1
|
Zhou J, Liu J, Lu JL, Pu XY, Chen HH, Liu H, Xu XQ, Wu FY, Hu H. White-matter alterations in dysthyroid optic neuropathy: a diffusion kurtosis imaging study using tract-based spatial statistics. Jpn J Radiol 2024:10.1007/s11604-024-01710-4. [PMID: 39585557 DOI: 10.1007/s11604-024-01710-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/10/2024] [Indexed: 11/26/2024]
Abstract
PURPOSE So far, there is no gold standard to diagnosis dysthyroid optic neuropathy (DON). Diffusion kurtosis imaging (DKI) has the potential to provide imaging biomarkers for the timely and accurate diagnosis of DON. This study aimed to explore the white matter (WM) alterations in thyroid-associated ophthalmopathy (TAO) patients with and without DON using DKI with tract-based spatial statistics method. MATERIALS AND METHODS Fifty-three TAO patients (21 DON and 32 non-DON) and 30 healthy controls (HCs) were recruited in this cross-sectional study. DKI data were analyzed and compared among groups. The correlations between diffusion parameters and clinical variables were assessed. Receiver-operating characteristic curve analysis was used to evaluate the feasibility of using DKI parameters to distinguish DON and non-DON. RESULTS Compared with HCs, both DON and non-DON groups exhibited significantly decreased radial kurtosis (RK), mean kurtosis (MK), axial kurtosis (AK), kurtosis fractional anisotropy, and fractional anisotropy values in several WM tracts. No significant differences were observed in mean diffusivity values among groups. Meanwhile, DON patients exhibited lower RK, MK, and AK values than non-DON patients mainly in the visual system. Significant correlations were observed between RK values of posterior thalamic radiation (PTR) and best-corrected visual acuity. For distinguishing DON, the RK values of PTR exhibited decent diagnostic performance. CONCLUSION Microstructural abnormalities in WM, especially in the visual system, could provide novel insights into the potential neural mechanisms of the disease, thereby contributing to the timely diagnosis of DON and the development of neuroprotective therapy.
Collapse
Affiliation(s)
- Jiang Zhou
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Rd, Gulou District, Nanjing, China
| | - Jun Liu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Rd, Gulou District, Nanjing, China
| | - Jin-Ling Lu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Rd, Gulou District, Nanjing, China
| | - Xiong-Ying Pu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Rd, Gulou District, Nanjing, China
| | - Huan-Huan Chen
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hu Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao-Quan Xu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Rd, Gulou District, Nanjing, China
| | - Fei-Yun Wu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Rd, Gulou District, Nanjing, China.
| | - Hao Hu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Rd, Gulou District, Nanjing, China.
| |
Collapse
|
2
|
Al Dahhan NZ, Tseng J, de Medeiros C, Narayanan S, Arnold DL, Coe BC, Munoz DP, Yeh EA, Mabbott DJ. Compensatory mechanisms amidst demyelinating disorders: insights into cognitive preservation. Brain Commun 2024; 6:fcae353. [PMID: 39534724 PMCID: PMC11554762 DOI: 10.1093/braincomms/fcae353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/28/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
Demyelination disrupts the transmission of electrical signals in the brain and affects neurodevelopment in children with disorders such as multiple sclerosis and myelin oligodendrocyte glycoprotein-associated disorders. Although cognitive impairments are prevalent in these conditions, some children maintain cognitive function despite substantial structural injury. These findings raise an important question: in addition to the degenerative process, do compensatory neural mechanisms exist to mitigate the effects of myelin loss? We propose that a multi-dimensional approach integrating multiple neuroimaging modalities, including diffusion tensor imaging, magnetoencephalography and eye-tracking, is key to investigating this question. We examine the structural and functional connectivity of the default mode and executive control networks due to their significant roles in supporting higher-order cognitive processes. As cognitive proxies, we examine saccade reaction times and direction errors during an interleaved pro- (eye movement towards a target) and anti-saccade (eye movement away from a target) task. 28 typically developing children, 18 children with multiple sclerosis and 14 children with myelin oligodendrocyte glycoprotein-associated disorders between 5 and 18.9 years old were scanned at the Hospital for Sick Children. Tractography of diffusion MRI data examined structural connectivity. Intracellular and extracellular microstructural parameters were extracted using a white matter tract integrity model to provide specific inferences on myelin and axon structure. Magnetoencephalography scanning was conducted to examine functional connectivity. Within groups, participants had longer saccade reaction times and greater direction errors on the anti- versus pro-saccade task; there were no group differences on either task. Despite similar behavioural performance, children with demyelinating disorders had significant structural compromise and lower bilateral high gamma, higher left-hemisphere theta and higher right-hemisphere alpha synchrony relative to typically developing children. Children diagnosed with multiple sclerosis had greater structural compromise relative to children with myelin oligodendrocyte glycoprotein-associated disorders; there were no group differences in neural synchrony. For both patient groups, increased disease disability predicted greater structural compromise, which predicted longer saccade reaction times and greater direction errors on both tasks. Structural compromise also predicted increased functional connectivity, highlighting potential adaptive functional reorganisation in response to structural compromise. In turn, increased functional connectivity predicted faster saccade reaction times and fewer direction errors. These findings suggest that increased functional connectivity, indicated by increased alpha and theta synchrony, may be necessary to compensate for structural compromise and preserve cognitive abilities. Further understanding these compensatory neural mechanisms could pave the way for the development of targeted therapeutic interventions aimed at enhancing these mechanisms, ultimately improving cognitive outcomes for affected individuals.
