1
|
Wang Z, Luo G, Li Y, Cao P. Using a deep learning prior for accelerating hyperpolarized 13C MRSI on synthetic cancer datasets. Magn Reson Med 2024; 92:945-955. [PMID: 38440832 DOI: 10.1002/mrm.30053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 03/06/2024]
Abstract
PURPOSE We aimed to incorporate a deep learning prior with k-space data fidelity for accelerating hyperpolarized carbon-13 MRSI, demonstrated on synthetic cancer datasets. METHODS A two-site exchange model, derived from the Bloch equation of MR signal evolution, was firstly used in simulating training and testing data, that is, synthetic phantom datasets. Five singular maps generated from each simulated dataset were used to train a deep learning prior, which was then employed with the fidelity term to reconstruct the undersampled MRI k-space data. The proposed method was assessed on synthetic human brain tumor images (N = 33), prostate cancer images (N = 72), and mouse tumor images (N = 58) for three undersampling factors and 2.5% additive Gaussian noise. Furthermore, varied levels of Gaussian noise with SDs of 2.5%, 5%, and 10% were added on synthetic prostate cancer data, and corresponding reconstruction results were evaluated. RESULTS For quantitative evaluation, peak SNRs were approximately 32 dB, and the accuracy was generally improved for 5 to 8 dB compared with those from compressed sensing with L1-norm regularization or total variation regularization. Reasonable normalized RMS error were obtained. Our method also worked robustly against noise, even on a data with noise SD of 10%. CONCLUSION The proposed singular value decomposition + iterative deep learning model could be considered as a general framework that extended the application of deep learning MRI reconstruction to metabolic imaging. The morphology of tumors and metabolic images could be measured robustly in six times acceleration using our method.
Collapse
Affiliation(s)
- Zuojun Wang
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Guanxiong Luo
- Institute for Diagnostic and Interventional Radiology, University Medical Center Göttingen, Göttingen, Germany
| | - Ye Li
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology of Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Peng Cao
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong, People's Republic of China
| |
Collapse
|
2
|
Larson PEZ, Bernard JML, Bankson JA, Bøgh N, Bok RA, Chen AP, Cunningham CH, Gordon J, Hövener JB, Laustsen C, Mayer D, McLean MA, Schilling F, Slater J, Vanderheyden JL, von Morze C, Vigneron DB, Xu D. Current methods for hyperpolarized [1- 13C]pyruvate MRI human studies. Magn Reson Med 2024; 91:2204-2228. [PMID: 38441968 PMCID: PMC10997462 DOI: 10.1002/mrm.29875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/12/2023] [Accepted: 09/06/2023] [Indexed: 03/07/2024]
Abstract
MRI with hyperpolarized (HP) 13C agents, also known as HP 13C MRI, can measure processes such as localized metabolism that is altered in numerous cancers, liver, heart, kidney diseases, and more. It has been translated into human studies during the past 10 years, with recent rapid growth in studies largely based on increasing availability of HP agent preparation methods suitable for use in humans. This paper aims to capture the current successful practices for HP MRI human studies with [1-13C]pyruvate-by far the most commonly used agent, which sits at a key metabolic junction in glycolysis. The paper is divided into four major topic areas: (1) HP 13C-pyruvate preparation; (2) MRI system setup and calibrations; (3) data acquisition and image reconstruction; and (4) data analysis and quantification. In each area, we identified the key components for a successful study, summarized both published studies and current practices, and discuss evidence gaps, strengths, and limitations. This paper is the output of the "HP 13C MRI Consensus Group" as well as the ISMRM Hyperpolarized Media MR and Hyperpolarized Methods and Equipment study groups. It further aims to provide a comprehensive reference for future consensus, building as the field continues to advance human studies with this metabolic imaging modality.
Collapse
Affiliation(s)
- Peder EZ Larson
- Department of Radiology and Biomedical Imaging, University
of California, San Francisco, CA 94143, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering,
University of California, San Francisco and University of California, Berkeley, CA
94143, USA
| | - Jenna ML Bernard
- Department of Radiology and Biomedical Imaging, University
of California, San Francisco, CA 94143, USA
| | - James A Bankson
- Department of Imaging Physics, MD Anderson Medical Center,
Houston, TX, USA
| | - Nikolaj Bøgh
- The MR Research Center, Department of Clinical Medicine,
Aarhus University, Aarhus, Denmark
| | - Robert A Bok
- Department of Radiology and Biomedical Imaging, University
of California, San Francisco, CA 94143, USA
| | | | - Charles H Cunningham
- Physical Sciences, Sunnybrook Research Institute, Toronto,
Ontario, Canada
- Department of Medical Biophysics, University of Toronto,
Toronto, Ontario, Canada
| | - Jeremy Gordon
- Department of Radiology and Biomedical Imaging, University
of California, San Francisco, CA 94143, USA
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North
Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University
Medical Center Schleswig-Holstein (UKSH), Kiel University, Am Botanischen Garten 14,
24118, Kiel, Germany
| | - Christoffer Laustsen
- The MR Research Center, Department of Clinical Medicine,
Aarhus University, Aarhus, Denmark
| | - Dirk Mayer
- Department of Diagnostic Radiology and Nuclear Medicine,
University of Maryland School of Medicine, Baltimore, MD, USA
- Greenebaum Cancer Center, University of Maryland School
of Medicine, Baltimore, MD, USA
| | - Mary A McLean
- Department of Radiology, University of Cambridge,
Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of
Cambridge, Li Ka Shing Center, Cambridge, United Kingdom
| | - Franz Schilling
- Department of Nuclear Medicine, School of Medicine,
Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich,
Germany
| | - James Slater
- Department of Radiology and Biomedical Imaging, University
of California, San Francisco, CA 94143, USA
| | | | | | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University
of California, San Francisco, CA 94143, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering,
University of California, San Francisco and University of California, Berkeley, CA
94143, USA
| | - Duan Xu
- Department of Radiology and Biomedical Imaging, University
of California, San Francisco, CA 94143, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering,
University of California, San Francisco and University of California, Berkeley, CA
94143, USA
| | | |
Collapse
|
3
|
Zaidi M, Ma J, Thomas BP, Peña S, Harrison CE, Chen J, Lin SH, Derner KA, Baxter JD, Liticker J, Malloy CR, Bartnik-Olson B, Park JM. Functional activation of pyruvate dehydrogenase in human brain using hyperpolarized [1- 13 C]pyruvate. Magn Reson Med 2024; 91:1822-1833. [PMID: 38265104 PMCID: PMC10950523 DOI: 10.1002/mrm.30015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/25/2024]
Abstract
PURPOSE Pyruvate, produced from either glucose, glycogen, or lactate, is the dominant precursor of cerebral oxidative metabolism. Pyruvate dehydrogenase (PDH) flux is a direct measure of cerebral mitochondrial function and metabolism. Detection of [13 C]bicarbonate in the brain from hyperpolarized [1-13 C]pyruvate using carbon-13 (13 C) MRI provides a unique opportunity for assessing PDH flux in vivo. This study is to assess changes in cerebral PDH flux in response to visual stimuli using in vivo 13 C MRS with hyperpolarized [1-13 C]pyruvate. METHODS From seven sedentary adults in good general health, time-resolved [13 C]bicarbonate production was measured in the brain using 90° flip angles with minimal perturbation of its precursors, [1-13 C]pyruvate and [1-13 C]lactate, to test the hypothesis that the appearance of [13 C]bicarbonate signals in the brain reflects the metabolic changes associated with neuronal activation. With a separate group of healthy participants (n = 3), the likelihood of the bolus-injected [1-13 C]pyruvate being converted to [1-13 C]lactate prior to decarboxylation was investigated by measuring [13 C]bicarbonate production with and without [1-13 C]lactate saturation. RESULTS In the course of visual stimulation, the measured [13 C]bicarbonate signal normalized to the total 13 C signal in the visual cortex increased by 17.1% ± 15.9% (p = 0.017), whereas no significant change was detected in [1-13 C]lactate. Proton BOLD fMRI confirmed the regional activation in the visual cortex with the stimuli. Lactate saturation decreased bicarbonate-to-pyruvate ratio by 44.4% ± 9.3% (p < 0.01). CONCLUSION We demonstrated the utility of 13 C MRS with hyperpolarized [1-13 C]pyruvate for assessing the activation of cerebral PDH flux via the detection of [13 C]bicarbonate production.
Collapse
Affiliation(s)
- Maheen Zaidi
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
| | - Junjie Ma
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
- GE Precision Healthcare, Jersey City, New Jersey, USA 07302
| | - Binu P. Thomas
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
| | - Salvador Peña
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
| | - Crystal E. Harrison
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
| | - Jun Chen
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
| | - Sung-Han Lin
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
| | - Kelley A. Derner
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
| | - Jeannie D. Baxter
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
| | - Jeff Liticker
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
| | - Craig R. Malloy
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
| | - Brenda Bartnik-Olson
- Department of Radiology, Loma Linda University, Loma Linda, California, USA 92354
| | - Jae Mo Park
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
- Department of Biomedical Engineering, The University of Texas Southwestern Medical Center, Dallas, Texas, USA 75390
| |
Collapse
|
4
|
Zhu M, Jhajharia A, Josan S, Park JM, Yen YF, Pfefferbaum A, Hurd RE, Spielman DM, Mayer D. Investigating the origin of the 13 C lactate signal in the anesthetized healthy rat brain in vivo after hyperpolarized [1- 13 C]pyruvate injection. NMR IN BIOMEDICINE 2024; 37:e5073. [PMID: 37990800 PMCID: PMC11184633 DOI: 10.1002/nbm.5073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/23/2023]
Abstract
The goal of this study was to investigate the origin of brain lactate (Lac) signal in the healthy anesthetized rat after injection of hyperpolarized (HP) [1-13 C]pyruvate (Pyr). Dynamic two-dimensional spiral chemical shift imaging with flow-sensitizing gradients revealed reduction in both vascular and brain Pyr, while no significant dependence on the level of flow suppression was detected for Lac. These results support the hypothesis that the HP metabolites predominantly reside in different compartments in the brain (i.e., Pyr in the blood and Lac in the parenchyma). Data from high-resolution metabolic imaging of [1-13 C]Pyr further demonstrated that Lac detected in the brain was not from contributions of vascular signal attributable to partial volume effects. Additionally, metabolite distributions and kinetics measured with dynamic imaging after injection of HP [1-13 C]Lac were similar to Pyr data when Pyr was used as the substrate. These data do not support the hypothesis that Lac observed in the brain after Pyr injection was generated in other organs and then transported across the blood-brain barrier (BBB). Together, the presented results provide further evidence that even in healthy anesthetized rats, the transport of HP Pyr across the BBB is sufficiently fast to permit detection of its metabolic conversion to Lac within the brain.
Collapse
Affiliation(s)
- Minjie Zhu
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Aditya Jhajharia
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sonal Josan
- Digital Health, Siemens Healthineers, Erlangen, Germany
| | - Jae Mo Park
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biomedical Engineering, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yi-Fen Yen
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Adolf Pfefferbaum
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Ralph E. Hurd
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel M. Spielman
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Dirk Mayer
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| |
Collapse
|
5
|
Larson PE, Bernard JM, Bankson JA, Bøgh N, Bok RA, Chen AP, Cunningham CH, Gordon J, Hövener JB, Laustsen C, Mayer D, McLean MA, Schilling F, Slater J, Vanderheyden JL, von Morze C, Vigneron DB, Xu D, Group THCMC. Current Methods for Hyperpolarized [1-13C]pyruvate MRI Human Studies. ARXIV 2023:arXiv:2309.04040v2. [PMID: 37731660 PMCID: PMC10508833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
MRI with hyperpolarized (HP) 13C agents, also known as HP 13C MRI, can measure processes such as localized metabolism that is altered in numerous cancers, liver, heart, kidney diseases, and more. It has been translated into human studies during the past 10 years, with recent rapid growth in studies largely based on increasing availability of hyperpolarized agent preparation methods suitable for use in humans. This paper aims to capture the current successful practices for HP MRI human studies with [1-13C]pyruvate - by far the most commonly used agent, which sits at a key metabolic junction in glycolysis. The paper is divided into four major topic areas: (1) HP 13C-pyruvate preparation, (2) MRI system setup and calibrations, (3) data acquisition and image reconstruction, and (4) data analysis and quantification. In each area, we identified the key components for a successful study, summarized both published studies and current practices, and discuss evidence gaps, strengths, and limitations. This paper is the output of the HP 13C MRI Consensus Group as well as the ISMRM Hyperpolarized Media MR and Hyperpolarized Methods & Equipment study groups. It further aims to provide a comprehensive reference for future consensus building as the field continues to advance human studies with this metabolic imaging modality.
