1
|
Tkáč I, Deelchand D, Dreher W, Hetherington H, Kreis R, Kumaragamage C, Považan M, Spielman DM, Strasser B, de Graaf RA. Water and lipid suppression techniques for advanced 1 H MRS and MRSI of the human brain: Experts' consensus recommendations. NMR IN BIOMEDICINE 2021; 34:e4459. [PMID: 33327042 PMCID: PMC8569948 DOI: 10.1002/nbm.4459] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 11/23/2020] [Indexed: 05/09/2023]
Abstract
The neurochemical information provided by proton magnetic resonance spectroscopy (MRS) or MR spectroscopic imaging (MRSI) can be severely compromised if strong signals originating from brain water and extracranial lipids are not properly suppressed. The authors of this paper present an overview of advanced water/lipid-suppression techniques and describe their advantages and disadvantages. Moreover, they provide recommendations for choosing the most appropriate techniques for proper use. Methods of water signal handling are primarily focused on the VAPOR technique and on MRS without water suppression (metabolite cycling). The section on lipid-suppression methods in MRSI is divided into three parts. First, lipid-suppression techniques that can be implemented on most clinical MR scanners (volume preselection, outer-volume suppression, selective lipid suppression) are described. Second, lipid-suppression techniques utilizing the combination of k-space filtering, high spatial resolutions and lipid regularization are presented. Finally, three promising new lipid-suppression techniques, which require special hardware (a multi-channel transmit system for dynamic B1+ shimming, a dedicated second-order gradient system or an outer volume crusher coil) are introduced.
Collapse
Affiliation(s)
- Ivan Tkáč
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Dinesh Deelchand
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Wolfgang Dreher
- Department of Chemistry, In vivo-MR Group, University Bremen, Bremen, Germany
| | - Hoby Hetherington
- Department of Radiology Magnetic Resonance Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Roland Kreis
- Departments of Radiology and Biomedical Research, University Bern, Bern, Switzerland
| | - Chathura Kumaragamage
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, USA
| | - Michal Považan
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel M. Spielman
- Department of Radiology, Stanford University, Stanford, California, CA, USA
| | - Bernhard Strasser
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Department of Radiology, Boston, MA, USA
| | - Robin A. de Graaf
- Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
2
|
Cai K, Tain RW, Zhou XJ, Damen FC, Scotti AM, Hariharan H, Poptani H, Reddy R. Creatine CEST MRI for Differentiating Gliomas with Different Degrees of Aggressiveness. Mol Imaging Biol 2017; 19:225-232. [PMID: 27541025 PMCID: PMC5824619 DOI: 10.1007/s11307-016-0995-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE Creatine (Cr) is a major metabolite in the bioenergetic system. Measurement of Cr using conventional MR spectroscopy (MRS) suffers from low spatial resolution and relatively long acquisition times. Creatine chemical exchange saturation transfer (CrCEST) magnetic resonance imaging (MRI) is an emerging molecular imaging method for tissue Cr measurements. Our previous study showed that the CrCEST contrast, obtained through multicomponent Z-spectral fitting, was lower in tumors compared to normal brain, which further reduced with tumor progression. The current study was aimed to investigate if CrCEST MRI can also be useful for differentiating gliomas with different degrees of aggressiveness. PROCEDURES Intracranial 9L gliosarcoma and F98 glioma bearing rats with matched tumor size were scanned with a 9.4 T MRI scanner at two time points. CEST Z-spectra were collected using a customized sequence with a frequency-selective rectangular saturation pulse (B1 = 50 Hz, duration = 3 s) followed by a single-shot readout. Z spectral data were fitted pixel-wise with five Lorentzian functions, and maps of CrCEST peak amplitude, linewidth, and integral were produced. For comparison, single-voxel proton MR spectroscopy (1H-MRS) was performed to quantify and compare the total Cr concentration in the tumor. RESULTS CrCEST contrasts decreased with tumor progression from weeks 3 to 4 in both 9L and F98 phenotypes. More importantly, F98 tumors had significantly lower CrCEST integral compared to 9L tumors. On the other hand, integrals of other Z-spectral components were unable to differentiate both tumor progression and phenotype with limited sample size. CONCLUSIONS Given that F98 is a more aggressive tumor than 9L, this study suggests that CrCEST MRI may help differentiate gliomas with different aggressiveness.
Collapse
Affiliation(s)
- Kejia Cai
- Department of Radiology and the Center for MR Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA.
