1
|
Wang Y, Lilienfeldt N, Hekimi S. Understanding coenzyme Q. Physiol Rev 2024; 104:1533-1610. [PMID: 38722242 PMCID: PMC11495197 DOI: 10.1152/physrev.00040.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/08/2024] [Accepted: 05/01/2024] [Indexed: 08/11/2024] Open
Abstract
Coenzyme Q (CoQ), also known as ubiquinone, comprises a benzoquinone head group and a long isoprenoid side chain. It is thus extremely hydrophobic and resides in membranes. It is best known for its complex function as an electron transporter in the mitochondrial electron transport chain (ETC) but is also required for several other crucial cellular processes. In fact, CoQ appears to be central to the entire redox balance of the cell. Remarkably, its structure and therefore its properties have not changed from bacteria to vertebrates. In metazoans, it is synthesized in all cells and is found in most, and maybe all, biological membranes. CoQ is also known as a nutritional supplement, mostly because of its involvement with antioxidant defenses. However, whether there is any health benefit from oral consumption of CoQ is not well established. Here we review the function of CoQ as a redox-active molecule in the ETC and other enzymatic systems, its role as a prooxidant in reactive oxygen species generation, and its separate involvement in antioxidant mechanisms. We also review CoQ biosynthesis, which is particularly complex because of its extreme hydrophobicity, as well as the biological consequences of primary and secondary CoQ deficiency, including in human patients. Primary CoQ deficiency is a rare inborn condition due to mutation in CoQ biosynthetic genes. Secondary CoQ deficiency is much more common, as it accompanies a variety of pathological conditions, including mitochondrial disorders as well as aging. In this context, we discuss the importance, but also the great difficulty, of alleviating CoQ deficiency by CoQ supplementation.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Noah Lilienfeldt
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Siegfried Hekimi
- Department of Biology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Schirinzi E, Ricci G, Torri F, Mancuso M, Siciliano G. Biomolecules of Muscle Fatigue in Metabolic Myopathies. Biomolecules 2023; 14:50. [PMID: 38254650 PMCID: PMC10812926 DOI: 10.3390/biom14010050] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Metabolic myopathies are a group of genetic disorders that affect the normal functioning of muscles due to abnormalities in metabolic pathways. These conditions result in impaired energy production and utilization within muscle cells, leading to limitations in muscle function with concomitant occurrence of related signs and symptoms, among which fatigue is one of the most frequently reported. Understanding the underlying molecular mechanisms of muscle fatigue in these conditions is challenging for the development of an effective diagnostic and prognostic approach to test targeted therapeutic interventions. This paper outlines the key biomolecules involved in muscle fatigue in metabolic myopathies, including energy substrates, enzymes, ion channels, and signaling molecules. Potential future research directions in this field are also discussed.
Collapse
|
3
|
Girard A, Heindl B, Clarkson S, Litovsky S, Ubogu E, Schwartzlow C, Tallaj J. Cardiogenic shock in a woman with a mitochondrial cardiomyopathy: a case report. Eur Heart J Case Rep 2023; 7:ytad183. [PMID: 37123653 PMCID: PMC10133997 DOI: 10.1093/ehjcr/ytad183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/02/2022] [Accepted: 04/12/2023] [Indexed: 05/02/2023]
Abstract
Background Mitochondrial cardiomyopathy (MCM) is an alteration in cardiac structure and function caused by gene mutations or deletions affecting components of the mitochondrial respiratory chain. We report a case of MCM presenting as cardiogenic shock, ultimately requiring left ventricular assist device (LVAD) placement. Case summary A 35-year-old woman with chronic weakness and non-ischaemic cardiomyopathy, on home dobutamine, was referred to our institution for heart transplantation evaluation. She was admitted to the hospital for suspected cardiogenic shock after laboratory tests revealed a lactate level of 5.4 mmol/L (ref: 0.5-2.2 mmol/L). Her hospital course was complicated by persistently undulating lactate levels (0.2-8.6 mmol/L) that increased with exertion and did not correlate with mixed venous oxygen saturation measurements obtained from a pulmonary artery catheter. Electrodiagnostic testing demonstrated a proximal appendicular and axial myopathy. A left deltoid muscle biopsy was performed that demonstrated evidence of a mitochondrial disease on light and electron microscopy. Muscle genetic testing revealed two large-scale mitochondrial deoxyribonucleic acid sequence deletions, confirming the diagnosis of MCM. She subsequently underwent LVAD placement, which was complicated by significant right ventricular failure requiring early mechanical support. She was ultimately discharged home with chronic inotropic support. Discussion Mitochondrial cardiomyopathy in adults is a diagnostic and therapeutic challenge. Prompt diagnosis should be made in patients with unknown causes of heart failure via skeletal muscle histopathology guided by electrodiagnostic studies, and targeted genetic testing in affected tissue. Outcomes in adult MCM patients who receive an LVAD are unknown and warrant further investigation.
Collapse
Affiliation(s)
| | - Brittain Heindl
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Stephen Clarkson
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Silvio Litovsky
- Division of Anatomic Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Eroboghene Ubogu
- Division of Neuromuscular Disease, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Coreen Schwartzlow
- Division of Neuromuscular Disease, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | | |
Collapse
|
4
|
Fancello V, Fancello G, Palma S, Monzani D, Genovese E, Bianchini C, Ciorba A. The Role of Primary Mitochondrial Disorders in Hearing Impairment: An Overview. Medicina (B Aires) 2023; 59:medicina59030608. [PMID: 36984609 PMCID: PMC10058207 DOI: 10.3390/medicina59030608] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/06/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023] Open
Abstract
Background. Defects of mitochondrial DNA (mtDNA) involved in the function of the mitochondrial electron transport chain can result in primary mitochondrial diseases (PMDs). Various features can influence the phenotypes of different PMDs, with relevant consequences on clinical presentation, including the presence of hearing impairment. This paper aims to describe the hearing loss related to different PMDs, and when possible, their phenotype. Methods. A systematic review was performed according to PRISMA guidelines, searching Medline until December 2022. A total of 485 papers were identified, and based on specified criteria, 7 were included in this study. Results. A total of 759 patients affected by PMDs and hearing loss were included. The age of patients ranged from 2 days to 78 years old, and the male-to-female ratio was 1.3:1. The percentage of subjects affected by hearing loss was 40.8%, (310/759), and in most cases, hearing impairment was described as sensorineural, bilateral, symmetrical, and progressive, with different presentations depending on age and syndrome severity. Conclusions. PMDs are challenging conditions with different clinical phenotypes. Hearing loss, especially when bilateral and progressive, may represent a red flag; its association with other systemic disorders (particularly neuromuscular, ocular, and endocrine) should alert clinicians, and confirmation via genetic testing is mandatory nowadays.
Collapse
Affiliation(s)
- Virginia Fancello
- ENT & Audiology Unit, Department of Neurosciences, University Hospital of Ferrara, 44124 Ferrara, Italy
- Correspondence: (V.F.); (S.P.)
| | - Giuseppe Fancello
- Department of Otorhinolaryngology, Careggi University Hospital, 50134 Florence, Italy
| | - Silvia Palma
- ENT & Audiology Department, University of Modena and Reggio Emilia, 41100 Modena, Italy
- Correspondence: (V.F.); (S.P.)
| | - Daniele Monzani
- ENT & Audiology Department, University of Verona, 37134 Verona, Italy
| | - Elisabetta Genovese
- ENT & Audiology Department, University of Modena and Reggio Emilia, 41100 Modena, Italy
| | - Chiara Bianchini
- ENT & Audiology Unit, Department of Neurosciences, University Hospital of Ferrara, 44124 Ferrara, Italy
| | - Andrea Ciorba
- ENT & Audiology Unit, Department of Neurosciences, University Hospital of Ferrara, 44124 Ferrara, Italy
| |
Collapse
|
5
|
Pathophysiology and Management of Fatigue in Neuromuscular Diseases. Int J Mol Sci 2023; 24:ijms24055005. [PMID: 36902435 PMCID: PMC10003182 DOI: 10.3390/ijms24055005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Fatigue is a major determinant of quality of life and motor function in patients affected by several neuromuscular diseases, each of them characterized by a peculiar physiopathology and the involvement of numerous interplaying factors. This narrative review aims to provide an overview on the pathophysiology of fatigue at a biochemical and molecular level with regard to muscular dystrophies, metabolic myopathies, and primary mitochondrial disorders with a focus on mitochondrial myopathies and spinal muscular atrophy, which, although fulfilling the definition of rare diseases, as a group represent a representative ensemble of neuromuscular disorders that the neurologist may encounter in clinical practice. The current use of clinical and instrumental tools for fatigue assessment, and their significance, is discussed. A summary of therapeutic approaches to address fatigue, encompassing pharmacological treatment and physical exercise, is also overviewed.
Collapse
|
6
|
Supruniuk E, Górski J, Chabowski A. Endogenous and Exogenous Antioxidants in Skeletal Muscle Fatigue Development during Exercise. Antioxidants (Basel) 2023; 12:antiox12020501. [PMID: 36830059 PMCID: PMC9952836 DOI: 10.3390/antiox12020501] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
Muscle fatigue is defined as a decrease in maximal force or power generated in response to contractile activity, and it is a risk factor for the development of musculoskeletal injuries. One of the many stressors imposed on skeletal muscle through exercise is the increased production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), which intensifies as a function of exercise intensity and duration. Exposure to ROS/RNS can affect Na+/K+-ATPase activity, intramyofibrillar calcium turnover and sensitivity, and actin-myosin kinetics to reduce muscle force production. On the other hand, low ROS/RNS concentrations can likely upregulate an array of cellular adaptative responses related to mitochondrial biogenesis, glucose transport and muscle hypertrophy. Consequently, growing evidence suggests that exogenous antioxidant supplementation might hamper exercise-engendering upregulation in the signaling pathways of mitogen-activated protein kinases (MAPKs), peroxisome-proliferator activated co-activator 1α (PGC-1α), or mammalian target of rapamycin (mTOR). Ultimately, both high (exercise-induced) and low (antioxidant intervention) ROS concentrations can trigger beneficial responses as long as they do not override the threshold range for redox balance. The mechanisms underlying the two faces of ROS/RNS in exercise, as well as the role of antioxidants in muscle fatigue, are presented in detail in this review.
Collapse
Affiliation(s)
- Elżbieta Supruniuk
- Department of Physiology, Medical University of Białystok, 15-222 Białystok, Poland
- Correspondence: ; Tel.: +48-(85)-748-55-85
| | - Jan Górski
- Department of Medical Sciences, Academy of Applied Sciences, 18-400 Łomża, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Białystok, 15-222 Białystok, Poland
| |
Collapse
|
7
|
Bharathidasan K, Evans A, Fernandez FMAO, Motes AT, Nugent K. Mitochondrial Myopathy in a 21-Year-Old Man Presenting With Bilateral Lower Extremity Weakness and Swelling. J Prim Care Community Health 2023; 14:21501319231172697. [PMID: 37162197 PMCID: PMC10184240 DOI: 10.1177/21501319231172697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
Bilateral lower extremity weakness and swelling can have several causes. Although often underdiagnosed, mitochondrial myopathy is more prevalent in the general population than more commonly suspected diseases, such as Guillain-Barre syndrome. The clinical manifestations of mitochondrial disease can be broadly classified into 3 categories: chronic progressive external ophthalmoplegia, skeletal muscle-central nervous system syndromes, or pure myopathy. Cardiac abnormalities occur in 30% to 32% of cases, mostly in the form of hypertrophic cardiomyopathy, dilated cardiomyopathy, or conduction abnormalities. We report a case of a 21-year-old student who developed bilateral lower limb weakness, pain, and swelling diagnosed with mitochondrial myopathy on muscle biopsy. Initial laboratory tests revealed elevated creatinine kinase, brain natriuretic peptide, troponin, myoglobin, and lactic acid and reduced serum bicarbonate. Cardiac workup revealed systolic heart failure with a reduced ejection fraction. Endomyocardial biopsy revealed punctate foci of lymphocytic myocarditis. However, cardiac magnetic resonance imaging did not reveal either myocarditis or an infiltrative cardiac disease. An extensive autoimmune and infection work-up was negative. A muscle biopsy from the patient's rectus femoris revealed scattered ragged-blue fibers (stained with NADH dehydrogenase), scattered ragged-red fibers on modified Gomori trichrome stain, and cytochrome-c oxidase negative fibers with increased perimysial and endomysial connective tissue, consistent with active and chronic primary mitochondrial myopathy. The patient was treated successfully with furosemide, metoprolol, and methylprednisolone. Adult-onset mitochondrial myopathy is a rare clinical disorder, and our experience stresses the importance of using an inter-disciplinary team approach to diagnose uncommon clinical disorders with widely variable multisystem involvement.