Collapse
|
6
|
Sejersen S, Rasmussen CW, Bøgh N, Kjaergaard U, Hansen ESS, Schulte RF, Laustsen C. Considering whole-body metabolism in hyperpolarized MRI through 13 C breath analysis-An alternative way to quantification and normalization? Magn Reson Med 2023; 90:664-672. [PMID: 37094025 DOI: 10.1002/mrm.29669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/12/2023] [Accepted: 03/27/2023] [Indexed: 04/26/2023]
Abstract
PURPOSE Hyperpolarized [1-13 C]pyruvate MRI is an emerging clinical tool for metabolic imaging. It has the potential for absolute quantitative metabolic imaging. However, the method itself is not quantitative, limiting comparison of images across both time and between individuals. Here, we propose a simple signal normalization to the whole-body oxidative metabolism to overcome this limitation. THEORY AND METHODS A simple extension of the model-free ratiometric analysis of hyperpolarized [1-13 C]pyruvate MRI is presented, using the expired 13 CO2 in breath for normalization. The proposed framework was investigated in two porcine cohorts (N = 11) subjected to local renal hypoperfusion defects and subsequent [1-13 C]pyruvate MRI. A breath sample was taken before the [1-13 C]pyruvate injection and 5 min after. The raw MR signal from both the healthy and intervened kidney in the two cohorts was normalized using the 13 CO2 in the expired air. RESULTS 13 CO2 content in the expired air was significantly different between the two cohorts. Normalization to this reduced the coefficients of variance in the aerobic metabolic sensitive pathways by 25% for the alanine/pyruvate ratio, and numerical changes were observed in the bicarbonate/pyruvate ratio. The lactate/pyruvate ratio was largely unaltered (<2%). CONCLUSION Our results indicate that normalizing the hyperpolarized 13 C-signal ratios by the 13 CO2 content in expired air can reduce variation as well as improve specificity of the method by normalizing the metabolic readout to the overall metabolic status of the individual. The method is a simple and cheap extension to the hyperpolarized 13 C exam.
Collapse
Affiliation(s)
- Steffen Sejersen
- The MR Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Camilla W Rasmussen
- The MR Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Nikolaj Bøgh
- The MR Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Uffe Kjaergaard
- The MR Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Esben S S Hansen
- The MR Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Christoffer Laustsen
- The MR Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
7
|
Ma J, Pinho MC, Harrison CE, Chen J, Sun C, Hackett EP, Liticker J, Ratnakar J, Reed GD, Chen AP, Sherry AD, Malloy CR, Wright SM, Madden CJ, Park JM. Dynamic 13 C MR spectroscopy as an alternative to imaging for assessing cerebral metabolism using hyperpolarized pyruvate in humans. Magn Reson Med 2022; 87:1136-1149. [PMID: 34687086 PMCID: PMC8776582 DOI: 10.1002/mrm.29049] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/01/2021] [Accepted: 09/29/2021] [Indexed: 11/10/2022]
Abstract
PURPOSE This study is to investigate time-resolved 13 C MR spectroscopy (MRS) as an alternative to imaging for assessing pyruvate metabolism using hyperpolarized (HP) [1-13 C]pyruvate in the human brain. METHODS Time-resolved 13 C spectra were acquired from four axial brain slices of healthy human participants (n = 4) after a bolus injection of HP [1-13 C]pyruvate. 13 C MRS with low flip-angle excitations and a multichannel 13 C/1 H dual-frequency radiofrequency (RF) coil were exploited for reliable and unperturbed assessment of HP pyruvate metabolism. Slice-wise areas under the curve (AUCs) of 13 C-metabolites were measured and kinetic analysis was performed to estimate the production rates of lactate and HCO3- . Linear regression analysis between brain volumes and HP signals was performed. Region-focused pyruvate metabolism was estimated using coil-wise 13 C reconstruction. Reproducibility of HP pyruvate exams was presented by performing two consecutive injections with a 45-minutes interval. RESULTS [1-13 C]Lactate relative to the total 13 C signal (tC) was 0.21-0.24 in all slices. [13 C] HCO3- /tC was 0.065-0.091. Apparent conversion rate constants from pyruvate to lactate and HCO3- were calculated as 0.014-0.018 s-1 and 0.0043-0.0056 s-1 , respectively. Pyruvate/tC and lactate/tC were in moderate linear relationships with fractional gray matter volume within each slice. White matter presented poor linear regression fit with HP signals, and moderate correlations of the fractional cerebrospinal fluid volume with pyruvate/tC and lactate/tC were measured. Measured HP signals were comparable between two consecutive exams with HP [1-13 C]pyruvate. CONCLUSIONS Dynamic MRS in combination with multichannel RF coils is an affordable and reliable alternative to imaging methods in investigating cerebral metabolism using HP [1-13 C]pyruvate.
Collapse
Affiliation(s)
- Junjie Ma
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Marco C. Pinho
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Crystal E. Harrison
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jun Chen
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chenhao Sun
- Department of Electrical and Computer Engineering, Texas A & M, College Station, TX, USA
| | - Edward P. Hackett
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeff Liticker
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - James Ratnakar
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | | - A. Dean Sherry
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Biochemistry and Chemical Biology, University of Texas Dallas, Richardson, TX, USA
| | - Craig R. Malloy
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Steven M. Wright
- Department of Electrical and Computer Engineering, Texas A & M, College Station, TX, USA
| | - Christopher J. Madden
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jae Mo Park
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Electrical and Computer Engineering, University of Texas Dallas, Richardson, TX, USA,Correspondence to: Jae Mo Park, Ph.D., 5323 Harry Hines Blvd. Dallas, Texas 75390-8568, , Tel: +1-214-645-7206, Fax: +1-214-645-2744
| |
Collapse
|
8
|
Bogner W, Otazo R, Henning A. Accelerated MR spectroscopic imaging-a review of current and emerging techniques. NMR IN BIOMEDICINE 2021; 34:e4314. [PMID: 32399974 PMCID: PMC8244067 DOI: 10.1002/nbm.4314] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/24/2020] [Accepted: 03/30/2020] [Indexed: 05/14/2023]
Abstract
Over more than 30 years in vivo MR spectroscopic imaging (MRSI) has undergone an enormous evolution from theoretical concepts in the early 1980s to the robust imaging technique that it is today. The development of both fast and efficient sampling and reconstruction techniques has played a fundamental role in this process. State-of-the-art MRSI has grown from a slow purely phase-encoded acquisition technique to a method that today combines the benefits of different acceleration techniques. These include shortening of repetition times, spatial-spectral encoding, undersampling of k-space and time domain, and use of spatial-spectral prior knowledge in the reconstruction. In this way in vivo MRSI has considerably advanced in terms of spatial coverage, spatial resolution, acquisition speed, artifact suppression, number of detectable metabolites and quantification precision. Acceleration not only has been the enabling factor in high-resolution whole-brain 1 H-MRSI, but today is also common in non-proton MRSI (31 P, 2 H and 13 C) and applied in many different organs. In this process, MRSI techniques had to constantly adapt, but have also benefitted from the significant increase of magnetic field strength boosting the signal-to-noise ratio along with high gradient fidelity and high-density receive arrays. In combination with recent trends in image reconstruction and much improved computation power, these advances led to a number of novel developments with respect to MRSI acceleration. Today MRSI allows for non-invasive and non-ionizing mapping of the spatial distribution of various metabolites' tissue concentrations in animals or humans, is applied for clinical diagnostics and has been established as an important tool for neuro-scientific and metabolism research. This review highlights the developments of the last five years and puts them into the context of earlier MRSI acceleration techniques. In addition to 1 H-MRSI it also includes other relevant nuclei and is not limited to certain body regions or specific applications.
Collapse
Affiliation(s)
- Wolfgang Bogner
- High‐Field MR Center, Department of Biomedical Imaging and Image‐Guided TherapyMedical University of ViennaViennaAustria
| | - Ricardo Otazo
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew York, New YorkUSA
| | - Anke Henning
- Max Planck Institute for Biological CyberneticsTübingenGermany
- Advanced Imaging Research Center, UT Southwestern Medical CenterDallasTexasUSA
| |
Collapse
|
9
|
Laustsen C, von Morze C, Reed GD. Hyperpolarized Carbon ( 13C) MRI of the Kidney: Experimental Protocol. Methods Mol Biol 2021; 2216:481-493. [PMID: 33476019 PMCID: PMC9703202 DOI: 10.1007/978-1-0716-0978-1_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Alterations in renal metabolism are associated with both physiological and pathophysiologic events. The existing noninvasive analytic tools including medical imaging have limited capability for investigating these processes, which potentially limits current understanding of kidney disease and the precision of its clinical diagnosis. Hyperpolarized 13C MRI is a new medical imaging modality that can capture changes in the metabolic processing of certain rapidly metabolized substrates, as well as changes in kidney function. Here we describe experimental protocols for renal metabolic [1-13C]pyruvate and functional 13C-urea imaging step-by-step. These methods and protocols are useful for investigating renal blood flow and function as well as the renal metabolic status of rodents in vivo under various experimental (patho)physiological conditions.This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This experimental protocol is complemented by two separate chapters describing the basic concept and data analysis.
Collapse
Affiliation(s)
- Christoffer Laustsen
- The MR Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Cornelius von Morze
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO, USA
| | | |
Collapse
|
10
|
Hackett EP, Pinho MC, Harrison CE, Reed GD, Liticker J, Raza J, Hall RG, Malloy CR, Barshikar S, Madden CJ, Park JM. Imaging Acute Metabolic Changes in Patients with Mild Traumatic Brain Injury Using Hyperpolarized [1- 13C]Pyruvate. iScience 2020; 23:101885. [PMID: 33344923 PMCID: PMC7736977 DOI: 10.1016/j.isci.2020.101885] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/25/2020] [Accepted: 11/25/2020] [Indexed: 01/13/2023] Open
Abstract
Traumatic brain injury (TBI) involves complex secondary injury processes following the primary injury. The secondary injury is often associated with rapid metabolic shifts and impaired brain function immediately after the initial tissue damage. Magnetic resonance spectroscopic imaging (MRSI) coupled with hyperpolarization of 13C-labeled substrates provides a unique opportunity to map the metabolic changes in the brain after traumatic injury in real-time without invasive procedures. In this report, we investigated two patients with acute mild TBI (Glasgow coma scale 15) but no anatomical brain injury or hemorrhage. Patients were imaged with hyperpolarized [1-13C]pyruvate MRSI 1 or 6 days after head trauma. Both patients showed significantly reduced bicarbonate (HCO3–) production, and one showed hyperintense lactate production at the injured sites. This study reports the feasibility of imaging altered metabolism using hyperpolarized pyruvate in patients with TBI, demonstrating the translatability and sensitivity of the technology to cerebral metabolic changes after mild TBI. Clinical translation of hyperpolarized pyruvate to TBI was demonstrated Patients with mild TBI were imaged with hyperpolarized [1-13C]pyruvate Altered lactate and HCO3– production in the brain nearest the site of trauma
Collapse
Affiliation(s)
- Edward P Hackett
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Marco C Pinho
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Crystal E Harrison
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Galen D Reed
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,GE Healthcare, Dallas, TX 75390, USA
| | - Jeff Liticker
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jaffar Raza
- Department of Pharmacy Practice, The Texas Tech University Health Sciences Center, Dallas, TX 75216, USA
| | - Ronald G Hall
- Department of Pharmacy Practice, The Texas Tech University Health Sciences Center, Dallas, TX 75216, USA
| | - Craig R Malloy
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Surendra Barshikar
- Department of Physical Medicine & Rehabilitation, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Christopher J Madden
- Department of Neurological Surgery, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jae Mo Park
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Electrical and Computer Engineering, The University of Texas at Dallas, Richardson TX 75080, USA
| |
Collapse
|
11
|
Deh K, Granlund KL, Eskandari R, Kim N, Mamakhanyan A, Keshari KR. Dynamic volumetric hyperpolarized 13 C imaging with multi-echo EPI. Magn Reson Med 2020; 85:978-986. [PMID: 32820566 DOI: 10.1002/mrm.28466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/07/2020] [Accepted: 07/15/2020] [Indexed: 11/10/2022]
Abstract
PURPOSE To generate dynamic, volumetric maps of hyperpolarized [1-13 C]pyruvate and its metabolic products in vivo. METHODS Maps of chemical species were generated with iterative least squares (IDEAL) reconstruction from multiecho echo-planar imaging (EPI) of phantoms of thermally polarized 13 C-labeled chemicals and mice injected with hyperpolarized [1-13 C]pyruvate on a preclinical 3T scanner. The quality of the IDEAL decomposition of single-shot and multishot phantom images was evaluated using quantitative results from a simple pulse-and-acquire sequence as the gold standard. Time course and area-under-the-curve plots were created to analyze the distribution of metabolites in vivo. RESULTS Improved separation of chemical species by IDEAL, evaluated by the amount of residual signal measured for chemicals not present in the phantoms, was observed as the number of EPI shots was increased from one to four. Dynamic three-dimensional metabolite maps of [1-13 C]pyruvate,[1-13 C]pyruvatehydrate, [1-13 C]lactate, [1-13 C]bicarbonate, and [1-13 C]alanine generated by IDEAL from interleaved multishot multiecho EPI of live mice were used to construct time course and area-under-the-curve graphs for the heart, kidneys, and liver, which showed good agreement with previously published results. CONCLUSIONS IDEAL decomposition of multishot multiecho 13C EPI images is a simple, yet robust method for generating high-quality dynamic volumetric maps of hyperpolarized [1-13 C]pyruvate and its products in vivo and has potential applications for the assessment of multiorgan metabolic phenomena.
