1
|
Vu C, Shen J, Gonzalez Zacarias C, Xu B, Baas K, Choi S, Nederveen A, Wood JC. Contrast-free dynamic susceptibility contrast using sinusoidal and bolus oxygenation challenges. NMR IN BIOMEDICINE 2024; 37:e5111. [PMID: 38297919 PMCID: PMC10987281 DOI: 10.1002/nbm.5111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/10/2023] [Accepted: 01/08/2024] [Indexed: 02/02/2024]
Abstract
Deoxygenation-based dynamic susceptibility contrast (dDSC) MRI uses respiratory challenges as a source of endogenous contrast as an alternative to gadolinium injection. These gas challenges induce T2*-weighted MRI signal losses, after which tracer kinetics modeling was applied to calculate cerebral perfusion. This work compares three gas challenges, desaturation (transient hypoxia), resaturation (transient normoxia), and SineO2 (sinusoidal modulation of end-tidal oxygen pressures) in a cohort of 10 healthy volunteers (age 37 ± 11 years; 60% female). Perfusion estimates consisted of cerebral blood flow (CBF), cerebral blood volume (CBV), and mean transit time (MTT). Calculations were computed using a traditional tracer kinetics model in the time domain for desaturation and resaturation and in the frequency domain for SineO2. High correlations and limits of agreement were observed among the three deoxygenation-based paradigms for CBV, although MTT and CBF estimates varied with the hypoxic stimulus. Cross-modality correlation with gadolinium DSC was lower, particularly for MTT, but on a par with agreement between the other perfusion references. Overall, this work demonstrated the feasibility and reliability of oxygen respiratory challenges to measure brain perfusion. Additional work is needed to assess the utility of dDSC in the diagnostic evaluation of various pathologies such as ischemic strokes, brain tumors, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Chau Vu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| | - Jian Shen
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| | - Clio Gonzalez Zacarias
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California, USA
| | - Botian Xu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| | - Koen Baas
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location AMC, Amsterdam, Netherlands
| | - Soyoung Choi
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California, USA
| | - Aart Nederveen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location AMC, Amsterdam, Netherlands
| | - John C. Wood
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
- Division of Cardiology, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
2
|
Daher A, Payne S. The conducted vascular response as a mediator of hypercapnic cerebrovascular reactivity: A modelling study. Comput Biol Med 2024; 170:107985. [PMID: 38245966 DOI: 10.1016/j.compbiomed.2024.107985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/29/2023] [Accepted: 01/13/2024] [Indexed: 01/23/2024]
Abstract
It is well established that the cerebral blood flow (CBF) shows exquisite sensitivity to changes in the arterial blood partial pressure of CO2 ( [Formula: see text] ), which is reflected by an index termed cerebrovascular reactivity. In response to elevations in [Formula: see text] (hypercapnia), the vessels of the cerebral microvasculature dilate, thereby decreasing the vascular resistance and increasing CBF. Due to the challenges of access, scale and complexity encountered when studying the microvasculature, however, the mechanisms behind cerebrovascular reactivity are not fully understood. Experiments have previously established that the cholinergic release of the Acetylcholine (ACh) neurotransmitter in the cortex is a prerequisite for the hypercapnic response. It is also known that ACh functions as an endothelial-dependent agonist, in which the local administration of ACh elicits local hyperpolarization in the vascular wall; this hyperpolarization signal is then propagated upstream the vascular network through the endothelial layer and is coupled to a vasodilatory response in the vascular smooth muscle (VSM) layer in what is known as the conducted vascular response (CVR). Finally, experimental data indicate that the hypercapnic response is more strongly correlated with the CO2 levels in the tissue than in the arterioles. Accordingly, we hypothesize that the CVR, evoked by increases in local tissue CO2 levels and a subsequent local release of ACh, is responsible for the CBF increase observed in response to elevations in [Formula: see text] . By constructing physiologically grounded dynamic models of CBF and control in the cerebral vasculature, ones that integrate the available knowledge and experimental data, we build a new model of the series of signalling events and pathways underpinning the hypercapnic response, and use the model to provide compelling evidence that corroborates the aforementioned hypothesis. If the CVR indeed acts as a mediator of the hypercapnic response, the proposed mechanism would provide an important addition to our understanding of the repertoire of metabolic feedback mechanisms possessed by the brain and would motivate further in-vivo investigation. We also model the interaction of the hypercapnic response with dynamic cerebral autoregulation (dCA), the collection of mechanisms that the brain possesses to maintain near constant CBF despite perturbations in pressure, and show how the dCA mechanisms, which otherwise tend to be overlooked when analysing experimental results of cerebrovascular reactivity, could play a significant role in shaping the CBF response to elevations in [Formula: see text] . Such in-silico models can be used in tandem with in-vivo experiments to expand our understanding of cerebrovascular diseases, which continue to be among the leading causes of morbidity and mortality in humans.
Collapse
Affiliation(s)
- Ali Daher
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, United Kingdom.
| | - Stephen Payne
- Institute of Applied Mechanics, National Taiwan University, Taiwan
| |
Collapse
|
3
|
Schoenthal T, Hoiland R, Griesdale DE, Sekhon MS. Cerebral hemodynamics after cardiac arrest: implications for clinical management. Minerva Anestesiol 2023; 89:824-833. [PMID: 37676177 DOI: 10.23736/s0375-9393.23.17268-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Following resuscitation from cardiac arrest, hypoxic ischemic brain injury (HIBI) ensues, which is the primary determinant of adverse outcome. The pathophysiology of HIBI can be compartmentalized into primary and secondary injury, resulting from cerebral ischemia during cardiac arrest and reperfusion following successful resuscitation, respectively. During the secondary injury phase, increased attention has been directed towards the optimization of cerebral oxygen delivery to prevent additive injury to the brain. During this phase, cerebral hemodynamics are characterized by early hyperemia following resuscitation and then a protracted phase of cerebral hypoperfusion termed "no-reflow" during which additional hypoxic-ischemic injury can occur. As such, identification of therapeutic strategies to optimize cerebral delivery of oxygen is at the forefront of HIBI research. Unfortunately, randomized control trials investigating the manipulation of arterial carbon dioxide tension and mean arterial pressure augmentation as methods to potentially improve cerebral oxygen delivery have shown no impact on clinical outcomes. Emerging literature suggests differential patient-specific phenotypes may exist in patients with HIBI. The potential to personalize therapeutic strategies in the critical care setting based upon patient-specific pathophysiology presents an attractive strategy to improve HIBI outcomes. Herein, we review the cerebral hemodynamic pathophysiology of HIBI, discuss patient phenotypes as it pertains to personalizing care, as well as suggest future directions.
Collapse
Affiliation(s)
- Tison Schoenthal
- Division of Critical Care Medicine, Department of Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Ryan Hoiland
- Department of Anesthesiology, Pharmacology and Therapeutics, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Center for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, Faculty of Health and Social Development, University of British Columbia Okanagan, Kelowna, BC, Canada
- International Collaboration on Repair Discoveries, Vancouver, BC, Canada
| | - Donald E Griesdale
- Division of Critical Care Medicine, Department of Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada
- Department of Anesthesiology, Pharmacology and Therapeutics, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada
- Center for Clinical Epidemiology and Evaluation, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Mypinder S Sekhon
- Division of Critical Care Medicine, Department of Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada -
- International Collaboration on Repair Discoveries, Vancouver, BC, Canada
- Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
4
|
Bakker ME, Djerourou I, Belanger S, Lesage F, Vanni MP. Alteration of functional connectivity despite preserved cerebral oxygenation during acute hypoxia. Sci Rep 2023; 13:13269. [PMID: 37582847 PMCID: PMC10427674 DOI: 10.1038/s41598-023-40321-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/08/2023] [Indexed: 08/17/2023] Open
Abstract
Resting state networks (RSN), which show the connectivity in the brain in the absence of any stimuli, are increasingly important to assess brain function. Here, we investigate the changes in RSN as well as the hemodynamic changes during acute, global hypoxia. Mice were imaged at different levels of oxygen (21, 12, 10 and 8%) over the course of 10 weeks, with hypoxia and normoxia acquisitions interspersed. Simultaneous GCaMP and intrinsic optical imaging allowed tracking of both neuronal and hemodynamic changes. During hypoxic conditions, we found a global increase of both HbO and HbR in the brain. The saturation levels of blood dropped after the onset of hypoxia, but surprisingly climbed back to levels similar to baseline within the 10-min hypoxia period. Neuronal activity also showed a peak at the onset of hypoxia, but dropped back to baseline as well. Despite regaining baseline sO2 levels, changes in neuronal RSN were observed. In particular, the connectivity as measured with GCaMP between anterior and posterior parts of the brain decreased. In contrast, when looking at these same connections with HbO measurements, an increase in connectivity in anterior-posterior brain areas was observed suggesting a potential neurovascular decoupling.
Collapse
Affiliation(s)
- Marleen E Bakker
- École d'Optométrie, Université de Montréal, 2500 Chem. De Polytechnique, Montréal, QC, H3T 1J4, Canada.
- Institute of Biomedical Engineering, École Polytechnique de Montréal, Montréal, Canada.
| | - Ismaël Djerourou
- École d'Optométrie, Université de Montréal, 2500 Chem. De Polytechnique, Montréal, QC, H3T 1J4, Canada
| | | | - Frédéric Lesage
- Institute of Biomedical Engineering, École Polytechnique de Montréal, Montréal, Canada
- Montréal Heart Institute, Montréal, Canada
| | - Matthieu P Vanni
- École d'Optométrie, Université de Montréal, 2500 Chem. De Polytechnique, Montréal, QC, H3T 1J4, Canada
| |
Collapse
|
5
|
Ovsenik A, Podbregar M, Lakič N, Brešar M, Boškoski P, Verdenik I, Fabjan A. Neurovascular coupling in severe aortic valve stenosis. Brain Behav 2023; 13:e3155. [PMID: 37475651 PMCID: PMC10454277 DOI: 10.1002/brb3.3155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/18/2023] [Accepted: 07/06/2023] [Indexed: 07/22/2023] Open
Abstract
OBJECTIVES Aortic stenosis (AS) is characterized by obstruction of blood outflow from the left ventricle, which can impair target organ perfusion such as the brain. We hypothesized that hemodynamic changes in AS may lead to dysfunction of cerebral blood flow regulatory mechanisms. The aim of our study was to evaluate neurovascular coupling in patients with AS by Transcranial Doppler ultrasonography. METHODS Neurovascular coupling was assessed using visually evoked cerebral blood flow velocity responses (VEFR) calculated as relative blood flow velocity changes in the posterior cerebral artery upon visual stimulation. We analyzed peak systolic, mean and end diastolic VEFR in 54 patients with severe AS and 43 controls in 10 consecutive cycles of visual stimulation. Repeated-measures ANOVA test was used to compare cerebral hemodynamic data by group. RESULTS Patients with AS had significantly higher peak systolic (12.9% ± 5.6% and 10.5% ± 4.5%; p = .009) and mean VEFR (14.4% ± 5.8% and 12.2% ± 4.9%; p = .021) compared to controls, whereas only a tendency for higher end diastolic VEFR was observed (16.7% ± 6.9% and 14.4% ± 6.2%; p = .061). CONCLUSION We have shown for the first time that patients with severe AS exhibit higher VEFR than controls indicating dysregulation of neurovascular coupling, which can be one of the factors contributing to development of cognitive decline.
Collapse
Affiliation(s)
- Ana Ovsenik
- Faculty of Medicine, Department of BiomedicineUniversity of LjubljanaLjubljanaSlovenia
- Department of CardiologyUniversity Medical Centre LjubljanaLjubljanaSlovenia
| | - Matej Podbregar
- Faculty of Medicine, Department of Internal MedicineUniversity of LjubljanaLjubljanaSlovenia
- Department of Intensive CareGeneral Hospital CeljeCeljeSlovenia
| | - Nikola Lakič
- Department of Cardiovascular SurgeryUniversity Medical Centre LjubljanaLjubljanaSlovenia
| | - Martin Brešar
- Jožef Stefan International Postgraduate SchoolLjubljanaSlovenia
- Department of Systems and ControlJožef Stefan InstituteLjubljanaSlovenia
| | - Pavle Boškoski
- Department of Systems and ControlJožef Stefan InstituteLjubljanaSlovenia
| | - Ivan Verdenik
- Department of Obstetrics and Gynaecology, Division for ResearchUniversity Medical Centre LjubljanaLjubljanaSlovenia
| | - Andrej Fabjan
- Faculty of Medicine, Institute for PhysiologyUniversity of LjubljanaLjubljanaSlovenia
- Department of Vascular Neurology and Neurological Intensive CareUniversity Medical Centre LjubljanaLjubljanaSlovenia
| |
Collapse
|
6
|
Sleight E, Stringer MS, Mitchell I, Murphy M, Marshall I, Wardlaw JM, Thrippleton MJ. Cerebrovascular reactivity measurements using 3T BOLD MRI and a fixed inhaled CO 2 gas challenge: Repeatability and impact of processing strategy. Front Physiol 2023; 14:1070233. [PMID: 36814481 PMCID: PMC9939770 DOI: 10.3389/fphys.2023.1070233] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/19/2023] [Indexed: 02/09/2023] Open
Abstract
Introduction: Cerebrovascular reactivity (CVR) measurements using blood oxygen level dependent (BOLD) magnetic resonance imaging (MRI) are commonly used to assess the health of cerebral blood vessels, including in patients with cerebrovascular diseases; however, evidence and consensus regarding reliability and optimal processing are lacking. We aimed to assess the repeatability, accuracy and precision of voxel- and region-based CVR measurements at 3 T using a fixed inhaled (FI) CO2 stimulus in a healthy cohort. Methods: We simulated the effect of noise, delay constraints and voxel- versus region-based analysis on CVR parameters. Results were verified in 15 healthy volunteers (28.1±5.5 years, female: 53%) with a test-retest MRI experiment consisting of two CVR scans. CVR magnitude and delay in grey matter (GM) and white matter were computed for both analyses assuming a linear relationship between the BOLD signal and time-shifted end-tidal CO2 (EtCO2) profile. Results: Test-retest repeatability was high [mean (95% CI) inter-scan difference: -0.01 (-0.03, -0.00) %/mmHg for GM CVR magnitude; -0.3 (-1.2,0.6) s for GM CVR delay], but we detected a small systematic reduction in CVR magnitude at scan 2 versus scan 1, accompanied by a greater EtCO2 change [±1.0 (0.4,1.5) mmHg] and lower heart rate [-5.5 (-8.6,-2.4] bpm]. CVR magnitude estimates were higher for voxel- versus region-based analysis [difference in GM: ±0.02 (0.01,0.03) %/mmHg]. Findings were supported by simulation results, predicting a positive bias for voxel-based CVR estimates dependent on temporal contrast-to-noise ratio and delay fitting constraints and an underestimation for region-based CVR estimates. Discussion: BOLD CVR measurements using FI stimulus have good within-day repeatability in healthy volunteers. However, measurements may be influenced by physiological effects and the analysis protocol. Voxel-based analyses should be undertaken with care due to potential for systematic bias; region-based analyses are more reliable in such cases.