Collapse
Affiliation(s)
- Noor Z Al Dahhan
- Neurosciences and Mental Health Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Julie Tseng
- Neurosciences and Mental Health Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
| | - Cynthia de Medeiros
- Neurosciences and Mental Health Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
| | - Sridar Narayanan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, H3A 2B4, Canada
| | - Douglas L Arnold
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, H3A 2B4, Canada
| | - Brian C Coe
- Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario, K7L 3N6, Canada
| | - Douglas P Munoz
- Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario, K7L 3N6, Canada
| | - E Ann Yeh
- Neurosciences and Mental Health Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
- Department of Neurology, The Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
- Department of Paediatrics, University of Toronto, Toronto, Ontario, M5G 1X8, Canada
| | - Donald J Mabbott
- Neurosciences and Mental Health Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, M5S 3G3, Canada
| |
Collapse
|
3
|
Friesen E, Hari K, Sheft M, Thiessen JD, Martin M. Magnetic resonance metrics for identification of cuprizone-induced demyelination in the mouse model of neurodegeneration: a review. MAGMA (NEW YORK, N.Y.) 2024; 37:765-790. [PMID: 38635150 DOI: 10.1007/s10334-024-01160-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/17/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024]
Abstract
Neurodegenerative disorders, including Multiple Sclerosis (MS), are heterogenous disorders which affect the myelin sheath of the central nervous system (CNS). Magnetic Resonance Imaging (MRI) provides a non-invasive method for studying, diagnosing, and monitoring disease progression. As an emerging research area, many studies have attempted to connect MR metrics to underlying pathophysiological presentations of heterogenous neurodegeneration. Most commonly, small animal models are used, including Experimental Autoimmune Encephalomyelitis (EAE), Theiler's Murine Encephalomyelitis (TMEV), and toxin models including cuprizone (CPZ), lysolecithin, and ethidium bromide (EtBr). A contrast and comparison of these models is presented, with focus on the cuprizone model, followed by a review of literature studying neurodegeneration using MRI and the cuprizone model. Conventional MRI methods including T1 Weighted (T1W) and T2 Weighted (T2W) Imaging are mentioned. Quantitative MRI methods which are sensitive to diffusion, magnetization transfer, susceptibility, relaxation, and chemical composition are discussed in relation to studying the CPZ model. Overall, additional studies are needed to improve both the sensitivity and specificity of MRI metrics for underlying pathophysiology of neurodegeneration and the relationships in attempts to clear the clinico-radiological paradox. We therefore propose a multiparametric approach for the investigation of MR metrics for underlying pathophysiology.
Collapse
Affiliation(s)
- Emma Friesen
- Chemistry, University of Winnipeg, Winnipeg, Canada.
| | - Kamya Hari
- Physics, University of Winnipeg, Winnipeg, Canada
- Electronics and Communication Engineering, SSN College of Engineering, Chennai, India
| | - Maxina Sheft
- Physics, University of Winnipeg, Winnipeg, Canada
- Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, USA
| | - Jonathan D Thiessen
- Imaging Program, Lawson Health Research Institute, London, Canada
- Medical Biophysics, Western University, London, Canada
- Medical Imaging, Western University, London, Canada
| | | |
Collapse
|
4
|
Reveley C, Ye FQ, Leopold DA. Diffusion kurtosis MRI tracks gray matter myelin content in the primate cerebral cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.584058. [PMID: 38496676 PMCID: PMC10942417 DOI: 10.1101/2024.03.08.584058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Diffusion magnetic resonance imaging (dMRI) has been widely employed to model the trajectory of myelinated fiber bundles in white matter. Increasingly, dMRI is also used to assess local tissue properties throughout the brain. In the cerebral cortex, myelin content is a critical indicator of the maturation, regional variation, and disease related degeneration of gray matter tissue. Gray matter myelination can be measured and mapped using several non-diffusion MRI strategies; however, first order diffusion statistics such as fractional anisotropy (FA) show only weak spatial correlation with cortical myelin content. Here we show that a simple higher order diffusion parameter, the mean diffusion kurtosis (MK), is strongly correlated with the laminar and regional variation of myelin in the primate cerebral cortex. We carried out ultra-high resolution, multi-shelled dMRI in ex vivo marmoset monkey brains and compared dMRI parameters from a number of higher order models (diffusion kurtosis, NODDI and MAP MRI) to the distribution of myelin obtained using histological staining, and via Magnetization Transfer Ratio MRI (MTR), a non-diffusion MRI method. In contrast to FA, MK closely matched the myelin content assessed by histology and by MTR in the same sample. The parameter maps from MAP-MRI and NODDI also showed good correspondence with cortical myelin content. The results demonstrate that dMRI can be used to assess the variation of local myelin content in the primate cortical cortex, which may be of great value for assessing tissue integrity and tracking disease in living human patients.