Collapse
Affiliation(s)
- Kofi Deh
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Kristin L Granlund
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Roozbeh Eskandari
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Nathaniel Kim
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Arsen Mamakhanyan
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Kayvan R Keshari
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
12
|
Autry AW, Gordon JW, Chen HY, LaFontaine M, Bok R, Van Criekinge M, Slater JB, Carvajal L, Villanueva-Meyer JE, Chang SM, Clarke JL, Lupo JM, Xu D, Larson PEZ, Vigneron DB, Li Y. Characterization of serial hyperpolarized 13C metabolic imaging in patients with glioma. NEUROIMAGE-CLINICAL 2020; 27:102323. [PMID: 32623139 PMCID: PMC7334458 DOI: 10.1016/j.nicl.2020.102323] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/15/2020] [Accepted: 06/21/2020] [Indexed: 01/07/2023]
Abstract
Serial HP 13C MRI was evaluated for data consistency and abnormal metabolism. Metabolism of [1-13C]pyruvate to lactate and bicarbonate was kinetically modeled. Conversion rates within NAWM were consistent in healthy volunteer and patient scans Progressed tumor lesions showed higher relative conversion rates to [1-13C]lactate. Globally elevated rate constants were observed with anti-angiogenic treatment.
Background Hyperpolarized carbon-13 (HP-13C) MRI is a non-invasive imaging technique for probing brain metabolism, which may improve clinical cancer surveillance. This work aimed to characterize the consistency of serial HP-13C imaging in patients undergoing treatment for brain tumors and determine whether there is evidence of aberrant metabolism in the tumor lesion compared to normal-appearing tissue. Methods Serial dynamic HP [1-13C]pyruvate MRI was performed on 3 healthy volunteers (6 total examinations) and 5 patients (21 total examinations) with diffuse infiltrating glioma during their course of treatment, using a frequency-selective echo-planar imaging (EPI) sequence. HP-13C imaging at routine clinical timepoints overlapped treatment, including radiotherapy (RT), temozolomide (TMZ) chemotherapy, and anti-angiogenic/investigational agents. Apparent rate constants for [1-13C]pyruvate conversion to [1-13C]lactate (kPL) and [13C]bicarbonate (kPB) were simultaneously quantified based on an inputless kinetic model within normal-appearing white matter (NAWM) and anatomic lesions defined from 1H MRI. The inter/intra-subject consistency of kPL-NAWM and kPB-NAWM was measured in terms of the coefficient of variation (CV). Results When excluding scans following anti-angiogenic therapy, patient values of kPL-NAWM and kPB-NAWM were 0.020 s−1 ± 23.8% and 0.0058 s−1 ± 27.7% (mean ± CV) across 17 HP-13C MRIs, with intra-patient serial kPL-NAWM/kPB-NAWM CVs ranging 6.8–16.6%/10.6–40.7%. In 4/5 patients, these values (0.018 s−1 ± 13.4% and 0.0058 s−1 ± 24.4%; n = 13) were more similar to those from healthy volunteers (0.018 s−1 ± 5.0% and 0.0043 s−1 ± 12.6%; n = 6) (mean ± CV). The anti-angiogenic agent bevacizumab was associated with global elevations in apparent rate constants, with maximum kPL-NAWM in 2 patients reaching 0.047 ± 0.001 and 0.047 ± 0.003 s−1 (±model error). In 3 patients with progressive disease, anatomic lesions showed elevated kPL relative to kPL-NAWM of 0.024 ± 0.001 s−1 (±model error) in the absence of gadolinium enhancement, and 0.032 ± 0.008, 0.040 ± 0.003 and 0.041 ± 0.009 s−1 with gadolinium enhancement. The lesion kPB in patients was reduced to unquantifiable values compared to kPB-NAWM. Conclusion Serial measures of HP [1-13C]pyruvate metabolism displayed consistency in the NAWM of healthy volunteers and patients. Both kPL and kPB were globally elevated following bevacizumab treatment, while progressive disease demonstrated elevated kPL in gadolinium-enhancing and non-enhancing lesions. Larger prospective studies with homogeneous patient populations are planned to evaluate metabolic changes following treatment.
Collapse
Affiliation(s)
- Adam W Autry
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, USA
| | - Jeremy W Gordon
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, USA
| | - Hsin-Yu Chen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, USA
| | - Marisa LaFontaine
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, USA
| | - Robert Bok
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, USA
| | - Mark Van Criekinge
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, USA
| | - James B Slater
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, USA
| | - Lucas Carvajal
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, USA
| | - Javier E Villanueva-Meyer
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, USA
| | - Susan M Chang
- Department of Neurological Surgery, University of California San Francisco, San Francisco, USA
| | - Jennifer L Clarke
- Department of Neurological Surgery, University of California San Francisco, San Francisco, USA
| | - Janine M Lupo
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, USA
| | - Duan Xu
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, USA
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, USA
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, USA; Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, USA
| | - Yan Li
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, USA.
| |
Collapse
|
13
|
Mariager CØ, Hansen ESS, Bech SK, Munk A, Kjaergaard U, Lyhne MD, Søberg K, Nielsen PF, Ringgaard S, Laustsen C. Graft assessment of the ex vivo perfused porcine kidney using hyperpolarized [1- 13 C]pyruvate. Magn Reson Med 2020; 84:2645-2655. [PMID: 32557782 DOI: 10.1002/mrm.28363] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 05/07/2020] [Accepted: 05/21/2020] [Indexed: 01/06/2023]
Abstract
PURPOSE Normothermic perfusion is an emerging strategy for donor organ preservation and therapy, incited by the high worldwide demand for organs for transplantation. Hyperpolarized MRI and MRS using [1-13 C]pyruvate and other 13 C-labeled molecules pose a novel way to acquire highly detailed information about metabolism and function in a noninvasive manner. This study investigates the use of this methodology as a means to study and monitor the state of ex vivo perfused porcine kidneys, in the context of kidney graft preservation research. METHODS Kidneys from four 40-kg Danish domestic pigs were perfused ex vivo with whole blood under normothermic conditions, using an MR-compatible perfusion system. Kidneys were investigated using 1 H MRI as well as hyperpolarized [1-13 C]pyruvate MRI and MRS. Using the acquired anatomical, functional and metabolic data, the state of the ex vivo perfused porcine kidney could be quantified. RESULTS Four kidneys were successfully perfused for 120 minutes and verified using a DCE perfusion experiment. Renal metabolism was examined using hyperpolarized [1-13 C]pyruvate MRI and MRS, and displayed an apparent reduction in pyruvate turnover compared with the usual case in vivo. Perfusion and blood gas parameters were in the normal ex vivo range. CONCLUSION This study demonstrates the ability to monitor ex vivo graft metabolism and function in a large animal model, resembling human renal physiology. The ability of hyperpolarized MRI and MRS to directly compare the metabolic state of an organ in vivo and ex vivo, in combination with the simple MR implementation of normothermic perfusion, renders this methodology a powerful future tool for graft preservation research.
Collapse
Affiliation(s)
| | | | - Sabrina Kahina Bech
- Department of Clinical Medicine, The MR Research Centre, Aarhus University, Aarhus, Denmark
| | - Anders Munk
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Uffe Kjaergaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mads Dam Lyhne
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Karsten Søberg
- Department of Anesthesia and Intensive Care, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Fast Nielsen
- Department of Anesthesia and Intensive Care, Aarhus University Hospital, Aarhus, Denmark
| | - Steffen Ringgaard
- Department of Clinical Medicine, The MR Research Centre, Aarhus University, Aarhus, Denmark
| | - Christoffer Laustsen
- Department of Clinical Medicine, The MR Research Centre, Aarhus University, Aarhus, Denmark
| |
Collapse
|
14
|
Harris T, Uppala S, Lev-Cohain N, Adler-Levy Y, Shaul D, Nardi-Schreiber A, Sapir G, Azar A, Gamliel A, Sosna J, Gomori JM, Katz-Brull R. Hyperpolarized product selective saturating-excitations for determination of changes in metabolic reaction rates in real-time. NMR IN BIOMEDICINE 2020; 33:e4189. [PMID: 31793111 DOI: 10.1002/nbm.4189] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 08/04/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
Investigation of hyperpolarized substrate metabolism has been showing utility in real-time determination of in-cell and in vivo enzymatic activities. Intracellular reaction rates may vary during the course of a measurement, even on the very short time scales of visibility on hyperpolarized MR, due to many factors such as the availability of the substrate and co-factors in the intracellular space. Despite this potential variation, the kinetic analysis of hyperpolarized signals typically assumes that the same rate constant (and in many cases, the same rate) applies throughout the course of the reaction as observed via the build-up and decay of the hyperpolarized signals. We demonstrate here an acquisition approach that can null the need for such an assumption and enable the detection of instantaneous changes in the rate of the reaction during an ex vivo hyperpolarized investigation, (i.e. in the course of the decay of one hyperpolarized substrate dose administered to a viable tissue sample ex vivo). This approach utilizes hyperpolarized product selective saturating-excitation pulses. Similar pulses have been previously utilized in vivo for spectroscopic imaging. However, we show here favorable consequences to kinetic rate determinations in the preparations used. We implement this acquisition strategy for studies on perfused tissue slices and develop a theory that explains why this particular approach enables the determination of changes in enzymatic rates that are monitored via the chemical conversions of hyperpolarized substrates. Real-time changes in intracellular reaction rates are demonstrated in perfused brain, liver, and xenograft breast cancer tissue slices and provide another potential differentiation parameter for tissue characterization.
