1
|
Krššák M, Lindeboom L, Schrauwen‐Hinderling V, Szczepaniak LS, Derave W, Lundbom J, Befroy D, Schick F, Machann J, Kreis R, Boesch C. Proton magnetic resonance spectroscopy in skeletal muscle: Experts' consensus recommendations. NMR IN BIOMEDICINE 2021; 34:e4266. [PMID: 32022964 PMCID: PMC8244035 DOI: 10.1002/nbm.4266] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/21/2019] [Accepted: 01/15/2020] [Indexed: 05/02/2023]
Abstract
1 H-MR spectroscopy of skeletal muscle provides insight into metabolism that is not available noninvasively by other methods. The recommendations given in this article are intended to guide those who have basic experience in general MRS to the special application of 1 H-MRS in skeletal muscle. The highly organized structure of skeletal muscle leads to effects that change spectral features far beyond simple peak heights, depending on the type and orientation of the muscle. Specific recommendations are given for the acquisition of three particular metabolites (intramyocellular lipids, carnosine and acetylcarnitine) and for preconditioning of experiments and instructions to study volunteers.
Collapse
Affiliation(s)
- Martin Krššák
- Division of Endocrinology and Metabolism, Department of Internal Medicine III & High Field MR Centre, Department of Biomedical Imaging and Image guided TherapyMedical University of ViennaViennaAustria
| | - Lucas Lindeboom
- Department of Radiology and Nuclear Medicine and Department of Nutrition and Movement ScienceMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Vera Schrauwen‐Hinderling
- Department of Radiology and Nuclear Medicine and Department of Nutrition and Movement ScienceMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Lidia S. Szczepaniak
- Biomedical Research Consulting in Magnetic Resonance SpectroscopyAlbuquerqueNew Mexico
| | - Wim Derave
- Department of Movement and Sports SciencesGhent UniversityGhentBelgium
| | - Jesper Lundbom
- Department of Diagnostics and TherapeuticsUniversity of HelsinkiHelsinkiFinland
| | | | - Fritz Schick
- Section on Experimental Radiology, Department of Diagnostic and Interventional RadiologyUniversity Hospital TübingenTübingenGermany
| | - Jürgen Machann
- Section on Experimental Radiology, Department of Diagnostic and Interventional RadiologyUniversity Hospital TübingenTübingenGermany
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of TübingenTübingenGermany
- German Center for Diabetes Research (DZD)TübingenGermany
| | - Roland Kreis
- Departments of Radiology and Biomedical ResearchUniversity and InselspitalBernSwitzerland
| | - Chris Boesch
- Departments of Radiology and Biomedical ResearchUniversity and InselspitalBernSwitzerland
| |
Collapse
|
2
|
Savage DB, Watson L, Carr K, Adams C, Brage S, Chatterjee KK, Hodson L, Boesch C, Kemp GJ, Sleigh A. Accumulation of saturated intramyocellular lipid is associated with insulin resistance. J Lipid Res 2019; 60:1323-1332. [PMID: 31048405 PMCID: PMC6602127 DOI: 10.1194/jlr.m091942] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/11/2019] [Indexed: 12/17/2022] Open
Abstract
Intramyocellular lipid (IMCL) accumulation has been linked to both insulin-resistant and insulin-sensitive (athletes) states. Biochemical analysis of intramuscular triglyceride composition is confounded by extramyocellular triglycerides in biopsy samples, and hence the specific composition of IMCLs is unknown in these states. 1H magnetic resonance spectroscopy (MRS) can be used to overcome this problem. Thus, we used a recently validated 1H MRS method to compare the compositional saturation index (CH2:CH3) and concentration independent of the composition (CH3) of IMCLs in the soleus and tibialis anterior muscles of 16 female insulin-resistant lipodystrophic subjects with that of age- and gender-matched athletes (n = 14) and healthy controls (n = 41). The IMCL CH2:CH3 ratio was significantly higher in both muscles of the lipodystrophic subjects compared with controls but was similar in athletes and controls. IMCL CH2:CH3 was dependent on the IMCL concentration in the controls and, after adjusting the compositional index for quantity (CH2:CH3adj), could distinguish lipodystrophics from athletes. This CH2:CH3adj marker had a stronger relationship with insulin resistance than IMCL concentration alone and was inversely related to VO2max The association of insulin resistance with the accumulation of saturated IMCLs is consistent with a potential pathogenic role for saturated fat and the reported benefits of exercise and diet in insulin-resistant states.