Collapse
Affiliation(s)
- Colin Reveley
- Wellcome Centre for Integrative Neuroimaging, Centre for fMRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Headington, Oxford, OX9 3DU, UK
| | - Frank Q Ye
- Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - David A Leopold
- Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, National Eye Institute, National Institutes of Health, Bethesda, MD
- Section on Cognitive Neurophysiology and Imaging, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD
| |
Collapse
|
5
|
Lampinen B, Szczepankiewicz F, Lätt J, Knutsson L, Mårtensson J, Björkman-Burtscher IM, van Westen D, Sundgren PC, Ståhlberg F, Nilsson M. Probing brain tissue microstructure with MRI: principles, challenges, and the role of multidimensional diffusion-relaxation encoding. Neuroimage 2023; 282:120338. [PMID: 37598814 DOI: 10.1016/j.neuroimage.2023.120338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/30/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023] Open
Abstract
Diffusion MRI uses the random displacement of water molecules to sensitize the signal to brain microstructure and to properties such as the density and shape of cells. Microstructure modeling techniques aim to estimate these properties from acquired data by separating the signal between virtual tissue 'compartments' such as the intra-neurite and the extra-cellular space. A key challenge is that the diffusion MRI signal is relatively featureless compared with the complexity of brain tissue. Another challenge is that the tissue microstructure is wildly different within the gray and white matter of the brain. In this review, we use results from multidimensional diffusion encoding techniques to discuss these challenges and their tentative solutions. Multidimensional encoding increases the information content of the data by varying not only the b-value and the encoding direction but also additional experimental parameters such as the shape of the b-tensor and the echo time. Three main insights have emerged from such encoding. First, multidimensional data contradict common model assumptions on diffusion and T2 relaxation, and illustrates how the use of these assumptions cause erroneous interpretations in both healthy brain and pathology. Second, many model assumptions can be dispensed with if data are acquired with multidimensional encoding. The necessary data can be easily acquired in vivo using protocols optimized to minimize Cramér-Rao lower bounds. Third, microscopic diffusion anisotropy reflects the presence of axons but not dendrites. This insight stands in contrast to current 'neurite models' of brain tissue, which assume that axons in white matter and dendrites in gray matter feature highly similar diffusion. Nevertheless, as an axon-based contrast, microscopic anisotropy can differentiate gray and white matter when myelin alterations confound conventional MRI contrasts.
Collapse
Affiliation(s)
- Björn Lampinen
- Clinical Sciences Lund, Diagnostic Radiology, Lund University, Lund, Sweden.
| | | | - Jimmy Lätt
- Department of Medical Imaging and Physiology, Skåne University Hospital Lund, Lund, Sweden
| | - Linda Knutsson
- Clinical Sciences Lund, Medical Radiation Physics, Lund University, Lund, Sweden; Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Johan Mårtensson
- Clinical Sciences Lund, Logopedics, Phoniatrics and Audiology, Lund University, Lund, Sweden
| | - Isabella M Björkman-Burtscher
- Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Danielle van Westen
- Clinical Sciences Lund, Diagnostic Radiology, Lund University, Lund, Sweden; Department of Medical Imaging and Physiology, Skåne University Hospital Lund, Lund, Sweden
| | - Pia C Sundgren
- Clinical Sciences Lund, Diagnostic Radiology, Lund University, Lund, Sweden; Department of Medical Imaging and Physiology, Skåne University Hospital Lund, Lund, Sweden; Lund University BioImaging Centre (LBIC), Lund University, Lund, Sweden
| | - Freddy Ståhlberg
- Clinical Sciences Lund, Diagnostic Radiology, Lund University, Lund, Sweden; Clinical Sciences Lund, Medical Radiation Physics, Lund University, Lund, Sweden
| | - Markus Nilsson
- Clinical Sciences Lund, Diagnostic Radiology, Lund University, Lund, Sweden
| |
Collapse
|
6
|
Cheng GWY, Ma IWT, Huang J, Yeung SHS, Ho P, Chen Z, Mak HKF, Herrup K, Chan KWY, Tse KH. Cuprizone drives divergent neuropathological changes in different mouse models of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.24.547147. [PMID: 37546935 PMCID: PMC10402084 DOI: 10.1101/2023.07.24.547147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Myelin degradation is a normal feature of brain aging that accelerates in Alzheimer's disease (AD). To date, however, the underlying biological basis of this correlation remains elusive. The amyloid cascade hypothesis predicts that demyelination is caused by increased levels of the β-amyloid (Aβ) peptide. Here we report on work supporting the alternative hypothesis that early demyelination is upstream of amyloid. We challenged two different mouse models of AD (R1.40 and APP/PS1) using cuprizone-induced demyelination and tracked the responses with both neuroimaging and neuropathology. In oppose to amyloid cascade hypothesis, R1.40 mice, carrying only a single human mutant APP (Swedish; APP SWE ) transgene, showed a more abnormal changes of magnetization transfer ratio and diffusivity than in APP/PS1 mice, which carry both APP SWE and a second PSEN1 transgene (delta exon 9; PSEN1 dE9 ). Although cuprizone targets oligodendrocytes (OL), magnetic resonance spectroscopy and targeted RNA-seq data in R1.40 mice suggested a possible metabolic alternation in axons. In support of alternative hypotheses, cuprizone induced significant intraneuronal amyloid deposition in young APP/PS1, but not in R1.40 mice, and it suggested the presence of PSEN deficiencies, may accelerate Aβ deposition upon demyelination. In APP/PS1, mature OL is highly vulnerable to cuprizone with significant DNA double strand breaks (53BP1 + ) formation. Despite these major changes in myelin, OLs, and Aβ immunoreactivity, no cognitive impairment or hippocampal pathology was detected in APP/PS1 mice after cuprizone treatment. Together, our data supports the hypothesis that myelin loss can be the cause, but not the consequence, of AD pathology. SIGNIFICANCE STATEMENT The causal relationship between early myelin loss and the progression of Alzheimer's disease remains unclear. Using two different AD mouse models, R1.40 and APP/PS1, our study supports the hypothesis that myelin abnormalities are upstream of amyloid production and deposition. We find that acute demyelination initiates intraneuronal amyloid deposition in the frontal cortex. Further, the loss of oligodendrocytes, coupled with the accelerated intraneuronal amyloid deposition, interferes with myelin tract diffusivity at a stage before any hippocampus pathology or cognitive impairments occur. We propose that myelin loss could be the cause, not the consequence, of amyloid pathology during the early stages of Alzheimer's disease.