Collapse
Affiliation(s)
- Talia Harris
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Sivaranjan Uppala
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Naama Lev-Cohain
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Yael Adler-Levy
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - David Shaul
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Atara Nardi-Schreiber
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Gal Sapir
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Assad Azar
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Ayelet Gamliel
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Jacob Sosna
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - J Moshe Gomori
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Rachel Katz-Brull
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| |
Collapse
|
15
|
Singh M, Josan S, Zhu M, Jhajharia A, Mayer D. Dynamic metabolic imaging of copolarized [2- 13 C]pyruvate and [1,4- 13 C 2 ]fumarate using 3D-spiral CSI with alternate spectral band excitation. Magn Reson Med 2019; 81:2869-2877. [PMID: 30687948 DOI: 10.1002/mrm.27639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/08/2018] [Accepted: 11/26/2018] [Indexed: 12/18/2022]
Abstract
PURPOSE Developing a method for simultaneous metabolic imaging of copolarized [2-13 C]pyruvate and [1,4-13 C2 ]fumarate without chemical shift displacement artifacts that also permits different excitation flip angles for substrates and their metabolic products. METHODS The proposed pulse sequence consists of 2 frequency-selective radiofrequency pulses to alternatingly excite 2 spectral sub-bands each one followed by a fast 3D spiral CSI (3D-spCSI) readout. Spectrally selective radiofrequency pulses were designed to excite differential flip angles on substrates and products in each spectral sub-band. Number of signal averages analysis was used to determine a spectral width suitable to resolve the metabolites of interest in each of the sub-bands. RESULTS Phantom experiments verified the copolarization strategy and radiofrequency pulse design following differential flip angle used in our method. The signal behavior of the resonances in each sub-band was unaffected by the excitation of the respective alternate frequency band. Dynamic 3D 13 C CSI data demonstrated the ability of the sequence to image metabolites like pyruvate-hydrate, lactate, alanine, fumarate, and malate simultaneously and detect metabolic changes in the liver in a rat model of carbon tetrachloride-induced liver damage. CONCLUSION The presented method allows the dynamic CSI of a mixture of [2-13 C]pyruvate and [1,4-13 C2 ]fumarate without chemical shift displacement artifacts while also permitting the use of different flip angles for substrate and product signals. The method is potentially useful for combined in vivo imaging of inflammation and cell necrosis.
Collapse
Affiliation(s)
- Maninder Singh
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, Maryland
| | | | - Minjie Zhu
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, Maryland
| | - Aditya Jhajharia
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, Maryland
| | - Dirk Mayer
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, Maryland
| |
Collapse
|
16
|
Larson PEZ, Chen HY, Gordon JW, Korn N, Maidens J, Arcak M, Tang S, Criekinge M, Carvajal L, Mammoli D, Bok R, Aggarwal R, Ferrone M, Slater JB, Nelson SJ, Kurhanewicz J, Vigneron DB. Investigation of analysis methods for hyperpolarized 13C-pyruvate metabolic MRI in prostate cancer patients. NMR IN BIOMEDICINE 2018. [PMID: 30230646 DOI: 10.1002/nbm.3997e3997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
MRI using hyperpolarized (HP) carbon-13 pyruvate is being investigated in clinical trials to provide non-invasive measurements of metabolism for cancer and cardiac imaging. In this project, we applied HP [1-13 C]pyruvate dynamic MRI in prostate cancer to measure the conversion from pyruvate to lactate, which is expected to increase in aggressive cancers. The goal of this work was to develop and test analysis methods for improved quantification of this metabolic conversion. In this work, we compared specialized kinetic modeling methods to estimate the pyruvate-to-lactate conversion rate, kPL , as well as the lactate-to-pyruvate area-under-curve (AUC) ratio. The kinetic modeling included an "inputless" method requiring no assumptions regarding the input function, as well as a method incorporating bolus characteristics in the fitting. These were first evaluated with simulated data designed to match human prostate data, where we examined the expected sensitivity of metabolism quantification to variations in kPL , signal-to-noise ratio (SNR), bolus characteristics, relaxation rates, and B1 variability. They were then applied to 17 prostate cancer patient datasets. The simulations indicated that the inputless method with fixed relaxation rates provided high expected accuracy with no sensitivity to bolus characteristics. The AUC ratio showed an undesired strong sensitivity to bolus variations. Fitting the input function as well did not improve accuracy over the inputless method. In vivo results showed qualitatively accurate kPL maps with inputless fitting. The AUC ratio was sensitive to bolus delivery variations. Fitting with the input function showed high variability in parameter maps. Overall, we found the inputless kPL fitting method to be a simple, robust approach for quantification of metabolic conversion following HP [1-13 C]pyruvate injection in human prostate cancer studies. This study also provided initial ranges of HP [1-13 C]pyruvate parameters (SNR, kPL , bolus characteristics) in the human prostate.
Collapse
Affiliation(s)
- Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco, California
| | - Hsin-Yu Chen
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco, California
| | - Jeremy W Gordon
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California
| | - Natalie Korn
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco, California
| | - John Maidens
- Department of Electrical Engineering and Computer Sciences, University of California - Berkeley, Berkeley, California
| | - Murat Arcak
- Department of Electrical Engineering and Computer Sciences, University of California - Berkeley, Berkeley, California
| | - Shuyu Tang
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco, California
| | - Mark Criekinge
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California
| | - Lucas Carvajal
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California
| | - Daniele Mammoli
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California
| | - Robert Bok
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California
| | - Rahul Aggarwal
- Department of Medicine, University of California - San Francisco, San Francisco, California
| | - Marcus Ferrone
- Department of Clinical Pharmacy, University of California - San Francisco, San Francisco, California
| | - James B Slater
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California
| | - Sarah J Nelson
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco, California
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco, California
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, California
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco, California
| |
Collapse
|
17
|
Larson PEZ, Chen HY, Gordon JW, Korn N, Maidens J, Arcak M, Tang S, Criekinge M, Carvajal L, Mammoli D, Bok R, Aggarwal R, Ferrone M, Slater JB, Nelson SJ, Kurhanewicz J, Vigneron DB. Investigation of analysis methods for hyperpolarized 13C-pyruvate metabolic MRI in prostate cancer patients. NMR IN BIOMEDICINE 2018; 31:e3997. [PMID: 30230646 PMCID: PMC6392436 DOI: 10.1002/nbm.3997] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/14/2018] [Accepted: 06/28/2018] [Indexed: 05/08/2023]
Abstract
MRI using hyperpolarized (HP) carbon-13 pyruvate is being investigated in clinical trials to provide non-invasive measurements of metabolism for cancer and cardiac imaging. In this project, we applied HP [1-13 C]pyruvate dynamic MRI in prostate cancer to measure the conversion from pyruvate to lactate, which is expected to increase in aggressive cancers. The goal of this work was to develop and test analysis methods for improved quantification of this metabolic conversion. In this work, we compared specialized kinetic modeling methods to estimate the pyruvate-to-lactate conversion rate, kPL , as well as the lactate-to-pyruvate area-under-curve (AUC) ratio. The kinetic modeling included an "inputless" method requiring no assumptions regarding the input function, as well as a method incorporating bolus characteristics in the fitting. These were first evaluated with simulated data designed to match human prostate data, where we examined the expected sensitivity of metabolism quantification to variations in kPL , signal-to-noise ratio (SNR), bolus characteristics, relaxation rates, and B1 variability. They were then applied to 17 prostate cancer patient datasets. The simulations indicated that the inputless method with fixed relaxation rates provided high expected accuracy with no sensitivity to bolus characteristics. The AUC ratio showed an undesired strong sensitivity to bolus variations. Fitting the input function as well did not improve accuracy over the inputless method. In vivo results showed qualitatively accurate kPL maps with inputless fitting. The AUC ratio was sensitive to bolus delivery variations. Fitting with the input function showed high variability in parameter maps. Overall, we found the inputless kPL fitting method to be a simple, robust approach for quantification of metabolic conversion following HP [1-13 C]pyruvate injection in human prostate cancer studies. This study also provided initial ranges of HP [1-13 C]pyruvate parameters (SNR, kPL , bolus characteristics) in the human prostate.
Collapse
Affiliation(s)
- Peder E. Z. Larson
- Department of Radiology and Biomedical Imaging, University of California – San Francisco, San Francisco, California
- UC Berkeley–UCSF Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco, California
| | - Hsin-Yu Chen
- Department of Radiology and Biomedical Imaging, University of California – San Francisco, San Francisco, California
- UC Berkeley–UCSF Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco, California
| | - Jeremy W. Gordon
- Department of Radiology and Biomedical Imaging, University of California – San Francisco, San Francisco, California
| | - Natalie Korn
- Department of Radiology and Biomedical Imaging, University of California – San Francisco, San Francisco, California
- UC Berkeley–UCSF Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco, California
| | - John Maidens
- Department of Electrical Engineering and Computer Sciences, University of California – Berkeley, Berkeley, California
| | - Murat Arcak
- Department of Electrical Engineering and Computer Sciences, University of California – Berkeley, Berkeley, California
| | - Shuyu Tang
- Department of Radiology and Biomedical Imaging, University of California – San Francisco, San Francisco, California
- UC Berkeley–UCSF Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco, California
| | - Mark Criekinge
- Department of Radiology and Biomedical Imaging, University of California – San Francisco, San Francisco, California
| | - Lucas Carvajal
- Department of Radiology and Biomedical Imaging, University of California – San Francisco, San Francisco, California
| | - Daniele Mammoli
- Department of Radiology and Biomedical Imaging, University of California – San Francisco, San Francisco, California
| | - Robert Bok
- Department of Radiology and Biomedical Imaging, University of California – San Francisco, San Francisco, California
| | - Rahul Aggarwal
- Department of Medicine, University of California – San Francisco, San Francisco, California
| | - Marcus Ferrone
- Department of Clinical Pharmacy, University of California – San Francisco, San Francisco, California
| | - James B. Slater
- Department of Radiology and Biomedical Imaging, University of California – San Francisco, San Francisco, California
| | - Sarah J. Nelson
- Department of Radiology and Biomedical Imaging, University of California – San Francisco, San Francisco, California
- UC Berkeley–UCSF Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco, California
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California – San Francisco, San Francisco, California
- UC Berkeley–UCSF Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco, California
| | - Daniel B. Vigneron
- Department of Radiology and Biomedical Imaging, University of California – San Francisco, San Francisco, California
- UC Berkeley–UCSF Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco, California
| |
Collapse
|
18
|
Miller JJ, Grist JT, Serres S, Larkin JR, Lau AZ, Ray K, Fisher KR, Hansen E, Tougaard RS, Nielsen PM, Lindhardt J, Laustsen C, Gallagher FA, Tyler DJ, Sibson N. 13C Pyruvate Transport Across the Blood-Brain Barrier in Preclinical Hyperpolarised MRI. Sci Rep 2018; 8:15082. [PMID: 30305655 PMCID: PMC6180068 DOI: 10.1038/s41598-018-33363-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/26/2018] [Indexed: 01/01/2023] Open
Abstract
Hyperpolarised MRI with Dynamic Nuclear Polarisation overcomes the fundamental thermodynamic limitations of conventional magnetic resonance, and is translating to human studies with several early-phase clinical trials in progress including early reports that demonstrate the utility of the technique to observe lactate production in human brain cancer patients. Owing to the fundamental coupling of metabolism and tissue function, metabolic neuroimaging with hyperpolarised [1-13C]pyruvate has the potential to be revolutionary in numerous neurological disorders (e.g. brain tumour, ischemic stroke, and multiple sclerosis). Through the use of [1-13C]pyruvate and ethyl-[1-13C]pyruvate in naïve brain, a rodent model of metastasis to the brain, or porcine brain subjected to mannitol osmotic shock, we show that pyruvate transport across the blood-brain barrier of anaesthetised animals is rate-limiting. We show through use of a well-characterised rat model of brain metastasis that the appearance of hyperpolarized [1-13C]lactate production corresponds to the point of blood-brain barrier breakdown in the disease. With the more lipophilic ethyl-[1-13C]pyruvate, we observe pyruvate production endogenously throughout the entire brain and lactate production only in the region of disease. In the in vivo porcine brain we show that mannitol shock permeabilises the blood-brain barrier sufficiently for a dramatic 90-fold increase in pyruvate transport and conversion to lactate in the brain, which is otherwise not resolvable. This suggests that earlier reports of whole-brain metabolism in anaesthetised animals may be confounded by partial volume effects and not informative enough for translational studies. Issues relating to pyruvate transport and partial volume effects must therefore be considered in pre-clinical studies investigating neuro-metabolism in anaesthetised animals, and we additionally note that these same techniques may provide a distinct biomarker of blood-brain barrier permeability in future studies.
Collapse
Affiliation(s)
- Jack J Miller
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK.
- Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, UK.