| | - Rong-Wen Tain
- Department of Radiology and the Center for MR Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Xiaohong Joe Zhou
- Department of Radiology and the Center for MR Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Frederick C Damen
- Department of Radiology and the Center for MR Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Alessandro M Scotti
- Department of Radiology and the Center for MR Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Hari Hariharan
- The Center for Magnetic Resonance and Optical Imaging, Department of Radiology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Harish Poptani
- Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK
| | - Ravinder Reddy
- The Center for Magnetic Resonance and Optical Imaging, Department of Radiology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
3
|
Cai K, Singh A, Poptani H, Li W, Yang S, Lu Y, Hariharan H, Zhou XJ, Reddy R. CEST signal at 2ppm (CEST@2ppm) from Z-spectral fitting correlates with creatine distribution in brain tumor. NMR IN BIOMEDICINE 2015; 28:1-8. [PMID: 25295758 PMCID: PMC4257884 DOI: 10.1002/nbm.3216] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 08/14/2014] [Accepted: 08/17/2014] [Indexed: 05/03/2023]
Abstract
In general, multiple components such as water direct saturation, magnetization transfer (MT), chemical exchange saturation transfer (CEST) and aliphatic nuclear Overhauser effect (NOE) contribute to the Z-spectrum. The conventional CEST quantification method based on asymmetrical analysis may lead to quantification errors due to the semi-solid MT asymmetry and the aliphatic NOE located on a single side of the Z-spectrum. Fitting individual contributors to the Z-spectrum may improve the quantification of each component. In this study, we aim to characterize the multiple exchangeable components from an intracranial tumor model using a simplified Z-spectral fitting method. In this method, the Z-spectrum acquired at low saturation RF amplitude (50 Hz) was modeled as the summation of five Lorentzian functions that correspond to NOE, MT effect, bulk water, amide proton transfer (APT) effect and a CEST peak located at +2 ppm, called CEST@2ppm. With the pixel-wise fitting, the regional variations of these five components in the brain tumor and the normal brain tissue were quantified and summarized. Increased APT effect, decreased NOE and reduced CEST@2ppm were observed in the brain tumor compared with the normal brain tissue. Additionally, CEST@2ppm decreased with tumor progression. CEST@2ppm was found to correlate with the creatine concentration quantified with proton MRS. Based on the correlation curve, the creatine contribution to CEST@2ppm was quantified. The CEST@2ppm signal could be a novel imaging surrogate for in vivo creatine, the important bioenergetics marker. Given its noninvasive nature, this CEST MRI method may have broad applications in cancer bioenergetics.
Collapse
Affiliation(s)
- Kejia Cai
- Department of Radiology, University of Illinois College of Medicine, Chicago, IL, USA
| | - Anup Singh
- Center for Magnetic Resonance and Optical Imaging (CMROI), Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Harish Poptani
- Molecular Imaging Labs, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Weiguo Li
- Research Resource Center, Department of Bioengineering, University of Illinois College of Medicine, Chicago, IL, USA
- Department of Radiology, Northwestern University, Chicago, IL, USA
| | - Shaolin Yang
- Department of Psychiatry and Radiology, University of Illinois College of Medicine, Chicago, IL, USA
| | - Yang Lu
- Department of Radiology, University of Illinois College of Medicine, Chicago, IL, USA
| | - Hari Hariharan
- Center for Magnetic Resonance and Optical Imaging (CMROI), Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiaohong J. Zhou
- Department of Radiology, University of Illinois College of Medicine, Chicago, IL, USA
| | - Ravinder Reddy
- Center for Magnetic Resonance and Optical Imaging (CMROI), Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
4
|
Endothelin-1 induced MCAO: dose dependency of cerebral blood flow. J Neurosci Methods 2009; 179:22-8. [PMID: 19428507 DOI: 10.1016/j.jneumeth.2009.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 12/22/2008] [Accepted: 01/08/2009] [Indexed: 12/31/2022]
Abstract
The purpose of this study was to characterize the magnitude and duration of cerebral blood flow (CBF) reduction in the somatosensory cortical region in a rat model of middle cerebral artery occlusion (MCAO) induced by endothelin-1 (ET1) microinjection under isoflurane anesthesia. MCAO was induced by microinjection of ET1 proximal to the MCA in 41 isoflurane-anesthetized male Sprague-Dawley rats. Three doses of ET1 were studied, 60 pmol (Group 1), 150 pmol (Group 2), and 300 pmol (Group 3). CBF was monitored for 4h following injection using a laser Doppler probe stereotaxically inserted into the left somatosensory cortical region. Computed tomography perfusion imaging was used to verify the extent and duration of blood flow reduction in a subset of 12 animals. The magnitude and duration of blood flow reduction was variable (60-92% of baseline). The 300 pmol dose provided the greatest sustained decrease in blood flow. Evidence of tissue damage was obtained in cases where CBF decreased to <40% of baseline. At the doses studied, ET1-induced ischemia in the presence of isoflurane anesthesia can be used as a minimally invasive but variable model of MCAO. The model is well suited for acute imaging studies of ischemia.