Collapse
|
7
|
Goryawala M, Mellon EA, Shim H, Maudsley AA. Mapping early tumor response to radiotherapy using diffusion kurtosis imaging*. Neuroradiol J 2023; 36:198-205. [PMID: 36000488 PMCID: PMC10034702 DOI: 10.1177/19714009221122204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
PURPOSE In this pilot study, DKI measures of diffusivity and kurtosis were compared in active tumor regions and correlated to radiologic response to radiotherapy after completion of 2 weeks of treatment to derive potential early measures of tumor response. METHODS MRI and Magnetic Resonance Spectroscopic Imaging (MRSI) data were acquired before the beginning of RT (pre-RT) and 2 weeks after the initiation of treatment (during-RT) in 14 glioblastoma patients. The active tumor region was outlined as the union of the residual contrast-enhancing region and metabolically active tumor region. Average and standard deviation of mean, axial, and radial diffusivity (MD, AD, RD) and mean, axial, and radial kurtosis (MK, AK, RK) values were calculated for the active tumor VOI from images acquired pre-RT and during-RT and paired t-tests were executed to estimate pairwise differences. Receiver operating characteristic (ROC) curve analysis was conducted to evaluate the predictive capabilities of changes in diffusion metrics for progression-free survival (PFS). RESULTS Analysis showed significant pairwise differences for AD (p = 0.035; Cohen's d of 0.659) and AK (p = 0.019; Cohen's d of 0.753) in diffusion measures after 2 weeks of RT. ROC curve analysis showed that percentage change differences in AD and AK between pre-RT and during-RT scans provided an Area Under the Curve (AUC) of 0.524 and 0.762, respectively, in discriminating responders (PFS>180 days) and non-responders (PFS<180 days). CONCLUSION This pilot study, although preliminary in nature, showed significant changes in AD and AK maps, with kurtosis derived AK maps showing an increased sensitivity in mapping early changes in the active tumor regions.
Collapse
Affiliation(s)
| | - Eric A Mellon
- Department of Radiation Oncology, University of Miami, Miami, FL, USA
| | - Hyunsuk Shim
- Department of Radiation Oncology, Emory University, Atlanta, GA, USA
| | | |
Collapse
|
8
|
Shi Z, Pan Y, Yan Z, Ding S, Hu H, Wei Y, Luo D, Xu Y, Zhu Q, Li Y. Microstructural alterations in different types of lesions and their perilesional white matter in relapsing-remitting multiple sclerosis based on diffusion kurtosis imaging. Mult Scler Relat Disord 2023; 71:104572. [PMID: 36821979 DOI: 10.1016/j.msard.2023.104572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/29/2023] [Accepted: 02/12/2023] [Indexed: 02/22/2023]
Abstract
BACKGROUND AND OBJECTIVES In multiple sclerosis (MS), contrast enhancement lesions and chronic active lesions have been demonstrated to have different degrees of inflammation. Accordingly, they exist different degrees of tissue damage, one is short and acute, and another is slow and longstanding. This study aimed to explore whether diffusion parameters can differentiate different types of lesions, and investigate the microstructural damage between different types of MS lesions by using diffusion magnetic resonance imaging (dMRI) and its correlation with clinical biomarkers of disability and cognitive states. METHODS We retrospectively identified 77 contrast enhancement lesions (CELs), 384 iron rim lesions (IRLs), 393 non-iron rim lesions (NIRLs), their corresponding perilesional white matter (PLWM), and 68 normal-appearing white matter (NAWM) from 68 relapsing-remitting MS (RRMS). Additionally, 44 white matter in healthy controls (WM in HCs) were also enrolled in this study. The DTI and DKI parameters were measured in the above white matter, including kurtosis fractional anisotropy (KFA), fractional anisotropy (FA), mean kurtosis (MK), and mean diffusivity (MD). All the patients were assessed with the Digital Span Test (DST), the Symbol Digit Modalities Test (SDMT), the Mini-Mental State Examination (MMSE), the Montreal Cognitive Assessment (MoCA), and the Expanded Disability Status Scale (EDSS). RESULTS The lowest KFA, FA, MK values and the highest MD values were found in CELs, followed by IRLs, NIRLs, NAWM, and WM in HCs. In KFA and FA values, there were significant differences between each type of lesion, as well as each type of PLWM (P < 0.05). The MK values of CELs and IRLs were significantly lower than NIRLs, but inversely for MD (P < 0.05). There were no differences between CELs and IRLs for MK (P = 1) and MD (P = 0.261). The results of MK and MD values in CELs-PLWM and IRLs-PLWM were similar to the CELs and IRLs. There were no significant differences between NAWM and WM in HCs in all the enrolled diffusion parameters (P >0.05) and the FA values between NIRLs-PLWM and NAWM or between NIRLs-PLWM and WM in HCs were no significant differences (P >0.05). The KFA and MD values in IRLs-PLWM (r =0.443, P =0.021; r =-0.518, P =0.006) were correlated with the DST scores and the KFA of CELs-PLWM (r =0.396, P =0.041) was correlated with SDMT scores. CONCLUSION Our findings demonstrate that the KFA values have the potential to distinguish different types of MS white matter tissues. Furthermore, the diffusion parameters can reflect the microstructure abnormalities in different MS lesions and might help us better understand the pathological mechanism and lesion evolution.