Collapse
Affiliation(s)
- Emilie Sleight
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom,UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Michael S. Stringer
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom,UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Isla Mitchell
- Edinburgh Imaging Facility, Royal Infirmary of Edinburgh, University of Edinburgh, Edinburgh, United Kingdom
| | - Madeleine Murphy
- Edinburgh Imaging Facility, Royal Infirmary of Edinburgh, University of Edinburgh, Edinburgh, United Kingdom
| | - Ian Marshall
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom,UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Joanna M. Wardlaw
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom,UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom,Edinburgh Imaging Facility, Royal Infirmary of Edinburgh, University of Edinburgh, Edinburgh, United Kingdom
| | - Michael J. Thrippleton
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom,UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom,Edinburgh Imaging Facility, Royal Infirmary of Edinburgh, University of Edinburgh, Edinburgh, United Kingdom,*Correspondence: Michael J. Thrippleton,
| |
Collapse
|
7
|
Rogan M, Friend AT, Rossetti GM, Edden R, Mikkelsen M, Oliver SJ, Macdonald JH, Mullins PG. Hypoxia alters posterior cingulate cortex metabolism during a memory task: A 1H fMRS study. Neuroimage 2022; 260:119397. [PMID: 35752413 PMCID: PMC9513808 DOI: 10.1016/j.neuroimage.2022.119397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022] Open
Abstract
Environmental hypoxia (fraction of inspired oxygen (FIO2) ∼ 0.120) is known to trigger a global increase in cerebral blood flow (CBF). However, regionally, a heterogeneous response is reported, particularly within the posterior cingulate cortex (PCC) where decreased CBF is found after two hours of hypoxic exposure. Furthermore, hypoxia reverses task-evoked BOLD signals within the PCC, and other regions of the default mode network, suggesting a reversal of neurovascular coupling. An alternative explanation is that the neural architecture supporting cognitive tasks is reorganised. Therefore, to confirm if this previous result is neural or vascular in origin, a measure of neural activity that is not haemodynamic-dependant is required. To achieve this, we utilised functional magnetic resonance spectroscopy to probe the glutamate response to memory recall in the PCC during normoxia (FIO2 = 0.209) and after two hours of poikilocapnic hypoxia (FIO2 = 0.120). We also acquired ASL-based measures of CBF to confirm previous findings of reduced CBF within the PCC in hypoxia. Consistent with previous findings, hypoxia induced a reduction in CBF within the PCC and other regions of the default mode network. Under normoxic conditions, memory recall was associated with an 8% increase in PCC glutamate compared to rest (P = 0.019); a change which was not observed during hypoxia. However, exploratory analysis of other neurometabolites showed that PCC glucose was reduced during hypoxia compared to normoxia both at rest (P = 0.039) and during the task (P = 0.046). We conclude that hypoxia alters the activity-induced increase in glutamate, which may reflect a reduction in oxidative metabolism within the PCC. The reduction in glucose in hypoxia reflects continued metabolism, presumably by non-oxidative means, without replacement of glucose due to reduced CBF.
Collapse
Affiliation(s)
- Matthew Rogan
- School of Human and Behavioural Sciences, Bangor University, Bangor, United Kingdom; The Bangor Imaging Unit, Bangor University, Bangor, United Kingdom; Institute for Applied Human Physiology, Bangor University, Bangor, United Kingdom
| | - Alexander T Friend
- School of Human and Behavioural Sciences, Bangor University, Bangor, United Kingdom; Institute for Applied Human Physiology, Bangor University, Bangor, United Kingdom
| | - Gabriella Mk Rossetti
- Centre for Integrative Neuroscience and Neurodynamics, University of Reading, Reading, United Kingdom
| | - Richard Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Mark Mikkelsen
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Samuel J Oliver
- School of Human and Behavioural Sciences, Bangor University, Bangor, United Kingdom; Institute for Applied Human Physiology, Bangor University, Bangor, United Kingdom
| | - Jamie H Macdonald
- School of Human and Behavioural Sciences, Bangor University, Bangor, United Kingdom; Institute for Applied Human Physiology, Bangor University, Bangor, United Kingdom
| | - Paul G Mullins
- School of Human and Behavioural Sciences, Bangor University, Bangor, United Kingdom; The Bangor Imaging Unit, Bangor University, Bangor, United Kingdom; Institute for Applied Human Physiology, Bangor University, Bangor, United Kingdom.
| |
Collapse
|
8
|
Gourine AV, Dale N. Brain H + /CO 2 sensing and control by glial cells. Glia 2022; 70:1520-1535. [PMID: 35102601 DOI: 10.1002/glia.24152] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 01/04/2023]
Abstract
Maintenance of constant brain pH is critically important to support the activity of individual neurons, effective communication within the neuronal circuits, and, thus, efficient processing of information by the brain. This review article focuses on how glial cells detect and respond to changes in brain tissue pH and concentration of CO2 , and then trigger systemic and local adaptive mechanisms that ensure a stable milieu for the operation of brain circuits. We give a detailed account of the cellular and molecular mechanisms underlying sensitivity of glial cells to H+ and CO2 and discuss the role of glial chemosensitivity and signaling in operation of three key mechanisms that work in concert to keep the brain pH constant. We discuss evidence suggesting that astrocytes and marginal glial cells of the brainstem are critically important for central respiratory CO2 chemoreception-a fundamental physiological mechanism that regulates breathing in accord with changes in blood and brain pH and partial pressure of CO2 in order to maintain systemic pH homeostasis. We review evidence suggesting that astrocytes are also responsible for the maintenance of local brain tissue extracellular pH in conditions of variable acid loads associated with changes in the neuronal activity and metabolism, and discuss potential role of these glial cells in mediating the effects of CO2 on cerebral vasculature.
Collapse
Affiliation(s)
- Alexander V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Nicholas Dale
- School of Life Sciences, University of Warwick, Coventry, UK
| |
Collapse
|
9
|
Tamayo A, Siepmann T. Regulation of Blood Flow in the Cerebral Posterior Circulation by Parasympathetic Nerve Fibers: Physiological Background and Possible Clinical Implications in Patients With Vertebrobasilar Stroke. Front Neurol 2021; 12:660373. [PMID: 34777191 PMCID: PMC8585859 DOI: 10.3389/fneur.2021.660373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 09/23/2021] [Indexed: 01/14/2023] Open
Abstract
Posterior circulation involves the vertebrobasilar arteries, which supply oxygen and glucose to vital human brainstem structures and other areas. This complex circulatory- perfusion system is not homogenous throughout the day; rather, its hemodynamic changes rely on physiological demands, ensuring brainstem perfusion. This dynamic autoregulatory pattern maintains cerebral perfusion during blood pressure changes. Accumulative evidence suggests that activity within the autonomic nervous system is involved in the regulation of cerebral blood flow. Neither the sympathetic nor parasympathetic nervous systems work independently. Functional studies have shown a tight and complicated cross talk between these systems. In pathological processes where sympathetic stimulation is present, systemic vasoconstriction is followed, representing the most important CNS parasympathetic trigger that will promote local vasodilation. Stroke is a clear example of this process. The posterior circulation is affected in 30% of strokes, causing high morbidity and mortality outcomes. Currently, the management of ischemic stroke is focused on thrombolytic treatment and endovascular thrombectomy within an overall tight 4.5 to 6 h ischemic time window. Therefore, the autonomic nervous system could represent a potential therapeutic target to modulate reperfusion after cerebral ischemia through vasodilation, which could potentially decrease infarct size and increase the thrombolytic therapeutic ischemic window. In addition, shifting the autonomic nervous system balance toward its parasympathetic branch has shown to enhance neurogenesis and decrease local inflammation. Regretfully, the vast majority of animal models and human research on neuromodulation during brain ischemia have been focused on anterior circulation with disappointing results. In addition, the source of parasympathetic inputs in the vertebrobasilar system in humans is poorly understood, substantiating a gap and controversy in this area. Here, we reviewed current available literature regarding the parasympathetic vascular function and challenges of its stimulation in the vertebrobasilar system.
Collapse
Affiliation(s)
- Arturo Tamayo
- The Max Rady Faculty of Health Sciences, Department of Medicine, Section of Neurology, WRHA, Winnipeg and Brandon Regional Health Centre, University of Manitoba, Winnipeg, MB, Canada
- Department of Health Care Sciences, Center for Clinical Research and Management Education, Dresden International University, Dresden, Germany
| | - Timo Siepmann
- Department of Health Care Sciences, Center for Clinical Research and Management Education, Dresden International University, Dresden, Germany
- Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
10
|
Rossetti GM, d'Avossa G, Rogan M, Macdonald JH, Oliver SJ, Mullins PG. Reversal of neurovascular coupling in the default mode network: Evidence from hypoxia. J Cereb Blood Flow Metab 2021; 41:805-818. [PMID: 32538282 PMCID: PMC7983511 DOI: 10.1177/0271678x20930827] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Local changes in cerebral blood flow are thought to match changes in neuronal activity, a phenomenon termed neurovascular coupling. Hypoxia increases global resting cerebral blood flow, but regional cerebral blood flow (rCBF) changes are non-uniform. Hypoxia decreases baseline rCBF to the default mode network (DMN), which could reflect either decreased neuronal activity or altered neurovascular coupling. To distinguish between these hypotheses, we characterized the effects of hypoxia on baseline rCBF, task performance, and the hemodynamic (BOLD) response to task activity. During hypoxia, baseline CBF increased across most of the brain, but decreased in DMN regions. Performance on memory recall and motion detection tasks was not diminished, suggesting task-relevant neuronal activity was unaffected. Hypoxia reversed both positive and negative task-evoked BOLD responses in the DMN, suggesting hypoxia reverses neurovascular coupling in the DMN of healthy adults. The reversal of the BOLD response was specific to the DMN. Hypoxia produced modest increases in activations in the visual attention network (VAN) during the motion detection task, and had no effect on activations in the visual cortex during visual stimulation. This regional specificity may be particularly pertinent to clinical populations characterized by hypoxemia and may enhance understanding of regional specificity in neurodegenerative disease pathology.
Collapse
Affiliation(s)
- Gabriella Mk Rossetti
- Extremes Research Group, School of Sport, Health and Exercise Sciences, College of Human Sciences, Bangor University, Bangor, UK
| | - Giovanni d'Avossa
- Bangor Imaging Centre, School of Psychology, College of Human Sciences, Bangor University, Bangor, UK
| | - Matthew Rogan
- Bangor Imaging Centre, School of Psychology, College of Human Sciences, Bangor University, Bangor, UK
| | - Jamie H Macdonald
- Extremes Research Group, School of Sport, Health and Exercise Sciences, College of Human Sciences, Bangor University, Bangor, UK
| | - Samuel J Oliver
- Extremes Research Group, School of Sport, Health and Exercise Sciences, College of Human Sciences, Bangor University, Bangor, UK
| | - Paul G Mullins
- Bangor Imaging Centre, School of Psychology, College of Human Sciences, Bangor University, Bangor, UK
| |
Collapse
|
11
|
Sleight E, Stringer MS, Marshall I, Wardlaw JM, Thrippleton MJ. Cerebrovascular Reactivity Measurement Using Magnetic Resonance Imaging: A Systematic Review. Front Physiol 2021; 12:643468. [PMID: 33716793 PMCID: PMC7947694 DOI: 10.3389/fphys.2021.643468] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/01/2021] [Indexed: 12/27/2022] Open
Abstract
Cerebrovascular reactivity (CVR) magnetic resonance imaging (MRI) probes cerebral haemodynamic changes in response to a vasodilatory stimulus. CVR closely relates to the health of the vasculature and is therefore a key parameter for studying cerebrovascular diseases such as stroke, small vessel disease and dementias. MRI allows in vivo measurement of CVR but several different methods have been presented in the literature, differing in pulse sequence, hardware requirements, stimulus and image processing technique. We systematically reviewed publications measuring CVR using MRI up to June 2020, identifying 235 relevant papers. We summarised the acquisition methods, experimental parameters, hardware and CVR quantification approaches used, clinical populations investigated, and corresponding summary CVR measures. CVR was investigated in many pathologies such as steno-occlusive diseases, dementia and small vessel disease and is generally lower in patients than in healthy controls. Blood oxygen level dependent (BOLD) acquisitions with fixed inspired CO2 gas or end-tidal CO2 forcing stimulus are the most commonly used methods. General linear modelling of the MRI signal with end-tidal CO2 as the regressor is the most frequently used method to compute CVR. Our survey of CVR measurement approaches and applications will help researchers to identify good practice and provide objective information to inform the development of future consensus recommendations.
