of fibers was similar in the distal segment of all groups. The speed of recovery was inversely proportional to the number of fibers at the NC level but the level of recovery was similar for all groups at 3 months. The resorbable conduits proved their ability to modulate axonal regrowth through controlled release of GDNF. In relation to the dose delivered, GDNF strikingly multiplied the number of myelinated fibers within the NC but this increase was not positively correlated with the return of motor function in this model.
Collapse
Affiliation(s)
- Gaël Piquilloud
- Experimental Plastic and Reconstructive Surgery, CHUV, Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
36
|
Hunter DA, Moradzadeh A, Whitlock EL, Brenner MJ, Myckatyn TM, Wei CH, Tung THH, Mackinnon SE. Binary imaging analysis for comprehensive quantitative histomorphometry of peripheral nerve. J Neurosci Methods 2007; 166:116-24. [PMID: 17675163 PMCID: PMC2587177 DOI: 10.1016/j.jneumeth.2007.06.018] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 06/22/2007] [Accepted: 06/25/2007] [Indexed: 11/26/2022]
Abstract
Quantitative histomorphometry is the current gold standard for objective measurement of nerve architecture and its components. Many methods still in use rely heavily upon manual techniques that are prohibitively time consuming, predisposing to operator fatigue, sampling error, and overall limited reproducibility. More recently, investigators have attempted to combine the speed of automated morphometry with the accuracy of manual and semi-automated methods. Systematic refinements in binary imaging analysis techniques combined with an algorithmic approach allow for more exhaustive characterization of nerve parameters in the surgically relevant injury paradigms of regeneration following crush, transection, and nerve gap injuries. The binary imaging method introduced here uses multiple bitplanes to achieve reproducible, high throughput quantitative assessment of peripheral nerve. Number of myelinated axons, myelinated fiber diameter, myelin thickness, fiber distributions, myelinated fiber density, and neural debris can be quantitatively evaluated with stratification of raw data by nerve component. Results of this semi-automated method are validated by comparing values against those obtained with manual techniques. The use of this approach results in more rapid, accurate, and complete assessment of myelinated axons than manual techniques.
Collapse
Affiliation(s)
- Daniel A Hunter
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8238, Saint Louis, MO 63110, United States.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Hayashi A, Koob JW, Liu DZ, Tong AY, Hunter DA, Parsadanian A, Mackinnon SE, Myckatyn TM. A double-transgenic mouse used to track migrating Schwann cells and regenerating axons following engraftment of injured nerves. Exp Neurol 2007; 207:128-38. [PMID: 17628544 PMCID: PMC2000857 DOI: 10.1016/j.expneurol.2007.06.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2007] [Revised: 05/11/2007] [Accepted: 06/01/2007] [Indexed: 01/12/2023]
Abstract
We propose that double-transgenic thy1-CFP(23)/S100-GFP mice whose Schwann cells constitutively express green fluorescent protein (GFP) and axons express cyan fluorescent protein (CFP) can be used to serially evaluate the temporal relationship between nerve regeneration and Schwann cell migration through acellular nerve grafts. Thy1-CFP(23)/S100-GFP and S100-GFP mice received non-fluorescing cold preserved nerve allografts from immunologically disparate donors. In vivo fluorescent imaging of these grafts was then performed at multiple points. The transected sciatic nerve was reconstructed with a 1-cm nerve allograft harvested from a Balb-C mouse and acellularized via 7 weeks of cold preservation prior to transplantation. The presence of regenerated axons and migrating Schwann cells was confirmed with confocal and electron microscopy on fixed tissue. Schwann cells migrated into the acellular graft (163+/-15 intensity units) from both proximal and distal stumps, and bridged the whole graft within 10 days (388+/-107 intensity units in the central 4-6 mm segment). Nerve regeneration lagged behind Schwann cell migration with 5 or 6 axons imaged traversing the proximal 4 mm of the graft under confocal microcopy within 10 days, and up to 21 labeled axons crossing the distal coaptation site by 15 days. Corroborative electron and light microscopy 5 mm into the graft demonstrated relatively narrow diameter myelinated (431+/-31) and unmyelinated (64+/-9) axons by 28 but not 10 days. Live imaging of the double-transgenic thy1-CFP(23)/S100-GFP murine line enabled serial assessment of Schwann cell-axonal relationships in traumatic nerve injuries reconstructed with acellular nerve allografts.