Collapse
Affiliation(s)
- Zhuowei Shi
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Pan
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zichun Yan
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shuang Ding
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Healthand Disorders, Ministry of Education Key Laboratory of Child Development and Disorders. Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Hai Hu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yiqiu Wei
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dan Luo
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuhui Xu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiyuan Zhu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Yongmei Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
9
|
Benitez A, Jensen JH, Thorn K, Dhiman S, Fountain-Zaragoza S, Rieter WJ, Spampinato MV, Hamlett ED, Nietert PJ, Falangola MDF, Helpern JA. Greater diffusion restriction in white matter in Preclinical Alzheimer's disease. Ann Neurol 2022; 91:864-877. [PMID: 35285067 DOI: 10.1002/ana.26353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/14/2022] [Accepted: 03/07/2022] [Indexed: 11/07/2022]
Abstract
OBJECTIVE The Alzheimer's Continuum is biologically defined by beta-amyloid deposition which, at the earliest stages, is superimposed upon white matter degeneration in aging. However, the extent to which these co-occurring changes are characterized is relatively under-explored. The goal of this study was to use Diffusional Kurtosis Imaging (DKI) and biophysical modeling to detect and describe amyloid-related white matter changes in preclinical Alzheimer's disease (AD). METHODS Cognitively unimpaired participants ages 45-85 completed brain MRI, amyloid PET (florbetapir), neuropsychological testing, and other clinical measures at baseline in a cohort study. We tested whether beta amyloid-negative (AB-) and -positive (AB+) participants differed on DKI-based conventional (i.e. Fractional Anisotropy [FA], Mean Diffusivity [MD], Mean Kurtosis [MK]) and modeling (i.e. Axonal Water Fraction [AWF], extra-axonal radial diffusivity [De,⊥ ]) metrics, and whether these metrics were associated with other biomarkers. RESULTS We found significantly greater diffusion restriction (higher FA/AWF, lower MD/ De,⊥ ) in white matter in AB+ than AB- (partial η2 = 0.08-0.19), more notably in the extra-axonal space within primarily late-myelinating tracts. Diffusion metrics predicted amyloid status incrementally over age (AUC=0.84) with modest yet selective associations, where AWF (a marker of axonal density) correlated with speed/executive functions and neurodegeneration, whereas De,⊥ (a marker of gliosis/myelin repair) correlated with amyloid deposition and white matter hyperintensity volume. INTERPRETATION These results support prior evidence of a non-monotonic change in diffusion behavior, where an early increase in diffusion restriction is hypothesized to reflect inflammation and myelin repair prior to an ensuing decrease in diffusion restriction, indicating glial and neuronal degeneration. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Andreana Benitez
- Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA
- Department of Radiology and Radiological Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Jens H Jensen
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Kathryn Thorn
- Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Siddhartha Dhiman
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Stephanie Fountain-Zaragoza
- Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA
| | - William J Rieter
- Department of Radiology and Radiological Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Maria Vittoria Spampinato
- Department of Radiology and Radiological Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Eric D Hamlett
- Department of Pathology and Laboratory Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Paul J Nietert
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Maria de Fatima Falangola
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Joseph A Helpern
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
10
|