Collapse
Affiliation(s)
- Emilie Sleight
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom,UK Dementia Research Institute, Edinburgh, United Kingdom
| | - Michael S. Stringer
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom,UK Dementia Research Institute, Edinburgh, United Kingdom,*Correspondence: Michael S. Stringer
| | - Ian Marshall
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom,UK Dementia Research Institute, Edinburgh, United Kingdom
| | - Joanna M. Wardlaw
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom,UK Dementia Research Institute, Edinburgh, United Kingdom
| | - Michael J. Thrippleton
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom,UK Dementia Research Institute, Edinburgh, United Kingdom
| |
Collapse
|
12
|
Roberts DR, Collins HR, Lee JK, Taylor JA, Turner M, Zaharchuk G, Wintermark M, Antonucci MU, Mulder ER, Gerlach DA, Asemani D, McGregor HR, Seidler RD. Altered cerebral perfusion in response to chronic mild hypercapnia and head-down tilt Bed rest as an analog for Spaceflight. Neuroradiology 2021; 63:1271-1281. [PMID: 33587162 DOI: 10.1007/s00234-021-02660-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/26/2021] [Indexed: 01/01/2023]
Abstract
PURPOSE Following prolonged stays on the International Space Station (ISS), some astronauts exhibit visual acuity changes, ophthalmological findings, and mildly elevated intracranial pressures as part of a novel process called spaceflight-associated neuro-ocular syndrome (SANS). To determine the pathophysiology of SANS, NASA conducted a multi-investigator study in which 11 healthy participants underwent head-down tilt bed rest, mimicking microgravity-induced cephalad fluid shifts, combined with elevated ambient CO2 levels similar to those on the ISS (HDT+CO2). As part of that study, we examined the effects of HDT+CO2 on cerebral perfusion. METHODS Using arterial spin labeling, we compared cerebral perfusion before, during, and after HDT+CO2 in participants who developed SANS (n = 5) with those who did not (n = 6). RESULTS All participants demonstrated a decrease in perfusion during HDT+CO2 (mean decrease of 25.1% at HDT7 and 16.2% at HDT29); however, the timing and degree of change varied between the groups. At day 7 of HDT+CO2, the SANS group experienced a greater reduction in perfusion than the non-SANS group (p =.05, 95% CI:-0.19 to 16.11, d=.94, large effect). Conversely, by day 29 of HDT+CO2, the SANS group had significantly higher perfusion (approaching their baseline) than the non-SANS group (p = .04, 95% CI:0.33 to 13.07, d=1.01, large effect). CONCLUSION Compared with baseline and recovery, HDT+CO2 resulted in reduced cerebral perfusion which varied based on SANS status. Further studies are needed to unravel the relative role of HDT vs hypercapnia, to determine if these perfusion changes are clinically relevant, and whether perfusion changes contribute to the development of SANS during spaceflight.
Collapse
Affiliation(s)
- Donna R Roberts
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA. .,Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
| | - Heather R Collins
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Jessica K Lee
- German Aerospace Center (DLR, Institute of Aerospace Medicine), Cologne, Germany.,Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, USA
| | - James A Taylor
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Matthew Turner
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Greg Zaharchuk
- Department of Radiology, Division of Neuroradiology, Stanford University, Stanford, CA, USA
| | - Max Wintermark
- Department of Radiology, Division of Neuroradiology, Stanford University, Stanford, CA, USA
| | - Michael U Antonucci
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Edwin R Mulder
- German Aerospace Center (DLR, Institute of Aerospace Medicine), Cologne, Germany
| | - Darius A Gerlach
- German Aerospace Center (DLR, Institute of Aerospace Medicine), Cologne, Germany
| | - Davud Asemani
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Heather R McGregor
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, USA
| | - Rachael D Seidler
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, USA.,Norman Fixel Institute for Neurological Diseases, College of Health and Human Performance, University of Florida, Gainesville, FL, USA
| |
Collapse
|
13
|
Zhang Y, Yin Y, Li H, Gao JH. Measurement of CMRO 2 and its relationship with CBF in hypoxia with an extended calibrated BOLD method. J Cereb Blood Flow Metab 2020; 40:2066-2080. [PMID: 31665954 PMCID: PMC7786846 DOI: 10.1177/0271678x19885124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO2) are physiological parameters that not only reflect brain health and disease but also jointly contribute to blood oxygen level-dependent (BOLD) signals. Nevertheless, unsolved issues remain concerning the CBF-CMRO2 relationship in the working brain under various oxygen conditions. In particular, the CMRO2 responses to functional tasks in hypoxia are less studied. We extended the calibrated BOLD model to incorporate CMRO2 measurements in hypoxia. The extended model, which was cross-validated with a multicompartment BOLD model, considers the influences of the reduced arterial saturation level and increased baseline cerebral blood volume (CBV) and deoxyhemoglobin concentration on the changes of BOLD signals in hypoxia. By implementing a pulse sequence to simultaneously acquire the CBV-, CBF- and BOLD-weighted signals, we investigated the effects of mild hypoxia on the CBF and CMRO2 responses to graded visual stimuli. Compared with normoxia, mild hypoxia caused significant alterations in both the amplitude and the trend of the CMRO2 responses but did not impact the corresponding CBF responses. Our observations suggested that the flow-metabolism coupling strategies in the brain during mild hypoxia were different from those during normoxia.
Collapse
Affiliation(s)
- Yaoyu Zhang
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yayan Yin
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China
| | - Huanjie Li
- School of Biomedical Engineering, Dalian University of Technology, Dalian, China
| | - Jia-Hong Gao
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China.,McGovern Institute for Brain Research, Peking University, Beijing, China
| |
Collapse
|
14
|
Damato EG, Flak TA, Mayes RS, Strohl KP, Ziganti AM, Abdollahifar A, Flask CA, LaManna JC, Decker MJ. Neurovascular and cortical responses to hyperoxia: enhanced cognition and electroencephalographic activity despite reduced perfusion. J Physiol 2020; 598:3941-3956. [PMID: 33174711 DOI: 10.1113/jp279453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 06/02/2020] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS Extreme aviation is accompanied by ever-present risks of hypobaric hypoxia and decompression sickness. Neuroprotection against those hazards is conferred through fractional inspired oxygen ( F I , O 2 ) concentrations of 60-100% (hyperoxia). Hyperoxia reduces global cerebral perfusion (gCBF), increases reactive oxygen species within the brain and leads to cell death within the hippocampus. However, an understanding of hyperoxia's effect on cortical activity and concomitant levels of cognitive performance is lacking. This limits our understanding of whether hyperoxia could lower the brain's threshold of tolerance to physiological stressors inherent to extreme aviation, such as high gravitational forces. This study aimed to quantify the impact of hyperoxia upon global cerebral perfusion (gCBF), cognitive performance and cortical electroencephalography (EEG). Hyperoxia evoked a rapid reduction in gCBF, yet cognitive performance and vigilance were enhanced. EEG measurements revealed enhanced alpha power, suggesting less desynchrony, within the cortical temporal regions. Collectively, this work suggests hyperoxia-induced brain hypoperfusion is accompanied by enhanced cognitive processing and cortical arousal. ABSTRACT Extreme aviators continually inspire hyperoxic gas to mitigate risk of hypoxia and decompression injury. This neuroprotection carries a physiological cost: reduced cerebral perfusion (CBF). As reduced CBF may increase vulnerability to ever-present physiological challenges during extreme aviation, we defined the magnitude and duration of hyperoxia-induced changes in CBF, cortical electrical activity and cognition in 30 healthy males and females. Magnetic resonance imaging with pulsed arterial spin labelling provided serial measurements of global CBF (gCBF), first during exposure to 21% inspired oxygen ( F I , O 2 ) followed by a 30-min exposure to 100% F I , O 2 . High-density EEG facilitated characterization of cortical activity during assessment of cognitive performance, also measured during exposure to 21% and 100% F I , O 2 . Acid-base physiology was measured with arterial blood gases. We found that exposure to 100% F I , O 2 reduced gCBF to 63% of baseline values across all participants. Cognitive performance testing at 21% F I , O 2 was accompanied by increased theta and beta power with decreased alpha power across multiple cortical areas. During cognitive testing at 100% F I , O 2 , alpha activity was less desynchronized within the temporal regions than at 21% F I , O 2 . The collective hyperoxia-induced changes in gCBF, cognitive performance and EEG were similar across observed partial pressures of arterial oxygen ( P a O 2 ), which ranged between 276-548 mmHg, and partial pressures of arterial carbon dioxide ( P aC O 2 ), which ranged between 34-50 mmHg. Sex did not influence gCBF response to 100% F I , O 2 . Our findings suggest hyperoxia-induced reductions in gCBF evoke enhanced levels of cortical arousal and cognitive processing, similar to those occurring during a perceived threat.
Collapse
Affiliation(s)
- Elizabeth G Damato
- Case Western Reserve University, Cleveland, OH, 44106, USA.,Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.,School of Nursing, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Tod A Flak
- Bioautomatix, LLC, Shaker Heights, OH, 44122, USA
| | - Ryan S Mayes
- United States Air Force, 711th Human Performance Wing, USAF School of Aerospace Medicine, Wright-Patterson AFB, OH, 45433, USA
| | - Kingman P Strohl
- Case Western Reserve University, Cleveland, OH, 44106, USA.,Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.,Louis Stokes Cleveland Veterans Administration Medical Center, Cleveland, OH, 44106, USA
| | - Aemilee M Ziganti
- Case Western Reserve University, Cleveland, OH, 44106, USA.,Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Alireza Abdollahifar
- Case Western Reserve University, Cleveland, OH, 44106, USA.,Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Chris A Flask
- Case Western Reserve University, Cleveland, OH, 44106, USA.,Department of Radiology, School of Medicine, Cleveland, OH, 44106, USA
| | - Joseph C LaManna
- Case Western Reserve University, Cleveland, OH, 44106, USA.,Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Michael J Decker
- Case Western Reserve University, Cleveland, OH, 44106, USA.,Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| |
Collapse
|
15
|
Andresen B, Greisen G, Hyttel-Sorensen S. Comparison of INVOS 5100C and Nonin SenSmart X-100 oximeter performance in preterm infants with spontaneous apnea. Pediatr Res 2020; 87:1244-1250. [PMID: 31935747 DOI: 10.1038/s41390-020-0752-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 12/11/2019] [Accepted: 12/11/2019] [Indexed: 11/09/2022]
Abstract
BACKGROUND Tissue oximeters are not interchangeable. Two instruments with sensors dedicated to preterm infants-INVOS 5100C and Nonin SenSmart X-100-have not yet been compared. METHODS By measuring cerebral oxygenation in ten preterm infants with spontaneous apneic episodes defined by pulse oximeter readings (SpO2) below 80%, as well as tissue oxygenation during vascular occlusion on the forearm of ten adults, simultaneously we compared performance in the hypoxic range. RESULTS We found the mean conversion equations to be StO2,SenSmart X-100 = 0.34 × StO2,INVOS 5100C + 44.8% during apnea in infants and StO2,SenSmart X-100 = 0.59 × StO2,INVOS 5100C + 34.4% during vascular occlusion. The individual regressions displayed large and statistically significant variations in both infants and adults. In three infants the INVOS sensor showed very little reaction to decreases in SpO2. CONCLUSIONS These findings confirm that different NIRS devices give very different estimates when the oxygenation is low. The large variation when compared to SpO2 suggest that the sensor placement is very important in preterm infants.
Collapse
Affiliation(s)
- Bjørn Andresen
- Department of Neonatology, Copenhagen University Hospital-Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Gorm Greisen
- Department of Neonatology, Copenhagen University Hospital-Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Simon Hyttel-Sorensen
- Department of Intensive Care (4131), Copenhagen University Hospital-Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark.
| |
Collapse
|
16
|
Yang DM, Arai TJ, Campbell JW, Gerberich JL, Zhou H, Mason RP. Oxygen-sensitive MRI assessment of tumor response to hypoxic gas breathing challenge. NMR IN BIOMEDICINE 2019; 32:e4101. [PMID: 31062902 PMCID: PMC6581571 DOI: 10.1002/nbm.4101] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 02/16/2019] [Accepted: 03/08/2019] [Indexed: 06/09/2023]
Abstract
Oxygen-sensitive MRI has been extensively used to investigate tumor oxygenation based on the response (R2 * and/or R1 ) to a gas breathing challenge. Most studies have reported response to hyperoxic gas indicating potential biomarkers of hypoxia. Few studies have examined hypoxic gas breathing and we have now evaluated acute dynamic changes in rat breast tumors. Rats bearing syngeneic subcutaneous (n = 15) or orthotopic (n = 7) 13762NF breast tumors were exposed to a 16% O2 gas breathing challenge and monitored using blood oxygen level dependent (BOLD) R2 * and tissue oxygen level dependent (TOLD) T1 -weighted measurements at 4.7 T. As a control, we used a traditional hyperoxic gas breathing challenge with 100% O2 on a subset of the subcutaneous tumor bearing rats (n = 6). Tumor subregions identified as responsive on the basis of R2 * dynamics coincided with the viable tumor area as judged by subsequent H&E staining. As expected, R2 * decreased and T1 -weighted signal increased in response to 100% O2 breathing challenge. Meanwhile, 16% O2 breathing elicited an increase in R2 *, but divergent response (increase or decrease) in T1 -weighted signal. The T1 -weighted signal increase may signify a dominating BOLD effect triggered by 16% O2 in the relatively more hypoxic tumors, whereby the influence of increased paramagnetic deoxyhemoglobin outweighs decreased pO2 . The results emphasize the importance of combined BOLD and TOLD measurements for the correct interpretation of tumor oxygenation properties.