Collapse
Affiliation(s)
- Ayato Hayashi
- Division of Plastic and Reconstructive Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Jason W Koob
- Division of Plastic and Reconstructive Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Daniel Z Liu
- Division of Plastic and Reconstructive Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Alice Y Tong
- Division of Plastic and Reconstructive Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Daniel A. Hunter
- Division of Plastic and Reconstructive Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO
| | | | - Susan E. Mackinnon
- Division of Plastic and Reconstructive Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Terence M. Myckatyn
- Division of Plastic and Reconstructive Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO
| |
Collapse
|
38
|
Hess JR, Brenner MJ, Fox IK, Nichols CM, Myckatyn TM, Hunter DA, Rickman SR, Mackinnon SE. Use of cold-preserved allografts seeded with autologous Schwann cells in the treatment of a long-gap peripheral nerve injury. Plast Reconstr Surg 2007; 119:246-259. [PMID: 17255680 DOI: 10.1097/01.prs.0000245341.71666.97] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Limitations in autogenous tissue have inspired the study of alternative materials for repair of complex peripheral nerve injuries. Cadaveric allografts are one potential reconstructive material, but their use requires systemic immunosuppression. Cold preservation (> or =7 weeks) renders allografts devoid of antigens, but these acellular substrates generally fail in supporting regeneration beyond 3 cm. In this study, the authors evaluated the reconstruction of extensive nonhuman primate peripheral nerve defects using 7-week cold-preserved allografts repopulated with cultured autologous Schwann cells. METHODS Ten outbred Macaca fascicularis primates were paired based on maximal genetic disparity as measured by similarity index assay. A total of 14 ulnar nerve defects measuring 6 cm were successfully reconstructed using autografts (n = 5), fresh allografts (n = 2), cold-preserved allografts (n = 3), or cold-preserved allografts seeded with autogenous Schwann cells (n = 4). Recipient immunoreactivity was evaluated by means of enzyme-linked immunosorbent spot assay, and nerves were harvested at 6 months for histologic and histomorphometric analysis. RESULTS Cytokine production in response to cold-preserved allografts and cold-preserved allografts seeded with autologous Schwann cells was similar to that observed for autografts. Schwann cell-repopulated cold-preserved grafts demonstrated significantly enhanced fiber counts, nerve density, and percentage nerve (p < 0.05) compared with unseeded cold-preserved grafts at 6 months after reconstruction. CONCLUSIONS Cold-preserved allografts seeded with autologous Schwann cells were well-tolerated in unrelated recipients and supported significant regeneration across 6-cm peripheral nerve defects. Use of cold-preserved allogeneic nerve tissue supplemented with autogenous Schwann cells poses a potentially safe and effective alternative to the use of autologous tissue in the reconstruction of extensive nerve injuries.
Collapse
Affiliation(s)
- Jason R Hess
- St. Louis, Mo. From the Division of Plastic and Reconstructive Surgery, Department of Surgery, and Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Lago N, Rodríguez FJ, Guzmán MS, Jaramillo J, Navarro X. Effects of motor and sensory nerve transplants on amount and specificity of sciatic nerve regeneration. J Neurosci Res 2007; 85:2800-12. [PMID: 17455293 DOI: 10.1002/jnr.21286] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Nerve regeneration after complete transection does not allow for adequate functional recovery mainly because of lack of selectivity of target reinnervation. We assessed if transplanting a nerve segment from either motor or sensory origin may improve specifically the accuracy of sensory and motor reinnervation. For this purpose, the rat sciatic nerve was transected and repaired with a silicone guide containing a predegenerated segment of ventral root (VR) or dorsal root (DR), compared to a silicone guide filled with saline. Nerve regeneration and reinnervation was assessed during 3 months by electrophysiologic and functional tests, and by nerve morphology and immunohistochemistry against choline acetyltransferase (ChAT) for labeling motor axons. Functional tests showed that reinnervation was successful in all the rats. However, the two groups with a root allotransplant reached higher degrees of reinnervation in comparison with the control group. Group VR showed the highest reinnervation of muscle targets, whereas Group DR had higher levels of sensory reinnervation than VR and saline groups. The total number of regenerated myelinated fibers was similar in the three groups, but the number of ChAT+ fibers was slightly lower in the VR group in comparison with DR and saline groups. These results indicate that a predegenerated root nerve allotransplant enhances axonal regeneration, leading to faster and higher levels of functional recovery. Although there is not clear preferential reinnervation, regeneration of motor axons is promoted at early times by a motor graft, whereas reinnervation of sensory pathways is increased by a sensory graft.
Collapse
Affiliation(s)
- Natalia Lago
- Group of Neuroplasticity and Regeneration, Department of Cell Biology, Physiology and Immunology, and Institute of Neuroscience, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | | | | | |
Collapse
|
40
|
Hontanilla B, Aubá C, Arcocha J, Gorría O. Nerve Regeneration through Nerve Autografts and Cold Preserved Allografts using Tacrolimus (FK506) in a Facial Paralysis Model: A Topographical and Neurophysiological Study in Monkeys. Neurosurgery 2006; 58:768-79; discussion 768-79. [PMID: 16575341 DOI: 10.1227/01.neu.0000204319.37546.5f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Nerve regeneration through cold preserved nerve allografts is demonstrated, and treatment of nerve allografts with FK506 induces better regeneration than other immunosuppressants. We study nerve regeneration through cold preserved nerve allografts temporarily treated with FK506 and compare it with the regeneration obtained using classic nerve autografts in a facial paralysis model in monkeys. METHODS A trunk of the facial nerve on both sides was transected in eight monkeys and immediately repaired with a 3 to 4 cm nerve autograft or allograft. FK506 was administered to the animals of the allograft group for 2 months, and nerve allografts were cold preserved for 3 weeks. At periods of 3, 5, and 8 months after surgery, quantitative electrophysiological assessment and video recordings were performed. At the end of the study, quantitative analysis of neurons in the facial nucleus was carried out, and axons were stereologically counted. RESULTS After the regenerative period, neuronal density was higher in the autograft group. However, distal axonal counts were similar in both groups. Serial electrophysiological recordings and histology of nerve allografts showed that the grafts were partially rejected after cessation of the immunosuppressant. CONCLUSION The regeneration through nerve allografts temporarily treated with FK506 does not achieve the electrophysiological results and neuronal counts achieved with nerve autografts, but axonal collateralization in the allografts induces a similar activation of mimic muscles.