Collapse
Affiliation(s)
- David B Savage
- Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Laura Watson
- National Institute for Health Research/Wellcome Trust Clinical Research Facility, Cambridge University Hospitals NHS Foundation Trust Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Katie Carr
- National Institute for Health Research/Wellcome Trust Clinical Research Facility, Cambridge University Hospitals NHS Foundation Trust Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Claire Adams
- Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Soren Brage
- MRC Epidemiology Unit University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Krishna K Chatterjee
- Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, United Kingdom
- National Institute for Health Research/Wellcome Trust Clinical Research Facility, Cambridge University Hospitals NHS Foundation Trust Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Chris Boesch
- Department of Clinical Research and Radiology AMSM, University Bern, Bern, Switzerland
| | - Graham J Kemp
- Department of Musculoskeletal Biology University of Liverpool and MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Liverpool, United Kingdom
| | - Alison Sleigh
- Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, United Kingdom
- National Institute for Health Research/Wellcome Trust Clinical Research Facility, Cambridge University Hospitals NHS Foundation Trust Cambridge Biomedical Campus, Cambridge, United Kingdom
- Wolfson Brain Imaging Centre University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| |
Collapse
|
3
|
Zacharewicz E, Hesselink MKC, Schrauwen P. Exercise counteracts lipotoxicity by improving lipid turnover and lipid droplet quality. J Intern Med 2018; 284:505-518. [PMID: 29331050 DOI: 10.1111/joim.12729] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The incidence of obesity and metabolic disease, such as type 2 diabetes mellitus (T2D), is rising globally. Dietary lipid over supply leads to lipid accumulation at ectopic sites, such as skeletal muscle. Ectopic lipid storage is highly correlated with insulin resistance and T2D, likely due to a loss of metabolic flexibility - the capacity to switch between fat and glucose oxidation upon insulin stimulation - and cellular dysfunction because of lipotoxicity. However, muscle lipid levels are also elevated in endurance-trained athletes, presenting a paradoxical phenotype of increased intramuscular lipids along with high insulin sensitivity - the 'athletes' paradox'. This review focuses on recent human data to characterize intramuscular lipid species in order to elucidate some of the underlying mechanisms driving skeletal muscle lipotoxicity. There is evidence that lipotoxicity is characterized by an increase in bioactive lipid species, such as ceramide. The athletes' paradox supports the notion that regular physical exercise has health benefits that might originate from the alleviation of lipotoxicity. Indeed, exercise training alleviates intramuscular ceramide content in obese individuals without a necessary decrease in ectopic lipid storage. Furthermore, evidence shows that exercise training elevates markers of lipid droplet dynamics such as the PLIN proteins, and triglyceride lipases ATGL and HSL, as well as mitochondrial efficiency, potentially explaining the improved lipid turnover and a reduction in the accumulation of lipotoxic intermediates observed with the athelets' paradox.
Collapse
Affiliation(s)
- E Zacharewicz
- Department of Human Biology and Human Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - M K C Hesselink
- Department of Human Biology and Human Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - P Schrauwen
- Department of Human Biology and Human Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
4
|
The Flexibility of Ectopic Lipids. Int J Mol Sci 2016; 17:ijms17091554. [PMID: 27649157 PMCID: PMC5037826 DOI: 10.3390/ijms17091554] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 08/30/2016] [Accepted: 09/01/2016] [Indexed: 02/07/2023] Open
Abstract
In addition to the subcutaneous and the visceral fat tissue, lipids can also be stored in non-adipose tissue such as in hepatocytes (intrahepatocellular lipids; IHCL), skeletal (intramyocellular lipids; IMCL) or cardiac muscle cells (intracardiomyocellular lipids; ICCL). Ectopic lipids are flexible fuel stores that can be depleted by physical exercise and repleted by diet. They are related to obesity and insulin resistance. Quantification of IMCL was initially performed invasively, using muscle biopsies with biochemical and/or histological analysis. 1H-magnetic resonance spectroscopy (1H-MRS) is now a validated method that allows for not only quantifying IMCL non-invasively and repeatedly, but also assessing IHCL and ICCL. This review summarizes the current available knowledge on the flexibility of ectopic lipids. The available evidence suggests a complex interplay between quantitative and qualitative diet, fat availability (fat mass), insulin action, and physical exercise, all important factors that influence the flexibility of ectopic lipids. Furthermore, the time frame of the intervention on these parameters (short-term vs. long-term) appears to be critical. Consequently, standardization of physical activity and diet are critical when assessing ectopic lipids in predefined clinical situations.