Collapse
Affiliation(s)
- Donghan M Yang
- Department of Radiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Tatsuya J Arai
- Department of Radiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - James W Campbell
- Department of Radiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | | | - Heling Zhou
- Department of Radiology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Ralph P Mason
- Department of Radiology, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
17
|
Beaudin AE, Hanly PJ, Raneri JK, Sajobi TT, Anderson TJ, Poulin MJ. Vascular responses to hypoxia are not impaired in obstructive sleep apnoea patients free of overt cardiovascular disease. Exp Physiol 2019; 104:580-600. [DOI: 10.1113/ep086845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 01/24/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Andrew E. Beaudin
- Department of Physiology & Pharmacology Cumming School of Medicine University of Calgary Calgary AB Canada
- Hotchkiss Brain Institute University of Calgary Calgary AB Canada
| | - Patrick J. Hanly
- Hotchkiss Brain Institute University of Calgary Calgary AB Canada
- Department of Medicine Cumming School of Medicine University of Calgary Calgary AB Canada
- Sleep Centre Foothills Medical Centre Calgary AB Canada
| | | | - Tolulope T. Sajobi
- Hotchkiss Brain Institute University of Calgary Calgary AB Canada
- Department of Community Health Cumming School of Medicine University of Calgary Calgary AB Canada
- Department of Clinical Neurosciences Cumming School of Medicine University of Calgary Calgary AB Canada
| | - Todd J. Anderson
- Department of Cardiac Science Cumming School of Medicine University of Calgary Calgary AB Canada
- Libin Cardiovascular Institute of Alberta University of Calgary Calgary AB Canada
| | - Marc J. Poulin
- Department of Physiology & Pharmacology Cumming School of Medicine University of Calgary Calgary AB Canada
- Hotchkiss Brain Institute University of Calgary Calgary AB Canada
- Department of Clinical Neurosciences Cumming School of Medicine University of Calgary Calgary AB Canada
- Libin Cardiovascular Institute of Alberta University of Calgary Calgary AB Canada
- O'Brien Institute for Public Health Cumming School of Medicine University of Calgary Calgary AB Canada
| |
Collapse
|
18
|
Lewis A, Greer D. Medicolegal Complications of Apnoea Testing for Determination of Brain Death. JOURNAL OF BIOETHICAL INQUIRY 2018; 15:417-428. [PMID: 29980920 DOI: 10.1007/s11673-018-9863-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 04/29/2018] [Indexed: 06/08/2023]
Abstract
Recently, there have been a number of lawsuits in the United States in which families objected to performance of apnoea testing for determination of brain death. The courts reached conflicting determinations in these cases. We discuss the medicolegal complications associated with apnoea testing that are highlighted by these cases and our position that the decision to perform apnoea testing should be made by clinicians, not families, judges, or juries.
Collapse
Affiliation(s)
- Ariane Lewis
- Departments of Neurology and Neurosurgery, NYU Langone Medical Center, 530 First Avenue, HCC-5A, New York, NY, 10016, USA.
| | - David Greer
- Department of Neurology, Boston University School of Medicine, 72 East Concord Street C3, Suite 338, Boston, MA, 02118, USA
| |
Collapse
|
19
|
Denninghoff KR, Nuño T, Pauls Q, Yeatts SD, Silbergleit R, Palesch YY, Merck LH, Manley GT, Wright DW. Prehospital Intubation is Associated with Favorable Outcomes and Lower Mortality in ProTECT III. PREHOSP EMERG CARE 2017; 21:539-544. [PMID: 28489506 PMCID: PMC7225216 DOI: 10.1080/10903127.2017.1315201] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/29/2017] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Traumatic brain injury (TBI) causes more than 2.5 million emergency department visits, hospitalizations, or deaths annually. Prehospital endotracheal intubation has been associated with poor outcomes in patients with TBI in several retrospective observational studies. We evaluated the relationship between prehospital intubation, functional outcomes, and mortality using high quality data on clinical practice collected prospectively during a randomized multicenter clinical trial. METHODS ProTECT III was a multicenter randomized, double-blind, placebo-controlled trial of early administration of progesterone in 882 patients with acute moderate to severe nonpenetrating TBI. Patients were excluded if they had an index GCS of 3 and nonreactive pupils, those with withdrawal of life support on arrival, and if they had documented prolonged hypotension and/or hypoxia. Prehospital intubation was performed as per local clinical protocol in each participating EMS system. Models for favorable outcome and mortality included prehospital intubation, method of transport, index GCS, age, race, and ethnicity as independent variables. Significance was set at α = 0.05. Favorable outcome was defined by a stratified dichotomy of the GOS-E scores in which the definition of favorable outcome depended on the severity of the initial injury. RESULTS Favorable outcome was more frequent in the 349 subjects with prehospital intubation (57.3%) than in the other 533 patients (46.0%, p = 0.003). Mortality was also lower in the prehospital intubation group (13.8% v. 19.5%, p = 0.03). Logistic regression analysis of prehospital intubation and mortality, adjusted for index GCS, showed that odds of dying for those with prehospital intubation were 47% lower than for those that were not intubated (OR = 0.53, 95% CI = 0.36-0.78). 279 patients with prehospital intubation were transported by air. Modeling transport method and mortality, adjusted for index GCS, showed increased odds of dying in those transported by ground compared to those transported by air (OR = 2.10, 95% CI = 1.40-3.15). Decreased odds of dying trended among those with prehospital intubation adjusted for transport method, index GCS score at randomization, age, and race/ethnicity (OR = 0.70, 95% CI = 0.37-1.31). CONCLUSIONS In this study that excluded moribund patients, prehospital intubation was performed primarily in patients transported by air. Prehospital intubation and air medical transport together were associated with favorable outcomes and lower mortality. Prehospital intubation was not associated with increased morbidity or mortality regardless of transport method or severity of injury.
Collapse
|
20
|
Yang T, Sun Y, Lu Z, Leak RK, Zhang F. The impact of cerebrovascular aging on vascular cognitive impairment and dementia. Ageing Res Rev 2017; 34:15-29. [PMID: 27693240 DOI: 10.1016/j.arr.2016.09.007] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/09/2016] [Accepted: 09/26/2016] [Indexed: 02/07/2023]
Abstract
As human life expectancy rises, the aged population will increase. Aging is accompanied by changes in tissue structure, often resulting in functional decline. For example, aging within blood vessels contributes to a decrease in blood flow to important organs, potentially leading to organ atrophy and loss of function. In the central nervous system, cerebral vascular aging can lead to loss of the integrity of the blood-brain barrier, eventually resulting in cognitive and sensorimotor decline. One of the major of types of cognitive dysfunction due to chronic cerebral hypoperfusion is vascular cognitive impairment and dementia (VCID). In spite of recent progress in clinical and experimental VCID research, our understanding of vascular contributions to the pathogenesis of VCID is still very limited. In this review, we summarize recent findings on VCID, with a focus on vascular age-related pathologies and their contribution to the development of this condition.
Collapse
Affiliation(s)
- Tuo Yang
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Yang Sun
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Zhengyu Lu
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese, Shanghai 200437, China
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA
| | - Feng Zhang
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, Shandong, 271000, China.
| |
Collapse
|
21
|
Peng SL, Ravi H, Sheng M, Thomas BP, Lu H. Searching for a truly "iso-metabolic" gas challenge in physiological MRI. J Cereb Blood Flow Metab 2017; 37:715-725. [PMID: 26980756 PMCID: PMC5381460 DOI: 10.1177/0271678x16638103] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 01/14/2016] [Accepted: 01/25/2016] [Indexed: 11/16/2022]
Abstract
Hypercapnia challenge (e.g. inhalation of CO2) has been used in calibrated fMRI as well as in the mapping of vascular reactivity in cerebrovascular diseases. An important assumption underlying these measurements is that CO2 is a pure vascular challenge but does not alter neural activity. However, recent reports have suggested that CO2 inhalation may suppress neural activity and brain metabolic rate. Therefore, the goal of this study is to propose and test a gas challenge that is truly "iso-metabolic," by adding a hypoxic component to the hypercapnic challenge, since hypoxia has been shown to enhance cerebral metabolic rate of oxygen (CMRO2). Measurement of global CMRO2 under various gas challenge conditions revealed that, while hypercapnia (P = 0.002) and hypoxia (P = 0.002) individually altered CMRO2 (by -7.6 ± 1.7% and 16.7 ± 4.1%, respectively), inhalation of hypercapnic-hypoxia gas (5% CO2/13% O2) did not change brain metabolism (CMRO2 change: 1.5 ± 3.9%, P = 0.92). Moreover, cerebral blood flow response to the hypercapnic-hypoxia challenge (in terms of % change per mmHg CO2 change) was even greater than that to hypercapnia alone (P = 0.007). Findings in this study suggest that hypercapnic-hypoxia gas challenge may be a useful maneuver in physiological MRI as it preserves vasodilatory response yet does not alter brain metabolism.
Collapse
Affiliation(s)
- Shin-Lei Peng
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, USA
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, USA
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
| | - Harshan Ravi
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, USA
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, USA
- Department of Bioengineering, UT Arlington, Arlington, USA
| | - Min Sheng
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, USA
| | - Binu P Thomas
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, USA
| | - Hanzhang Lu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, USA
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, USA
| |
Collapse
|
22
|
Respiratory challenge MRI: Practical aspects. NEUROIMAGE-CLINICAL 2016; 11:667-677. [PMID: 27330967 PMCID: PMC4901170 DOI: 10.1016/j.nicl.2016.05.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 04/11/2016] [Accepted: 05/03/2016] [Indexed: 11/24/2022]
Abstract
Respiratory challenge MRI is the modification of arterial oxygen (PaO2) and/or carbon dioxide (PaCO2) concentration to induce a change in cerebral function or metabolism which is then measured by MRI. Alterations in arterial gas concentrations can lead to profound changes in cerebral haemodynamics which can be studied using a variety of MRI sequences. Whilst such experiments may provide a wealth of information, conducting them can be complex and challenging. In this paper we review the rationale for respiratory challenge MRI including the effects of oxygen and carbon dioxide on the cerebral circulation. We also discuss the planning, equipment, monitoring and techniques that have been used to undertake these experiments. We finally propose some recommendations in this evolving area for conducting these experiments to enhance data quality and comparison between techniques. Oxygen and carbon dioxide affect cerebral blood flow and metabolism. This can be imaged with various MRI sequences. The practicalities of these techniques are reviewed. Examples of how this has been used to understand disease mechanisms.
Collapse
|
23
|
Jeong SM, Kim SO, DeLorey DS, Babb TG, Levine BD, Zhang R. Lack of correlation between cerebral vasomotor reactivity and dynamic cerebral autoregulation during stepwise increases in inspired CO2 concentration. J Appl Physiol (1985) 2016; 120:1434-41. [PMID: 27103653 DOI: 10.1152/japplphysiol.00390.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 04/18/2016] [Indexed: 11/22/2022] Open
Abstract
Cerebral vasomotor reactivity (CVMR) and dynamic cerebral autoregulation (CA) are measured extensively in clinical and research studies. However, the relationship between these measurements of cerebrovascular function is not well understood. In this study, we measured changes in cerebral blood flow velocity (CBFV) and arterial blood pressure (BP) in response to stepwise increases in inspired CO2 concentrations of 3 and 6% to assess CVMR and dynamic CA in 13 healthy young adults [2 women, 32 ± 9 (SD) yr]. CVMR was assessed as percentage changes in CBFV (CVMRCBFV) or cerebrovascular conductance index (CVCi, CVMRCVCi) in response to hypercapnia. Dynamic CA was estimated by performing transfer function analysis between spontaneous oscillations in BP and CBFV. Steady-state CBFV and CVCi both increased exponentially during hypercapnia; CVMRCBFV and CVMRCVCi were greater at 6% (3.85 ± 0.90 and 2.45 ± 0.79%/mmHg) than at 3% CO2 (2.09 ± 1.47 and 0.21 ± 1.56%/mmHg, P = 0.009 and 0.005, respectively). Furthermore, CVMRCBFV was greater than CVMRCVCi during either 3 or 6% CO2 (P = 0.017 and P < 0.001, respectively). Transfer function gain and coherence increased in the very low frequency range (0.02-0.07 Hz), and phase decreased in the low-frequency range (0.07-0.20 Hz) when breathing 6%, but not 3% CO2 There were no correlations between the measurements of CVMR and dynamic CA. These findings demonstrated influences of inspired CO2 concentrations on assessment of CVMR and dynamic CA. The lack of correlation between CVMR and dynamic CA suggests that cerebrovascular responses to changes in arterial CO2 and BP are mediated by distinct regulatory mechanisms.