Collapse
Affiliation(s)
| | - Abbie Evans
- Texas Tech University Health Science Center, Lubbock, TX, USA
| | | | | | - Kenneth Nugent
- Texas Tech University Health Science Center, Lubbock, TX, USA
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Metabolic myopathies are disorders that affect skeletal muscle substrate oxidation. Although some drugs and hormones can affect metabolism in skeletal muscle, this review will focus on the genetic metabolic myopathies. RECENT FINDINGS Impairments in glycogenolysis/glycolysis (glycogen storage disease), fatty acid transport/oxidation (fatty acid oxidation defects), and mitochondrial metabolism (mitochondrial myopathies) represent most metabolic myopathies; however, they often overlap clinically with structural genetic myopathies, referred to as pseudometabolic myopathies. Although metabolic myopathies can present in the neonatal period with hypotonia, hypoglycemia, and encephalopathy, most cases present clinically in children or young adults with exercise intolerance, rhabdomyolysis, and weakness. In general, the glycogen storage diseases manifest during brief bouts of high-intensity exercise; in contrast, fatty acid oxidation defects and mitochondrial myopathies usually manifest during longer-duration endurance-type activities, often with fasting or other metabolic stressors (eg, surgery, fever). The neurologic examination is often normal between events (except in the pseudometabolic myopathies) and evaluation requires one or more of the following tests: exercise stress testing, blood (eg, creatine kinase, acylcarnitine profile, lactate, amino acids), urine (eg, organic acids, myoglobin), muscle biopsy (eg, histology, ultrastructure, enzyme testing), and targeted (specific gene) or untargeted (myopathy panels) genetic tests. SUMMARY Definitive identification of a specific metabolic myopathy often leads to specific interventions, including lifestyle, exercise, and nutritional modifications; cofactor treatments; accurate genetic counseling; avoidance of specific triggers; and rapid treatment of rhabdomyolysis.
Collapse
|
9
|
Wang Y, Hekimi S. The efficacy of coenzyme Q 10 treatment in alleviating the symptoms of primary coenzyme Q 10 deficiency: A systematic review. J Cell Mol Med 2022; 26:4635-4644. [PMID: 35985679 PMCID: PMC9443948 DOI: 10.1111/jcmm.17488] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/21/2022] [Accepted: 06/30/2022] [Indexed: 12/31/2022] Open
Abstract
Coenzyme Q10 (CoQ10 ) is necessary for mitochondrial electron transport. Mutations in CoQ10 biosynthetic genes cause primary CoQ10 deficiency (PCoQD) and manifest as mitochondrial disorders. It is often stated that PCoQD patients can be treated by oral CoQ10 supplementation. To test this, we compiled all studies describing PCoQD patients up to May 2022. We excluded studies with no data on CoQ10 treatment, or with insufficient description of effectiveness. Out of 303 PCoQD patients identified, we retained 89 cases, of which 24 reported improvements after CoQ10 treatment (27.0%). In five cases, the patient's condition was reported to deteriorate after halting of CoQ10 treatment. 12 cases reported improvement in the severity of ataxia and 5 cases in the severity of proteinuria. Only a subjective description of improvement was reported for 4 patients described as responding. All reported responses were partial improvements of only some symptoms. For PCoQD patients, CoQ10 supplementation is replacement therapy. Yet, there is only very weak evidence for the efficacy of the treatment. Our findings, thus, suggest a need for caution when seeking to justify the widespread use of CoQ10 for the treatment of any disease or as dietary supplement.
Collapse
Affiliation(s)
- Ying Wang
- Department of BiologyMcGill UniversityMontrealQuebecCanada
| | | |
Collapse
|
10
|
Multi-Ingredient Supplement Supports Mitochondrial Health through Interleukin-15 Signaling in Older Adult Human Dermal Fibroblasts. COSMETICS 2022. [DOI: 10.3390/cosmetics9030047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The macroscopic and microscopic deterioration of human skin with age is, in part, attributed to a functional decline in mitochondrial health. We previously demonstrated that exercise attenuated age-associated changes within the skin through enhanced mitochondrial health via IL-15 signaling, an exercise-induced cytokine whose presence increases in circulation following physical activity. The purpose of this investigation was to determine if these mitochondrial-enhancing effects could be mimicked with the provision of a novel multi-ingredient supplement (MIS). Cultured human fibroblasts isolated from older, sedentary women were treated with control media (CON) or CON supplemented with the following active ingredients to create the MIS: coenzyme Q10, alpha lipoic acid, resveratrol, curcumin, zinc, lutein, astaxanthin, copper, biotin, and vitamins C, D, and E. Outcomes were determined following 24 or 72 h of treatment. MIS provision to dermal fibroblasts significantly increased the mRNA abundance of mitochondrial biogenesis activators and downstream IL-15 signaling pathways, and proteins for oxidative phosphorylation subunits and antioxidant defenses. These findings were co-temporal with lower cellular senescence and cytotoxicity following MIS treatment. In summary, MIS supplementation led to exercise-mimetic effects on human dermal fibroblasts and their mitochondria by reproducing the molecular and biochemical effects downstream of IL-15 activation.
Collapse
|
11
|
Cucchiara BL, Kasner SE. Treatment of “Other” Stroke Etiologies. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00058-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Tetsuka S, Ogawa T, Hashimoto R, Kato H. Clinical features, pathogenesis, and management of stroke-like episodes due to MELAS. Metab Brain Dis 2021; 36:2181-2193. [PMID: 34118021 DOI: 10.1007/s11011-021-00772-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/06/2021] [Indexed: 02/07/2023]
Abstract
Mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS) is a disease that should be considered as a differential diagnosis to acute ischemic stroke taking into account its onset pattern and neurological symptoms, which are similar to those of an ischemic stroke. Technological advancements in neuroimaging modalities have greatly facilitated differential diagnosis between stroke and MELAS on diagnostic imaging. Stroke-like episodes in MELAS have the following features: (1) symptoms are neurolocalized according to lesion site; (2) epileptic seizures are often present; (3) lesion distribution is inconsistent with vascular territory; (4) lesions are common in the posterior brain regions; (5) lesions continuously develop in adjacent sites over several weeks or months; (6) neurological symptoms and stroke-like lesions tend to be reversible, as presented on magnetic resonance imaging; (7) the rate of recurrence is high; and; (8) brain dysfunction and atrophy are slowly progressive. The m.3243ANG mutation in the MT-TL1 gene encoding the mitochondrial tRNALeu(UUR) is most commonly associated with MELAS. Although the precise pathophysiology is still unclear, one possible hypothesis for these episodes is a neuronal hyperexcitability theory, including neuron-astrocyte uncoupling. Supplementation, such as with L-arginine or taurine, has been proposed as preventive treatments for stroke-like episodes. As this disease is still untreatable and devastating, numerous drugs are being tested, and new gene therapies hold great promise for the future. This article contributes to the understanding of MELAS and its implications for clinical practice, by deepening their insight into the latest pathophysiological hypotheses and therapeutic developments.
Collapse
Affiliation(s)
- Syuichi Tetsuka
- Department of Neurology, International University of Health and Welfare Hospital, 537-3, Iguchi, Nasushiobara, Tochigi, 329-2763, Japan.
| | - Tomoko Ogawa
- Department of Neurology, International University of Health and Welfare Hospital, 537-3, Iguchi, Nasushiobara, Tochigi, 329-2763, Japan
| | - Ritsuo Hashimoto
- Department of Neurology, International University of Health and Welfare Hospital, 537-3, Iguchi, Nasushiobara, Tochigi, 329-2763, Japan
| | - Hiroyuki Kato
- Department of Neurology, International University of Health and Welfare Hospital, 537-3, Iguchi, Nasushiobara, Tochigi, 329-2763, Japan
| |
Collapse
|
13
|
Pagano G, Pallardó FV, Lyakhovich A, Tiano L, Trifuoggi M. Mitigating the pro-oxidant state and melanogenesis of Retinitis pigmentosa: by counteracting mitochondrial dysfunction. Cell Mol Life Sci 2021; 78:7491-7503. [PMID: 34718826 PMCID: PMC11072988 DOI: 10.1007/s00018-021-04007-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/08/2021] [Accepted: 10/13/2021] [Indexed: 12/12/2022]
Abstract
Retinitis pigmentosa (RP) is a group of mitochondrial diseases characterized by progressive degeneration of rods and cones leading to retinal loss of light sensitivity and, consequently, to blindness. To date, no cure is available according to the clinical literature. As a disease associated with pigmentation-related, pro-oxidant state, and mitochondrial dysfunction, RP may be viewed at the crossroads of different pathogenetic pathways involved in adverse health outcomes, where mitochondria play a preeminent role. RP has been investigated in a number of experimental and clinical studies aimed at delaying retinal hyperpigmentation by means of a number of natural and synthetic antioxidants, as well as mitochondrial cofactors, also termed mitochondrial nutrients (MNs), such as alpha-lipoic acid, coenzyme Q10 and carnitine. One should consider that each MN plays distinct-and indispensable-roles in mitochondrial function. Thus, a logical choice would imply the administration of MN combinations, instead of individual MNs, as performed in previous studies, and with limited, if any, positive outcomes. A rational study design aimed at comparing the protective effects of MNs, separately or in combinations, and in association with other antioxidants, might foresee the utilization of animal RP models. The results should verify a comparative optimization in preventing or effectively contrasting retinal oxidative stress in mouse RP models and, in prospect, in human RP cases.
Collapse
Affiliation(s)
- Giovanni Pagano
- Department of Chemical Sciences, Federico II Naples University, via Cintia, 80126, Naples, Italy.
| | - Federico V Pallardó
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia-INCLIVA, CIBERER, 46010, Valencia, Spain
| | - Alex Lyakhovich
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, 34956, Istanbul, Turkey
- Institute of Molecular Biology and Biophysics of the "Federal Research Center of Fundamental and Translational Medicine", 630117, Novosibirsk, Russia
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnical University of Marche, 60121, Ancona, Italy
| | - Marco Trifuoggi
- Department of Chemical Sciences, Federico II Naples University, via Cintia, 80126, Naples, Italy
| |
Collapse
|
14
|
Marra F, Lunetti P, Curcio R, Lasorsa FM, Capobianco L, Porcelli V, Dolce V, Fiermonte G, Scarcia P. An Overview of Mitochondrial Protein Defects in Neuromuscular Diseases. Biomolecules 2021; 11:1633. [PMID: 34827632 PMCID: PMC8615828 DOI: 10.3390/biom11111633] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 11/18/2022] Open
Abstract
Neuromuscular diseases (NMDs) are dysfunctions that involve skeletal muscle and cause incorrect communication between the nerves and muscles. The specific causes of NMDs are not well known, but most of them are caused by genetic mutations. NMDs are generally progressive and entail muscle weakness and fatigue. Muscular impairments can differ in onset, severity, prognosis, and phenotype. A multitude of possible injury sites can make diagnosis of NMDs difficult. Mitochondria are crucial for cellular homeostasis and are involved in various metabolic pathways; for this reason, their dysfunction can lead to the development of different pathologies, including NMDs. Most NMDs due to mitochondrial dysfunction have been associated with mutations of genes involved in mitochondrial biogenesis and metabolism. This review is focused on some mitochondrial routes such as the TCA cycle, OXPHOS, and β-oxidation, recently found to be altered in NMDs. Particular attention is given to the alterations found in some genes encoding mitochondrial carriers, proteins of the inner mitochondrial membrane able to exchange metabolites between mitochondria and the cytosol. Briefly, we discuss possible strategies used to diagnose NMDs and therapies able to promote patient outcome.