Collapse
|
5
|
Popadic Gacesa J, Schick F, Machann J, Grujic N. Intramyocellular lipids and their dynamics assessed by 1 H magnetic resonance spectroscopy. Clin Physiol Funct Imaging 2016; 37:558-566. [PMID: 26865009 DOI: 10.1111/cpf.12346] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 12/26/2015] [Indexed: 12/15/2022]
Abstract
This report provides an overview on the present knowledge on intramyocellular lipids (IMCL) and their dynamics in the course of interventions with physical activity of variable type and intensity in different population groups, as accessible by examinations using non-invasive volume-selective 1 H magnetic resonance spectroscopy (1 H MRS). IMCL serve as energy source in skeletal muscle for fat oxidation in the mitochondria and became intensively studied after discovery of their relation with insulin sensitivity. While baseline levels of IMCL concentration have been shown to be mainly dependent on the metabolic status (insulin sensitivity), on the level of training and on fibre composition in the muscles, studies applying different physical activity protocols revealed the dynamic of their depletion and replenishment. From the findings in human studies, it can be concluded that IMCL levels are potentially useful markers for monitoring metabolic adaptation of skeletal muscle to sportive activities and training.
Collapse
Affiliation(s)
- J Popadic Gacesa
- Laboratory for Functional Diagnostics, Department of Physiology, Medical School, University of Novi Sad, Novi Sad, Serbia
| | - F Schick
- Section on Experimental Radiology, Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany
| | - J Machann
- Section on Experimental Radiology, Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany.,Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD), Tübingen, Germany
| | - N Grujic
- Laboratory for Functional Diagnostics, Department of Physiology, Medical School, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
6
|
Christ ER, Egger A, Allemann S, Buehler T, Kreis R, Boesch C. Effects of aerobic exercise on ectopic lipids in patients with growth hormone deficiency before and after growth hormone replacement therapy. Sci Rep 2016; 6:19310. [PMID: 26792091 PMCID: PMC4726290 DOI: 10.1038/srep19310] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 12/09/2015] [Indexed: 01/21/2023] Open
Abstract
Growth hormone replacement therapy (GHRT) increases exercise capacity and insulin resistance while it decreases fat mass in growth hormone-deficient patients (GHD). Ectopic lipids (intramyocellular (IMCL) and intrahepatocellular lipids (IHCL) are related to insulin resistance. The effect of GHRT on ectopic lipids is unknown. It is hypothesized that exercise-induced utilization of ectopic lipids is significantly decreased in GHD patients and normalized by GHRT. GHD (4 females, 6 males) and age/gender/waist-matched control subjects (CS) were studied. VO2max was assessed on a treadmill and insulin sensitivity determined by a two-step hyperinsulinaemic-euglycaemic clamp. Visceral (VAT) and subcutaneous (SAT) fat were quantified by MR-imaging. IHCL and IMCL were measured before and after a 2 h exercise at 50-60% of VO2max using MR-spectroscopy (∆IMCL, ∆IHCL). Identical investigations were performed after 6 months of GHRT. VO2max was similar in GHD and CS and significantly increased after GHRT; GHRT significantly decreased SAT and VAT. 2 h-exercise resulted in a decrease in IMCL (significant in CS and GHRT) and a significant increase in IHCL in CS and GHD pre and post GHRT. GHRT didn't significantly impact on ∆IMCL and ∆IHCL. We conclude that aerobic exercise affects ectopic lipids in patients and controls. GHRT increases exercise capacity without influencing ectopic lipids.