Zhu Q, Zheng Q, Luo D, Peng Y, Yan Z, Wang X, Chen X, Li Y. The Application of Diffusion Kurtosis Imaging on the Heterogeneous White Matter in Relapsing-Remitting Multiple Sclerosis. Front Neurosci 2022; 16:849425. [PMID: 35360163 PMCID: PMC8960252 DOI: 10.3389/fnins.2022.849425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/31/2022] [Indexed: 12/21/2022] Open
Abstract
Objectives To evaluate the microstructural damage in the heterogeneity of different white matter areas in relapsing-remitting multiple sclerosis (RRMS) patients by using diffusion kurtosis imaging (DKI) and its correlation with clinical and cognitive status. Materials and Methods Kurtosis fractional anisotropy (KFA), fractional anisotropy (FA), mean kurtosis (MK), and mean diffusivity (MD) in T1-hypointense lesions (T1Ls), pure T2-hyperintense lesions (pure-T2Ls), normal-appearing white matter (NAWM), and white matter in healthy controls (WM in HCs) were measured in 48 RRMS patients and 26 sex- and age-matched HCs. All the participants were assessed with the Mini-Mental State Examination (MMSE), the Montreal Cognitive Assessment (MoCA), and the Symbol Digit Modalities Test (SDMT) scores as the cognitive status. The Kurtzke Expanded Disability Status Scale (EDSS) scores were used to evaluate the clinical status in RRMS patients. Results The lowest KFA, FA, and MK values and the highest MD values were found in T1Ls, followed by pure-T2Ls, NAWM, and WM in HCs. The T1Ls and pure-T2Ls were significantly different in FA (p = 0.002) and MK (p = 0.013), while the NAWM and WM in HCs were significantly different in KFA, FA, and MK (p < 0.001; p < 0.001; p = 0.001). The KFA, FA, MK, and MD values in NAWM (r = 0.360, p = 0.014; r = 0.415, p = 0.004; r = 0.369, p = 0.012; r = −0.531, p < 0.001) were correlated with the MMSE scores and the FA, MK, and MD values in NAWM (r = 0.423, p = 0.003; r = 0.427, p = 0.003; r = −0.359, p = 0.014) were correlated with the SDMT scores. Conclusion Applying DKI to the imaging-based white matter classification has the potential to reflect the white matter damage and is correlated with cognitive impairment.
Collapse
|
11
|
Dhiman S, Fountain-Zaragoza S, Jensen JH, Falangola MF, McKinnon ET, Moss HG, Thorn KE, Rieter WJ, Spampinato MV, Nietert PJ, Helpern JA, Benitez A. Fiber Ball White Matter Modeling Reveals Microstructural Alterations in Healthy Brain Aging. AGING BRAIN 2022; 2:100037. [PMID: 36324695 PMCID: PMC9624504 DOI: 10.1016/j.nbas.2022.100037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Age-related white matter degeneration is characterized by myelin breakdown and neuronal fiber loss that preferentially occur in regions that myelinate later in development. Conventional diffusion MRI (dMRI) has demonstrated age-related increases in diffusivity but provide limited information regarding the tissue-specific changes driving these effects. A recently developed dMRI biophysical modeling technique, Fiber Ball White Matter (FBWM) modeling, offers enhanced biological interpretability by estimating microstructural properties specific to the intra-axonal and extra-axonal spaces. We used FBWM to illustrate the biological mechanisms underlying changes throughout white matter in healthy aging using data from 63 cognitively unimpaired adults ages 45-85 with no radiological evidence of neurodegeneration or incipient Alzheimer's disease. Conventional dMRI and FBWM metrics were computed for two late-myelinating (genu of the corpus callosum and association tracts) and two early-myelinating regions (splenium of the corpus callosum and projection tracts). We examined the associations between age and these metrics in each region and tested whether age was differentially associated with these metrics in late- vs. early-myelinating regions. We found that conventional metrics replicated patterns of age-related increases in diffusivity in late-myelinating regions. FBWM additionally revealed specific intra- and extra-axonal changes suggestive of myelin breakdown and preferential loss of smaller-diameter axons, yielding in vivo corroboration of findings from histopathological studies of aged brains. These results demonstrate that advanced biophysical modeling approaches, such as FBWM, offer novel information about the microstructure-specific alterations contributing to white matter changes in healthy aging. These tools hold promise as sensitive indicators of early pathological changes related to neurodegenerative disease.