Collapse
Affiliation(s)
- Federica Marra
- Department of Pharmacy, Health, and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (F.M.); (R.C.); (V.D.)
| | - Paola Lunetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (P.L.); (L.C.)
| | - Rosita Curcio
- Department of Pharmacy, Health, and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (F.M.); (R.C.); (V.D.)
| | - Francesco Massimo Lasorsa
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy; (F.M.L.); (V.P.)
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, 00155 Rome, Italy
| | - Loredana Capobianco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (P.L.); (L.C.)
| | - Vito Porcelli
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy; (F.M.L.); (V.P.)
| | - Vincenza Dolce
- Department of Pharmacy, Health, and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (F.M.); (R.C.); (V.D.)
| | - Giuseppe Fiermonte
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy; (F.M.L.); (V.P.)
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, 00155 Rome, Italy
| | - Pasquale Scarcia
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy; (F.M.L.); (V.P.)
| |
Collapse
|
15
|
Fan HC, Lee HF, Yue CT, Chi CS. Clinical Characteristics of Mitochondrial Encephalomyopathy, Lactic Acidosis, and Stroke-Like Episodes. Life (Basel) 2021; 11:life11111111. [PMID: 34832987 PMCID: PMC8617702 DOI: 10.3390/life11111111] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/11/2021] [Accepted: 10/16/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome, a maternally inherited mitochondrial disorder, is characterized by its genetic, biochemical and clinical complexity. The most common mutation associated with MELAS syndrome is the mtDNA A3243G mutation in the MT-TL1 gene encoding the mitochondrial tRNA-leu(UUR), which results in impaired mitochondrial translation and protein synthesis involving the mitochondrial electron transport chain complex subunits, leading to impaired mitochondrial energy production. Angiopathy, either alone or in combination with nitric oxide (NO) deficiency, further contributes to multi-organ involvement in MELAS syndrome. Management for MELAS syndrome is amostly symptomatic multidisciplinary approach. In this article, we review the clinical presentations, pathogenic mechanisms and options for management of MELAS syndrome.
Collapse
Affiliation(s)
- Hueng-Chuen Fan
- Department of Pediatrics, Tungs’ Taichung Metroharbor Hospital, Wuchi, Taichung 435, Taiwan; (H.-C.F.); (C.-T.Y.)
- Department of Medical Research, Tungs’ Taichung Metroharbor Hospital, Wuchi, Taichung 435, Taiwan
- Department of Rehabilitation, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 356, Taiwan
- Department of Life Sciences, Agricultural Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| | - Hsiu-Fen Lee
- Department of Pediatrics, Taichung Veterans General Hospital, Taichung 407, Taiwan;
| | - Chen-Tang Yue
- Department of Pediatrics, Tungs’ Taichung Metroharbor Hospital, Wuchi, Taichung 435, Taiwan; (H.-C.F.); (C.-T.Y.)
| | - Ching-Shiang Chi
- Department of Pediatrics, Tungs’ Taichung Metroharbor Hospital, Wuchi, Taichung 435, Taiwan; (H.-C.F.); (C.-T.Y.)
- Correspondence: ; Tel.: +886-4-26581919-4301
| |
Collapse
|
16
|
Klein Gunnewiek TM, Verboven AHA, Pelgrim I, Hogeweg M, Schoenmaker C, Renkema H, Beyrath J, Smeitink J, de Vries BBA, Hoen PBAC', Kozicz T, Nadif Kasri N. Sonlicromanol improves neuronal network dysfunction and transcriptome changes linked to m.3243A>G heteroplasmy in iPSC-derived neurons. Stem Cell Reports 2021; 16:2197-2212. [PMID: 34329596 PMCID: PMC8452519 DOI: 10.1016/j.stemcr.2021.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) is often caused by an adenine to guanine variant at m.3243 (m.3243A>G) of the MT-TL1 gene. To understand how this pathogenic variant affects the nervous system, we differentiated human induced pluripotent stem cells (iPSCs) into excitatory neurons with normal (low heteroplasmy) and impaired (high heteroplasmy) mitochondrial function from MELAS patients with the m.3243A>G pathogenic variant. We combined micro-electrode array (MEA) measurements with RNA sequencing (MEA-seq) and found reduced expression of genes involved in mitochondrial respiration and presynaptic function, as well as non-cell autonomous processes in co-cultured astrocytes. Finally, we show that the clinical phase II drug sonlicromanol can improve neuronal network activity when treatment is initiated early in development. This was intricately linked with changes in the neuronal transcriptome. Overall, we provide insight in transcriptomic changes in iPSC-derived neurons with high m.3243A>G heteroplasmy, and show the pathology is partially reversible by sonlicromanol.
Collapse
Affiliation(s)
- Teun M Klein Gunnewiek
- Department of Medical Imaging, Anatomie, Radboud University Medical Center, Geert Grooteplein 10, Nijmegen, 6525 GA, the Netherlands; Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, 6500 HB, the Netherlands
| | - Anouk H A Verboven
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, 6500 HB, the Netherlands; Centre for Molecular and Biomolecular Informatics, Radboudumc, Nijmegen, the Netherlands
| | - Iris Pelgrim
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, 6500 HB, the Netherlands; Khondrion B.V., Nijmegen, the Netherlands
| | - Mark Hogeweg
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, 6500 HB, the Netherlands
| | - Chantal Schoenmaker
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, 6500 HB, the Netherlands
| | | | | | | | - Bert B A de Vries
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, 6500 HB, the Netherlands
| | - Peter-Bram A C 't Hoen
- Centre for Molecular and Biomolecular Informatics, Radboudumc, Nijmegen, the Netherlands
| | - Tamas Kozicz
- Department of Medical Imaging, Anatomie, Radboud University Medical Center, Geert Grooteplein 10, Nijmegen, 6525 GA, the Netherlands; Department of Laboratory Medicine and Pathology. Mayo Clinic, Rochester, MN 55905, USA; Department of Clinical Genomics, Mayo Clinic, 55905 Rochester, MN, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, 55905 Rochester, MN, USA.
| | - Nael Nadif Kasri
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen, 6500 HB, the Netherlands.
| |
Collapse
|
17
|
Wang Y, Hu LF, Zhou TJ, Qi LY, Xing L, Lee J, Wang FZ, Oh YK, Jiang HL. Gene therapy strategies for rare monogenic disorders with nuclear or mitochondrial gene mutations. Biomaterials 2021; 277:121108. [PMID: 34478929 DOI: 10.1016/j.biomaterials.2021.121108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 08/19/2021] [Accepted: 08/26/2021] [Indexed: 12/26/2022]
Abstract
Rare monogenic disorders are a group of single-gene-mutated diseases that have a low incidence rate (less than 0.5‰) and eventually lead to patient disability and even death. Due to the relatively low number of people affected, these diseases typically fail to attract a great deal of commercial investment and research interest, and the affected patients thus have unmet medical needs. Advances in genomics biology, gene editing, and gene delivery can now offer potentially effective options for treating rare monogenic diseases. Herein, we review the application of gene therapy strategies (traditional gene therapy and gene editing) against various rare monogenic diseases with nuclear or mitochondrial gene mutations, including eye, central nervous system, pulmonary, systemic, and blood cell diseases. We summarize their pathologic features, address the barriers to gene delivery for these diseases, discuss available therapies in the clinic and in clinical trials, and sum up in-development gene delivery systems for various rare monogenic disorders. Finally, we elaborate the possible directions and outlook of gene therapy for rare monogenic disorders.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Li-Fan Hu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Tian-Jiao Zhou
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Lian-Yu Qi
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Lei Xing
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, 830054, China
| | - Jaiwoo Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Feng-Zhen Wang
- Department of Clinical Pharmacy, The First Clinical School of Xuzhou Medical University, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, China.
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, 830054, China; Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
18
|
Hasanloei MAV, Zeinaly A, Rahimlou M, Houshyar H, Moonesirad S, Hashemi R. Effect of coenzyme Q10 supplementation on oxidative stress and clinical outcomes in patients with low levels of coenzyme Q10 admitted to the intensive care unit. J Nutr Sci 2021; 10:e48. [PMID: 34290862 PMCID: PMC8278158 DOI: 10.1017/jns.2021.39] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/09/2021] [Accepted: 06/08/2021] [Indexed: 12/28/2022] Open
Abstract
Today, trauma is known to be the third leading cause of death in most countries. Studies have demonstrated below-normal plasma levels of antioxidants in trauma patients. The present study aimed to assess the efficacy of Coenzyme Q10 (CoQ10) on oxidative stress, clinical outcomes and anthropometrical parameters in traumatic mechanical ventilated patients admitted to the intensive care unit. Patients were randomised to receive sublingual CoQ10 (400 mg/d) or placebo for 7 d. Primary and secondary outcomes were measured at the baseline and end of the study. We enrolled forty patients for this trial: twenty in the CoQ10 group and twenty in the placebo group. There was not any significant difference in the baseline variables (P > 0⋅05). At the end of the study, CoQ10 administration caused a considerable reduction in the Malondialdehyde (MDA) and Interleukin 6 (IL-6) concentrations (P < 0⋅001), Glasgow Coma Score (GCS; P = 0⋅02), ICU and hospital length of stay and mechanical ventilation (MV) duration (P < 0⋅001). We found that CoQ10 administration could increase Fat-Free Mass (P < 0⋅001) (FFM; P = 0⋅04), Skeletal Muscle Mass (SMM; P = 0⋅04) and Body Cell Mass (BCM) percent (P = 0⋅03). There was not any significant difference in other factors between the two groups (P > 0⋅05). CoQ10 administration has beneficial effects on patients with traumatic injury and has no side effects. However, since the possibility of the type II error was high, the outcomes on the duration of MV, ICU stay and hospital stay, and GCS may very well be false positives.
Collapse
Affiliation(s)
- Mohammad Amin Valizade Hasanloei
- Clinical Research Development Unit, Imam Khomeini Hospital, Urmia University of Medical Sciences, Ershad Ave, 5756151818Urmia, West Azerbaijan Province, Iran
| | - Aidin Zeinaly
- Department of Anesthesiology, Urmia University of Medical Sciences, 11 km SERO Road, 5756151818Urmia, West Azerbaijan Province, Iran
| | - Mehran Rahimlou
- Department of Nutrition, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hadi Houshyar
- Department of Anesthesiology, Imam Khomeini Hospital, Faculty of Medicine, Urmia University of Medical Sciences, Imam Khomeini Avenue, 5756151818Urmia, West Azerbaijan Province, Iran
| | - Solma Moonesirad
- Urmia University of Medical Sciences, 11 km SERO Road, 5756151818Urmia, West Azerbaijan Province, Iran
| | - Reza Hashemi
- Clinical Research Development Unit, Imam Khomeini Hospital, Urmia University of Medical Sciences, Ershad Ave, 5756151818Urmia, West Azerbaijan Province, Iran
| |
Collapse
|
19
|
Yang L, Slone J, Li Z, Lou X, Hu YC, Queme LF, Jankowski MP, Huang T. Systemic administration of AAV-Slc25a46 mitigates mitochondrial neuropathy in Slc25a46-/- mice. Hum Mol Genet 2021; 29:649-661. [PMID: 31943007 DOI: 10.1093/hmg/ddz277] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/10/2019] [Accepted: 11/11/2019] [Indexed: 12/20/2022] Open
Abstract
Mitochondrial disorders are the result of nuclear and mitochondrial DNA mutations that affect multiple organs, with the central and peripheral nervous system often affected. Currently, there is no cure for mitochondrial disorders. Currently, gene therapy offers a novel approach for treating monogenetic disorders, including nuclear genes associated with mitochondrial disorders. We utilized a mouse model carrying a knockout of the mitochondrial fusion-fission-related gene solute carrier family 25 member 46 (Slc25a46) and treated them with neurotrophic AAV-PHP.B vector carrying the mouse Slc25a46 coding sequence. Thereafter, we used immunofluorescence staining and western blot to test the transduction efficiency of this vector. Toluidine blue staining and electronic microscopy were utilized to assess the morphology of optic and sciatic nerves following treatment, and the morphology and respiratory chain activity of mitochondria within these tissues were determined as well. The adeno-associated virus (AAV) vector effectively transduced in the cerebrum, cerebellum, heart, liver and sciatic nerves. AAV-Slc25a46 treatment was able to rescue the premature death in the mutant mice (Slc25a46-/-). The treatment-improved electronic conductivity of the peripheral nerves increased mobility and restored mitochondrial complex activities. Most notably, mitochondrial morphology inside the tissues of both the central and peripheral nervous systems was normalized, and the neurodegeneration, chronic neuroinflammation and loss of Purkinje cell dendrites observed within the mutant mice were alleviated. Overall, our study shows that AAV-PHP.B's neurotrophic properties are plausible for treating conditions where the central nervous system is affected, such as many mitochondrial diseases, and that AAV-Slc25a46 could be a novel approach for treating SLC25A46-related mitochondrial disorders.