Collapse
Affiliation(s)
- Emanuel R Christ
- Division of Endocrinology, Diabetology and Clinical Nutrition, University Hospital of Bern, Inselspital, CH-3010 Bern, Switzerland
| | - Andrea Egger
- Division of Endocrinology, Diabetology and Clinical Nutrition, University Hospital of Bern, Inselspital, CH-3010 Bern, Switzerland.,Department of Internal Medicine, University Hospital of Basel, CH-4056 Basel, Switzerland
| | - Sabin Allemann
- Division of Endocrinology, Diabetology and Clinical Nutrition, University Hospital of Bern, Inselspital, CH-3010 Bern, Switzerland
| | - Tania Buehler
- Department of Clinical Research, Division of MR-Spectroscopy and Methodology, University of Bern, Inselspital, CH-3010 Bern, Switzerland
| | - Roland Kreis
- Department of Clinical Research, Division of MR-Spectroscopy and Methodology, University of Bern, Inselspital, CH-3010 Bern, Switzerland
| | - Chris Boesch
- Department of Clinical Research, Division of MR-Spectroscopy and Methodology, University of Bern, Inselspital, CH-3010 Bern, Switzerland
| |
Collapse
|
7
|
Janssens S, Jonkers RAM, Groen AK, Nicolay K, van Loon LJC, Prompers JJ. Effects of acute exercise on lipid content and dietary lipid uptake in liver and skeletal muscle of lean and diabetic rats. Am J Physiol Endocrinol Metab 2015; 309:E874-83. [PMID: 26419590 DOI: 10.1152/ajpendo.00292.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/26/2015] [Indexed: 12/24/2022]
Abstract
Insulin resistance is associated with ectopic lipid accumulation. Physical activity improves insulin sensitivity, but the impact of exercise on lipid handling in insulin-resistant tissues remains to be elucidated. The present study characterizes the effects of acute exercise on lipid content and dietary lipid partitioning in liver and skeletal muscle of lean and diabetic rats by use of magnetic resonance spectroscopy (MRS). After baseline measurements, rats were randomized to exercise or no-exercise groups. A subset of animals was subjected to MRS directly after 1 h of treadmill running for measurement of total intrahepatocellular lipid (IHCL) and intramyocellular lipid (IMCL) content (n=7 lean and diabetic rats). The other animals were administered 13C-labeled lipids orally after treadmill visit (with or without exercise) followed by MRS measurements after 4 and 24 h to determine the 13C enrichment of IHCL and IMCL (n=8 per group). Total IHCL and IMCL content were fivefold higher in diabetic vs. lean rats (P<0.001). Exercise did not significantly affect IHCL content but reduced IMCL by 25±7 and 33±4% in lean and diabetic rats (P<0.05), respectively. Uptake of dietary lipids in liver and muscle was 2.3-fold greater in diabetic vs. lean rats (P<0.05). Prior exercise did not significantly modulate dietary lipid uptake into muscle, but in liver of both lean and diabetic rats, lipid uptake was 44% reduced after acute exercise (P<0.05). In conclusion, IMCL but not IHCL represents a viable substrate source during exercise in both lean and diabetic rats, and exercise differentially affects dietary lipid uptake in muscle and liver.