Collapse
Affiliation(s)
- Bernardo Hontanilla
- Department of Plastic and Reconstructive Surgery, Clínica Universitaria, University of Navarra, Pamplona, Spain.
| | | | | | | |
Collapse
|
41
|
Fujimoto E, Ohshima C, Okamoto K, Ide C. Possibility of using nerve segments dissected from human cadavers for grafting: preliminary report. Anat Sci Int 2006; 81:34-8. [PMID: 16526594 DOI: 10.1111/j.1447-073x.2006.00132.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An intercostal nerve obtained from a human cadaver 6 h post-mortem was transplanted into the rat sciatic nerve and nerve regeneration was observed 4 and 8 weeks after surgery. Sciatic nerves from deceased rats up to 2 days post-mortem were also transplanted for comparison. Good nerve regeneration was observed through the human cadaver-derived graft to the distal segment at the medial plantal nerve 8 weeks after surgery. The results of the present study indicate the possibility that nerves from human cadavers can be used for nerve grafting in clinical applications.
Collapse
Affiliation(s)
- Etsuko Fujimoto
- Department of Basic Nursing, Ishikawa Prefectural Nursing University, Ishikawa, Japan.
| | | | | | | |
Collapse
|
42
|
Fox IK, Schwetye KE, Keune JD, Brenner MJ, Yu JW, Hunter DA, Wood PM, Mackinnon SE. Schwann-cell injection of cold-preserved nerve allografts. Microsurgery 2006; 25:502-7. [PMID: 16142793 DOI: 10.1002/micr.20152] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This study investigated the effects of prolonged cold preservation and Schwann-cell injection on nerve regeneration through peripheral nerve allografts. Forty rats were randomized to the following groups: group I, isograft; group II, allograft; group III, isograft + Schwann cells; group IV, 6-week cold-preserved allograft; and group V, 6-week cold-preserved allograft with Schwann cells. Nerves from all animals were harvested at 4 weeks after surgery for histological and histomorphometric analysis. Untreated allograft recipients demonstrated poor nerve regeneration and histological evidence of rejection. The remaining four groups showed robust regeneration without evidence of rejection. In a short nerve allograft model, prolonged cold preservation of allografts supported robust nerve regeneration, but the addition of cultured Schwann cells conferred no additional benefit for nerve regeneration. Further work in large animals is needed to establish the role for exogenous Schwann cells in nerve allotransplantation.
Collapse
Affiliation(s)
- Ida K Fox
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 603110-1093, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Gordon CR, Nazzal J, Lozano-Calderan SA, Lee SGP, Lee WPA, Siemionow M, Matthews MS, Hewitt CW. From experimental rat hindlimb to clinical face composite tissue allotransplantation: Historical background and current status. Microsurgery 2006; 26:566-72. [PMID: 17091477 DOI: 10.1002/micr.20296] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The purpose of this article is to review the historical background and clinical status of composite tissue allotransplantation and to discuss the scientific evolution of clinical face transplantation. Composite tissue allotransplantation (CTA) rapidly progressed in the 1980s with the discovery of cyclosporine. Although the most success has been achieved with hand transplantation, others have made progress with allografts of trachea, peripheral nerve, flexor tendon apparatus, vascularized knee, larynx, abdominal wall, and most recently, partial face. The world's first partial face allotransplantation occurred in November 2005 in France. In April of 2006, there was a second performed in China. As of today, there are now multiple institutions with plans to attempt the world's first full facial/scalp transplant. Complete facial/scalp allotransplantation offers a viable alternative for unfortunate individuals suffering severe facial disfigurement and is a product of many decades of experimental research, beginning with rat hindlimb allografts.
Collapse
Affiliation(s)
- Chad R Gordon
- Department of Surgery, Robert Wood Johnson Medical School, Cooper University Hospital, Camden, New Jersey 08103, USA.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
A major limitation to overall success in peripheral nerve surgery is time for regeneration. Although one can help speed up the regenerative process to some extent, success is hindered by issues such as number of coaptation sites, supply of donor nerves, and the limitations of nerve substitutes. In the case of a large gap, a nerve graft is often used to fill in the deficit. Autogenous nerve grafts are in limited supply, with sural nerve grafts being the primary source. Alternatives to the standard treatment include vein grafts, synthetic nerve conduits, nerve transfers, and nerve transplantation. Schwann cell-lined nerve conduits and tissue-engineered substitutions are still in their infancy and have some limited clinical application.
Collapse
Affiliation(s)
- Renata V Weber
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|