Collapse
Affiliation(s)
- Sung-Moon Jeong
- Institute for Exercise and Environmental Medicine, Presbyterian Hospital of Dallas and University of Texas Southwestern Medical Center, Dallas, Texas; Department of Anesthesiology and Pain Medicine, College of Medicine, University of Ulsan, Asan Medical Center, Seoul, Korea
| | - Seon-Ok Kim
- Department of Clinical Epidemiology and Biostatistics, College of Medicine, University of Ulsan, Asan Medical Center, Seoul, Korea; and
| | - Darren S DeLorey
- Faculty of Physical Education and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Tony G Babb
- Institute for Exercise and Environmental Medicine, Presbyterian Hospital of Dallas and University of Texas Southwestern Medical Center, Dallas, Texas
| | - Benjamin D Levine
- Institute for Exercise and Environmental Medicine, Presbyterian Hospital of Dallas and University of Texas Southwestern Medical Center, Dallas, Texas
| | - Rong Zhang
- Institute for Exercise and Environmental Medicine, Presbyterian Hospital of Dallas and University of Texas Southwestern Medical Center, Dallas, Texas;
| |
Collapse
|
24
|
Ganesh T, Estrada M, Duffin J, Cheng HL. T2* and T1 assessment of abdominal tissue response to graded hypoxia and hypercapnia using a controlled gas mixing circuit for small animals. J Magn Reson Imaging 2016; 44:305-16. [PMID: 26872559 DOI: 10.1002/jmri.25169] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 01/12/2016] [Indexed: 01/13/2023] Open
Abstract
PURPOSE To characterize T2* and T1 relaxation time response to a wide spectrum of gas challenges in extracranial tissues of healthy rats. MATERIALS AND METHODS A range of graded gas mixtures (hyperoxia, hypercapnia, hypoxia, and hypercapnic hypoxia) were delivered through a controlled gas-mixing circuit to mechanically ventilated and intubated rats. Quantitative magnetic resonance imaging (MRI) was performed on a 3T clinical scanner; T2* and T1 maps were computed to determine tissue response in the liver, kidney cortex, and paraspinal muscles. Heart rate and blood oxygen saturation (SaO2 ) were measured through a rodent oximeter and physiological monitor. RESULTS T2* decreases consistent with lowered SaO2 measurements were observed for hypercapnia and hypoxia, but decreases were significant only in liver and kidney cortex (P < 0.05) for >10% CO2 and <15% O2 , with the new gas stimulus, hypercapnic hypoxia, producing the greatest T2* decrease. Hyperoxia-related T2* increases were accompanied by negligible increases in SaO2 . T1 generally increased, if at all, in the liver and decreased in the kidney. Significance was observed (P < 0.05) only in kidney for >90% O2 and >5% CO2 . CONCLUSION T2* and T1 provide complementary roles for evaluating extracranial tissue response to a broad range of gas challenges. Based on both measured and known physiological responses, our results are consistent with T2* as a sensitive marker of blood oxygen saturation and T1 as a weak marker of blood volume changes. J. Magn. Reson. Imaging 2016;44:305-316.
Collapse
Affiliation(s)
- Tameshwar Ganesh
- Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Canada.,Leslie Dan Faculty of Pharmacy, University of Toronto, Canada.,Physiology & Experimental Medicine, Hospital for Sick Children Research Institute, Toronto, Canada
| | - Marvin Estrada
- Lab Animal Services, Hospital for Sick Children, Toronto, Canada
| | - James Duffin
- Department of Anesthesia, University of Toronto, Canada
| | - Hai Ling Cheng
- Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Canada.,Leslie Dan Faculty of Pharmacy, University of Toronto, Canada.,Physiology & Experimental Medicine, Hospital for Sick Children Research Institute, Toronto, Canada.,The Edward S. Rogers Sr. Department of Electrical & Computer Engineering, University of Toronto, Canada.,Institute of Biomaterials & Biomedical Engineering, University of Toronto, Canada
| |
Collapse
|
25
|
Corfield DR, McKay LC. Regional Cerebrovascular Responses to Hypercapnia and Hypoxia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 903:157-67. [PMID: 27343095 DOI: 10.1007/978-1-4899-7678-9_11] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A limited number of studies using differing imaging approaches suggest that there are regional variation in the cerebrovascular response to hypercapnia and hypoxia. However there are limitations to these studies. In particular, it is not clear if existing studies of hypoxia have fully accounted for the confounding effects of the changes in arterial PCO2 on cerebral perfusion that, if uncontrolled, will accompany the hypoxic stimulus. We determined quantitative maps of grey matter cerebral blood flow using a multi-slice pulsed arterial spin labelling MRI method at 3 T at rest, during conditions of isocapnic euoxia, hypercapnia, and mild isocapnic hypoxia. From these data, we determined grey matter cerebrovascular reactivity maps which show the spatial distribution of the responses to these interventions. Whilst, overall, cerebral perfusion increased with hypercapnia and hypoxia, hypoxia cerebrovascular reactivity maps showed very high variation both within and between individuals: most grey matter regions exhibiting a positive cerebrovascular reactivity, but some exhibiting a negative reactivity. The physiological explanation for this variation remains unclear and it is not known if these local differences will vary with state or with regional brain activity. The potential interaction between hypoxic or hypercapnic cerebrovascular changes and neurally related changes in brain perfusion is of particular interest for functional imaging studies of brain activation in which arterial blood gases are altered. We have determined the interaction between global hypoxia and hypercapnia-induced blood oxygen level-dependent (BOLD) MRI signal and local neurally related BOLD signal. Although statistically significant interactions were present, physiologically the effects were weak and, in practice, they did not change the statistical outcome related to the analysis of the neurally related signals. These data suggest that such respiratory-related confounds can be successfully accounted for in functional imaging studies.
Collapse
Affiliation(s)
| | - Leanne C McKay
- Neuroscience and Molecular Pharmacology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
26
|
Modeling the role of osmotic forces in the cerebrovascular response to CO2. Med Hypotheses 2015; 85:25-36. [PMID: 25858437 DOI: 10.1016/j.mehy.2015.03.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 03/06/2015] [Accepted: 03/12/2015] [Indexed: 12/15/2022]
Abstract
Increases in blood osmolarity have been shown to exert a vasodilatory effect on cerebral and other vasculature, with accompanying increases in blood flow. It has also been shown that, through an influence on blood concentration of the bicarbonate ion and pH, changes in blood levels of CO2 can alter blood osmolarity sufficiently to have an impact on vessel diameter. We propose here that this phenomenon plays a previously unappreciated role in CO2-mediated vasodilation, and present a biophysical model of osmotically driven vasodilation. Our model, which is based on literature data describing CO2-dependent changes in blood osmolarity and hydraulic conductivity (Lp) of the blood-brain barrier, is used to predict the change in cerebral blood flow (CBF) associated with osmotic forces arising from a specific hypercapnic challenge. Modeled changes were then compared with actual CBF changes determined using arterial spin-labeling (ASL) MRI. For changes in the arterial partial pressure of CO2 (PaCO2) of 20 mmHg, our model predicted increases of 80% from baseline CBF with a temporal evolution that was comparable to the measured hemodynamic responses. Our modeling results suggest that osmotic forces could play a significant role in the cerebrovascular response to CO2.
Collapse
|
27
|
Tancredi FB, Lajoie I, Hoge RD. Test-retest reliability of cerebral blood flow and blood oxygenation level-dependent responses to hypercapnia and hyperoxia using dual-echo pseudo-continuous arterial spin labeling and step changes in the fractional composition of inspired gases. J Magn Reson Imaging 2015; 42:1144-57. [PMID: 25752936 DOI: 10.1002/jmri.24878] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/09/2015] [Indexed: 01/16/2023] Open
Abstract
PURPOSE To assess the reproducibility of blood oxygenation level-dependent / cerebral blood flow (BOLD/CBF) responses to hypercapnia/hyperoxia using dual-echo pseudo-continuous arterial spin labeling (pCASL) and step changes in inspired doses. MATERIALS AND METHODS Eight subjects were scanned twice, within 24 hours, using the same respiratory manipulation and imaging protocol. Imaging comprised a 5-minute anatomical acquisition, allowing segmentation of the gray matter (GM) tissue for further analysis, and an 18-minute pCASL functional scan. Hypercapnia/hyperoxia were induced by increasing the fraction of inspired CO2 to 5% and inspired O2 to 60%, alternately. Reproducibility of BOLD and CBF pCASL measures was assessed by computing the inter-session coefficient of variation (CV) of the respective signals in GM. RESULTS BOLD and CBF measures in GM were robust and consistent, yielding CV values below 10% for BOLD hypercapnic/hyperoxic responses (which averaged 1.9 ± 0.1% and 1.14 ± 0.02%) and below 20% for the CBF hypercapnic response (which averaged 35 ± 2 mL/min/100g). The CV for resting CBF was 3.5%. CONCLUSION It is possible to attain reproducible measures of the simultaneous BOLD and CBF responses to blood gases, within a reasonable scan time and with whole brain coverage, using a simple respiratory manipulation and dual-echo pCASL.
Collapse
Affiliation(s)
- Felipe B Tancredi
- Université de Montréal Institut de génie biomédical Département de physiologie C.P. 6128, Succursale Centre-ville Montréal, Québec, Canada.,Centre de recherche de l'institut universitaire de gériatrie de Montréal Unité de neuroimagerie fonctionnelle 4545, Ch. Queen Mary Montréal, Québec, Canada.,Hospital Israelita Albert Einstein Imagem Av. Albert Einstein, 627, São Paulo, SP, Brazil
| | - Isabelle Lajoie
- Université de Montréal Institut de génie biomédical Département de physiologie C.P. 6128, Succursale Centre-ville Montréal, Québec, Canada.,Centre de recherche de l'institut universitaire de gériatrie de Montréal Unité de neuroimagerie fonctionnelle 4545, Ch. Queen Mary Montréal, Québec, Canada
| | - Richard D Hoge
- Université de Montréal Institut de génie biomédical Département de physiologie C.P. 6128, Succursale Centre-ville Montréal, Québec, Canada.,Centre de recherche de l'institut universitaire de gériatrie de Montréal Unité de neuroimagerie fonctionnelle 4545, Ch. Queen Mary Montréal, Québec, Canada
| |
Collapse
|
28
|
Willie CK, Tzeng YC, Fisher JA, Ainslie PN. Integrative regulation of human brain blood flow. J Physiol 2014; 592:841-59. [PMID: 24396059 PMCID: PMC3948549 DOI: 10.1113/jphysiol.2013.268953] [Citation(s) in RCA: 574] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 12/24/2013] [Indexed: 02/06/2023] Open
Abstract
Herein, we review mechanisms regulating cerebral blood flow (CBF), with specific focus on humans. We revisit important concepts from the older literature and describe the interaction of various mechanisms of cerebrovascular control. We amalgamate this broad scope of information into a brief review, rather than detailing any one mechanism or area of research. The relationship between regulatory mechanisms is emphasized, but the following three broad categories of control are explicated: (1) the effect of blood gases and neuronal metabolism on CBF; (2) buffering of CBF with changes in blood pressure, termed cerebral autoregulation; and (3) the role of the autonomic nervous system in CBF regulation. With respect to these control mechanisms, we provide evidence against several canonized paradigms of CBF control. Specifically, we corroborate the following four key theses: (1) that cerebral autoregulation does not maintain constant perfusion through a mean arterial pressure range of 60-150 mmHg; (2) that there is important stimulatory synergism and regulatory interdependence of arterial blood gases and blood pressure on CBF regulation; (3) that cerebral autoregulation and cerebrovascular sensitivity to changes in arterial blood gases are not modulated solely at the pial arterioles; and (4) that neurogenic control of the cerebral vasculature is an important player in autoregulatory function and, crucially, acts to buffer surges in perfusion pressure. Finally, we summarize the state of our knowledge with respect to these areas, outline important gaps in the literature and suggest avenues for future research.
Collapse
Affiliation(s)
- Christopher K Willie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada V1V 1V7.
| | | | | | | |
Collapse
|
29
|
Flück D, Beaudin AE, Steinback CD, Kumarpillai G, Shobha N, McCreary CR, Peca S, Smith EE, Poulin MJ. Effects of aging on the association between cerebrovascular responses to visual stimulation, hypercapnia and arterial stiffness. Front Physiol 2014; 5:49. [PMID: 24600398 PMCID: PMC3928624 DOI: 10.3389/fphys.2014.00049] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 01/26/2014] [Indexed: 02/04/2023] Open
Abstract
Aging is associated with decreased vascular compliance and diminished neurovascular- and hypercapnia-evoked cerebral blood flow (CBF) responses. However, the interplay between arterial stiffness and reduced CBF responses is poorly understood. It was hypothesized that increased cerebral arterial stiffness is associated with reduced evoked responses to both, a flashing checkerboard visual stimulation (i.e., neurovascular coupling), and hypercapnia. To test this hypothesis, 20 older (64 ± 8 year; mean ± SD) and 10 young (30 ± 5 year) subjects underwent a visual stimulation (VS) and a hypercapnic test. Blood velocity through the posterior (PCA) and middle cerebral (MCA) arteries was measured concurrently using transcranial Doppler ultrasound (TCD). Cerebral and systemic vascular stiffness were calculated from the cerebral blood velocity and systemic blood pressure waveforms, respectively. Cerebrovascular (MCA: young = 76 ± 15%, older = 98 ± 19%, p = 0.004; PCA: young = 80 ± 16%, older = 106 ± 17%, p < 0.001) and systemic (young = 59 ± 9% and older = 80 ± 9%, p < 0.001) augmentation indices (AI) were higher in the older group. CBF responses to VS (PCA: p < 0.026) and hypercapnia (PCA: p = 0.018; MCA: p = 0.042) were lower in the older group. A curvilinear model fitted to cerebral AI and age showed AI increases until ~60 years of age, after which the increase levels off (PCA: R (2) = 0.45, p < 0.001; MCA: R (2) = 0.31, p < 0.001). Finally, MCA, but not PCA, hypercapnic reactivity was inversely related to cerebral AI (MCA: R (2) = 0.28, p = 0.002; PCA: R (2) = 0.10, p = 0.104). A similar inverse relationship was not observed with the PCA blood flow response to VS (R (2) = 0.06, p = 0.174). In conclusion, older subjects had reduced neurovascular- and hypercapnia-mediated CBF responses. Furthermore, lower hypercapnia-mediated blood flow responses through the MCA were associated with increased vascular stiffness. These findings suggest the reduced hypercapnia-evoked CBF responses through the MCA, in older individuals may be secondary to vascular stiffening.