Collapse
Affiliation(s)
- Li Yang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jesse Slone
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Zhuo Li
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Xiaoting Lou
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yueh-Chiang Hu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Luis F Queme
- Division of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Michael P Jankowski
- Division of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Taosheng Huang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
20
|
Turton N, Bowers N, Khajeh S, Hargreaves IP, Heaton RA. Coenzyme Q10 and the exclusive club of diseases that show a limited response to treatment. Expert Opin Orphan Drugs 2021. [DOI: 10.1080/21678707.2021.1932459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Nadia Turton
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool UK
| | - Nathan Bowers
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool UK
| | - Sam Khajeh
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool UK
| | - Iain P Hargreaves
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool UK
| | - Robert A Heaton
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool UK
| |
Collapse
|
21
|
Gueguen N, Baris O, Lenaers G, Reynier P, Spinazzi M. Secondary coenzyme Q deficiency in neurological disorders. Free Radic Biol Med 2021; 165:203-218. [PMID: 33450382 DOI: 10.1016/j.freeradbiomed.2021.01.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/31/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022]
Abstract
Coenzyme Q (CoQ) is a ubiquitous lipid serving essential cellular functions. It is the only component of the mitochondrial respiratory chain that can be exogenously absorbed. Here, we provide an overview of current knowledge, controversies, and open questions about CoQ intracellular and tissue distribution, in particular in brain and skeletal muscle. We discuss human neurological diseases and mouse models associated with secondary CoQ deficiency in these tissues and highlight pharmacokinetic and anatomical challenges in exogenous CoQ biodistribution, recent improvements in CoQ formulations and imaging, as well as alternative therapeutical strategies to CoQ supplementation. The last section proposes possible mechanisms underlying secondary CoQ deficiency in human diseases with emphasis on neurological and neuromuscular disorders.
Collapse
Affiliation(s)
- Naig Gueguen
- Unité Mixte de Recherche (UMR) MITOVASC, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, University of Angers, 49933, Angers, France; Department of Biochemistry and Molecular Biology, CHU Angers, 49933, Angers, France
| | - Olivier Baris
- Unité Mixte de Recherche (UMR) MITOVASC, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, University of Angers, 49933, Angers, France
| | - Guy Lenaers
- Unité Mixte de Recherche (UMR) MITOVASC, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, University of Angers, 49933, Angers, France
| | - Pascal Reynier
- Unité Mixte de Recherche (UMR) MITOVASC, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, University of Angers, 49933, Angers, France; Department of Biochemistry and Molecular Biology, CHU Angers, 49933, Angers, France
| | - Marco Spinazzi
- Unité Mixte de Recherche (UMR) MITOVASC, Centre National de la Recherche Scientifique (CNRS) 6015, Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, University of Angers, 49933, Angers, France; Neuromuscular Reference Center, Department of Neurology, CHU Angers, 49933, Angers, France.
| |
Collapse
|
22
|
Klein IL, van de Loo KFE, Smeitink JAM, Janssen MCH, Kessels RPC, van Karnebeek CD, van der Veer E, Custers JAE, Verhaak CM. Cognitive functioning and mental health in mitochondrial disease: A systematic scoping review. Neurosci Biobehav Rev 2021; 125:57-77. [PMID: 33582231 DOI: 10.1016/j.neubiorev.2021.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/06/2021] [Accepted: 02/01/2021] [Indexed: 11/29/2022]
Abstract
Mitochondrial diseases (MDs) are rare, heterogeneous, hereditary and progressive in nature. In addition to the serious somatic symptoms, patients with MD also experience problems regarding their cognitive functioning and mental health. We provide an overview of all published studies reporting on any aspect of cognitive functioning and/or mental health in patients with MD and their relatives. A total of 58 research articles and 45 case studies were included and critically reviewed. Cognitive impairments in multiple domains were reported. Mental disorders were frequently reported, especially depression and anxiety. Furthermore, most studies showed impairments in self-reported psychological functioning and high prevalence of mental health problems in (matrilineal) relatives. The included studies showed heterogeneity regarding patient samples, measurement instruments and reference groups, making comparisons cautious. Results highlight a high prevalence of cognitive impairments and mental disorders in patients with MD. Recommendations for further research as well as tailored patientcare with standardized follow-up are provided. Key gaps in the literature are identified, of which studies on natural history are of highest importance.
Collapse
Affiliation(s)
- Inge-Lot Klein
- Radboud University Medical Center, Amalia Children's Hospital, Radboud Institute for Health Sciences, Radboud Center for Mitochondrial Medicine, Department of Medical Psychology, Geert Grooteplein Zuid 10, PO Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Kim F E van de Loo
- Radboud University Medical Center, Amalia Children's Hospital, Radboud Institute for Health Sciences, Radboud Center for Mitochondrial Medicine, Department of Medical Psychology, Geert Grooteplein Zuid 10, PO Box 9101, 6500 HB, Nijmegen, the Netherlands.
| | - Jan A M Smeitink
- Radboud University Medical Center, Amalia Children's Hospital, Radboud Institute for Molecular Life Sciences, Radboud Center for Mitochondrial Medicine, Department of Pediatrics, Geert Grooteplein Zuid 10, PO Box 9101, 6500 HB, Nijmegen, the Netherlands; Khondrion BV, Philips van Leydenlaan 15, PO Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Mirian C H Janssen
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Radboud Center for Mitochondrial Medicine, Department of Internal Medicine, Geert Grooteplein Zuid 10, PO Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Roy P C Kessels
- Radboud University Medical Center, Department of Medical Psychology, Geert Grooteplein Zuid 10, PO Box 9101, 6500 HB, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Thomas van Aquinostraat 4, Postbus 9104, 6500 HE, Nijmegen, the Netherlands; Vincent van Gogh Institute for Psychiatry, d'n Herk 90, 5803 DN, Venray, the Netherlands
| | - Clara D van Karnebeek
- Radboud University Medical Center, Amalia Children's Hospital, Radboud Institute for Molecular Life Sciences, Radboud Center for Mitochondrial Medicine, Department of Pediatrics, Geert Grooteplein Zuid 10, PO Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Elja van der Veer
- International Mito Patients Association, 2861 AD, Bergambacht, the Netherlands
| | - José A E Custers
- Radboud University Medical Center, Amalia Children's Hospital, Radboud Institute for Health Sciences, Radboud Center for Mitochondrial Medicine, Department of Medical Psychology, Geert Grooteplein Zuid 10, PO Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Christianne M Verhaak
- Radboud University Medical Center, Amalia Children's Hospital, Radboud Institute for Health Sciences, Radboud Center for Mitochondrial Medicine, Department of Medical Psychology, Geert Grooteplein Zuid 10, PO Box 9101, 6500 HB, Nijmegen, the Netherlands
| |
Collapse
|
23
|
Amore G, Romagnoli M, Carbonelli M, Barboni P, Carelli V, La Morgia C. Therapeutic Options in Hereditary Optic Neuropathies. Drugs 2021; 81:57-86. [PMID: 33159657 PMCID: PMC7843467 DOI: 10.1007/s40265-020-01428-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Options for the effective treatment of hereditary optic neuropathies have been a long time coming. The successful launch of the antioxidant idebenone for Leber's Hereditary Optic Neuropathy (LHON), followed by its introduction into clinical practice across Europe, was an important step forward. Nevertheless, other options, especially for a variety of mitochondrial optic neuropathies such as dominant optic atrophy (DOA), are needed, and a number of pharmaceutical agents, acting on different molecular pathways, are currently under development. These include gene therapy, which has reached Phase III development for LHON, but is expected to be developed also for DOA, whilst most of the other agents (other antioxidants, anti-apoptotic drugs, activators of mitobiogenesis, etc.) are almost all at Phase II or at preclinical stage of research. Here, we review proposed target mechanisms, preclinical evidence, available clinical trials with primary endpoints and results, of a wide range of tested molecules, to give an overview of the field, also providing the landscape of future scenarios, including gene therapy, gene editing, and reproductive options to prevent transmission of mitochondrial DNA mutations.
Collapse
Affiliation(s)
- Giulia Amore
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Martina Romagnoli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Via Altura 3, 40139, Bologna, Italy
| | - Michele Carbonelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Via Altura 3, 40139, Bologna, Italy
| | | | - Valerio Carelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Via Altura 3, 40139, Bologna, Italy
| | - Chiara La Morgia
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Via Altura 3, 40139, Bologna, Italy.
| |
Collapse
|
24
|
Koňaříková E, Marković A, Korandová Z, Houštěk J, Mráček T. Current progress in the therapeutic options for mitochondrial disorders. Physiol Res 2020; 69:967-994. [PMID: 33129249 PMCID: PMC8549882 DOI: 10.33549/physiolres.934529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/02/2020] [Indexed: 12/20/2022] Open
Abstract
Mitochondrial disorders manifest enormous genetic and clinical heterogeneity - they can appear at any age, present with various phenotypes affecting any organ, and display any mode of inheritance. What mitochondrial diseases do have in common, is impairment of respiratory chain activity, which is responsible for more than 90% of energy production within cells. While diagnostics of mitochondrial disorders has been accelerated by introducing Next-Generation Sequencing techniques in recent years, the treatment options are still very limited. For many patients only a supportive or symptomatic therapy is available at the moment. However, decades of basic and preclinical research have uncovered potential target points and numerous compounds or interventions are now subjects of clinical trials. In this review, we focus on current and emerging therapeutic approaches towards the treatment of mitochondrial disorders. We focus on small compounds, metabolic interference, such as endurance training or ketogenic diet and also on genomic approaches.
Collapse
Affiliation(s)
- E Koňaříková
- Laboratory of Bioenergetics, Institute of Physiology Czech Acad. Sci., Prague, Czech Republic. ,
| | | | | | | | | |
Collapse
|
25
|
Bottani E, Lamperti C, Prigione A, Tiranti V, Persico N, Brunetti D. Therapeutic Approaches to Treat Mitochondrial Diseases: "One-Size-Fits-All" and "Precision Medicine" Strategies. Pharmaceutics 2020; 12:E1083. [PMID: 33187380 PMCID: PMC7696526 DOI: 10.3390/pharmaceutics12111083] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
Primary mitochondrial diseases (PMD) refer to a group of severe, often inherited genetic conditions due to mutations in the mitochondrial genome or in the nuclear genes encoding for proteins involved in oxidative phosphorylation (OXPHOS). The mutations hamper the last step of aerobic metabolism, affecting the primary source of cellular ATP synthesis. Mitochondrial diseases are characterized by extremely heterogeneous symptoms, ranging from organ-specific to multisystemic dysfunction with different clinical courses. The limited information of the natural history, the limitations of currently available preclinical models, coupled with the large variability of phenotypical presentations of PMD patients, have strongly penalized the development of effective therapies. However, new therapeutic strategies have been emerging, often with promising preclinical and clinical results. Here we review the state of the art on experimental treatments for mitochondrial diseases, presenting "one-size-fits-all" approaches and precision medicine strategies. Finally, we propose novel perspective therapeutic plans, either based on preclinical studies or currently used for other genetic or metabolic diseases that could be transferred to PMD.