Collapse
Affiliation(s)
- Siddhartha Dhiman
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Stephanie Fountain-Zaragoza
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA.,Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
| | - Jens H Jensen
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA.,Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA.,Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Maria Fatima Falangola
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA.,Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Emilie T McKinnon
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA.,Department of Neurology, Medical University of South Carolina, Charleston, SC, USA.,Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Hunter G Moss
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA.,Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Kathryn E Thorn
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - William J Rieter
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Maria Vittoria Spampinato
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Paul J Nietert
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Joseph A Helpern
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA.,Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Andreana Benitez
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA.,Department of Neurology, Medical University of South Carolina, Charleston, SC, USA.,Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
12
|
Martin P, Hagberg GE, Schultz T, Harzer K, Klose U, Bender B, Nägele T, Scheffler K, Krägeloh-Mann I, Groeschel S. T2-Pseudonormalization and Microstructural Characterization in Advanced Stages of Late-infantile Metachromatic Leukodystrophy. Clin Neuroradiol 2021; 31:969-980. [PMID: 33226437 PMCID: PMC8648649 DOI: 10.1007/s00062-020-00975-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/27/2020] [Indexed: 11/24/2022]
Abstract
PURPOSE T2-weighted signal hyperintensities in white matter (WM) are a diagnostic finding in brain magnetic resonance imaging (MRI) of patients with metachromatic leukodystrophy (MLD). In our systematic investigation of the evolution of T2-hyperintensities in patients with the late-infantile form, we describe and characterize T2-pseudonormalization in the advanced stage of the natural disease course. METHODS The volume of T2-hyperintensities was quantified in 34 MRIs of 27 children with late-infantile MLD (median age 2.25 years, range 0.5-5.2 years). In three children with the most advanced clinical course (age >4 years) and for whom the T2-pseudonormalization was the most pronounced, WM microstructure was investigated using a multimodal MRI protocol, including diffusion-weighted imaging, MR spectroscopy (MRS), myelin water fraction (MWF), magnetization transfer ratio (MTR), T1-mapping and quantitative susceptibility mapping. RESULTS T2-hyperintensities in cerebral WM returned to normal in large areas of 3 patients in the advanced disease stage. Multimodal assessment of WM microstructure in areas with T2-pseudonormalization revealed highly decreased values for NAA, neurite density, isotropic water, mean and radial kurtosis, MWF and MTR, as well as increased radial diffusivity. CONCLUSION In late-infantile MLD patients, we found T2-pseudonormalization in WM tissue with highly abnormal microstructure characterizing the most advanced disease stage. Pathological hallmarks might be a loss of myelin, but also neuronal loss as well as increased tissue density due to gliosis and accumulated storage material. These results suggest that a multimodal MRI protocol using more specific microstructural parameters than T2-weighted sequences should be used when evaluating the effect of treatment trials in MLD.
Collapse
Affiliation(s)
- Pascal Martin
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
| | - Gisela E Hagberg
- High Field Magnetic Resonance, Max-Planck Institute for Biological Cybernetics, Tübingen, Germany
- Biomedical Magnetic Resonance, University Hospital, Tübingen, Germany
| | - Thomas Schultz
- B-IT and Institute of Computer Science, University of Bonn, Bonn, Germany
| | - Klaus Harzer
- Department of Neuropediatrics, University Children's Hospital, Tübingen, Germany
| | - Uwe Klose
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Tübingen, Germany
| | - Benjamin Bender
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Tübingen, Germany
| | - Thomas Nägele
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Tübingen, Germany
| | - Klaus Scheffler
- High Field Magnetic Resonance, Max-Planck Institute for Biological Cybernetics, Tübingen, Germany
- Biomedical Magnetic Resonance, University Hospital, Tübingen, Germany
| | | | - Samuel Groeschel
- Department of Neuropediatrics, University Children's Hospital, Tübingen, Germany
| |
Collapse
|
13
|
Sommer RC, Hata J, Rimkus CDM, Klein da Costa B, Nakahara J, Sato DK. Mechanisms of myelin repair, MRI techniques and therapeutic opportunities in multiple sclerosis. Mult Scler Relat Disord 2021; 58:103407. [DOI: 10.1016/j.msard.2021.103407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 10/29/2021] [Accepted: 11/13/2021] [Indexed: 11/16/2022]
|
14
|
Seewoo BJ, Feindel KW, Won Y, Joos AC, Figliomeni A, Hennessy LA, Rodger J. White Matter Changes Following Chronic Restraint Stress and Neuromodulation: A Diffusion Magnetic Resonance Imaging Study in Young Male Rats. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2021; 2:153-166. [PMID: 36325163 PMCID: PMC9616380 DOI: 10.1016/j.bpsgos.2021.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/27/2021] [Accepted: 08/16/2021] [Indexed: 11/23/2022] Open
Abstract
Background Repetitive transcranial magnetic stimulation (rTMS), a noninvasive neuromodulation technique, is an effective treatment for depression. However, few studies have used diffusion magnetic resonance imaging to investigate the longitudinal effects of rTMS on the abnormal brain white matter (WM) described in depression. Methods In this study, we acquired diffusion magnetic resonance imaging from young adult male Sprague Dawley rats to investigate 1) the longitudinal effects of 10- and 1-Hz low-intensity rTMS (LI-rTMS) in healthy animals; 2) the effect of chronic restraint stress (CRS), an animal model of depression; and 3) the effect of 10 Hz LI-rTMS in CRS animals. Diffusion magnetic resonance imaging data were analyzed using tract-based spatial statistics and fixel-based analysis. Results Similar changes in diffusion and kurtosis fractional anisotropy were induced by 10- and 1-Hz stimulation in healthy animals, although changes induced by 10-Hz stimulation were detected earlier than those following 1-Hz stimulation. Additionally, 10-Hz stimulation increased axial and mean kurtosis within the external capsule, suggesting that the two protocols may act via different underlying mechanisms. Brain maturation–related changes in WM, such as increased corpus callosum, fimbria, and external and internal capsule fiber cross-section, were compromised in CRS animals compared with healthy control animals and were rescued by 10-Hz LI-rTMS. Immunohistochemistry revealed increased myelination within the corpus callosum in LI-rTMS–treated CRS animals compared with those that received sham or no stimulation. Conclusions Overall, decreased WM connectivity and integrity in the CRS model corroborate findings in patients experiencing depression with high anxiety, and the observed LI-rTMS–induced effects on WM structure suggest that LI-rTMS might rescue abnormal WM by increasing myelination.