Collapse
Affiliation(s)
- Daniela Flück
- Department of Biology, Institute of Human Movement Sciences and Sport, ETH Zurich Zurich, Switzerland ; Department of Physiology and Pharmacology, Faculty of Medicine, University of Calgary Calgary, AB, Canada
| | - Andrew E Beaudin
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Calgary Calgary, AB, Canada
| | - Craig D Steinback
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Calgary Calgary, AB, Canada
| | - Gopukumar Kumarpillai
- Department of Clinical Neurosciences, Faculty of Medicine, University of Calgary Calgary, AB, Canada
| | - Nandavar Shobha
- Department of Clinical Neurosciences, Faculty of Medicine, University of Calgary Calgary, AB, Canada
| | - Cheryl R McCreary
- Department of Clinical Neurosciences, Faculty of Medicine, University of Calgary Calgary, AB, Canada ; Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary Calgary, AB, Canada ; Department of Radiology, Faculty of Medicine, University of Calgary Calgary, AB, Canada ; Seaman Family MR Research Centre, Foothills Medical Centre, Alberta Health Services Calgary, AB, Canada
| | - Stefano Peca
- Seaman Family MR Research Centre, Foothills Medical Centre, Alberta Health Services Calgary, AB, Canada
| | - Eric E Smith
- Department of Clinical Neurosciences, Faculty of Medicine, University of Calgary Calgary, AB, Canada ; Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary Calgary, AB, Canada ; Seaman Family MR Research Centre, Foothills Medical Centre, Alberta Health Services Calgary, AB, Canada
| | - Marc J Poulin
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Calgary Calgary, AB, Canada ; Department of Clinical Neurosciences, Faculty of Medicine, University of Calgary Calgary, AB, Canada ; Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary Calgary, AB, Canada ; Faculty of Kinesiology, University of Calgary Calgary, AB, Canada ; The Libin Cardiovascular Institute of Alberta, Faculty of Medicine, University of Calgary Calgary, AB, Canada
| |
Collapse
|
30
|
Harris AD, Murphy K, Diaz CM, Saxena N, Hall JE, Liu TT, Wise RG. Cerebral blood flow response to acute hypoxic hypoxia. NMR IN BIOMEDICINE 2013; 26:1844-1852. [PMID: 24123253 PMCID: PMC4114548 DOI: 10.1002/nbm.3026] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 07/29/2013] [Accepted: 08/19/2013] [Indexed: 06/02/2023]
Abstract
Hypoxic hypoxia (inspiratory hypoxia) stimulates an increase in cerebral blood flow (CBF) maintaining oxygen delivery to the brain. However, this response, particularly at the tissue level, is not well characterised. This study quantifies the CBF response to acute hypoxic hypoxia in healthy subjects. A 20-min hypoxic (mean P(ETO2) = 52 mmHg) challenge was induced and controlled by dynamic end-tidal forcing whilst CBF was measured using pulsed arterial spin labelling perfusion MRI. The rate constant, temporal delay and magnitude of the CBF response were characterised using an exponential model for whole-brain and regional grey matter. Grey matter CBF increased from 76.1 mL/100 g/min (95% confidence interval (CI) of fitting: 75.5 mL/100 g/min, 76.7 mL/100 g/min) to 87.8 mL/100 g/min (95% CI: 86.7 mL/100 g/min, 89.6 mL/100 g/min) during hypoxia, and the temporal delay and rate constant for the response to hypoxia were 185 s (95% CI: 132 s, 230 s) and 0.0035 s(-1) (95% CI: 0.0019 s(-1), 0.0046 s(-1)), respectively. Recovery from hypoxia was faster with a delay of 20 s (95% CI: -38 s, 38 s) and a rate constant of 0.0069 s(-1) (95% CI: 0.0020 s(-1), 0.0103 s(-1)). R2*, an index of blood oxygenation obtained simultaneously with the CBF measurement, increased from 30.33 s(-1) (CI: 30.31 s(-1), 30.34 s(-1)) to 31.48 s(-1) (CI: 31.47 s(-1), 31.49 s(-1)) with hypoxia. The delay and rate constant for changes in R2 * were 24 s (95% CI: 21 s, 26 s) and 0.0392 s(-1) (95% CI: 0.0333 s(-1), 0.045 s(-1)), respectively, for the hypoxic response, and 12 s (95% CI: 10 s, 13 s) and 0.0921 s(-1) (95% CI: 0.0744 s(-1), 0.1098 s(-1)/) during the return to normoxia, confirming rapid changes in blood oxygenation with the end-tidal forcing system. CBF and R2* reactivity to hypoxia differed between subjects, but only R2* reactivity to hypoxia differed significantly between brain regions.
Collapse
Affiliation(s)
| | - Kevin Murphy
- CUBRIC, School of Psychology, Cardiff UniversityCardiff, UK
| | - Claris M Diaz
- CUBRIC, School of Psychology, Cardiff UniversityCardiff, UK
| | - Neeraj Saxena
- Department of Anaesthetics, Intensive Care and Pain Medicine, School of Medicine, Cardiff UniversityCardiff, UK
| | - Judith E Hall
- Department of Anaesthetics, Intensive Care and Pain Medicine, School of Medicine, Cardiff UniversityCardiff, UK
| | - Thomas T Liu
- Center for Functional Magnetic Resonance Imaging and Department of Radiology, University of California San DiegoLa Jolla, CA, USA
| | - Richard G Wise
- CUBRIC, School of Psychology, Cardiff UniversityCardiff, UK
| |
Collapse
|
31
|
Krainik A, Villien M, Troprès I, Attyé A, Lamalle L, Bouvier J, Pietras J, Grand S, Le Bas JF, Warnking J. Functional imaging of cerebral perfusion. Diagn Interv Imaging 2013; 94:1259-78. [PMID: 24011870 DOI: 10.1016/j.diii.2013.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The functional imaging of perfusion enables the study of its properties such as the vasoreactivity to circulating gases, the autoregulation and the neurovascular coupling. Downstream from arterial stenosis, this imaging can estimate the vascular reserve and the risk of ischemia in order to adapt the therapeutic strategy. This method reveals the hemodynamic disorders in patients suffering from Alzheimer's disease or with arteriovenous malformations revealed by epilepsy. Functional MRI of the vasoreactivity also helps to better interpret the functional MRI activation in practice and in clinical research.
Collapse
Affiliation(s)
- A Krainik
- Clinique universitaire de neuroradiologie et IRM, CHU de Grenoble, CS 10217, 38043 Grenoble cedex, France; Inserm U836, université Joseph-Fourier, site santé, chemin Fortuné-Ferrini, 38706 La Tronche cedex, France; UMS IRMaGe, unité IRM 3T recherche, CHU de Grenoble, CS 10217, 38043 Grenoble cedex 9, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Regan RE, Duffin J, Fisher JA. Instability of the middle cerebral artery blood flow in response to CO2. PLoS One 2013; 8:e70751. [PMID: 23936248 PMCID: PMC3728315 DOI: 10.1371/journal.pone.0070751] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 06/26/2013] [Indexed: 01/09/2023] Open
Abstract
Background The middle cerebral artery supplies long end-artery branches to perfuse the deep white matter and shorter peripheral branches to perfuse cortical and subcortical tissues. A generalized vasodilatory stimulus such as carbon dioxide not only results in an increase in flow to these various tissue beds but also redistribution among them. We employed a fast step increase in carbon dioxide to detect the dynamics of the cerebral blood flow response. Methodology/Principal Findings The study was approved by the Research Ethics Board of the University Health Network at the University of Toronto. We used transcranial ultrasound to measure the time course of middle cerebral artery blood flow velocity in 28 healthy adults. Normoxic, isoxic step increases in arterial carbon dioxide tension of 10 mmHg from both hypocapnic and normocapnic baselines were produced using a new prospective targeting system that enabled a more rapid step change than has been previously achievable. In most of the 28 subjects the responses at both carbon dioxide ranges were characterised by more complex responses than a single exponential rise. Most responses were characterised by a fast initial response which then declined rapidly to a nadir, followed by a slower secondary response, with some showing oscillations before stabilising. Conclusions/Significance A rapid step increase in carbon dioxide tension is capable of inducing instability in the cerebral blood flow control system. These dynamic aspects of the cerebral blood flow responses to rapid changes in carbon dioxide must be taken into account when using transcranial blood flow velocity in a single artery segment to measure cerebrovascular reactivity.
Collapse
Affiliation(s)
- Rosemary E. Regan
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - James Duffin
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Anaesthesia, University of Toronto, and University Health Network, Toronto, Ontario, Canada
- * E-mail:
| | - Joseph A. Fisher
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Anaesthesia, University of Toronto, and University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
33
|
Gavlak JC, Stocks J, Laverty A, Fettes E, Bucks R, Sonnappa S, Cooper J, Grocott MP, Levett DZ, Martin DS, Imray CH, Kirkham FJ. The Young Everest Study: preliminary report of changes in sleep and cerebral blood flow velocity during slow ascent to altitude in unacclimatised children. Arch Dis Child 2013; 98:356-62. [PMID: 23471157 PMCID: PMC3625826 DOI: 10.1136/archdischild-2012-302512] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Cerebral blood flow velocity (CBFV) and sleep physiology in healthy children exposed to hypoxia and hypocarbia are under-researched. AIM To investigate associations between sleep variables, daytime end-tidal carbon dioxide (EtCO2) and CBFV in children during high-altitude ascent. METHODS Vital signs, overnight cardiorespiratory sleep studies and transcranial Doppler were undertaken in nine children (aged 6-13 years) at low altitude (130 m), and then at moderate (1300 m) and high (3500 m) altitude during a 5-day ascent. RESULTS Daytime (130 m: 98%; 3500 m: 90%, p=0.004) and mean (130 m: 97%, 1300 m: 94%, 3500: 87%, p=0.0005) and minimum (130 m: 92%, 1300 m: 84%, 3500 m: 79%, p=0.0005) overnight pulse oximetry oxyhaemoglobin saturation decreased, and the number of central apnoeas increased at altitude (130 m: 0.2/h, 1300 m: 1.2/h, 3500 m: 3.5/h, p=0.2), correlating inversely with EtCO2 (R(2) 130 m: 0.78; 3500 m: 0.45). Periodic breathing occurred for median (IQR) 0.0 (0; 0.3)% (130 m) and 0.2 (0; 1.2)% (3500 m) of total sleep time. At 3500 m compared with 130 m, there were increases in middle (MCA) (mean (SD) left 29.2 (42.3)%, p=0.053; right 9.9 (12)%, p=0.037) and anterior cerebral (ACA) (left 65.2 (69)%, p=0.024; right 109 (179)%; p=0.025) but not posterior or basilar CBFV. The right MCA CBFV increase at 3500 m was predicted by baseline CBFV and change in daytime SpO2 and EtCO2 at 3500 m (R(2) 0.92); these associations were not seen on the left. CONCLUSIONS This preliminary report suggests that sleep physiology is disturbed in children even with slow ascent to altitude. The regional variations in CBFV and their association with hypoxia and hypocapnia require further investigation.