Collapse
Affiliation(s)
- Sharon Janssens
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands; The Netherlands Consortium for Systems Biology, Den Haag, The Netherlands
| | - Richard A M Jonkers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Albert K Groen
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; and Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Klaas Nicolay
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Luc J C van Loon
- NUTRIM, School for Nutrition, Toxicology and Metabolism, Department of Human Movement Sciences, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Jeanine J Prompers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands;
| |
Collapse
|
8
|
Quantitative Skeletal Muscle MRI: Part 2, MR Spectroscopy and T2 Relaxation Time Mapping-Comparison Between Boys With Duchenne Muscular Dystrophy and Healthy Boys. AJR Am J Roentgenol 2015. [PMID: 26204310 DOI: 10.2214/ajr.14.13755] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE The purpose of this study is to validate the use of MR spectroscopy (MRS) in measuring muscular fat and to compare it with T2 maps in differentiating boys with Duchenne muscular dystrophy (DMD) from healthy boys. SUBJECTS AND METHODS Forty-two boys with DMD and 31 healthy boys were evaluated with MRI with (1)H-MRS and T2 maps. Grading of muscle fat and edema on conventional images, calculation of fat fractions ([fat / fat] + water) on MRS, and calculation of T2 fat values on T2 maps of the gluteus maximus and vastus lateralis muscles were performed. Group comparisons were made. The 95% reference interval (RI) of fat fraction for the control group was applied and compared with T2 map results. RESULTS Minimal fat on T1-weighted images was seen in 90.3% (gluteus maximus) and 71.0% (vastus lateralis) of healthy boys, versus 33.3% (gluteus maximus) and 52.4% (vastus lateralis) of boys with DMD. Muscle edema was seen in none of the healthy boys versus 52.4% (gluteus maximus) and 57.1% (vastus lateralis) of the boys with DMD. Fat fractions were higher in the DMD group (52.7%, gluteus maximus; 27.3%, vastus lateralis) than in the control group (12.8%, gluteus maximus; 13.7%, vastus lateralis) (p < 0.001). The 95% RI for gluteus maximus (38.7%) resulted in 61.9% sensitivity and 100% specificity for differentiating boys with DMD from healthy boys, whereas the value for vastus lateralis (17.8%) resulted in 76.2% sensitivity and 100% specificity; both had lower accuracy than did T2 maps (100% sensitivity and specificity). There was a positive correlation between T2 fat values and fat fractions (p < 0.0001). CONCLUSION In differentiation of the two groups, T2 maps were more accurate than MRS. Fat fractions can underestimate the actual amount of fat because of coexisting muscle edema in DMD.
Collapse
|
9
|
Li Y, Lee S, Langleite T, Norheim F, Pourteymour S, Jensen J, Stadheim HK, Storås TH, Davanger S, Gulseth HL, Birkeland KI, Drevon CA, Holen T. Subsarcolemmal lipid droplet responses to a combined endurance and strength exercise intervention. Physiol Rep 2014; 2:2/11/e12187. [PMID: 25413318 PMCID: PMC4255802 DOI: 10.14814/phy2.12187] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Muscle lipid stores and insulin sensitivity have a recognized association although the mechanism remains unclear. We investigated how a 12‐week supervised combined endurance and strength exercise intervention influenced muscle lipid stores in sedentary overweight dysglycemic subjects and normal weight control subjects (n = 18). Muscle lipid stores were measured by magnetic resonance spectroscopy (MRS), electron microscopy (EM) point counting, and direct EM lipid droplet measurements of subsarcolemmal (SS) and intramyofibrillar (IMF) regions, and indirectly, by deep sequencing and real‐time PCR of mRNA of lipid droplet‐associated proteins. Insulin sensitivity and VO2max increased significantly in both groups after 12 weeks of training. Muscle lipid stores were reduced according to MRS at baseline before and after the intervention, whereas EM point counting showed no change in LD stores post exercise, indicating a reduction in muscle adipocytes. Large‐scale EM quantification of LD parameters of the subsarcolemmal LD population demonstrated reductions in LD density and LD diameters. Lipid droplet volume in the subsarcolemmal LD population was reduced by ~80%, in both groups, while IMF LD volume was unchanged. Interestingly, the lipid droplet diameter (n = 10 958) distribution was skewed, with a lack of small diameter lipid droplets (smaller than ~200 nm), both in the SS and IMF regions. Our results show that the SS LD lipid store was sensitive to training, whereas the dominant IMF LD lipid store was not. Thus, net muscle lipid stores can be an insufficient measure for the effects of training. We have investigated the muscle storage lipids responses to exercise, finding that subsarcolemmal lipid droplets are reduced 80%. Interestingly, we find that the lipid droplet diameter distribution was skewed, with a marked lack of lipid droplets smaller than 200 nm.