- Oxford Centre for Clinical Magnetic Resonance Research, John Radcliffe Hospital, Oxford, UK.
| | - James T Grist
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Sébastien Serres
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - James R Larkin
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Angus Z Lau
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Kevin Ray
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | - Esben Hansen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Rasmus Stilling Tougaard
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Cardiology, Aarhus University Hospital, Skejby, Aarhus, Denmark
| | - Per Mose Nielsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jakob Lindhardt
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Christoffer Laustsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Damian J Tyler
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
- Oxford Centre for Clinical Magnetic Resonance Research, John Radcliffe Hospital, Oxford, UK
| | - Nicola Sibson
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| |
Collapse
|
19
|
Serrao E, Kettunen M, Rodrigues T, Lewis D, Gallagher F, Hu D, Brindle K. Analysis of 13 C and 14 C labeling in pyruvate and lactate in tumor and blood of lymphoma-bearing mice injected with 13 C- and 14 C-labeled pyruvate. NMR IN BIOMEDICINE 2018; 31:e3901. [PMID: 29457661 PMCID: PMC5947589 DOI: 10.1002/nbm.3901] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/01/2017] [Accepted: 01/04/2018] [Indexed: 05/08/2023]
Abstract
Measurements of hyperpolarized 13 C label exchange between injected [1-13 C]pyruvate and the endogenous tumor lactate pool can give an apparent first-order rate constant for the exchange. The determination of the isotope flux, however, requires an estimate of the labeled pyruvate concentration in the tumor. This was achieved here by measurement of the tumor uptake of [1-14 C]pyruvate, which showed that <2% of the injected pyruvate reached the tumor site. Multiplication of this estimated labeled pyruvate concentration in the tumor with the apparent first-order rate constant for hyperpolarized 13 C label exchange gave an isotope flux that showed good agreement with a flux determined directly by the injection of non-polarized [3-13 C]pyruvate, rapid excision of the tumor after 30 s and measurement of 13 C-labeled lactate concentrations in tumor extracts. The distribution of labeled lactate between intra- and extracellular compartments and the blood pool was investigated by imaging, by measurement of the labeled lactate concentration in blood and tumor, and by examination of the effects of a gadolinium contrast agent and a lactate transport inhibitor on the intensity of the hyperpolarized [1-13 C]lactate signal. These measurements showed that there was significant export of labeled lactate from the tumor, but that labeled lactate in the blood pool produced by the injection of hyperpolarized [1-13 C]pyruvate showed only relatively low levels of polarization. This study shows that measurements of hyperpolarized 13 C label exchange between pyruvate and lactate in a murine tumor model can provide an estimate of the true isotope flux if the concentration of labeled pyruvate that reaches the tumor can be determined.
Collapse
Affiliation(s)
- E.M. Serrao
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK
- Department of BiochemistryUniversity of CambridgeCambridgeUK
- Department of RadiologyUniversity of CambridgeCambridgeUK
| | - M.I. Kettunen
- A. I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFinland
| | - T.B. Rodrigues
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | - D.Y. Lewis
- Cancer Research UK Beatson InstituteGlasgowUK
| | - F.A. Gallagher
- Department of RadiologyUniversity of CambridgeCambridgeUK
| | - D.E. Hu
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | - K.M. Brindle
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| |
Collapse
|
20
|
Niles DJ, Gordon JW, Huang G, Reese S, Adamson EB, Djamali A, Fain SB. Evaluation of renal metabolic response to partial ureteral obstruction with hyperpolarized 13 C MRI. NMR IN BIOMEDICINE 2018; 31. [PMID: 29130537 PMCID: PMC5736002 DOI: 10.1002/nbm.3846] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 09/17/2017] [Accepted: 09/18/2017] [Indexed: 05/13/2023]
Abstract
Hyperpolarized 13 C magnetic resonance imaging (MRI) may be used to non-invasively image the transport and chemical conversion of 13 C-labeled compounds in vivo. In this study, we utilize hyperpolarized 13 C MRI to evaluate metabolic markers in the kidneys longitudinally in a mouse model of partial unilateral ureteral obstruction (pUUO). Partial obstruction was surgically induced in the left ureter of nine adult mice, leaving the right ureter as a control. 1 H and hyperpolarized [1-13 C]pyruvate MRI of the kidneys was performed 2 days prior to surgery (baseline) and at 3, 7 and 14 days post-surgery. Images were evaluated for changes in renal pelvis volume, pyruvate, lactate and the lactate to pyruvate ratio. After 14 days, mice were sacrificed and immunohistological staining of both kidneys for collagen fibrosis (picrosirius red) and macrophage infiltration (F4/80) was performed. Statistical analysis was performed using a linear mixed effects model. Significant kidney × time interaction effects were observed for both lactate and pyruvate, indicating that these markers changed differently between time points for the obstructed and unobstructed kidneys. Both kidneys showed an increase in the lactate to pyruvate ratio after obstruction, suggesting a shift towards glycolytic metabolism. These changes were accompanied by marked hydronephrosis, fibrosis and macrophage infiltration in the obstructed kidney, but not in the unobstructed kidney. Our results show that pUUO is associated with increased pyruvate to lactate metabolism in both kidneys, with injury and inflammation specific to the obstructed kidney. The work also demonstrates the feasibility of the use of hyperpolarized 13 C MRI to study metabolism in renal disease.
Collapse
Affiliation(s)
- David J Niles
- Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Jeremy W Gordon
- Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Gengwen Huang
- Surgery, University of Wisconsin-Madison, Madison, WI, USA
| | - Shannon Reese
- Medicine, Nephrology, University of Wisconsin-Madison, Madison, WI, USA
| | - Erin B Adamson
- Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Arjang Djamali
- Medicine, Nephrology, University of Wisconsin-Madison, Madison, WI, USA
- University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Sean B Fain
- Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
- University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
21
|
Salamanca-Cardona L, Shah H, Poot AJ, Correa FM, Di Gialleonardo V, Lui H, Miloushev VZ, Granlund KL, Tee SS, Cross JR, Thompson CB, Keshari KR. In Vivo Imaging of Glutamine Metabolism to the Oncometabolite 2-Hydroxyglutarate in IDH1/2 Mutant Tumors. Cell Metab 2017; 26:830-841.e3. [PMID: 29056515 PMCID: PMC5718944 DOI: 10.1016/j.cmet.2017.10.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 07/13/2017] [Accepted: 09/08/2017] [Indexed: 12/12/2022]
Abstract
The oncometabolite 2-hydroxyglutarate (2-HG) is a signature biomarker in various cancers, where it accumulates as a result of mutations in isocitrate dehydrogenase (IDH). The metabolic source of 2-HG, in a wide variety of cancers, dictates both its generation and also potential therapeutic strategies, but this remains difficult to access in vivo. Here, utilizing patient-derived chondrosarcoma cells harboring endogenous mutations in IDH1 and IDH2, we report that 2-HG can be rapidly generated from glutamine in vitro. Then, using hyperpolarized magnetic resonance imaging (HP-MRI), we demonstrate that in vivo HP [1-13C] glutamine can be used to non-invasively measure glutamine-derived HP 2-HG production. This can be readily modulated utilizing a selective IDH1 inhibitor, opening the door to targeting glutamine-derived 2-HG therapeutically. Rapid rates of HP 2-HG generation in vivo further demonstrate that, in a context-dependent manner, glutamine can be a primary carbon source for 2-HG production in mutant IDH tumors.
Collapse
Affiliation(s)
- Lucia Salamanca-Cardona
- Department of Radiology, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Hardik Shah
- Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Alex J Poot
- Department of Radiology, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Fabian M Correa
- Department of Radiology, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Valentina Di Gialleonardo
- Department of Radiology, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Hui Lui
- Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Vesselin Z Miloushev
- Department of Radiology, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Kristin L Granlund
- Department of Radiology, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Sui S Tee
- Department of Radiology, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Justin R Cross
- Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Craig B Thompson
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Kayvan R Keshari
- Department of Radiology, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA; Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
22
|
Park JM, Khemtong C, Liu SC, Hurd RE, Spielman DM. In vivo assessment of intracellular redox state in rat liver using hyperpolarized [1- 13 C]Alanine. Magn Reson Med 2017; 77:1741-1748. [PMID: 28261868 DOI: 10.1002/mrm.26662] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/10/2017] [Accepted: 02/08/2017] [Indexed: 12/14/2022]
Abstract
PURPOSE The intracellular lactate to pyruvate concentration ratio is a commonly used tissue assay biomarker of redox, being proportional to free cytosolic [NADH]/[NAD+ ]. In this study, we assessed the use of hyperpolarized [1-13 C]alanine and the subsequent detection of the intracellular products of [1-13 C]pyruvate and [1-13 C]lactate as a useful substrate for assessing redox levels in the liver in vivo. METHODS Animal experiments were conducted to measure in vivo metabolism at baseline and after ethanol infusion. A solution of 80-mM hyperpolarized [1-13 C]alanine was injected intravenously at baseline (n = 8) and 45 min after ethanol infusion (n = 4), immediately followed by the dynamic acquisition of 13 C MRS spectra. RESULTS In vivo rat liver spectra showed peaks from [1-13 C] alanine and the products of [1-13 C]lactate, [1-13 C]pyruvate, and 13 C-bicarbonate. A significantly increased 13 C-lactate/13 C-pyruvate ratio was observed after ethanol infusion (8.46 ± 0.58 at baseline versus 13.58 ± 0.69 after ethanol infusion; P < 0.001) consistent with the increased NADH produced by liver metabolism of ethanol to acetaldehyde and then acetate. A decrease in 13 C-bicarbonate production was also noted, potentially reflecting ethanol-induced mitochondrial redox changes. CONCLUSION A method to measure in vivo tissue redox using hyperpolarized [1-13 C]alanine is presented, with the validity of the proposed 13 C-pyruvate/13 C-lactate metric tested using an ethanol challenge to alter liver redox state. Magn Reson Med 77:1741-1748, 2017. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Jae Mo Park
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Radiology, Stanford University, Stanford, California, USA
| | - Chalermchai Khemtong
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Shie-Chau Liu
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Ralph E Hurd
- Applied Science Laboratory, GE Healthcare, Menlo Park, California, USA
| | - Daniel M Spielman
- Department of Radiology, Stanford University, Stanford, California, USA
| |
Collapse
|
23
|
Daniels CJ, McLean MA, Schulte RF, Robb FJ, Gill AB, McGlashan N, Graves MJ, Schwaiger M, Lomas DJ, Brindle KM, Gallagher FA. A comparison of quantitative methods for clinical imaging with hyperpolarized (13)C-pyruvate. NMR IN BIOMEDICINE 2016; 29:387-99. [PMID: 27414749 PMCID: PMC4833181 DOI: 10.1002/nbm.3468] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 11/23/2015] [Accepted: 11/24/2015] [Indexed: 05/07/2023]
Abstract
Dissolution dynamic nuclear polarization (DNP) enables the metabolism of hyperpolarized (13)C-labelled molecules, such as the conversion of [1-(13)C]pyruvate to [1-(13)C]lactate, to be dynamically and non-invasively imaged in tissue. Imaging of this exchange reaction in animal models has been shown to detect early treatment response and correlate with tumour grade. The first human DNP study has recently been completed, and, for widespread clinical translation, simple and reliable methods are necessary to accurately probe the reaction in patients. However, there is currently no consensus on the most appropriate method to quantify this exchange reaction. In this study, an in vitro system was used to compare several kinetic models, as well as simple model-free methods. Experiments were performed using a clinical hyperpolarizer, a human 3 T MR system, and spectroscopic imaging sequences. The quantitative methods were compared in vivo by using subcutaneous breast tumours in rats to examine the effect of pyruvate inflow. The two-way kinetic model was the most accurate method for characterizing the exchange reaction in vitro, and the incorporation of a Heaviside step inflow profile was best able to describe the in vivo data. The lactate time-to-peak and the lactate-to-pyruvate area under the curve ratio were simple model-free approaches that accurately represented the full reaction, with the time-to-peak method performing indistinguishably from the best kinetic model. Finally, extracting data from a single pixel was a robust and reliable surrogate of the whole region of interest. This work has identified appropriate quantitative methods for future work in the analysis of human hyperpolarized (13)C data.