Collapse
Affiliation(s)
- Johanna C Gavlak
- Department of Paediatric Respiratory Medicine, Great Ormond Street Hospital for Children NHS Trust, Walrus Ward Level 1, Morgan Stanley Clinical Building, Great Ormond Street, London WC1N 3JH, UK.
| | - Janet Stocks
- Portex Respiratory Unit, UCL Institute of Child Health, London, UK
| | - Aidan Laverty
- Department of Paediatric Respiratory Medicine, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Emma Fettes
- Department of Paediatric Respiratory Medicine, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Romola Bucks
- Department of Psychology, University of Western Australia, Perth, Australia
| | - Samatha Sonnappa
- Department of Paediatric Respiratory Medicine, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK,Portex Respiratory Unit, UCL Institute of Child Health, London, UK
| | - Janine Cooper
- Developmental Neuroscience Unit, UCL Institute of Child Health, London, UK
| | - Michael P Grocott
- Centre for Altitude Space and Extreme Environment Medicine, UCL Institute of Child Health, London, UK,Anaesthesia and Critical Care Research Unit, University Hospitals Southampton NHS Foundation Trust, Southampton, UK,Department of Clinical and Experimental Sciences, University of Southampton, Southampton, UK
| | - Denny Z Levett
- Centre for Altitude Space and Extreme Environment Medicine, UCL Institute of Child Health, London, UK
| | - Daniel S Martin
- Centre for Altitude Space and Extreme Environment Medicine, UCL Institute of Child Health, London, UK
| | - Christopher H Imray
- Department of Vascular Surgery, University Hospitals Coventry and Warwickshire NHS Trust, Warwick Medical School, Coventry, UK
| | - Fenella J Kirkham
- Department of Clinical and Experimental Sciences, University of Southampton, Southampton, UK,Neurosciences Units, UCL Institute of Child Health, London, UK,Department of Child Health, University Hospitals Southampton NHS Foundation Trust, Southampton, UK
| |
Collapse
|
34
|
Attyé A, Villien M, Tahon F, Warnking J, Detante O, Krainik A. Normalization of cerebral vasoreactivity using BOLD MRI after intravascular stenting. Hum Brain Mapp 2013; 35:1320-4. [PMID: 23426780 DOI: 10.1002/hbm.22255] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 11/14/2012] [Accepted: 12/17/2012] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND AND PURPOSE Intravascular angioplasty and stenting of intracranial arterial stenosis provided controversial results. Besides the expertise of the practitioners, the selection of the patients remains challenging. BOLD MRI of the cerebral vasoreactivity (BOLD MRI CVR) to hypercapnia provides reproducible maps of the entire brain of the vascular reserve, and could be helpful to assess the best therapeutic strategy. CASE HISTORY We report the case of a 63-year-old woman referred for a severe stenosis of the proximal portion of the left middle cerebral artery, revealed by a lenticulostriate and precentral infarction. Despite an aggressive medical treatment during 5 months, the occurrence of iterative transient ischemic attacks motivated intravascular stenting. Functional MRI of the vasoreactivity to hypercapnia using both Blood Oxygen Level Dependent (BOLD) and arterial spin labeling sequences showed normal basal perfusion and impaired vasoreactivity in the left middle cerebral artery territory. Three months after stenting, the BOLD MRI CVR showed vasoreactivity normalization. Since, the patient remains free of ischemic disorders one year after stenting. CONCLUSION BOLD MRI of the CVR to hypercapnia may be helpful to optimize the treatment of patients with intracranial arterial stenosis, and could be performed in future therapeutic trials.
Collapse
Affiliation(s)
- Arnaud Attyé
- Department of Neuroradiology and MRI, University Hospital of Grenoble-IFR1, Grenoble, France; Inserm, U836, Grenoble, France; Université Joseph Fourier, Grenoble Institute of Neurosciences UMR-S836, Grenoble, France
| | | | | | | | | | | |
Collapse
|
35
|
Zhang H, Wang X, Lin J, Sun Y, Huang Y, Yang T, Zheng S, Fan M, Zhang J. Reduced regional gray matter volume in patients with chronic obstructive pulmonary disease: a voxel-based morphometry study. AJNR Am J Neuroradiol 2013; 34:334-9. [PMID: 22859277 DOI: 10.3174/ajnr.a3235] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND PURPOSE Decreased oxygen supply may cause neuronal damage in the brains of patients with COPD, which is manifested by clinical symptoms such as neuropsychological deficits and mood disorders. The aim of the present study was to investigate brain gray matter change in COPD. MATERIALS AND METHODS Using voxel-based morphometry based on the high-resolution 3D T1-weighted MR images of GM volume, we investigated 25 stable patients with COPD and 25 matching healthy volunteers. A battery of neuropsychological tests was also performed. RESULTS Patients with COPD (versus controls) showed reduced GM volume in the frontal cortex (bilateral gyrus rectus, bilateral orbital and inferior triangular gyri, and left medial superior gyrus), right anterior insula, cingulate cortex (left anterior and middle gyri, right middle gyrus), right thalamus/pulvinar, right caudate, right putamen, right parahippocampus, and left amygdala. In COPD, in some of these regions, regional GM volume had positive correlations with arterial blood po(2), while in some regions, regional GM volume had negative correlations with disease duration. Patients with COPD (versus controls) had poorer performance in the Mini-Mental State Examination, Visual Reproduction, and Figure Memory tests. Moreover, the GM volume in the inferior triangular frontal cortex in patients with COPD was significantly correlated with the Picture Memory score. CONCLUSIONS Our findings suggest GM reductions in a number of brain regions in COPD, which were associated with disease severity and may underlie the pathophysiologic and psychological changes in patients with COPD.
Collapse
Affiliation(s)
- H Zhang
- Department of Physiology and Neurobiology, Medical College of Xiamen University, Xiamen 361005, China
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Balancing the Potential Risks and Benefits of Out-of-Hospital Intubation in Traumatic Brain Injury: The Intubation/Hyperventilation Effect. Ann Emerg Med 2012; 60:732-6. [DOI: 10.1016/j.annemergmed.2012.06.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 06/11/2012] [Accepted: 06/25/2012] [Indexed: 11/20/2022]
|
37
|
Xu F, Liu P, Pascual JM, Xiao G, Lu H. Effect of hypoxia and hyperoxia on cerebral blood flow, blood oxygenation, and oxidative metabolism. J Cereb Blood Flow Metab 2012; 32:1909-18. [PMID: 22739621 PMCID: PMC3463882 DOI: 10.1038/jcbfm.2012.93] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Characterizing the effect of oxygen (O(2)) modulation on the brain may provide a better understanding of several clinically relevant problems, including acute mountain sickness and hyperoxic therapy in patients with traumatic brain injury or ischemia. Quantifying the O(2) effects on brain metabolism is also critical when using this physiologic maneuver to calibrate functional magnetic resonance imaging (fMRI) signals. Although intuitively crucial, the question of whether the brain's metabolic rate depends on the amount of O(2) available has not been addressed in detail previously. This can be largely attributed to the scarcity and complexity of measurement techniques. Recently, we have developed an MR method that provides a noninvasive (devoid of exogenous agents), rapid (<5 minutes), and reliable (coefficient of variant, CoV <3%) measurement of the global cerebral metabolic rate of O(2) (CMRO(2)). In the present study, we evaluated metabolic and vascular responses to manipulation of the fraction of inspired O(2) (FiO(2)). Hypoxia with 14% FiO(2) was found to increase both CMRO(2) (5.0±2.0%, N=16, P=0.02) and cerebral blood flow (CBF) (9.8±2.3%, P<0.001). However, hyperoxia decreased CMRO(2) by 10.3±1.5% (P<0.001) and 16.9±2.7% (P<0.001) for FiO(2) of 50% and 98%, respectively. The CBF showed minimal changes with hyperoxia. Our results suggest that modulation of inspired O(2) alters brain metabolism in a dose-dependent manner.
Collapse
Affiliation(s)
- Feng Xu
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | | | |
Collapse
|
38
|
Khalili-Mahani N, Chang C, van Osch MJ, Veer IM, van Buchem MA, Dahan A, Beckmann CF, van Gerven JMA, Rombouts SARB. The impact of "physiological correction" on functional connectivity analysis of pharmacological resting state fMRI. Neuroimage 2012; 65:499-510. [PMID: 23022093 DOI: 10.1016/j.neuroimage.2012.09.044] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 09/14/2012] [Accepted: 09/19/2012] [Indexed: 10/27/2022] Open
Abstract
Growing interest in pharmacological resting state fMRI (RSfMRI) necessitates developing standardized and robust analytical approaches that are insensitive to spurious correlated physiological signals. However, in pharmacological experiments physiological variations constitute an important aspect of the pharmacodynamic/pharmacokinetic profile of drug action; therefore retrospective corrective methods that discard physiological signals as noise may not be suitable. Previously, we have shown that template-based dual regression analysis is a sensitive method for model-free and objective detection of drug-specific effects on functional brain connectivity. In the current study, the robustness of this standard approach to physiological variations in a placebo controlled, repeated measures pharmacological RSfMRI study of morphine and alcohol in 12 healthy young men is tested. The impact of physiology-related variations on statistical inferences has been studied by: 1) modeling average physiological rates in higher level group analysis; 2) Regressing out the instantaneous respiration variation (RV); 3) applying retrospective image correction (RETROICOR) in the preprocessing stage; and 4) performing combined RV and heart rate correction (RVHRCOR) by regressing out physiological pulses convolved with canonical respiratory and cardiac hemodynamic response functions. Results indicate regional sensitivity of the BOLD signal to physiological variations, especially in the vicinity of large vessels, plus certain brain structures that are reported to be involved in physiological regulation, such as posterior cingulate, precuneus, medial prefrontal and insular cortices, as well as the thalamus, cerebellum and the brainstem. The largest impact of "correction" on final statistical test outcomes resulted from including the average respiration frequency and heart rate in the higher-level group analysis. Overall, the template-based dual regression method seems robust against physical noise that is corrected by RV regression or RETROICOR. However, convolving the RV and HR with canonical hemodynamic response functions caused a notable change in the BOLD signal variance, and in resting state connectivity estimates. The impact of RVHRCOR on statistical tests was limited to elimination of both morphine and alcohol effects related to the somatosensory network that consists of insula and cingulate cortex-important structures for autonomic regulation. Although our data do not warrant speculations about neuronal or vascular origins of these effects, these observations raise caution about the implications of physiological 'noise' and the risks of introducing false positives (e.g. increased white matter connectivity) by using generalized physiological correction methods in pharmacological studies. The obvious sensitivity of the posterior part of the default mode network to different correction schemes, underlines the importance of controlling for physiological fluctuations in seed-based functional connectivity analyses.
Collapse
|
39
|
Shen Y, Ho YCL, Vidyasagar R, Balanos G, Golay X, Pu IM, Kauppinen RA. Gray matter nulled and vascular space occupancy dependent fMRI response to visual stimulation during hypoxic hypoxia. Neuroimage 2011; 59:3450-6. [PMID: 22079453 DOI: 10.1016/j.neuroimage.2011.10.097] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 09/06/2011] [Accepted: 10/26/2011] [Indexed: 11/16/2022] Open
Abstract
Two cerebral blood volume (CBV)-weighted fMRI techniques, gray matter nulled (GMN) and vascular space occupancy (VASO)-dependent techniques at spatial resolution of 2 × 2 × 5 mm(3), were compared in the study investigating functional responses in the human visual cortex to stimulation in normoxia (inspired O(2) = 21%) and mild hypoxic hypoxia (inspired O(2) = 12%). GMN and VASO signals and T(2)* were quantified in activated voxels. While the CBV-weighted signal changes in voxels activated by visual stimulation were similar in amplitude in both fMRI techniques in both oxygenation conditions, the number of activated voxels during hypoxic hypoxia was significantly reduced by 72 ± 22% in GMN fMRI and 66 ± 23% in VASO fMRI. T(2)* prolonged in GMN and VASO activated voxels in normoxia by 1.6 ± 0.5 ms and 1.7 ± 0.5 ms, respectively. In hypoxia, however, T(2)* shortened in GMN-activated voxels by 0.7 ± 0.6 ms (p < 0.001 relative to normoxia), but prolonged in VASO-activated ones by 1.1 ± 0.6 ms (p < 0.05 relative to normoxia). The data show that the hemodynamic responses to visual stimulation were not affected by hypoxic hypoxia, but T(2)* increases by both CBV-weighted fMRI techniques were smaller in activated voxels in hypoxia. The mechanisms influencing GMN fMRI signal in both oxygenation conditions were explored by simulating effects of the oxygen extraction fraction (OEF) and partial voluming with cerebral spinal fluid (CSF) and white matter in imaging voxels. It is concluded that while GMN fMRI data point to increased, rather than decreased OEF during visual stimulation in hypoxia, partial voluming by CSF is likely to affect the CBV quantification by GMN fMRI under the experimental conditions used.
Collapse
Affiliation(s)
- Yuji Shen
- Brain Research Imaging Centre, Division of Clinical Neurosciences, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK.
| | | | | | | | | | | | | |
Collapse
|
40
|
Beaudin AE, Brugniaux JV, Vöhringer M, Flewitt J, Green JD, Friedrich MG, Poulin MJ. Cerebral and myocardial blood flow responses to hypercapnia and hypoxia in humans. Am J Physiol Heart Circ Physiol 2011; 301:H1678-86. [DOI: 10.1152/ajpheart.00281.2011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In humans, cerebrovascular responses to alterations in arterial Pco2 and Po2 are well documented. However, few studies have investigated human coronary vascular responses to alterations in blood gases. This study investigated the extent to which the cerebral and coronary vasculatures differ in their responses to euoxic hypercapnia and isocapnic hypoxia in healthy volunteers. Participants ( n = 15) were tested at rest on two occasions. On the first visit, middle cerebral artery blood velocity ( V̄P) was assessed using transcranial Doppler ultrasound. On the second visit, coronary sinus blood flow (CSBF) was measured using cardiac MRI. For comparison with V̄P, CSBF was normalized to the rate pressure product [an index of myocardial oxygen consumption; normalized (n)CSBF]. Both testing sessions began with 5 min of euoxic [end-tidal Po2 (PetO2) = 88 Torr] isocapnia [end-tidal Pco2 (PetCO2) = +1 Torr above resting values]. PetO2 was next held at 88 Torr, and PetCO2 was increased to 40 and 45 Torr in 5-min increments. Participants were then returned to euoxic isocapnia for 5 min, after which PetO2 was decreased from 88 to 60, 52 and 45 Torr in 5-min decrements. Changes in V̄P and nCSBF were normalized to isocapnic euoxic conditions and indexed against PetCO2 and arterial oxyhemoglobin saturation. The V̄P gain for euoxic hypercapnia (%/Torr) was significantly higher than nCSBF ( P = 0.030). Conversely, the V̄P gain for isocapnic hypoxia (%/%desaturation) was not different from nCSBF ( P = 0.518). These findings demonstrate, compared with coronary circulation, that the cerebral circulation is more sensitive to hypercapnia but similarly sensitive to hypoxia.