Collapse
Affiliation(s)
- Yuchuan Li
- Department of Nutrition, Institute of Basic Medical Science, University of Oslo, Oslo, Norway
| | - Sindre Lee
- Department of Nutrition, Institute of Basic Medical Science, University of Oslo, Oslo, Norway
| | - Torgrim Langleite
- Department of Nutrition, Institute of Basic Medical Science, University of Oslo, Oslo, Norway Department of Endocrinology, Morbid Obesity and Preventive Medicine, Faculty of Medicine, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Frode Norheim
- Department of Nutrition, Institute of Basic Medical Science, University of Oslo, Oslo, Norway
| | - Shirin Pourteymour
- Department of Nutrition, Institute of Basic Medical Science, University of Oslo, Oslo, Norway
| | | | | | | | - Svend Davanger
- Department of Anatomy, Institute of Basic Medical Science, University of Oslo, Oslo, Norway
| | - Hanne L Gulseth
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Faculty of Medicine, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Kåre I Birkeland
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Faculty of Medicine, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Christian A Drevon
- Department of Nutrition, Institute of Basic Medical Science, University of Oslo, Oslo, Norway
| | - Torgeir Holen
- Department of Nutrition, Institute of Basic Medical Science, University of Oslo, Oslo, Norway
| |
Collapse
|
10
|
Egger A, Kreis R, Allemann S, Stettler C, Diem P, Buehler T, Boesch C, Christ ER. The effect of aerobic exercise on intrahepatocellular and intramyocellular lipids in healthy subjects. PLoS One 2013; 8:e70865. [PMID: 23967125 PMCID: PMC3743875 DOI: 10.1371/journal.pone.0070865] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 06/21/2013] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Intrahepatocellular (IHCL) and intramyocellular (IMCL) lipids are ectopic lipid stores. Aerobic exercise results in IMCL utilization in subjects over a broad range of exercise capacity. IMCL and IHCL have been related to impaired insulin action at the skeletal muscle and hepatic level, respectively. The acute effect of aerobic exercise on IHCL is unknown. Possible regulatory factors include exercise capacity, insulin sensitivity and fat availability subcutaneous and visceral fat mass). AIM To concomitantly investigate the effect of aerobic exercise on IHCL and IMCL in healthy subjects, using Magnetic Resonance spectroscopy. METHODS Normal weight, healthy subjects were included. Visit 1 consisted of a determination of VO2max on a treadmill. Visit 2 comprised the assessment of hepatic and peripheral insulin sensitivity by a two-step hyperinsulinaemic euglycaemic clamp. At Visit 3, subcutaneous and visceral fat mass were assessed by whole body MRI, IHCL and IMCL before and after a 2-hours aerobic exercise (50% of VO(2max)) using ¹H-MR-spectroscopy. RESULTS Eighteen volunteers (12M, 6F) were enrolled in the study (age, 37.6±3.2 years, mean±SEM; VO(2max), 53.4±2.9 mL/kg/min). Two hours aerobic exercise resulted in a significant decrease in IMCL (-22.6±3.3, % from baseline) and increase in IHCL (+34.9±7.6, % from baseline). There was no significant correlation between the exercise-induced changes in IMCL and IHCL and exercise capacity, subcutaneous and visceral fat mass and hepatic or peripheral insulin sensitivity. CONCLUSIONS IMCL and IHCL are flexible ectopic lipid stores that are acutely influenced by physical exercise, albeit in different directions. TRIAL REGISTRATION ClinicalTrial.gov NCT00491582.