Collapse
|
5
|
Pucar D, Dzeja PP, Bast P, Gumina RJ, Drahl C, Lim L, Juranic N, Macura S, Terzic A. Mapping hypoxia-induced bioenergetic rearrangements and metabolic signaling by 18O-assisted 31P NMR and 1H NMR spectroscopy. Mol Cell Biochem 2004; 256-257:281-9. [PMID: 14977188 PMCID: PMC2743901 DOI: 10.1023/b:mcbi.0000009875.30308.7a] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Brief hypoxia or ischemia perturbs energy metabolism inducing paradoxically a stress-tolerant state, yet metabolic signals that trigger cytoprotection remain poorly understood. To evaluate bioenergetic rearrangements, control and hypoxic hearts were analyzed with 18O-assisted 31P NMR and 1H NMR spectroscopy. The 18O-induced isotope shift in the 31P NMR spectrum of CrP, betaADP and betaATP was used to quantify phosphotransfer fluxes through creatine kinase and adenylate kinase. This analysis was supplemented with determination of energetically relevant metabolites in the phosphomonoester (PME) region of 31P NMR spectra, and in both aromatic and aliphatic regions of 1H NMR spectra. In control conditions, creatine kinase was the major phosphotransfer pathway processing high-energy phosphoryls between sites of ATP consumption and ATP production. In hypoxia, creatine kinase flux was dramatically reduced with a compensatory increase in adenylate kinase flux, which supported heart energetics by regenerating and transferring beta- and gamma-phosphoryls of ATP. Activation of adenylate kinase led to a build-up of AMP, IMP and adenosine, molecules involved in cardioprotective signaling. 31P and 1H NMR spectral analysis further revealed NADH and H+ scavenging by alpha-glycerophosphate dehydrogenase (alphaGPDH) and lactate dehydrogenase contributing to maintained glycolysis under hypoxia. Hypoxia-induced accumulation of alpha-glycerophosphate and nucleoside 5'-monophosphates, through alphaGPDH and adenylate kinase reactions, respectively, was mapped within the increased PME signal in the 31P NMR spectrum. Thus, 18O-assisted 31P NMR combined with 1H NMR provide a powerful approach in capturing rearrangements in cardiac bioenergetics, and associated metabolic signaling that underlie the cardiac adaptive response to stress.
Collapse
Affiliation(s)
- Darko Pucar
- Division of Cardiovascular Diseases, Department of Medicine, Mayo Clinic, Mayo Foundation, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Tkác I, Andersen P, Adriany G, Merkle H, Ugurbil K, Gruetter R. In vivo 1H NMR spectroscopy of the human brain at 7 T. Magn Reson Med 2001; 46:451-6. [PMID: 11550235 DOI: 10.1002/mrm.1213] [Citation(s) in RCA: 285] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In vivo 1H NMR spectra from the human brain were measured at 7 T. Ultrashort echo-time STEAM was used to minimize J-modulation and signal attenuation caused by the shorter T2 of metabolites. Precise adjustment of higher-order shims, which was achieved with FASTMAP, was crucial to benefit from this high magnetic field. Sensitivity improvements were evident from single-shot spectra and from the direct detection of glucose at 5.23 ppm in 8-ml volumes. The linewidth of the creatine methyl resonance was at best 9 Hz. In spite of the increased linewidth of singlet resonances at 7 T, the ability to resolve overlapping multiplets of J-coupled spin systems, such as glutamine and glutamate, was substantially increased. Characteristic spectral patterns of metabolites, e.g., myo-inositol and taurine, were discernible in the in vivo spectra, which facilitated an unambiguous signal assignment.
Collapse
Affiliation(s)
- I Tkác
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Kmiecik JA, Gregory CD, Liang ZP, Lauterbur PC, Dawson MJ. Lactate quantitation in a gerbil brain stroke model by GSLIM of multiple-quantum-filtered signals. Generalized spectral localization by imaging. J Magn Reson Imaging 1999; 9:539-43. [PMID: 10232511 DOI: 10.1002/(sici)1522-2586(199904)9:4<539::aid-jmri5>3.0.co;2-a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Quantitative magnetic resonance imaging of lactate using a zero-quantum/double-quantum filter and generalized spectral localization by imaging (GSLIM) was applied to a model of unilateral stroke in gerbil brain. GSLIM lactate images at 4T clearly reveal elevated concentrations of lactate in the ischemic compared with the normal hemisphere 100-175 minutes after unilateral carotid ligation. These results indicate that the technique is capable of studies of brain infarcts, and that application to human ischemic pathology in brain and other tissues may be possible.
Collapse
Affiliation(s)
- J A Kmiecik
- Biomedical Magnetic Resonance Laboratory, University of Illinois at Urbana-Champaign, Urbana 61801, USA
| | | | | | | | | |
Collapse
|
8
|
Mori S, Eleff SM, Pilatus U, Mori N, van Zijl PC. Proton NMR spectroscopy of solvent-saturable resonances: a new approach to study pH effects in situ. Magn Reson Med 1998; 40:36-42. [PMID: 9660550 DOI: 10.1002/mrm.1910400105] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
It is shown that the effect of pH changes can be measured in proton NMR spectra through the pH sensitivity of the signal intensities of metabolite protons exchanging with water. To observe this phenomenon, pulse sequences must be used that can sensitively observe these exchangeable protons under physiological conditions, which is achieved by avoiding magnetization transfer signal losses due to water saturation for solvent suppression purposes. These methods provide an order-of-magnitude enhancement of many signals between 5 and 10 ppm, containing both N-bound protons as well as aromatic C-H protons coupled to them, the intensity of which is influenced by exchange-relayed saturation. As a first application, the effects of pH change on these resonances are studied ex vivo (perfused cells) and in vivo (cat brain).
Collapse
Affiliation(s)
- S Mori
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2195, USA
| | | | | | | | | |
Collapse
|