Collapse
Affiliation(s)
| | - Julien V. Brugniaux
- Departments of 1Physiology and Pharmacology and
- Hotchkiss Brain Institute, and
| | | | | | - Jordin D. Green
- Stephenson Cardiac MR Centre,
- Libin Cardiovascular Institute of Alberta,
- Siemens Healthcare, Calgary, Canada
| | | | - Marc J. Poulin
- Departments of 1Physiology and Pharmacology and
- Clinical Neurosciences,
- Libin Cardiovascular Institute of Alberta,
- Hotchkiss Brain Institute, and
- Faculties of 6Medicine and
| |
Collapse
|
41
|
Xie S, Hui LH, Xiao JX, Zhang XD, Peng Q. Detecting misery perfusion in unilateral steno-occlusive disease of the internal carotid artery or middle cerebral artery by MR imaging. AJNR Am J Neuroradiol 2011; 32:1504-9. [PMID: 21700788 DOI: 10.3174/ajnr.a2523] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Elevated OEF is a surrogate for misery perfusion. Our aim was to detect misery perfusion in patients with unilateral steno-occlusive disease of the ICA or MCA by using T2*-based MR imaging and to determine the relationship between brain ischemia and OEF. MATERIALS AND METHODS Twenty-three patients with unilateral steno-occlusive disease of the ICA or MCA and 8 healthy volunteers were included in this study. Hemodynamic information was obtained in all subjects by MR imaging. Three regions of interest were placed in the anterior, middle, and posterior parts of the brain bilaterally to measure the OEF and CBF values. The OEFs of the regions of interest in the hemispheres ipsilateral and contralateral to the vascular lesions were compared. Brain regions with OEF greater than that in controls were determined as misery perfusion in patients. The association of vascular lesions, rCBF, and the presence of territory infarction with elevated OEF was investigated. RESULTS There was a statistically significant difference in OEF between the ipsilateral and contralateral hemispheres in the patients (t = 3.632, P = .001). Fourteen regions of interest with misery perfusion were determined in the ipsilateral hemispheres, while 3 regions with elevated OEFs were found in the contralateral hemispheres. In the ipsilateral hemispheres, decreased rCBF was associated with elevated OEF (r = -0.451, P < .001). Patients with territory infarction had more regions of interest with misery perfusion than patients without territory infarction (χ(2) = 3.889, P = .049). CONCLUSIONS By using the MR imaging technique, misery perfusion demonstrated as elevated OEF was detected in patients with severe atherosclerotic ICA or MCA disease. Identification of misery perfusion with MR imaging may be helpful in the evaluation of brain ischemia.
Collapse
Affiliation(s)
- S Xie
- Department of Radiology, Peking University First Hospital, Beijing, China
| | | | | | | | | |
Collapse
|
42
|
Willie CK, Colino FL, Bailey DM, Tzeng YC, Binsted G, Jones LW, Haykowsky MJ, Bellapart J, Ogoh S, Smith KJ, Smirl JD, Day TA, Lucas SJ, Eller LK, Ainslie PN. Utility of transcranial Doppler ultrasound for the integrative assessment of cerebrovascular function. J Neurosci Methods 2011; 196:221-37. [PMID: 21276818 DOI: 10.1016/j.jneumeth.2011.01.011] [Citation(s) in RCA: 406] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 01/05/2011] [Accepted: 01/06/2011] [Indexed: 01/05/2023]
Abstract
There is considerable utility in the use of transcranial Doppler ultrasound (TCD) to assess cerebrovascular function. The brain is unique in its high energy and oxygen demand but limited capacity for energy storage that necessitates an effective means of regional blood delivery. The relative low cost, ease-of-use, non-invasiveness, and excellent temporal resolution of TCD make it an ideal tool for the examination of cerebrovascular function in both research and clinical settings. TCD is an efficient tool to access blood velocities within the cerebral vessels, cerebral autoregulation, cerebrovascular reactivity to CO(2), and neurovascular coupling, in both physiological states and in pathological conditions such as stroke and head trauma. In this review, we provide: (1) an overview of TCD methodology with respect to other techniques; (2) a methodological synopsis of the cerebrovascular exam using TCD; (3) an overview of the physiological mechanisms involved in regulation of the cerebral blood flow; (4) the utility of TCD for assessment of cerebrovascular pathology; and (5) recommendations for the assessment of four critical and complimentary aspects of cerebrovascular function: intra-cranial blood flow velocity, cerebral autoregulation, cerebral reactivity, and neurovascular coupling. The integration of these regulatory mechanisms from an integrated systems perspective is discussed, and future research directions are explored.
Collapse
Affiliation(s)
- C K Willie
- Department of Human Kinetics, Faculty of Health and Social Development, University of British Columbia Okanagan, 3333 University Way, Kelowna, BC, Canada V1V 1V7.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Influence of indomethacin on the ventilatory and cerebrovascular responsiveness to hypoxia. Eur J Appl Physiol 2010; 111:601-10. [DOI: 10.1007/s00421-010-1679-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2010] [Indexed: 10/19/2022]
|
44
|
Ogoh S, Nakahara H, Ainslie PN, Miyamoto T. The effect of oxygen on dynamic cerebral autoregulation: critical role of hypocapnia. J Appl Physiol (1985) 2010; 108:538-43. [DOI: 10.1152/japplphysiol.01235.2009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypoxia is known to impair cerebral autoregulation (CA). Previous studies indicate that CA is profoundly affected by cerebrovascular tone, which is largely determined by the partial pressure of arterial O2 and CO2. However, hypoxic-induced hyperventilation via respiratory chemoreflex activation causes hypocapnia, which may influence CA independent of partial pressure of arterial O2. To identify the effect of O2 on dynamic cerebral blood flow regulation, we examined the influence of normoxia, isocapnia hyperoxia, hypoxia, and hypoxia with consequent hypocapnia on dynamic CA. We measured heart rate, blood pressure, ventilatory parameters, and middle cerebral artery blood velocity (transcranial Doppler). Dynamic CA was assessed ( n = 9) during each of four randomly assigned respiratory interventions: 1) normoxia (21% O2); 2) isocapnic hyperoxia (40% O2); 3) isocapnic hypoxia (14% O2); and 4) hypocapnic hypoxia (14% O2). During each condition, the rate of cerebral regulation (RoR), an established index of dynamic CA, was estimated during bilateral thigh cuff-induced transient hypotension. The RoR was unaltered during isocapnic hyperoxia. Isocapnic hypoxia attenuated the RoR (0.202 ± 0.003/s; 27%; P = 0.043), indicating impairment in dynamic CA. In contrast, hypocapnic hypoxia increased RoR (0.444 ± 0.069/s) from normoxia (0.311 ± 0.054/s; +55%; P = 0.041). These findings indicated that hypoxia disrupts dynamic CA, but hypocapnia augments the dynamic CA response. Because hypocapnia is a consequence of hypoxic-induced chemoreflex activation, it may provide a teleological means to effectively maintain dynamic CA in the face of prevailing arterial hypoxemia.
Collapse
Affiliation(s)
- Shigehiko Ogoh
- Department of Biomedical Engineering, Toyo University, Saitama; and
| | | | - Philip N. Ainslie
- Department of Human Kinetics, Faculty of Health and Social Development, University of British Columbia Okanagan, Kelowna, Canada; and
| | - Tadayoshi Miyamoto
- Morinomiya University of Medical Sciences, Osaka, Japan
- Department of Cardiovascular Dynamics, National Cardiovascular Center Research Institute, Osaka, Japan
| |
Collapse
|
45
|
Abstract
Overcorrection of hyponatremia is a medical emergency. Excessive correction usually results from the unexpected emergence of a water diuresis after resolution of the cause of water retention. The concurrent administration of desmopressin and 5% dextrose in water can be given to cautiously re-lower the serum sodium concentration when therapeutic limits have been exceeded. Nephrologists should be equally aggressive in correcting hyponatremia and in un-correcting it when their patients get too much of a good thing.
Collapse
|
46
|
Pollock JM, Tan H, Kraft RA, Whitlow CT, Burdette JH, Maldjian JA. Arterial spin-labeled MR perfusion imaging: clinical applications. Magn Reson Imaging Clin N Am 2009; 17:315-38. [PMID: 19406361 DOI: 10.1016/j.mric.2009.01.008] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Arterial spin labeling (ASL) imaging soon will be available as a routine clinical perfusion imaging sequence for a significant number of MR imaging scanners. The ASL perfusion technique offers information similar to that provided by conventional dynamic susceptibility sequences, but it does not require the use of an intravenous contrast agent, and the data can be quantified. The appearance of pathology is affected significantly by the ASL techniques used. Familiarity with the available sequence parameter options and the common appearances of pathology facilitates perfusion interpretation.
Collapse
Affiliation(s)
- Jeffrey M Pollock
- Department of Radiology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| | | | | | | | | | | |
Collapse
|
47
|
|
48
|
Ainslie PN, Duffin J. Integration of cerebrovascular CO2 reactivity and chemoreflex control of breathing: mechanisms of regulation, measurement, and interpretation. Am J Physiol Regul Integr Comp Physiol 2009; 296:R1473-95. [PMID: 19211719 DOI: 10.1152/ajpregu.91008.2008] [Citation(s) in RCA: 398] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cerebral blood flow (CBF) and its distribution are highly sensitive to changes in the partial pressure of arterial CO(2) (Pa(CO(2))). This physiological response, termed cerebrovascular CO(2) reactivity, is a vital homeostatic function that helps regulate and maintain central pH and, therefore, affects the respiratory central chemoreceptor stimulus. CBF increases with hypercapnia to wash out CO(2) from brain tissue, thereby attenuating the rise in central Pco(2), whereas hypocapnia causes cerebral vasoconstriction, which reduces CBF and attenuates the fall of brain tissue Pco(2). Cerebrovascular reactivity and ventilatory response to Pa(CO(2)) are therefore tightly linked, so that the regulation of CBF has an important role in stabilizing breathing during fluctuating levels of chemical stimuli. Indeed, recent reports indicate that cerebrovascular responsiveness to CO(2), primarily via its effects at the level of the central chemoreceptors, is an important determinant of eupneic and hypercapnic ventilatory responsiveness in otherwise healthy humans during wakefulness, sleep, and exercise and at high altitude. In particular, reductions in cerebrovascular responsiveness to CO(2) that provoke an increase in the gain of the chemoreflex control of breathing may underpin breathing instability during central sleep apnea in patients with congestive heart failure and on ascent to high altitude. In this review, we summarize the major factors that regulate CBF to emphasize the integrated mechanisms, in addition to Pa(CO(2)), that control CBF. We discuss in detail the assessment and interpretation of cerebrovascular reactivity to CO(2). Next, we provide a detailed update on the integration of the role of cerebrovascular CO(2) reactivity and CBF in regulation of chemoreflex control of breathing in health and disease. Finally, we describe the use of a newly developed steady-state modeling approach to examine the effects of changes in CBF on the chemoreflex control of breathing and suggest avenues for future research.
Collapse
Affiliation(s)
- Philip N Ainslie
- Department of Physiology, University of Otago, Dunedin, New Zealand.
| | | |
Collapse
|
49
|
Abstract
The topic of hypoxaemia after stroke was last reviewed in this journal in 2001. Since then a lot of new information on the subject has been published, and while some questions have been resolved, new problems have emerged. This article discusses new research in the light of what is already known and outlines areas of persisting uncertainty.
Collapse
|
50
|
Pollock JM, Deibler AR, Whitlow CT, Tan H, Kraft RA, Burdette JH, Maldjian JA. Hypercapnia-induced cerebral hyperperfusion: an underrecognized clinical entity. AJNR Am J Neuroradiol 2008; 30:378-85. [PMID: 18854443 DOI: 10.3174/ajnr.a1316] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE The incidence of cerebral hyperperfusion and hypoperfusion, respectively, resulting from hypercapnia and hypocapnia in hospitalized patients is unknown but is likely underrecognized by radiologists and clinicians without routine performance of quantitative perfusion imaging. Our purpose was to report the clinical and perfusion imaging findings in a series of patients confirmed to have hypercapnic cerebral hyperperfusion and hypocapnic hypoperfusion. MATERIALS AND METHODS Conventional cerebral MR imaging examination was supplemented with arterial spin-labeled (ASL) MR perfusion imaging in 45 patients during a 16-month period at a single institution. Patients presented with an indication of altered mental status, metastasis, or suspected stroke. Images were reviewed and correlated with arterial blood gas (ABG) analysis and clinical history. RESULTS Patients ranged in age from 1.5 to 85 years. No significant acute findings were identified on conventional MR imaging. Patients with hypercapnia showed global hyperperfusion on ASL cerebral blood flow (CBF) maps, respiratory acidosis on ABG, and diffuse air-space abnormalities on same-day chest radiographs. Regression analysis revealed a significant positive linear relationship between cerebral perfusion and the partial pressure of carbon dioxide (pCO(2); beta, 4.02; t, 11.03; P < .0005), such that rates of cerebral perfusion changed by 4.0 mL/100 g/min for each 1-mm Hg change in pCO(2). CONCLUSIONS With the inception of ASL as a routine perfusion imaging technique, hypercapnic-associated cerebral hyperperfusion will be recognized more frequently and may provide an alternative cause of unexplained neuropsychiatric symptoms in hospitalized patients. In a similar fashion, hypocapnia may account for a subset of patients with normal MR imaging examinations with poor ASL perfusion signal.
Collapse
Affiliation(s)
- J M Pollock
- Department of Radiology, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| | | | | | | | | | | | | |
Collapse
|