Collapse
Affiliation(s)
- Andrea Egger
- Division of Endocrinology, Diabetology and Clinical Nutrition, University Hospital of Bern, Inselspital, Bern, Switzerland
| | - Roland Kreis
- Department of Clinical Research, Magnetic Resonance Spectroscopy and Methodology, University of Bern, Bern, Switzerland
| | - Sabin Allemann
- Division of Endocrinology, Diabetology and Clinical Nutrition, University Hospital of Bern, Inselspital, Bern, Switzerland
| | - Christoph Stettler
- Division of Endocrinology, Diabetology and Clinical Nutrition, University Hospital of Bern, Inselspital, Bern, Switzerland
| | - Peter Diem
- Division of Endocrinology, Diabetology and Clinical Nutrition, University Hospital of Bern, Inselspital, Bern, Switzerland
| | - Tania Buehler
- Department of Clinical Research, Magnetic Resonance Spectroscopy and Methodology, University of Bern, Bern, Switzerland
| | - Chris Boesch
- Department of Clinical Research, Magnetic Resonance Spectroscopy and Methodology, University of Bern, Bern, Switzerland
| | - Emanuel R. Christ
- Division of Endocrinology, Diabetology and Clinical Nutrition, University Hospital of Bern, Inselspital, Bern, Switzerland
- * E-mail:
| |
Collapse
|
11
|
Rouffet D, Villars C, Fissoune R, Sappey-Marinier D, Laville M, Ibarrola D, Sothier M, Monnet MF, Ovize M, Bonnefoy M, Boesch C, Canet-Soulas E. Intramyocellular lipid variations in active older men: relationship with aerobic fitness. Acta Physiol (Oxf) 2013; 207:516-23. [PMID: 23217190 DOI: 10.1111/apha.12045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/31/2012] [Accepted: 11/26/2012] [Indexed: 01/07/2023]
Abstract
AIMS Intramyocellular lipid (IMCL) variations in older men are poorly explored. In young adults, IMCL can be influenced by both diet and exercise interventions; this flexibility is related to aerobic fitness. We evaluated in active older adults the influence of maximal aerobic capacity on short-term diet and exercise-induced variations in IMCL stores. METHODS Intramyocellular lipids were measured by (1) H magnetic resonance spectroscopy ((1) H-MRS) after a 3-day fat depletion-replenishment diet (IMCL(FDR) ) and immediately after a 2-h exercise at 50% VO(2) max (IMCL(FDR) (_) (EX) ). To further explore diet influence, the protocol was repeated after a high-fat diet (HF), with both pre- and post-exercise measurements (IMCL(HF) and IMCL(HF) (_) (EX) ). RESULTS In active older men (69.8 ± 5.2 years), IMCL(FDR) was lowered by exercise (IMCL(FDR) = 3.45 ± 1.52 vs. IMCL(FDR) (_) (EX) = 2.74 ± 1.15 mmol kg(-1) wet weight, P < 0.05), and exercise-induced variations were correlated to the initial store (P < 0.05, r = -0.72). IMCL(FDR) was linked with aerobic fitness (P < 0.05, r = 0.76), when adjusted by fat mass. IMCL(HF) was lower than IMCL(FDR) (P < 0.05), decreased after exercise (P < 0.05) and varied also as a function of initial store (P < 0.05, r = -0.89), but without link with aerobic fitness. Finally, diet-induced IMCL store variations were positively linked to aerobic fitness (P < 0.05, r = 0.89). CONCLUSION Variations of the IMCL stores in physically active older adults appear related to aerobic fitness, with similarly fast adaptation to short-term interventions combining diet and exercise as young active adults.
Collapse
Affiliation(s)
| | | | - R. Fissoune
- University Lyon 1, CarMeN, U1060 INSERM, INSA Lyon, INRA; Lyon; France
| | | | - M. Laville
- CRNH RA and CENS, University Lyon 1; Lyon; France
| | | | - M. Sothier
- CRNH RA and CENS, University Lyon 1; Lyon; France
| | - M.-F. Monnet
- Department of Cardiology; Lyon EST Hospital; Hospices Civils of Lyon; Lyon; France
| | - M. Ovize
- Department of Cardiology; Lyon EST Hospital; Hospices Civils of Lyon; Lyon; France
| | - M. Bonnefoy
- Department of Geriatric Medicine; Lyon Sud Hospital; Hospices Civils of Lyon; Lyon; France
| | - C. Boesch
- Department of Clinical Research; University of Bern; Bern; Switzerland
| | | |
Collapse
|
12
|
Pola A, Sadananthan SA, Yaligar J, Nagarajan V, Han W, Kuchel PW, Velan SS. Skeletal muscle lipid metabolism studied by advanced magnetic resonance spectroscopy. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2012; 65:66-76. [PMID: 22781315 DOI: 10.1016/j.pnmrs.2012.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 02/08/2012] [Indexed: 06/01/2023]
Affiliation(s)
- Arunima Pola
- Laboratory of Molecular Imaging, Singapore Bioimaging Consortium, A*STAR, Singapore
| | | | | | | | | | | | | |
Collapse
|
13
|
Hu HH, Börnert P, Hernando D, Kellman P, Ma J, Reeder S, Sirlin C. ISMRM workshop on fat-water separation: insights, applications and progress in MRI. Magn Reson Med 2012; 68:378-88. [PMID: 22693111 PMCID: PMC3575097 DOI: 10.1002/mrm.24369] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 05/14/2012] [Accepted: 05/16/2012] [Indexed: 12/12/2022]
Abstract
Approximately 130 attendees convened on February 19-22, 2012 for the first ISMRM-sponsored workshop on water-fat imaging. The motivation to host this meeting was driven by the increasing number of research publications on this topic over the past decade. The scientific program included an historical perspective and a discussion of the clinical relevance of water-fat MRI, a technical description of multiecho pulse sequences, a review of data acquisition and reconstruction algorithms, a summary of the confounding factors that influence quantitative fat measurements and the importance of MRI-based biomarkers, a description of applications in the heart, liver, pancreas, abdomen, spine, pelvis, and muscles, an overview of the implications of fat in diabetes and obesity, a discussion on MR spectroscopy, a review of childhood obesity, the efficacy of lifestyle interventional studies, and the role of brown adipose tissue, and an outlook on federal funding opportunities from the National Institutes of Health.