Collapse
Affiliation(s)
- Emanuela Bottani
- Department of Diagnostics and Public Health, Section of Pharmacology, University of Verona, 37134 Verona, Italy
| | - Costanza Lamperti
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, 20126 Milan, Italy; (C.L.); (V.T.)
| | - Alessandro Prigione
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Clinic Düsseldorf (UKD), Heinrich Heine University (HHU), 40225 Dusseldorf, Germany;
| | - Valeria Tiranti
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, 20126 Milan, Italy; (C.L.); (V.T.)
| | - Nicola Persico
- Department of Clinical Science and Community Health, University of Milan, 20122 Milan, Italy;
- Fetal Medicine and Surgery Service, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Dario Brunetti
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, 20126 Milan, Italy; (C.L.); (V.T.)
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy
| |
Collapse
|
26
|
Pagano G, Pallardó FV, Lyakhovich A, Tiano L, Fittipaldi MR, Toscanesi M, Trifuoggi M. Aging-Related Disorders and Mitochondrial Dysfunction: A Critical Review for Prospect Mitoprotective Strategies Based on Mitochondrial Nutrient Mixtures. Int J Mol Sci 2020; 21:ijms21197060. [PMID: 32992778 PMCID: PMC7582285 DOI: 10.3390/ijms21197060] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/20/2020] [Accepted: 09/22/2020] [Indexed: 12/16/2022] Open
Abstract
A number of aging-related disorders (ARD) have been related to oxidative stress (OS) and mitochondrial dysfunction (MDF) in a well-established body of literature. Most studies focused on cardiovascular disorders (CVD), type 2 diabetes (T2D), and neurodegenerative disorders. Counteracting OS and MDF has been envisaged to improve the clinical management of ARD, and major roles have been assigned to three mitochondrial cofactors, also termed mitochondrial nutrients (MNs), i.e., α-lipoic acid (ALA), Coenzyme Q10 (CoQ10), and carnitine (CARN). These cofactors exert essential–and distinct—roles in mitochondrial machineries, along with strong antioxidant properties. Clinical trials have mostly relied on the use of only one MN to ARD-affected patients as, e.g., in the case of CoQ10 in CVD, or of ALA in T2D, possibly with the addition of other antioxidants. Only a few clinical and pre-clinical studies reported on the administration of two MNs, with beneficial outcomes, while no available studies reported on the combined administration of three MNs. Based on the literature also from pre-clinical studies, the present review is to recommend the design of clinical trials based on combinations of the three MNs.
Collapse
Affiliation(s)
- Giovanni Pagano
- Department of Chemical Sciences, Federico II Naples University, I-80126 Naples, Italy; (M.T.); (M.T.)
- Correspondence:
| | - Federico V. Pallardó
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia-INCLIVA, CIBERER, E-46010 Valencia, Spain;
| | - Alex Lyakhovich
- Vall d’Hebron Institut de Recerca, E-08035 Barcelona, Catalunya, Spain;
- Institute of Molecular Biology and Biophysics of the “Federal Research Center of Fundamental and Translational Medicine”, Novosibirsk 630117, Russia
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnical University of Marche, I-60100 Ancona, Italy;
| | - Maria Rosa Fittipaldi
- Internal Medicine Unit, San Francesco d’Assisi Hospital, I-84020 Oliveto Citra (SA), Italy;
| | - Maria Toscanesi
- Department of Chemical Sciences, Federico II Naples University, I-80126 Naples, Italy; (M.T.); (M.T.)
| | - Marco Trifuoggi
- Department of Chemical Sciences, Federico II Naples University, I-80126 Naples, Italy; (M.T.); (M.T.)
| |
Collapse
|
27
|
Uittenbogaard M, Chiaramello A. Maternally inherited mitochondrial respiratory disorders: from pathogenetic principles to therapeutic implications. Mol Genet Metab 2020; 131:38-52. [PMID: 32624334 PMCID: PMC7749081 DOI: 10.1016/j.ymgme.2020.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 01/19/2023]
Abstract
Maternally inherited mitochondrial respiratory disorders are rare, progressive, and multi-systemic diseases that remain intractable, with no effective therapeutic interventions. Patients share a defective oxidative phosphorylation pathway responsible for mitochondrial ATP synthesis, in most cases due to pathogenic mitochondrial variants transmitted from mother to child or to a rare de novo mutation or large-scale deletion of the mitochondrial genome. The clinical diagnosis of these mitochondrial diseases is difficult due to exceptionally high clinical variability, while their genetic diagnosis has improved with the advent of next-generation sequencing. The mechanisms regulating the penetrance of the mitochondrial variants remain unresolved with the patient's nuclear background, epigenomic regulation, heteroplasmy, mitochondrial haplogroups, and environmental factors thought to act as rheostats. The lack of animal models mimicking the phenotypic manifestations of these disorders has hampered efforts toward curative therapies. Patient-derived cellular paradigms provide alternative models for elucidating the pathogenic mechanisms and screening pharmacological small molecules to enhance mitochondrial function. Recent progress has been made in designing promising approaches to curtail the negative impact of dysfunctional mitochondria and alleviate clinical symptoms: 1) boosting mitochondrial biogenesis; 2) shifting heteroplasmy; 3) reprogramming metabolism; and 4) administering hypoxia-based treatment. Here, we discuss their varying efficacies and limitations and provide an outlook on their therapeutic potential and clinical application.
Collapse
Affiliation(s)
- Martine Uittenbogaard
- George Washington University School of Medicine and Health Sciences, Department of Anatomy and Cell Biology, 2300 I Street N.W., Washington, DC 20037, USA
| | - Anne Chiaramello
- George Washington University School of Medicine and Health Sciences, Department of Anatomy and Cell Biology, 2300 I Street N.W., Washington, DC 20037, USA.
| |
Collapse
|
28
|
Almannai M, El-Hattab AW, Ali M, Soler-Alfonso C, Scaglia F. Clinical trials in mitochondrial disorders, an update. Mol Genet Metab 2020; 131:1-13. [PMID: 33129691 PMCID: PMC7537630 DOI: 10.1016/j.ymgme.2020.10.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/02/2020] [Indexed: 12/11/2022]
Abstract
Mitochondrial disorders comprise a molecular and clinically diverse group of diseases that are associated with mitochondrial dysfunction leading to multi-organ disease. With recent advances in molecular technologies, the understanding of the pathomechanisms of a growing list of mitochondrial disorders has been greatly expanded. However, the therapeutic approaches for mitochondrial disorders have lagged behind with treatment options limited mainly to symptom specific therapies and supportive measures. There is an increasing number of clinical trials in mitochondrial disorders aiming for more specific and effective therapies. This review will cover different treatment modalities currently used in mitochondrial disorders, focusing on recent and ongoing clinical trials.
Collapse
Affiliation(s)
- Mohammed Almannai
- Section of Medical Genetics, Children's Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Ayman W El-Hattab
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - May Ali
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Claudia Soler-Alfonso
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA; Joint BCM-CUHK Center of Medical Genetics, Prince of Wales Hospital, Shatin, Hong Kong.
| |
Collapse
|
29
|
Pacheva I, Ivanov I. Targeted Biomedical Treatment for Autism Spectrum Disorders. Curr Pharm Des 2020; 25:4430-4453. [PMID: 31801452 DOI: 10.2174/1381612825666191205091312] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/02/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND A diagnosis of autism spectrum disorders (ASD) represents presentations with impairment in communication and behaviour that vary considerably in their clinical manifestations and etiology as well as in their likely pathophysiology. A growing body of data indicates that the deleterious effect of oxidative stress, mitochondrial dysfunction, immune dysregulation and neuroinflammation, as well as their interconnections are important aspects of the pathophysiology of ASD. Glutathione deficiency decreases the mitochondrial protection against oxidants and tumor necrosis factor (TNF)-α; immune dysregulation and inflammation inhibit mitochondrial function through TNF-α; autoantibodies against the folate receptors underpin cerebral folate deficiency, resulting in disturbed methylation, and mitochondrial dysfunction. Such pathophysiological processes can arise from environmental and epigenetic factors as well as their combined interactions, such as environmental toxicant exposures in individuals with (epi)genetically impaired detoxification. The emerging evidence on biochemical alterations in ASD is forming the basis for treatments aimed to target its biological underpinnings, which is of some importance, given the uncertain and slow effects of the various educational interventions most commonly used. METHODS Literature-based review of the biomedical treatment options for ASD that are derived from established pathophysiological processes. RESULTS Most proposed biomedical treatments show significant clinical utility only in ASD subgroups, with specified pre-treatment biomarkers that are ameliorated by the specified treatment. For example, folinic acid supplementation has positive effects in ASD patients with identified folate receptor autoantibodies, whilst the clinical utility of methylcobalamine is apparent in ASD patients with impaired methylation capacity. Mitochondrial modulating cofactors should be considered when mitochondrial dysfunction is evident, although further research is required to identify the most appropriate single or combined treatment. Multivitamins/multiminerals formulas, as well as biotin, seem appropriate following the identification of metabolic abnormalities, with doses tapered to individual requirements. A promising area, requiring further investigations, is the utilization of antipurinergic therapies, such as low dose suramin. CONCLUSION The assessment and identification of relevant physiological alterations and targeted intervention are more likely to produce positive treatment outcomes. As such, current evidence indicates the utility of an approach based on personalized and evidence-based medicine, rather than treatment targeted to all that may not always be beneficial (primum non nocere).
Collapse
Affiliation(s)
- Iliyana Pacheva
- Department of Pediatrics and Medical Genetics, Medical University - Plovdiv, Plovdiv 4002, Bulgaria
| | - Ivan Ivanov
- Department of Pediatrics and Medical Genetics, Medical University - Plovdiv, Plovdiv 4002, Bulgaria
| |
Collapse
|
30
|
Villanueva-Paz M, Povea-Cabello S, Villalón-García I, Álvarez-Córdoba M, Suárez-Rivero JM, Talaverón-Rey M, Jackson S, Falcón-Moya R, Rodríguez-Moreno A, Sánchez-Alcázar JA. Parkin-mediated mitophagy and autophagy flux disruption in cellular models of MERRF syndrome. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165726. [PMID: 32061767 DOI: 10.1016/j.bbadis.2020.165726] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 01/16/2020] [Accepted: 02/10/2020] [Indexed: 12/27/2022]
Abstract
Mitochondrial diseases are considered rare genetic disorders characterized by defects in oxidative phosphorylation (OXPHOS). They can be provoked by mutations in nuclear DNA (nDNA) or mitochondrial DNA (mtDNA). MERRF (Myoclonic Epilepsy with Ragged-Red Fibers) syndrome is one of the most frequent mitochondrial diseases, principally caused by the m.8344A>G mutation in mtDNA, which affects the translation of all mtDNA-encoded proteins and therefore impairs mitochondrial function. In the present work, we evaluated autophagy and mitophagy flux in transmitochondrial cybrids and fibroblasts derived from a MERRF patient, reporting that Parkin-mediated mitophagy is increased in MERRF cell cultures. Our results suggest that supplementation with coenzyme Q10 (CoQ), a component of the electron transport chain (ETC) and lipid antioxidant, prevents Parkin translocation to the mitochondria. In addition, CoQ acts as an enhancer of autophagy and mitophagy flux, which partially improves cell pathophysiology. The significance of Parkin-mediated mitophagy in cell survival was evaluated by silencing the expression of Parkin in MERRF cybrids. Our results show that mitophagy acts as a cell survival mechanism in mutant cells. To confirm these results in one of the main affected cell types in MERRF syndrome, mutant induced neurons (iNs) were generated by direct reprogramming of patients-derived skin fibroblasts. The treatment of MERRF iNs with Guttaquinon CoQ10 (GuttaQ), a water-soluble derivative of CoQ, revealed a significant improvement in cell bioenergetics. These results indicate that iNs, along with fibroblasts and cybrids, can be utilized as reliable cellular models to shed light on disease pathomechanisms as well as for drug screening.