Collapse
Affiliation(s)
- Charlie J Daniels
- Department of Radiology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Mary A McLean
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | | | | | - Andrew B Gill
- Department of Radiology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Nicholas McGlashan
- Department of Radiology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Martin J Graves
- Department of Radiology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Markus Schwaiger
- Nuclear Medicine, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - David J Lomas
- Department of Radiology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Kevin M Brindle
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - Ferdia A Gallagher
- Department of Radiology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| |
Collapse
|
24
|
DeVience SJ, Mayer D. Speeding up dynamic spiral chemical shift imaging with incoherent sampling and low-rank matrix completion. Magn Reson Med 2016; 77:951-960. [PMID: 26914541 DOI: 10.1002/mrm.26170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 01/26/2016] [Accepted: 01/26/2016] [Indexed: 12/17/2022]
Abstract
PURPOSE To improve the temporal and spatial resolution of dynamic 13 C spiral chemical shift imaging via incoherent sampling and low-rank matrix completion (LRMC). METHODS Spiral CSI data were both simulated and acquired in rats, and undersampling was implemented retrospectively and prospectively by pseudorandomly omitting a fraction of the spiral interleaves. Undersampled data were reconstructed with both LRMC and a conventional inverse nonuniform fast Fourier transform (iNUFFT) and compared with fully sampled data. RESULTS Two-fold undersampling with LRMC reconstruction enabled a two-fold improvement in temporal or spatial resolution without significant artifacts or spatiotemporal distortion. Conversely, undersampling with iNUFFT reconstruction created strong artifacts that obscured the image. LRMC performed better at time points with strong metabolite signal. CONCLUSION Incoherent undersampling and LRMC provides a way to increase the spatiotemporal resolution of spiral CSI without degrading data integrity. Magn Reson Med 77:951-960, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Stephen J DeVience
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Dirk Mayer
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
25
|
Josan S, Billingsley K, Orduna J, Park JM, Luong R, Yu L, Hurd R, Pfefferbaum A, Spielman D, Mayer D. Assessing inflammatory liver injury in an acute CCl4 model using dynamic 3D metabolic imaging of hyperpolarized [1-(13)C]pyruvate. NMR IN BIOMEDICINE 2015; 28:1671-7. [PMID: 26474216 PMCID: PMC4720258 DOI: 10.1002/nbm.3431] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 09/11/2015] [Accepted: 09/14/2015] [Indexed: 05/12/2023]
Abstract
To facilitate diagnosis and staging of liver disease, sensitive and non-invasive methods for the measurement of liver metabolism are needed. This study used hyperpolarized (13)C-pyruvate to assess metabolic parameters in a CCl4 model of liver damage in rats. Dynamic 3D (13)C chemical shift imaging data from a volume covering kidney and liver were acquired from 8 control and 10 CCl4-treated rats. At 12 time points at 5 s temporal resolution, we quantified the signal intensities and established time courses for pyruvate, alanine, and lactate. These measurements were compared with standard liver histology and an alanine transaminase (ALT) enzyme assay using liver tissue from the same animals. All CCl4-treated but none of the control animals showed histological liver damage and elevated ALT enzyme levels. In agreement with these results, metabolic imaging revealed an increased alanine/pyruvate ratio in liver of CCl4-treated rats, which is indicative of elevated ALT activity. Similarly, lactate/pyruvate ratios were higher in CCl4-treated compared with control animals, demonstrating the presence of inflammation. No significant differences in metabolite ratios were observed in kidney or vasculature. Thus this work shows that metabolic imaging using (13)C-pyruvate can be a successful tool to non-invasively assess liver damage in vivo.
Collapse
Affiliation(s)
- Sonal Josan
- SRI International, Neuroscience Program, Menlo Park, CA
- Stanford University, Department of Radiology, Stanford, CA
| | - Kelvin Billingsley
- Stanford University, Department of Radiology, Stanford, CA
- San Francisco State University, Department of Chemistry and Biochemistry, San Francisco, CA
| | - Juan Orduna
- SRI International, Neuroscience Program, Menlo Park, CA
| | - Jae Mo Park
- Stanford University, Department of Radiology, Stanford, CA
| | - Richard Luong
- Stanford University, Department of Comparative Medicine, Stanford, CA
| | - Liqing Yu
- University of Maryland, Department of Animal and Avian Sciences, College Park, MD
| | - Ralph Hurd
- GE Healthcare Applied Sciences Laboratory, Menlo Park, CA
| | - Adolf Pfefferbaum
- SRI International, Neuroscience Program, Menlo Park, CA
- Stanford University, Department of Psychiatry and Behavioral Sciences, Stanford, CA
| | | | - Dirk Mayer
- SRI International, Neuroscience Program, Menlo Park, CA
- Stanford University, Department of Radiology, Stanford, CA
- University of Maryland, Department of Diagnostic Radiology and Nuclear Medicine, Baltimore, MD
| |
Collapse
|
26
|
Friesen-Waldner LJ, Sinclair KJ, Wade TP, Michael B, Chen AP, de Vrijer B, Regnault TRH, McKenzie CA. Hyperpolarized [1-(13) C]pyruvate MRI for noninvasive examination of placental metabolism and nutrient transport: A feasibility study in pregnant guinea pigs. J Magn Reson Imaging 2015; 43:750-5. [PMID: 26227963 DOI: 10.1002/jmri.25009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 07/01/2015] [Indexed: 12/25/2022] Open
Abstract
PURPOSE To test the feasibility of hyperpolarized [1-(13) C]pyruvate magnetic resonance imaging (MRI) for noninvasive examination of guinea pig fetoplacental metabolism and nutrient transport. MATERIALS AND METHODS Seven pregnant guinea pigs with a total of 30 placentae and fetuses were anesthetized and scanned at 3T. T1 -weighted (1) H images were obtained from the maternal abdomen. An 80 mM solution of hyperpolarized [1-(13) C]pyruvate (hereafter referred to as pyruvate) was injected into a vein in the maternal foot. Time-resolved 3D (13) C images were acquired starting 10 seconds after the beginning of bolus injection and every 10 seconds after to 50 seconds. The pregnant guinea pigs were recovered after imaging. Regions of interest (ROIs) were drawn around the maternal heart and each placenta and fetal liver in all slices in the (1) H images. These ROIs were copied to the (13) C images and were used to calculate the sum of the pyruvate and lactate signal intensities for each organ. The signal intensities were normalized by the volume of the organ and the maximum signal in the maternal heart. RESULTS No adverse events were observed in the pregnant guinea pigs and natural pupping occurred at term (∼68 days). Pyruvate signal was observed in all 30 placentae, and lactate, a by-product of pyruvate metabolism, was also observed in all placentae. The maximum pyruvate and lactate signals in placentae occurred at 20 seconds. In addition to the observation of pyruvate and lactate signals in the placentae, both pyruvate and lactate signals were observed in all fetal livers. The maximum pyruvate and lactate signals in the fetal livers occurred at 10 seconds and 20 seconds, respectively. CONCLUSION This work demonstrates the feasibility of using hyperpolarized [1-(13) C]pyruvate MRI to noninvasively examine fetoplacental metabolism and transport of pyruvate in guinea pigs. Hyperpolarized (13) C MRI may provide a novel method for longitudinal studies of fetoplacental abnormalities.
Collapse
Affiliation(s)
| | - Kevin J Sinclair
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - Trevor P Wade
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada.,Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Banoub Michael
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | | | - Barbra de Vrijer
- Department of Obstetrics and Gynaecology, University of Western Ontario, London, Ontario, Canada.,Children's Health Research Institute, London, Ontario, Canada.,Lawson Research Institute, London, Ontario, Canada
| | - Timothy R H Regnault
- Department of Obstetrics and Gynaecology, University of Western Ontario, London, Ontario, Canada.,Children's Health Research Institute, London, Ontario, Canada.,Lawson Research Institute, London, Ontario, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Charles A McKenzie
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada.,Robarts Research Institute, University of Western Ontario, London, Ontario, Canada.,Children's Health Research Institute, London, Ontario, Canada.,Lawson Research Institute, London, Ontario, Canada
| |
Collapse
|
27
|
Chaumeil MM, Najac C, Ronen SM. Studies of Metabolism Using (13)C MRS of Hyperpolarized Probes. Methods Enzymol 2015; 561:1-71. [PMID: 26358901 DOI: 10.1016/bs.mie.2015.04.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
First described in 2003, the dissolution dynamic nuclear polarization (DNP) technique, combined with (13)C magnetic resonance spectroscopy (MRS), has since been used in numerous metabolic studies and has become a valuable metabolic imaging method. DNP dramatically increases the level of polarization of (13)C-labeled compounds resulting in an increase in the signal-to-noise ratio (SNR) of over 50,000 fold for the MRS spectrum of hyperpolarized compounds. The high SNR enables rapid real-time detection of metabolism in cells, tissues, and in vivo. This chapter will present a comprehensive review of the DNP approaches that have been used to monitor metabolism in living systems. First, the list of (13)C DNP probes developed to date will be presented, with a particular focus on the most commonly used probe, namely [1-(13)C] pyruvate. In the next four sections, we will then describe the different factors that need to be considered when designing (13)C DNP probes for metabolic studies, conducting in vitro or in vivo hyperpolarized experiments, as well as acquiring, analyzing, and modeling hyperpolarized (13)C data.
Collapse
Affiliation(s)
- Myriam M Chaumeil
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Chloé Najac
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Sabrina M Ronen
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA.
| |
Collapse
|
28
|
Hyperpolarized (13)C Magnetic Resonance and Its Use in Metabolic Assessment of Cultured Cells and Perfused Organs. Methods Enzymol 2015; 561:73-106. [PMID: 26358902 DOI: 10.1016/bs.mie.2015.04.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diseased tissue is often characterized by abnormalities in intermediary metabolism. Observing these alterations in situ may lead to an improved understanding of pathological processes and novel ways to monitor these processes noninvasively in human patients. Although (13)C is a stable isotope safe for use in animal models of disease as well as human subjects, its utility as a metabolic tracer has largely been limited to ex vivo analyses employing analytical techniques like mass spectrometry or nuclear magnetic resonance spectroscopy. Neither of these techniques is suitable for noninvasive metabolic monitoring, and the low abundance and poor gyromagnetic ratio of conventional (13)C make it a poor nucleus for imaging. However, the recent advent of hyperpolarization methods, particularly dynamic nuclear polarization (DNP), makes it possible to enhance the spin polarization state of (13)C by many orders of magnitude, resulting in a temporary amplification of the signal sufficient for monitoring kinetics of enzyme-catalyzed reactions in living tissue through magnetic resonance spectroscopy or magnetic resonance imaging. Here, we review DNP techniques to monitor metabolism in cultured cells, perfused hearts, and perfused livers, focusing on our experiences with hyperpolarized [1-(13)C]pyruvate. We present detailed approaches to optimize the DNP procedure, streamline biological sample preparation, and maximize detection of specific metabolic activities. We also discuss practical aspects in the choice of metabolic substrates for hyperpolarization studies and outline some of the current technical and conceptual challenges in the field, including efforts to use hyperpolarization to quantify metabolic rates in vivo.
Collapse
|
29
|
Gordon JW, Niles DJ, Adamson EB, Johnson KM, Fain SB. Application of flow sensitive gradients for improved measures of metabolism using hyperpolarized (13) c MRI. Magn Reson Med 2015; 75:1242-8. [PMID: 25951611 DOI: 10.1002/mrm.25584] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/23/2014] [Accepted: 11/25/2014] [Indexed: 12/26/2022]
Abstract
PURPOSE To develop the use of bipolar gradients to suppress partial-volume and flow-related artifacts from macrovascular, hyperpolarized spins. THEORY AND METHODS Digital simulations were performed over a range of spatial resolutions and gradient strengths to determine the optimal bipolar gradient strength and duration to suppress flowing spins while minimizing signal loss from static tissue. In vivo experiments were performed to determine the efficacy of this technique to suppress vascular signal in the study of hyperpolarized [1-(13)C]pyruvate renal metabolism. RESULTS Digital simulations showed that in the absence of bipolar gradients, partial-volume artifacts from the vasculature were still present, causing underestimation of the apparent reaction rate of pyruvate to lactate (kP). The addition of a bipolar gradient with b = 32 s/mm(2) sufficiently suppressed the vascular signal without a substantial decrease in signal from static tissue. In vivo results corroborate digital simulations, with similar peak lactate signal to noise ratio (SNR) but substantially different kP in the presence of bipolar gradients. CONCLUSION The proposed approach suppresses signal from flowing spins while minimizing signal loss from static tissue, removing contaminating signal from the vasculature and increasing kinetic modeling accuracy without substantially sacrificing SNR or temporal resolution.