Collapse
Affiliation(s)
- Houchun Harry Hu
- Departments of Radiology and Electrical Engineering, Children's Hospital Los Angeles, University of Southern California, Los Angeles, California 90027, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
Zhou D, Guo Z. Intramyocellular lipids versus intramyocellular triglycerides. Magn Reson Med 2011; 67:297-8; author reply 299. [PMID: 22180024 DOI: 10.1002/mrm.23255] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 09/06/2011] [Accepted: 09/26/2011] [Indexed: 11/07/2022]
|
15
|
Morning to evening changes of intramyocellular lipid content in dependence on nutrition and physical activity during one single day: a volume selective 1H-MRS study. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2011; 24:29-33. [PMID: 21213017 DOI: 10.1007/s10334-010-0233-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 10/13/2010] [Accepted: 11/17/2010] [Indexed: 01/22/2023]
Abstract
OBJECT Intramyocellular lipids (IMCL) were shown to be metabolically highly active. In order to get insight into short-term regulation of IMCL and to reveal related problems with standardization in metabolic studies using the common signal ratio IMCL/Cr3, relative concentration changes from morning to evening in the same day were examined under four different nutritional and exercise conditions. MATERIAL AND METHODS Twelve healthy male volunteers participated in an interventional program, comprising single days of fasting (F), low-caloric/low-fat diet (LC), or high-caloric/high-fat diet (HC), combined with low physical activity. A forth day course consisted of unchanged nutrition and extensive exercise (EX). (1)H-MRS of tibialis anterior (TA) and soleus muscle (SOL) was performed on a 3 T whole-body imager in the early morning and 12 h later after the intervention applying a single voxel STEAM technique. RESULTS Interventions resulted in a clear reduction of IMCL/ Cr3 after F (IMCL/Cr3(TA): -28.1 ± 4.9%, IMCL/Cr3(SOL): -21.0 ± 3.7%) and EX (IMCL/Cr3(TA): -33.9 ± 4.9%, IMCL/Cr3(SOL): -18.3 ± 3.9%). LC led to slightly decreased IMCL/Cr3 ratio in the evening (IMCL/Cr3(TA): -8.7 ± 4.4%, IMCL/Cr3(SOL): -7.3 ± 2.7%), whereas negligible changes were detectable after HC (IMCL/Cr3(TA): + 0.6 ± 2.3%, IMCL/Cr3L(SOL): -0.2 ± 1.3%). CONCLUSION Only high-caloric/high-fat diet combined with low physical activity led to nearly unchanged IMCL/Cr3 ratios in the evening when compared to corresponding measurements in the morning. In contrast, low-caloric/low-fat diet and especially fasting led to increasingly depleted IMCL stores in the evening. This depletion seems to be further emphasized by increased physical activity. An interesting aspect is the marked reduction of IMCL/Cr3 after 12 h of fasting, since a dramatic increase in IMCL has been reported after starvation over several days. Results of this study imply that highly standardized conditions regarding diet and physical activity are necessary for a proper assessment of IMCL data in metabolic studies.
Collapse
|