Collapse
Affiliation(s)
- Marina Villanueva-Paz
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Spain; Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Spain
| | - Suleva Povea-Cabello
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Spain; Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Spain
| | - Irene Villalón-García
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Spain; Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Spain
| | - Mónica Álvarez-Córdoba
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Spain; Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Spain
| | - Juan M Suárez-Rivero
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Spain; Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Spain
| | - Marta Talaverón-Rey
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Spain; Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Spain
| | - Sandra Jackson
- Department of Neurology, Uniklinikum C. G. Carus, Dresden, Germany
| | - Rafael Falcón-Moya
- Laboratorio de Neurociencia Celular y Plasticidad, Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, Sevilla 41013, Spain
| | - Antonio Rodríguez-Moreno
- Laboratorio de Neurociencia Celular y Plasticidad, Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, Sevilla 41013, Spain
| | - José A Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Spain; Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Spain.
| |
Collapse
|
31
|
Dard L, Blanchard W, Hubert C, Lacombe D, Rossignol R. Mitochondrial functions and rare diseases. Mol Aspects Med 2020; 71:100842. [PMID: 32029308 DOI: 10.1016/j.mam.2019.100842] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/26/2019] [Accepted: 12/27/2019] [Indexed: 12/19/2022]
Abstract
Mitochondria are dynamic cellular organelles responsible for a large variety of biochemical processes as energy transduction, REDOX signaling, the biosynthesis of hormones and vitamins, inflammation or cell death execution. Cell biology studies established that 1158 human genes encode proteins localized to mitochondria, as registered in MITOCARTA. Clinical studies showed that a large number of these mitochondrial proteins can be altered in expression and function through genetic, epigenetic or biochemical mechanisms including the interaction with environmental toxics or iatrogenic medicine. As a result, pathogenic mitochondrial genetic and functional defects participate to the onset and the progression of a growing number of rare diseases. In this review we provide an exhaustive survey of the biochemical, genetic and clinical studies that demonstrated the implication of mitochondrial dysfunction in human rare diseases. We discuss the striking diversity of the symptoms caused by mitochondrial dysfunction and the strategies proposed for mitochondrial therapy, including a survey of ongoing clinical trials.
Collapse
Affiliation(s)
- L Dard
- Bordeaux University, 33000, Bordeaux, France; INSERM U1211, 33000, Bordeaux, France; CELLOMET, CGFB-146 Rue Léo Saignat, Bordeaux, France
| | - W Blanchard
- Bordeaux University, 33000, Bordeaux, France; INSERM U1211, 33000, Bordeaux, France; CELLOMET, CGFB-146 Rue Léo Saignat, Bordeaux, France
| | - C Hubert
- Bordeaux University, 33000, Bordeaux, France; INSERM U1211, 33000, Bordeaux, France
| | - D Lacombe
- Bordeaux University, 33000, Bordeaux, France; INSERM U1211, 33000, Bordeaux, France; CHU de Bordeaux, Service de Génétique Médicale, F-33076, Bordeaux, France
| | - R Rossignol
- Bordeaux University, 33000, Bordeaux, France; INSERM U1211, 33000, Bordeaux, France; CELLOMET, CGFB-146 Rue Léo Saignat, Bordeaux, France.
| |
Collapse
|
32
|
Tarnopolsky M, Kozenko M, Jones K. Expanding the Phenotype: Neurodevelopmental Disorder, Mitochondrial, With Abnormal Movements and Lactic Acidosis, With or Without Seizures (NEMMLAS) Due to WARS2 Biallelic Variants, Encoding Mitochondrial Tryptophanyl-tRNA Synthase. J Child Neurol 2020; 35:176-177. [PMID: 31684799 DOI: 10.1177/0883073819881259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Mark Tarnopolsky
- Neuromuscular and Neurometabolics Division, Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Mariya Kozenko
- Genetics Division, Department of Pediatrics, McMaster University, Ontario, Canada
| | - Kevin Jones
- Neurology Division, Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
33
|
Burgin HJ, McKenzie M. Understanding the role of OXPHOS dysfunction in the pathogenesis of ECHS1 deficiency. FEBS Lett 2020; 594:590-610. [PMID: 31944285 DOI: 10.1002/1873-3468.13735] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/12/2019] [Accepted: 12/27/2019] [Indexed: 12/29/2022]
Abstract
Mitochondria provide the main source of energy for eukaryotic cells, oxidizing fatty acids and sugars to generate ATP. Mitochondrial fatty acid β-oxidation (FAO) and oxidative phosphorylation (OXPHOS) are two key pathways involved in this process. Disruption of FAO can cause human disease, with patients commonly presenting with liver failure, hypoketotic glycaemia and rhabdomyolysis. However, patients with deficiencies in the FAO enzyme short-chain enoyl-CoA hydratase 1 (ECHS1) are typically diagnosed with Leigh syndrome, a lethal form of subacute necrotizing encephalomyelopathy that is normally associated with OXPHOS dysfunction. Furthermore, some ECHS1-deficient patients also exhibit secondary OXPHOS defects. This sequela of FAO disorders has long been thought to be caused by the accumulation of inhibitory fatty acid intermediates. However, new evidence suggests that the mechanisms involved are more complex, and that disruption of OXPHOS protein complex biogenesis and/or stability is also involved. In this review, we examine the clinical, biochemical and genetic features of all ECHS1-deficient patients described to date. In particular, we consider the secondary OXPHOS defects associated with ECHS1 deficiency and discuss their possible contribution to disease pathogenesis.
Collapse
Affiliation(s)
- Harrison James Burgin
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, Geelong, Australia
| | - Matthew McKenzie
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, Geelong, Australia.,Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Melbourne, Australia.,Department of Molecular and Translational Science, Monash University, Melbourne, Australia
| |
Collapse
|
34
|
Schubert Baldo M, Vilarinho L. Molecular basis of Leigh syndrome: a current look. Orphanet J Rare Dis 2020; 15:31. [PMID: 31996241 PMCID: PMC6990539 DOI: 10.1186/s13023-020-1297-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/05/2020] [Indexed: 01/15/2023] Open
Abstract
Leigh Syndrome (OMIM 256000) is a heterogeneous neurologic disorder due to damage in mitochondrial energy production that usually starts in early childhood. The first description given by Leigh pointed out neurological symptoms in children under 2 years and premature death. Following cases brought some hypothesis to explain the cause due to similarity to other neurological diseases and led to further investigation for metabolic diseases. Biochemical evaluation and specific metabolic profile suggested impairment in energy production (OXPHOS) in mitochondria. As direct approach to involved tissues is not always possible or safe, molecular analysis is a great cost-effective option and, besides biochemical results, is required to confirm the underlying cause of this syndrome face to clinical suspicion. The Next Generation Sequencing (NGS) advance represented a breakthrough in molecular biology allowing simultaneous gene analysis giving short-time results and increasing the variants underlying this syndrome, counting over 75 monogenic causes related so far. NGS provided confirmation of emerging cases and brought up diagnosis in atypical presentations as late-onset cases, which turned Leigh into a heterogeneous syndrome with variable outcomes. This review highlights clinical presentation in both classic and atypical phenotypes, the investigation pathway throughout confirmation emphasizing the underlying genetic heterogeneity and increasing number of genes assigned to this syndrome as well as available treatment.
Collapse
Affiliation(s)
- Manuela Schubert Baldo
- Newborn screening, metabolism and genetics unit - human genetics department, Instituto Nacional de Saúde Doutor Ricardo Jorge (INSA), Porto, Portugal.
| | - Laura Vilarinho
- Newborn screening, metabolism and genetics unit - human genetics department, Instituto Nacional de Saúde Doutor Ricardo Jorge (INSA), Porto, Portugal
| |
Collapse
|
35
|
Zhang L, Zhang Z, Khan A, Zheng H, Yuan C, Jiang H. Advances in drug therapy for mitochondrial diseases. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:17. [PMID: 32055608 PMCID: PMC6995731 DOI: 10.21037/atm.2019.10.113] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 10/25/2019] [Indexed: 11/06/2022]
Abstract
Mitochondrial diseases are a group of clinically and genetically heterogeneous disorders driven by oxidative phosphorylation dysfunction of the mitochondrial respiratory chain which due to pathogenic mutations of mitochondrial DNA (mtDNA) or nuclear DNA (nDNA). Recent progress in molecular genetics and biochemical methodologies has provided a better understanding of the etiology and pathogenesis of mitochondrial diseases, and this has expanded the clinical spectrum of this conditions. But the treatment of mitochondrial diseases is largely symptomatic and thus does not significantly change the course of the disease. Few clinical trials have led to the design of drugs aiming at enhancing mitochondrial function or reversing the consequences of mitochondrial dysfunction which are now used in the clinical treatment of mitochondrial diseases. Several other drugs are currently being evaluated for clinical management of patients with mitochondrial diseases. In this review, the current status of treatments for mitochondrial diseases is described systematically, and newer potential treatment strategies for mitochondrial diseases are also discussed.
Collapse
Affiliation(s)
- Lufei Zhang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhaoyong Zhang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Aisha Khan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hui Zheng
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Chao Yuan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Haishan Jiang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
36
|
Weissig V. Drug Development for the Therapy of Mitochondrial Diseases. Trends Mol Med 2019; 26:40-57. [PMID: 31727544 DOI: 10.1016/j.molmed.2019.09.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 02/07/2023]
Abstract
Mitochondrial diseases are a heterogeneous group of inherited or acquired devastating disorders that affect the energy metabolism of the body. Many strategies have been investigated, but currently there is no FDA-approved drug that can alleviate disease symptoms or slow disease progression. This review analyzes to what extent growing knowledge over the past two decades about the etiology and pathogenesis of mitochondrial diseases is reflected in the design and development of new experimental drugs for the therapy of these disorders. All currently registered clinical trials involving new experimental drug entities are reviewed to evaluate how far away we are from the first FDA-approved drug therapy for mitochondrial disease.
Collapse
Affiliation(s)
- Volkmar Weissig
- Midwestern University College of Pharmacy at Glendale, Department of Pharmaceutical Sciences and Nanocenter of Excellence, Glendale, AZ, USA.
| |
Collapse
|
37
|
Heaton R, Millichap L, Saleem F, Gannon J, Begum G, Hargreaves IP. Current biochemical treatments of mitochondrial respiratory chain disorders. Expert Opin Orphan Drugs 2019. [DOI: 10.1080/21678707.2019.1638250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Robert Heaton
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Lauren Millichap
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Fatima Saleem
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Jennifer Gannon
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Gemma Begum
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Iain P. Hargreaves
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
38
|
Orsucci D, Ienco EC, Siciliano G, Mancuso M. Mitochondrial disorders and drugs: what every physician should know. Drugs Context 2019; 8:212588. [PMID: 31391854 PMCID: PMC6668504 DOI: 10.7573/dic.212588] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial disorders are a group of metabolic conditions caused by impairment of the oxidative phosphorylation system. There is currently no clear evidence supporting any pharmacological interventions for most mitochondrial disorders, except for coenzyme Q10 deficiencies, Leber hereditary optic neuropathy, and mitochondrial neurogastrointestinal encephalomyopathy. Furthermore, some drugs may potentially have detrimental effects on mitochondrial dysfunction. Drugs known to be toxic for mitochondrial functions should be avoided whenever possible. Mitochondrial patients needing one of these treatments should be carefully monitored, clinically and by laboratory exams, including creatine kinase and lactate. In the era of molecular and ‘personalized’ medicine, many different physicians (not only neurologists) should be aware of the basic principles of mitochondrial medicine and its therapeutic implications. Multicenter collaboration is essential for the advancement of therapy for mitochondrial disorders. Whenever possible, randomized clinical trials are necessary to establish efficacy and safety of drugs. In this review we discuss in an accessible way the therapeutic approaches and perspectives in mitochondrial disorders. We will also provide an overview of the drugs that should be used with caution in these patients.