Collapse
Affiliation(s)
- Jeremy W Gordon
- Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - David J Niles
- Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Erin B Adamson
- Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kevin M Johnson
- Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Sean B Fain
- Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Radiology, University of Wisconsin-Madison, Madison, Madison, Wisconsin, USA.,Biomedical Engineering, University of Wisconsin-Madison, Madison, Madison, Wisconsin, USA
| |
Collapse
|
30
|
Multisite Kinetic Modeling of (13)C Metabolic MR Using [1-(13)C]Pyruvate. Radiol Res Pract 2014; 2014:871619. [PMID: 25548671 PMCID: PMC4274847 DOI: 10.1155/2014/871619] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 11/06/2014] [Accepted: 11/13/2014] [Indexed: 12/03/2022] Open
Abstract
Hyperpolarized 13C imaging allows real-time in vivo measurements of metabolite levels. Quantification of metabolite conversion between [1-13C]pyruvate and downstream metabolites [1-13C]alanine, [1-13C]lactate, and [13C]bicarbonate can be achieved through kinetic modeling. Since pyruvate interacts dynamically and simultaneously with its downstream metabolites, the purpose of this work is the determination of parameter values through a multisite, dynamic model involving possible biochemical pathways present in MR spectroscopy. Kinetic modeling parameters were determined by fitting the multisite model to time-domain dynamic metabolite data. The results for different pyruvate doses were compared with those of different two-site models to evaluate the hypothesis that for identical data the uncertainty of a model and the signal-to-noise ratio determine the sensitivity in detecting small physiological differences in the target metabolism. In comparison to the two-site exchange models, the multisite model yielded metabolic conversion rates with smaller bias and smaller standard deviation, as demonstrated in simulations with different signal-to-noise ratio. Pyruvate dose effects observed previously were confirmed and quantified through metabolic conversion rate values. Parameter interdependency allowed an accurate quantification and can therefore be useful for monitoring metabolic activity in different tissues.
Collapse
|
31
|
Eshuis N, van Weerdenburg BJA, Feiters MC, Rutjes FPJT, Wijmenga SS, Tessari M. Quantitative Trace Analysis of Complex Mixtures Using SABRE Hyperpolarization. Angew Chem Int Ed Engl 2014; 54:1481-4. [DOI: 10.1002/anie.201409795] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Indexed: 12/24/2022]
|
32
|
Eshuis N, van Weerdenburg BJA, Feiters MC, Rutjes FPJT, Wijmenga SS, Tessari M. Quantitative Trace Analysis of Complex Mixtures Using SABRE Hyperpolarization. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201409795] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
33
|
Comment A, Merritt ME. Hyperpolarized magnetic resonance as a sensitive detector of metabolic function. Biochemistry 2014; 53:7333-57. [PMID: 25369537 PMCID: PMC4255644 DOI: 10.1021/bi501225t] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
![]()
Hyperpolarized magnetic resonance
allows for noninvasive measurements
of biochemical reactions in vivo. Although this technique
provides a unique tool for assaying enzymatic activities in intact
organs, the scope of its application is still elusive for the wider
scientific community. The purpose of this review is to provide key
principles and parameters to guide the researcher interested in adopting
this technology to address a biochemical, biomedical, or medical issue.
It is presented in the form of a compendium containing the underlying
essential physical concepts as well as suggestions to help assess
the potential of the technique within the framework of specific research
environments. Explicit examples are used to illustrate the power as
well as the limitations of hyperpolarized magnetic resonance.
Collapse
Affiliation(s)
- Arnaud Comment
- Institute of Physics of Biological Systems, Ecole Polytechnique Fédérale de Lausanne , CH-1015 Lausanne, Switzerland
| | | |
Collapse
|
34
|
Khegai O, Schulte RF, Janich MA, Menzel MI, Farrell E, Otto AM, Ardenkjaer-Larsen JH, Glaser SJ, Haase A, Schwaiger M, Wiesinger F. Apparent rate constant mapping using hyperpolarized [1-(13)C]pyruvate. NMR IN BIOMEDICINE 2014; 27:1256-65. [PMID: 25156807 DOI: 10.1002/nbm.3174] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 05/24/2014] [Accepted: 06/23/2014] [Indexed: 05/10/2023]
Abstract
Hyperpolarization of [1-13C]pyruvate in solution allows real-time measurement of uptake and metabolism using MR spectroscopic methods. After injection and perfusion, pyruvate is taken up by the cells and enzymatically metabolized into downstream metabolites such as lactate, alanine, and bicarbonate. In this work, we present comprehensive methods for the quantification and interpretation of hyperpolarized 13C metabolite signals. First, a time-domain spectral fitting method is described for the decomposition of FID signals into their metabolic constituents. For this purpose, the required chemical shift frequencies are automatically estimated using a matching pursuit algorithm. Second, a time-discretized formulation of the two-site exchange kinetic model is used to quantify metabolite signal dynamics by two characteristic rate constants in the form of (i) an apparent build-up rate (quantifying the build-up of downstream metabolites from the pyruvate substrate) and (ii) an effective decay rate (summarizing signal depletion due to repetitive excitation, T1-relaxation and backward conversion). The presented spectral and kinetic quantification were experimentally verified in vitro and in vivo using hyperpolarized [1-13C]pyruvate. Using temporally resolved IDEAL spiral CSI, spatially resolved apparent rate constant maps are also extracted. In comparison to single metabolite images, apparent build-up rate constant maps provide improved contrast by emphasizing metabolically active tissues (e.g. tumors) and suppression of high perfusion regions with low conversion (e.g. blood vessels). Apparent build-up rate constant mapping provides a novel quantitative image contrast for the characterization of metabolic activity. Its possible implementation as a quantitative standard will be subject to further studies.
Collapse
Affiliation(s)
- O Khegai
- Technische Universität München, Department of Chemistry, Munich, Germany; GE Global Research, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Gordon JW, Niles DJ, Fain SB, Johnson KM. Joint spatial-spectral reconstruction and k-t spirals for accelerated 2D spatial/1D spectral imaging of 13C dynamics. Magn Reson Med 2014; 71:1435-45. [PMID: 23716402 PMCID: PMC4011726 DOI: 10.1002/mrm.24796] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 04/09/2013] [Accepted: 04/12/2013] [Indexed: 11/11/2022]
Abstract
PURPOSE To develop a novel imaging technique to reduce the number of excitations and required scan time for hyperpolarized (13)C imaging. METHODS A least-squares based optimization and reconstruction is developed to simultaneously solve for both spatial and spectral encoding. By jointly solving both domains, spectral imaging can potentially be performed with a spatially oversampled single echo spiral acquisition. Digital simulations, phantom experiments, and initial in vivo hyperpolarized [1-(13)C]pyruvate experiments were performed to assess the performance of the algorithm as compared to a multi-echo approach. RESULTS Simulations and phantom data indicate that accurate single echo imaging is possible when coupled with oversampling factors greater than six (corresponding to a worst case of pyruvate to metabolite ratio < 9%), even in situations of substantial T(2)* decay and B(0) heterogeneity. With lower oversampling rates, two echoes are required for similar accuracy. These results were confirmed with in vivo data experiments, showing accurate single echo spectral imaging with an oversampling factor of 7 and two echo imaging with an oversampling factor of 4. CONCLUSION The proposed k-t approach increases data acquisition efficiency by reducing the number of echoes required to generate spectroscopic images, thereby allowing accelerated acquisition speed, preserved polarization, and/or improved temporal or spatial resolution.
Collapse
Affiliation(s)
- Jeremy W. Gordon
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin, USA
| | - David J. Niles
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin, USA
| | - Sean B. Fain
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin, USA
- Department of Radiology, University of Wisconsin, Madison, Wisconsin, USA
- Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin, USA
| | - Kevin M. Johnson
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
36
|
Spin hyperpolarization in NMR to address enzymatic processes in vivo. MENDELEEV COMMUNICATIONS 2013. [DOI: 10.1016/j.mencom.2013.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
37
|
Witte C, Schröder L. NMR of hyperpolarised probes. NMR IN BIOMEDICINE 2013; 26:788-802. [PMID: 23033215 DOI: 10.1002/nbm.2873] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 07/23/2012] [Accepted: 08/29/2012] [Indexed: 06/01/2023]
Abstract
Increasing the sensitivity of NMR experiments is an ongoing field of research to help realise the exquisite molecular specificity of this technique. Hyperpolarisation of various nuclei is a powerful approach that enables the use of NMR for molecular and cellular imaging. Substantial progress has been achieved over recent years in terms of both tracer preparation and detection schemes. This review summarises recent developments in probe design and optimised signal encoding, and promising results in sensitive disease detection and efficient therapeutic monitoring. The different methods have great potential to provide molecular specificity not available by other diagnostic modalities.
Collapse
Affiliation(s)
- Christopher Witte
- ERC Project BiosensorImaging, Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany
| | | |
Collapse
|
38
|
Josan S, Xu T, Yen YF, Hurd R, Ferreira J, Chen CH, Mochly-Rosen D, Pfefferbaum A, Mayer D, Spielman D. In vivo measurement of aldehyde dehydrogenase-2 activity in rat liver ethanol model using dynamic MRSI of hyperpolarized [1-(13) C]pyruvate. NMR IN BIOMEDICINE 2013; 26:607-12. [PMID: 23225495 PMCID: PMC3634870 DOI: 10.1002/nbm.2897] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 10/29/2012] [Accepted: 11/05/2012] [Indexed: 05/26/2023]
Abstract
To date, measurements of the activity of aldehyde dehydrogenase-2 (ALDH2), a critical mitochondrial enzyme for the elimination of certain cytotoxic aldehydes in the body and a promising target for drug development, have been largely limited to in vitro methods. Recent advancements in MRS of hyperpolarized (13) C-labeled substrates have provided a method to detect and image in vivo metabolic pathways with signal-to-noise ratio gains greater than 10 000-fold over conventional MRS techniques. However aldehydes, because of their toxicity and short T1 relaxation times, are generally poor targets for such (13) C-labeled studies. In this work, we show that dynamic MRSI of hyperpolarized [1-(13) C]pyruvate and its conversion to [1-(13) C]lactate can provide an indirect in vivo measurement of ALDH2 activity via the concentration of NADH (nicotinamide adenine dinucleotide, reduced form), a co-factor common to both the reduction of pyruvate to lactate and the oxidation of acetaldehyde to acetate. Results from a rat liver ethanol model (n = 9) show that changes in (13) C-lactate labeling following the bolus injection of hyperpolarized pyruvate are highly correlated with changes in ALDH2 activity (R(2) = 0.76).