Collapse
|
39
|
Schaffer AE, Pinkard O, Coller JM. tRNA Metabolism and Neurodevelopmental Disorders. Annu Rev Genomics Hum Genet 2019; 20:359-387. [PMID: 31082281 DOI: 10.1146/annurev-genom-083118-015334] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
tRNAs are short noncoding RNAs required for protein translation. The human genome includes more than 600 putative tRNA genes, many of which are considered redundant. tRNA transcripts are subject to tightly controlled, multistep maturation processes that lead to the removal of flanking sequences and the addition of nontemplated nucleotides. Furthermore, tRNAs are highly structured and posttranscriptionally modified. Together, these unique features have impeded the adoption of modern genomics and transcriptomics technologies for tRNA studies. Nevertheless, it has become apparent from human neurogenetic research that many tRNA biogenesis proteins cause brain abnormalities and other neurological disorders when mutated. The cerebral cortex, cerebellum, and peripheral nervous system show defects, impairment, and degeneration upon tRNA misregulation, suggesting that they are particularly sensitive to changes in tRNA expression or function. An integrated approach to identify tRNA species and contextually characterize tRNA function will be imperative to drive future tool development and novel therapeutic design for tRNA-associated disorders.
Collapse
Affiliation(s)
- Ashleigh E Schaffer
- Department of Genetics and Genome Sciences and Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio 44106, USA;
| | - Otis Pinkard
- Department of Genetics and Genome Sciences and Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio 44106, USA;
| | - Jeffery M Coller
- Department of Genetics and Genome Sciences and Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio 44106, USA;
| |
Collapse
|
40
|
Ohsawa Y, Hagiwara H, Nishimatsu SI, Hirakawa A, Kamimura N, Ohtsubo H, Fukai Y, Murakami T, Koga Y, Goto YI, Ohta S, Sunada Y. Taurine supplementation for prevention of stroke-like episodes in MELAS: a multicentre, open-label, 52-week phase III trial. J Neurol Neurosurg Psychiatry 2019; 90:529-536. [PMID: 29666206 PMCID: PMC6581075 DOI: 10.1136/jnnp-2018-317964] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 12/29/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate the efficacy and safety of high-dose taurine supplementation for prevention of stroke-like episodes of MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes), a rare genetic disorder caused by point mutations in the mitochondrial DNA that lead to a taurine modification defect at the first anticodon nucleotide of mitochondrial tRNALeu(UUR), resulting in failure to decode codons accurately. METHODS After the nationwide survey of MELAS, we conducted a multicentre, open-label, phase III trial in which 10 patients with recurrent stroke-like episodes received high-dose taurine (9 g or 12 g per day) for 52 weeks. The primary endpoint was the complete prevention of stroke-like episodes during the evaluation period. The taurine modification rate of mitochondrial tRNALeu(UUR) was measured before and after the trial. RESULTS The proportion of patients who reached the primary endpoint (100% responder rate) was 60% (95% CI 26.2% to 87.8%). The 50% responder rate, that is, the number of patients achieving a 50% or greater reduction in frequency of stroke-like episodes, was 80% (95% CI 44.4% to 97.5%). Taurine reduced the annual relapse rate of stroke-like episodes from 2.22 to 0.72 (P=0.001). Five patients showed a significant increase in the taurine modification of mitochondrial tRNALeu(UUR) from peripheral blood leukocytes (P<0.05). No severe adverse events were associated with taurine. CONCLUSIONS The current study demonstrates that oral taurine supplementation can effectively reduce the recurrence of stroke-like episodes and increase taurine modification in mitochondrial tRNALeu(UUR) in MELAS. TRIAL REGISTRATION NUMBER UMIN000011908.
Collapse
Affiliation(s)
- Yutaka Ohsawa
- Department of Neurology, Kawasaki Medical School, Kurashiki, Japan
| | - Hiroki Hagiwara
- Department of Medical Science, Teikyo University of Science, Adachi-ku, Japan
| | | | - Akihiro Hirakawa
- Center for Advanced Medicine and Clinical Research, Statistical Analysis Section, Nagoya University Hospital, Nagoya, Japan.,Graduate School of Medicine, Department of Biostatistics and Bioinformatics, The University of Tokyo, Tokyo, Japan
| | - Naomi Kamimura
- Department of Biochemistry and Cell Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Hideaki Ohtsubo
- Department of Neurology, Kawasaki Medical School, Kurashiki, Japan
| | - Yuta Fukai
- Department of Neurology, Kawasaki Medical School, Kurashiki, Japan
| | | | - Yasutoshi Koga
- Department of Pediatrics and Child Health, Kurume University Graduate School of Medicine, Kurume, Japan
| | - Yu-Ichi Goto
- The Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Shigeo Ohta
- Department of Biochemistry and Cell Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan.,Department of Neurology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Japan
| | - Yoshihide Sunada
- Department of Neurology, Kawasaki Medical School, Kurashiki, Japan
| | | |
Collapse
|
41
|
Abstract
Mitochondrial diseases are a clinically and genetically heterogeneous group of disorders. The underlying dysfunction of the mitochondrial electron transport chain and oxidative phosphorylation is caused by variants of genes encoding mitochondrial proteins. Despite substantial advances in the understanding of the mechanism of these diseases, there are still no satisfactory therapies available. Therapeutic strategies include the use of antioxidants, inducers of mitochondrial biogenesis, enhancers of electron transfer chain function, energy buffers, amino acids restoring NO production, nucleotide bypass therapy, liver transplantation, and gene therapy. Although there are some promising projects underway, to date satisfactory therapies are missing.
Collapse
Affiliation(s)
- Florian B Lagler
- Institute for Inborn Errors of Metabolism and Department of Paediatrics, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
42
|
Recent topics: the diagnosis, molecular genesis, and treatment of mitochondrial diseases. J Hum Genet 2018; 64:113-125. [PMID: 30459337 DOI: 10.1038/s10038-018-0528-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/16/2018] [Accepted: 10/19/2018] [Indexed: 12/30/2022]
Abstract
Mitochondrial diseases are inherited metabolic diseases based on disorders of energy production. The expansion of exome analyses has led to the discovery of many pathogenic nuclear genes associated with these diseases, and research into the pathogenesis of metabolic diseases has progressed. In cases of Leigh syndrome, it is desirable to perform both biochemical and genetic analyses, and pathogenic gene mutations have been identified in over half of the cases analyzed this way. Tandem mass screening and organic acid analyses of urine can sometimes provide important information that leads to the identification of pathogenic genes. Our comprehensive gene analyses have led to the discovery of several novel genes for mitochondrial diseases. Indeed, we reported that GTPBP3 and QRSL1 are involved in mitochondrial DNA maturation. In 2017, as a result of international collaboration, we also identified that mutations in ATAD3 and C1QBP cause mitochondrial disease. Given the varied pathogeneses, treatments for mitochondrial diseases should be specifically tailored to the mutated gene. Clinical trials of sodium pyruvate, 5-aminolevulinic acid with sodium ferrous citrate, and taurine as a treatment for mitochondrial disease have begun in Japan. Given that some mitochondrial diseases may respond well to certain treatments if the pathogenic gene can be identified, an early genetic diagnosis is crucial. Additionally, in Japan, prenatal diagnoses for mitochondrial diseases caused by nuclear genes have been achieved for genes shown to be pathogenic. Treatment and management approaches, including prenatal diagnoses, specifically tailored to the various phenotypes and pathologies of mitochondrial diseases are expected to become increasingly available.
Collapse
|
43
|
Abstract
Mitochondrial myopathies are progressive muscle conditions caused primarily by the impairment of oxidative phosphorylation (OXPHOS) in the mitochondria. This causes a deficit in energy production in the form of adenosine triphosphate (ATP), particularly in skeletal muscle. The diagnosis of mitochondrial myopathy is reliant on the combination of numerous techniques including traditional histochemical, immunohistochemical, and biochemical testing combined with the fast-emerging molecular genetic techniques, namely next-generation sequencing (NGS). This has allowed for the diagnosis to become more effective in terms of determining causative or novel genes. However, there are currently no effective or disease-modifying treatments available for the vast majority of patients with mitochondrial myopathies. Existing therapeutic options focus on the symptomatic management of disease manifestations. An increasing number of clinical trials have investigated the therapeutic effects of various vitamins, cofactors, and small molecules, though these trials have failed to show definitive outcome measures for clinical practice thus far. In addition, new molecular strategies, specifically mtZFNs and mtTALENs, that cause beneficial heteroplasmic shifts in cell lines harboring varying pathogenic mtDNA mutations offer hope for the future. Moreover, recent developments in the reproductive options for patients with mitochondrial myopathies mean that for some families, the possibility of preventing transmission of the mutation to the next generation is now possible.
Collapse
Affiliation(s)
- Syeda T Ahmed
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Lyndsey Craven
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Oliver M Russell
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Doug M Turnbull
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
- MRC Centre for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - Amy E Vincent
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK.
- MRC Centre for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
44
|
Janssen MCH, Koene S, de Laat P, Hemelaar P, Pickkers P, Spaans E, Beukema R, Beyrath J, Groothuis J, Verhaak C, Smeitink J. The KHENERGY Study: Safety and Efficacy of KH176 in Mitochondrial m.3243A>G Spectrum Disorders. Clin Pharmacol Ther 2018; 105:101-111. [PMID: 30058726 PMCID: PMC6704357 DOI: 10.1002/cpt.1197] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
KH176 is a potent intracellular reduction-oxidation-modulating compound developed to treat mitochondrial disease. We studied tolerability, safety, pharmacokinetics, pharmacodynamics, and efficacy of twice daily oral 100 mg KH176 for 28 days in a double-blind, randomized, placebo-controlled, two-way crossover phase IIA study in 18 adult m.3243A>G patients without cardiovascular involvement. Efficacy parameters included clinical and functional outcome measures and biomarkers. The trial was registered within ClinicalTrials.gov (NCT02909400), the European Clinical Trials Database (2016-001696-79), and ISRCTN (43372293) (The KHENERGY study). Twice daily oral 100 mg KH176 was well tolerated and appeared safe. No serious treatment-emergent adverse events were reported. No significant improvements in gait parameters or other outcome measures were obtained, except for a positive effect on alertness and mood, although a coincidence due to multiplicity cannot be ignored. The results of the study provide first data on safety and efficacy of KH176 in patients with mitochondrial disease and will be instrumental in designing future clinical trials.
Collapse
Affiliation(s)
- Mirian C H Janssen
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud Institutes for Molecular Life Sciences and Health Sciences, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands.,Department of Internal Medicine, Radboud Center for Mitochondrial Medicine, Radboud Institutes for Molecular Life Sciences and Health Sciences, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
| | - Saskia Koene
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud Institutes for Molecular Life Sciences and Health Sciences, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
| | - Paul de Laat
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud Institutes for Molecular Life Sciences and Health Sciences, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
| | - Pleun Hemelaar
- Department of Intensive Care, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
| | - Peter Pickkers
- Department of Intensive Care, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
| | | | - Rypko Beukema
- Department of Cardiology, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
| | | | - Jan Groothuis
- Department of Rehabilitation, Radboud Center for Mitochondrial Medicine, Radboud Institutes for Molecular Life Sciences and Health Sciences, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
| | - Chris Verhaak
- Department of Psychology, Radboud Center for Mitochondrial Medicine, Radboud Institutes for Molecular Life Sciences and Health Sciences, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
| | | |
Collapse
|
45
|
Wesselink E, Koekkoek WAC, Grefte S, Witkamp RF, van Zanten ARH. Feeding mitochondria: Potential role of nutritional components to improve critical illness convalescence. Clin Nutr 2018; 38:982-995. [PMID: 30201141 DOI: 10.1016/j.clnu.2018.08.032] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 08/03/2018] [Accepted: 08/25/2018] [Indexed: 12/30/2022]
Abstract
Persistent physical impairment is frequently encountered after critical illness. Recent data point towards mitochondrial dysfunction as an important determinant of this phenomenon. This narrative review provides a comprehensive overview of the present knowledge of mitochondrial function during and after critical illness and the role and potential therapeutic applications of specific micronutrients to restore mitochondrial function. Increased lactate levels and decreased mitochondrial ATP-production are common findings during critical illness and considered to be associated with decreased activity of muscle mitochondrial complexes in the electron transfer system. Adequate nutrient levels are essential for mitochondrial function as several specific micronutrients play crucial roles in energy metabolism and ATP-production. We have addressed the role of B vitamins, ascorbic acid, α-tocopherol, selenium, zinc, coenzyme Q10, caffeine, melatonin, carnitine, nitrate, lipoic acid and taurine in mitochondrial function. B vitamins and lipoic acid are essential in the tricarboxylic acid cycle, while selenium, α-tocopherol, Coenzyme Q10, caffeine, and melatonin are suggested to boost the electron transfer system function. Carnitine is essential for fatty acid beta-oxidation. Selenium is involved in mitochondrial biogenesis. Notwithstanding the documented importance of several nutritional components for optimal mitochondrial function, at present, there are no studies providing directions for optimal requirements during or after critical illness although deficiencies of these specific micronutrients involved in mitochondrial metabolism are common. Considering the interplay between these specific micronutrients, future research should pay more attention to their combined supply to provide guidance for use in clinical practise. REVISION NUMBER: YCLNU-D-17-01092R2.
Collapse
Affiliation(s)
- E Wesselink
- Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| | - W A C Koekkoek
- Department of Intensive Care Medicine, Gelderse Vallei Hospital, Willy Brandtlaan 10, 6716, Ede, The Netherlands.
| | - S Grefte
- Human and Animal Physiology, Wageningen University, De Elst 1, 6708 DW, Wageningen, The Netherlands.
| | - R F Witkamp
- Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| | - A R H van Zanten
- Department of Intensive Care Medicine, Gelderse Vallei Hospital, Willy Brandtlaan 10, 6716, Ede, The Netherlands.
| |
Collapse
|
46
|
Mendelsohn BA, Bennett NK, Darch MA, Yu K, Nguyen MK, Pucciarelli D, Nelson M, Horlbeck MA, Gilbert LA, Hyun W, Kampmann M, Nakamura JL, Nakamura K. A high-throughput screen of real-time ATP levels in individual cells reveals mechanisms of energy failure. PLoS Biol 2018; 16:e2004624. [PMID: 30148842 PMCID: PMC6110572 DOI: 10.1371/journal.pbio.2004624] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 07/26/2018] [Indexed: 12/15/2022] Open
Abstract
Insufficient or dysregulated energy metabolism may underlie diverse inherited and degenerative diseases, cancer, and even aging itself. ATP is the central energy carrier in cells, but critical pathways for regulating ATP levels are not systematically understood. We combined a pooled clustered regularly interspaced short palindromic repeats interference (CRISPRi) library enriched for mitochondrial genes, a fluorescent biosensor, and fluorescence-activated cell sorting (FACS) in a high-throughput genetic screen to assay ATP concentrations in live human cells. We identified genes not known to be involved in energy metabolism. Most mitochondrial ribosomal proteins are essential in maintaining ATP levels under respiratory conditions, and impaired respiration predicts poor growth. We also identified genes for which coenzyme Q10 (CoQ10) supplementation rescued ATP deficits caused by knockdown. These included CoQ10 biosynthetic genes associated with human disease and a subset of genes not linked to CoQ10 biosynthesis, indicating that increasing CoQ10 can preserve ATP in specific genetic contexts. This screening paradigm reveals mechanisms of metabolic control and genetic defects responsive to energy-based therapies.
Collapse
Affiliation(s)
- Bryce A. Mendelsohn
- Gladstone Institute of Neurological Disease, San Francisco, California, United States of America
- Department of Pediatrics, University of California, San Francisco, California, United States of America
| | - Neal K. Bennett
- Gladstone Institute of Neurological Disease, San Francisco, California, United States of America
| | - Maxwell A. Darch
- Gladstone Institute of Neurological Disease, San Francisco, California, United States of America
| | - Katharine Yu
- Gladstone Institute of Neurological Disease, San Francisco, California, United States of America
| | - Mai K. Nguyen
- Gladstone Institute of Neurological Disease, San Francisco, California, United States of America
| | - Daniela Pucciarelli
- Department of Radiation Oncology, University of California, San Francisco, California, United States of America
| | - Maxine Nelson
- Graduate Program in Biomedical Sciences, University of California, San Francisco, California, United States of America
| | - Max A. Horlbeck
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, United States of America
| | - Luke A. Gilbert
- Department of Urology, University of California, San Francisco, California, United States of America
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, United States of America
| | - William Hyun
- Department of Laboratory Medicine, University of California, San Francisco, California, United States of America
| | - Martin Kampmann
- Department of Biochemistry and Biophysics and Institute for Neurodegenerative Diseases, University of California, San Francisco, California, United States of America
- Chan Zuckerberg Biohub, San Francisco, California, United States of America
| | - Jean L. Nakamura
- Department of Radiation Oncology, University of California, San Francisco, California, United States of America
| | - Ken Nakamura
- Gladstone Institute of Neurological Disease, San Francisco, California, United States of America
- Graduate Program in Biomedical Sciences, University of California, San Francisco, California, United States of America
- Department of Neurology, University of California, San Francisco, California, United States of America
- Graduate Program in Neuroscience, University of California, San Francisco, California, United States of America
| |
Collapse
|
47
|
Limongelli G, Wahbi K. Mitochondrial disease: learning from Charlie's lesson, trying to cure, trying much more to care. Future Cardiol 2018; 14:273-276. [PMID: 29947560 DOI: 10.2217/fca-2018-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Giuseppe Limongelli
- Department of Cardiothoracic Sciences, Università della Campania Luigi Vanvitelli, Naples, Italy.,Institute of Cardiovascular Sciences, University College of London, London, United Kingdom.,European Reference Network, GUARD-Heart, Europe
| | - Karim Wahbi
- Cochin Hospital, Cardiology Department, Paris-Descartes, Sorbonne Paris Cité University, Paris, France.,Centre de Référence de pathologie neuromusculaire Paris-Est, Myology Institute, Neurology Department, Pitié-Salpêtrière Hospital, Paris, France.,Inserm, UMRS 974, Paris, France
| |
Collapse
|
48
|
Chen L, Cui Y, Jiang D, Ma C, Tse HF, Hwu WL, Lian Q. Management of Leigh syndrome: Current status and new insights. Clin Genet 2018; 93:1131-1140. [DOI: 10.1111/cge.13139] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/19/2017] [Accepted: 09/09/2017] [Indexed: 01/11/2023]
Affiliation(s)
- L. Chen
- Department of Medicine; The University of Hong Kong; Hong Kong SAR P. R. China
- Shenzhen Institutes of Research and Innovation; The University of Hong Kong; P. R. China
| | - Y. Cui
- Department of Medicine; The University of Hong Kong; Hong Kong SAR P. R. China
- Shenzhen Institutes of Research and Innovation; The University of Hong Kong; P. R. China
| | - D. Jiang
- Department of Medicine; The University of Hong Kong; Hong Kong SAR P. R. China
- Shenzhen Institutes of Research and Innovation; The University of Hong Kong; P. R. China
| | - C.Y. Ma
- Department of Medicine; The University of Hong Kong; Hong Kong SAR P. R. China
- Shenzhen Institutes of Research and Innovation; The University of Hong Kong; P. R. China
| | - H.-F. Tse
- Department of Medicine; The University of Hong Kong; Hong Kong SAR P. R. China
- Shenzhen Institutes of Research and Innovation; The University of Hong Kong; P. R. China
| | - W.-L. Hwu
- Department of Pediatrics and Medical Genetics; National Taiwan University Hospital; Taipei City Taiwan
| | - Q. Lian
- Department of Medicine; The University of Hong Kong; Hong Kong SAR P. R. China
- Shenzhen Institutes of Research and Innovation; The University of Hong Kong; P. R. China
- School of Biomedical Sciences; The University of Hong Kong; Hong Kong SAR P. R. China
| |
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW Metabolic myopathies are genetic disorders that impair intermediary metabolism in skeletal muscle. Impairments in glycolysis/glycogenolysis (glycogen-storage disease), fatty acid transport and oxidation (fatty acid oxidation defects), and the mitochondrial respiratory chain (mitochondrial myopathies) represent the majority of known defects. The purpose of this review is to develop a diagnostic and treatment algorithm for the metabolic myopathies. RECENT FINDINGS The metabolic myopathies can present in the neonatal and infant period as part of more systemic involvement with hypotonia, hypoglycemia, and encephalopathy; however, most cases present in childhood or in adulthood with exercise intolerance (often with rhabdomyolysis) and weakness. The glycogen-storage diseases present during brief bouts of high-intensity exercise, whereas fatty acid oxidation defects and mitochondrial myopathies present during a long-duration/low-intensity endurance-type activity or during fasting or another metabolically stressful event (eg, surgery, fever). The clinical examination is often normal between acute events, and evaluation involves exercise testing, blood testing (creatine kinase, acylcarnitine profile, lactate, amino acids), urine organic acids (ketones, dicarboxylic acids, 3-methylglutaconic acid), muscle biopsy (histology, ultrastructure, enzyme testing), MRI/spectroscopy, and targeted or untargeted genetic testing. SUMMARY Accurate and early identification of metabolic myopathies can lead to therapeutic interventions with lifestyle and nutritional modification, cofactor treatment, and rapid treatment of rhabdomyolysis.
Collapse
|
50
|
El-Hattab AW, Zarante AM, Almannai M, Scaglia F. Therapies for mitochondrial diseases and current clinical trials. Mol Genet Metab 2017; 122:1-9. [PMID: 28943110 PMCID: PMC5773113 DOI: 10.1016/j.ymgme.2017.09.009] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 09/14/2017] [Accepted: 09/14/2017] [Indexed: 01/10/2023]
Abstract
Mitochondrial diseases are a clinically and genetically heterogeneous group of disorders that result from dysfunction of the mitochondrial oxidative phosphorylation due to molecular defects in genes encoding mitochondrial proteins. Despite the advances in molecular and biochemical methodologies leading to better understanding of the etiology and mechanism of these diseases, there are still no satisfactory therapies available for mitochondrial disorders. Treatment for mitochondrial diseases remains largely symptomatic and does not significantly alter the course of the disease. Based on limited number of clinical trials, several agents aiming at enhancing mitochondrial function or treating the consequences of mitochondrial dysfunction have been used. Several agents are currently being evaluated for mitochondrial diseases. Therapeutic strategies for mitochondrial diseases include the use of agents enhancing electron transfer chain function (coenzyme Q10, idebenone, riboflavin, dichloroacetate, and thiamine), agents acting as energy buffer (creatine), antioxidants (vitamin C, vitamin E, lipoic acid, cysteine donors, and EPI-743), amino acids restoring nitric oxide production (arginine and citrulline), cardiolipin protector (elamipretide), agents enhancing mitochondrial biogenesis (bezafibrate, epicatechin, and RTA 408), nucleotide bypass therapy, liver transplantation, and gene therapy. Although, there is a lack of curative therapies for mitochondrial disorders at the current time, the increased number of clinical research evaluating agents that target different aspects of mitochondrial dysfunction is promising and is expected to generate more therapeutic options for these diseases in the future.
Collapse
Affiliation(s)
- Ayman W El-Hattab
- Division of Clinical Genetics and Metabolic Disorders, Pediatrics Department, Tawam Hospital, Al-Ain, United Arab Emirates
| | | | - Mohammed Almannai
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|