Collapse
Affiliation(s)
- Sonal Josan
- SRI International, Neuroscience Program, 333 Ravenswood Ave., Menlo Park, CA 94025
- Stanford University, Department of Radiology, Lucas MRI Center, 1201 Welch Rd. Stanford, CA 94305
| | - Tao Xu
- Stanford University, Department of Radiology, Lucas MRI Center, 1201 Welch Rd. Stanford, CA 94305
- Stanford University, Department of Electrical Engineering, Stanford, CA 94305
| | - Yi-Fen Yen
- Stanford University, Department of Radiology, Lucas MRI Center, 1201 Welch Rd. Stanford, CA 94305
| | - Ralph Hurd
- GE Healthcare Applied Sciences Laboratory, 333 Ravenswood Ave., Menlo Park, CA 94025
| | - Julio Ferreira
- Stanford University School of Medicine, Department of Chemical and Systems Biology, Stanford, CA 94305
| | - Che-Hong Chen
- Stanford University School of Medicine, Department of Chemical and Systems Biology, Stanford, CA 94305
| | - Daria Mochly-Rosen
- Stanford University School of Medicine, Department of Chemical and Systems Biology, Stanford, CA 94305
| | - Adolf Pfefferbaum
- SRI International, Neuroscience Program, 333 Ravenswood Ave., Menlo Park, CA 94025
- Stanford University, Department of Psychiatry and Behavioral Sciences, 401 Quarry Rd., Stanford, CA 94305
| | - Dirk Mayer
- SRI International, Neuroscience Program, 333 Ravenswood Ave., Menlo Park, CA 94025
- Stanford University, Department of Radiology, Lucas MRI Center, 1201 Welch Rd. Stanford, CA 94305
| | - Daniel Spielman
- Stanford University, Department of Radiology, Lucas MRI Center, 1201 Welch Rd. Stanford, CA 94305
- Stanford University, Department of Electrical Engineering, Stanford, CA 94305
| |
Collapse
|
39
|
Bastiaansen JAM, Cheng T, Mishkovsky M, Duarte JMN, Comment A, Gruetter R. In vivo enzymatic activity of acetylCoA synthetase in skeletal muscle revealed by (13)C turnover from hyperpolarized [1-(13)C]acetate to [1-(13)C]acetylcarnitine. Biochim Biophys Acta Gen Subj 2013; 1830:4171-8. [PMID: 23545238 DOI: 10.1016/j.bbagen.2013.03.023] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 03/20/2013] [Accepted: 03/22/2013] [Indexed: 12/28/2022]
Abstract
BACKGROUND Acetate metabolism in skeletal muscle is regulated by acetylCoA synthetase (ACS). The main function of ACS is to provide cells with acetylCoA, a key molecule for numerous metabolic pathways including fatty acid and cholesterol synthesis and the Krebs cycle. METHODS Hyperpolarized [1-(13)C]acetate prepared via dissolution dynamic nuclear polarization was injected intravenously at different concentrations into rats. The (13)C magnetic resonance signals of [1-(13)C]acetate and [1-(13)C]acetylcarnitine were recorded in vivo for 1min. The kinetic rate constants related to the transformation of acetate into acetylcarnitine were deduced from the 3s time resolution measurements using two approaches, either mathematical modeling or relative metabolite ratios. RESULTS Although separated by two biochemical transformations, a kinetic analysis of the (13)C label flow from [1-(13)C]acetate to [1-(13)C]acetylcarnitine led to a unique determination of the activity of ACS. The in vivo Michaelis constants for ACS were KM=0.35±0.13mM and Vmax=0.199±0.031μmol/g/min. CONCLUSIONS The conversion rates from hyperpolarized acetate into acetylcarnitine were quantified in vivo and, although separated by two enzymatic reactions, these rates uniquely defined the activity of ACS. The conversion rates associated with ACS were obtained using two analytical approaches, both methods yielding similar results. GENERAL SIGNIFICANCE This study demonstrates the feasibility of directly measuring ACS activity in vivo and, since the activity of ACS can be affected by various pathological states such as cancer or diabetes, the proposed method could be used to non-invasively probe metabolic signatures of ACS in diseased tissue.
Collapse
|
40
|
Barb A, Hekmatyar S, Glushka J, Prestegard J. Probing alanine transaminase catalysis with hyperpolarized 13CD3-pyruvate. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 228:59-65. [PMID: 23357427 PMCID: PMC3654812 DOI: 10.1016/j.jmr.2012.12.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 12/19/2012] [Accepted: 12/21/2012] [Indexed: 05/05/2023]
Abstract
Hyperpolarized metabolites offer a tremendous sensitivity advantage (>10(4) fold) when measuring flux and enzyme activity in living tissues by magnetic resonance methods. These sensitivity gains can also be applied to mechanistic studies that impose time and metabolite concentration limitations. Here we explore the use of hyperpolarization by dissolution dynamic nuclear polarization (DNP) in mechanistic studies of alanine transaminase (ALT), a well-established biomarker of liver disease and cancer that converts pyruvate to alanine using glutamate as a nitrogen donor. A specific deuterated, (13)C-enriched analog of pyruvic acid, (13)C3D(3)-pyruvic acid, is demonstrated to have advantages in terms of detection by both direct (13)C observation and indirect observation through methyl protons introduced by ALT-catalyzed H-D exchange. Exchange on injecting hyperpolarized (13)C3D(3)-pyruvate into ALT dissolved in buffered (1)H(2)O, combined with an experimental approach to measure proton incorporation, provided information on mechanistic details of transaminase action on a 1.5s timescale. ALT introduced, on average, 0.8 new protons into the methyl group of the alanine produced, indicating the presence of an off-pathway enamine intermediate. The opportunities for exploiting mechanism-dependent molecular signatures as well as indirect detection of hyperpolarized (13)C3-pyruvate and products in imaging applications are discussed.
Collapse
Affiliation(s)
| | | | | | - J.H. Prestegard
- Corresponding author. Fax: +1 706 542 4412. (J.H. Prestegard)
| |
Collapse
|
41
|
Kettunen MI, Kennedy BWC, Hu DE, Brindle KM. Spin echo measurements of the extravasation and tumor cell uptake of hyperpolarized [1-(13) C]lactate and [1-(13) C]pyruvate. Magn Reson Med 2012; 70:1200-9. [PMID: 23280500 DOI: 10.1002/mrm.24591] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 11/14/2012] [Accepted: 11/16/2012] [Indexed: 11/07/2022]
Abstract
PURPOSE To assess the blood-tissue distribution of hyperpolarized (13) C-labeled molecules in vivo. METHODS Spin-echo experiments with simultaneous acquisition of the free induction decay (FID) signal following the excitation pulse and the spin-echo signal, were used to monitor hyperpolarized [1-(13) C]lactate, [1-(13) C]pyruvate, and the perfusion marker, [(13) C]HP001, following their intravenous injection into tumor-bearing mice. Apparent T2 relaxation times and diffusion coefficients were also measured. RESULTS An increasing tumor echo/FID ratio was observed for all three molecules, which could be explained by their extravasation into the tumor interstitial space, where T2 relaxation times were longer and diffusion coefficients smaller. Inhibition of the monocarboxylate transporter, which decreased by 40% the label exchange between pyruvate and lactate, reduced the increase in the echo/FID ratio for pyruvate and lactate, but not for HP001, demonstrating that some of the increase in the echo/FID ratio was due to cell uptake of lactate and pyruvate. The different relaxation and diffusion behavior of the intravascular and extravascular signals affected measurements of the apparent label exchange rate constants. CONCLUSION Simultaneous collection of both FID and echo signals can provide information on cell uptake thus giving further insight into the kinetics of hyperpolarized (13) C label exchange. Care is needed when comparing exchange rate constants determined in spin-echo-based studies.
Collapse
Affiliation(s)
- Mikko I Kettunen
- Cancer Research UK Cambridge Research Institute, Cambridge, UK; Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | | | | |
Collapse
|
42
|
Hurd RE, Spielman D, Josan S, Yen YF, Pfefferbaum A, Mayer D. Exchange-linked dissolution agents in dissolution-DNP (13)C metabolic imaging. Magn Reson Med 2012; 70:936-42. [PMID: 23165935 DOI: 10.1002/mrm.24544] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Revised: 10/05/2012] [Accepted: 10/08/2012] [Indexed: 11/05/2022]
Abstract
PURPOSE The use of unlabeled exchange-linked dissolution agents in hyperpolarized metabolic imaging was studied to examine pool size limits and saturation relative to the availability of NADH. METHODS Three-dimensional dynamic metabolic images were obtained, and compared following injection of a bolus of hyperpolarized [1-(13)C]pyruvate, prepared with and without unlabeled sodium lactate in the dissolution buffer. Comparisons were made on the basis of apparent rate constants and [1-(13)C]lactate signal-to-noise ratio. Range finding data were obtained for different bolus compositions. Isotope exchange was also probed in the reverse direction, following injection of a bolus of hyperpolarized [1-(13)C]lactate, with and without unlabeled sodium pyruvate in the dissolution buffer. RESULTS Liver, kidney, and vascular regions of interest all showed an increase in [1-(13)C]lactate signal with addition of unlabeled sodium lactate in the dissolution buffer. Injection of hyperpolarized [1-(13)C]lactate with unlabeled sodium pyruvate in the dissolution buffer, provided exchange rate constants Klp for kidney and vascular regions of interest. CONCLUSIONS These results are consistent with a high level of (13)C-exchange, and with labeling rates that are limited by steady-state pool sizes in vivo.
Collapse
|
43
|
Marjańska M, Teisseyre TZ, Halpern-Manners NW, Zhang Y, Iltis I, Bajaj V, Ugurbil K, Pines A, Henry PG. Measurement of Arterial Input Function in Hyperpolarized 13C Studies. APPLIED MAGNETIC RESONANCE 2012; 43:289-297. [PMID: 37601079 PMCID: PMC10438913 DOI: 10.1007/s00723-012-0348-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Recently, hyperpolarized substrates generated through dynamic nuclear polarization have been introduced to study in vivo metabolism. Injection of hyperpolarized [1-13C]pyruvate, the most widely used substrate, allows detection of time courses of [1-13C]pyruvate and its metabolic products, such as [1-13C]lactate and 13C-bicarbonate, in various organs. However, quantitative metabolic modeling of in vivo data to measure specific metabolic rates remains challenging without measuring the input function. In this study, we demonstrate that the input function of [1-13C]pyruvate can be measured in vivo in the rat carotid artery using an implantable coil.
Collapse
Affiliation(s)
- Małgorzata Marjańska
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, 2021 6 ST SE, Minneapolis, Minnesota 55455, United States
| | - Thomas Z. Teisseyre
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, United States
- Joint Graduate Group in Bioengineering, UCSF & UC Berkeley, San Francisco, California, United States
| | - Nicholas W. Halpern-Manners
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, United States
- Material Sciences Division, E. O. Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Yi Zhang
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, 2021 6 ST SE, Minneapolis, Minnesota 55455, United States
| | - Isabelle Iltis
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, 2021 6 ST SE, Minneapolis, Minnesota 55455, United States
| | - Vikram Bajaj
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, United States
- Material Sciences Division, E. O. Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Kamil Ugurbil
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, 2021 6 ST SE, Minneapolis, Minnesota 55455, United States
| | - Alexander Pines
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, United States
- Material Sciences Division, E. O. Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Pierre-Gilles Henry
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, 2021 6 ST SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
44
|
Schulte RF, Sperl JI, Weidl E, Menzel MI, Janich MA, Khegai O, Durst M, Ardenkjaer-Larsen JH, Glaser SJ, Haase A, Schwaiger M, Wiesinger F. Saturation-recovery metabolic-exchange rate imaging with hyperpolarized [1-13C] pyruvate using spectral-spatial excitation. Magn Reson Med 2012; 69:1209-16. [PMID: 22648928 DOI: 10.1002/mrm.24353] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 04/25/2012] [Accepted: 05/04/2012] [Indexed: 01/02/2023]
Abstract
Within the last decade hyperpolarized [1-13C] pyruvate chemical-shift imaging has demonstrated impressive potential for metabolic MR imaging for a wide range of applications in oncology, cardiology, and neurology. In this work, a highly efficient pulse sequence is described for time-resolved, multislice chemical shift imaging of the injected substrate and obtained downstream metabolites. Using spectral-spatial excitation in combination with single-shot spiral data acquisition, the overall encoding is evenly distributed between excitation and signal reception, allowing the encoding of one full two-dimensional metabolite image per excitation. The signal-to-noise ratio can be flexibly adjusted and optimized using lower flip angles for the pyruvate substrate and larger ones for the downstream metabolites. Selectively adjusting the excitation of the down-stream metabolites to 90° leads to a so-called "saturation-recovery" scheme with the detected signal content being determined by forward conversion of the available pyruvate. In case of repetitive excitations, the polarization is preserved using smaller flip angles for pyruvate. Metabolic exchange rates are determined spatially resolved from the metabolite images using a simplified two-site exchange model. This novel contrast is an important step toward more quantitative metabolic imaging. Goal of this work was to derive, analyze, and implement this "saturation-recovery metabolic exchange rate imaging" and demonstrate its capabilities in four rats bearing subcutaneous tumors.
Collapse
|