Collapse
|
15
|
Huber E, Mezer A, Yeatman JD. Neurobiological underpinnings of rapid white matter plasticity during intensive reading instruction. Neuroimage 2021; 243:118453. [PMID: 34358657 DOI: 10.1016/j.neuroimage.2021.118453] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 07/24/2021] [Accepted: 08/03/2021] [Indexed: 01/18/2023] Open
Abstract
Diffusion MRI is a powerful tool for imaging brain structure, but it is challenging to discern the biological underpinnings of plasticity inferred from these and other non-invasive MR measurements. Biophysical modeling of the diffusion signal aims to render a more biologically rich image of tissue microstructure, but the application of these models comes with important caveats. A separate approach for gaining biological specificity has been to seek converging evidence from multi-modal datasets. Here we use metrics derived from diffusion kurtosis imaging (DKI) and the white matter tract integrity (WMTI) model along with quantitative MRI measurements of T1 relaxation to characterize changes throughout the white matter during an 8-week, intensive reading intervention (160 total hours of instruction). Behavioral measures, multi-shell diffusion MRI data, and quantitative T1 data were collected at regular intervals during the intervention in a group of 33 children with reading difficulties (7-12 years old), and over the same period in an age-matched non-intervention control group. Throughout the white matter, mean 'extra-axonal' diffusivity was inversely related to intervention time. In contrast, model estimated axonal water fraction (AWF), overall diffusion kurtosis, and T1 relaxation time showed no significant change over the intervention period. Both diffusion and quantitative T1 based metrics were correlated with pre-intervention reading performance, albeit with distinct anatomical distributions. These results are consistent with the view that rapid changes in diffusion properties reflect phenomena other than widespread changes in myelin density. We discuss this result in light of recent work highlighting non-axonal factors in experience-dependent plasticity and learning.
Collapse
Affiliation(s)
- Elizabeth Huber
- Institute for Learning and Brain Sciences and Department of Speech and Hearing Sciences, University of Washington, Seattle, WA 98195, USA.
| | - Aviv Mezer
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jason D Yeatman
- Graduate School of Education, Stanford University, Stanford, CA 94305, USA; Division of Developmental-Behavioral Pediatrics, Stanford University School of Medicine, Stanford, CA 95305, USA
| |
Collapse
|
16
|
Oliviero S, Del Gratta C. Impact of the acquisition protocol on the sensitivity to demyelination and axonal loss of clinically feasible DWI techniques: a simulation study. MAGMA (NEW YORK, N.Y.) 2021; 34:523-543. [PMID: 33417079 DOI: 10.1007/s10334-020-00899-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/19/2020] [Accepted: 11/22/2020] [Indexed: 06/12/2023]
Abstract
OBJECTIVE To evaluate: (a) the specific effect that the demyelination and axonal loss have on the DW signal, and (b) the impact of the sequence parameters on the sensitivity to damage of two clinically feasible DWI techniques, i.e. DKI and NODDI. METHODS We performed a Monte Carlo simulation of water diffusion inside a novel synthetic model of white matter in the presence of axonal loss and demyelination, with three compartments with permeable boundaries between them. We compared DKI and NODDI in their ability to detect and assess the damage, using several acquisition protocols. We used the F test statistic as an index of the sensitivity for each DWI parameter to axonal loss and demyelination, respectively. RESULTS DKI parameters significantly changed with increasing axonal loss, but, in most cases, not with demyelination; all the NODDI parameters showed sensitivity to both the damage processes (at p < 0.01). However, the acquisition protocol strongly affected the sensitivity to damage of both the DKI and NODDI parameters and, especially for NODDI, the parameter absolute values also. DISCUSSION This work is expected to impact future choices for investigating white matter microstructure in focusing on specific stages of the disease, and for selecting the appropriate experimental framework to obtain optimal data quality given the purpose of the experiment.
Collapse
Affiliation(s)
- Stefania Oliviero
- Department Neurosciences, Imaging, and Clinical Sciences, Institute for Advanced Biomedical Technologies, ITAB, Gabriele D'Annunzio University, Chieti, Italy.
| | - Cosimo Del Gratta
- Department Neurosciences, Imaging, and Clinical Sciences, Institute for Advanced Biomedical Technologies, ITAB, Gabriele D'Annunzio University, Chieti, Italy
| |
Collapse
|
17
|
Demyelination and remyelination detected in an alternative cuprizone mouse model of multiple sclerosis with 7.0 T multiparameter magnetic resonance imaging. Sci Rep 2021; 11:11060. [PMID: 34040141 PMCID: PMC8155133 DOI: 10.1038/s41598-021-90597-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 05/11/2021] [Indexed: 02/07/2023] Open
Abstract
The aim of this study was to investigate the mechanisms underlying demyelination and remyelination with 7.0 T multiparameter magnetic resonance imaging (MRI) in an alternative cuprizone (CPZ) mouse model of multiple sclerosis (MS). Sixty mice were divided into six groups (n = 10, each), and these groups were imaged with 7.0 T multiparameter MRI and treated with an alternative CPZ administration schedule. T2-weighted imaging (T2WI), susceptibility-weighted imaging (SWI), and diffusion tensor imaging (DTI) were used to compare the splenium of the corpus callosum (sCC) among the groups. Prussian blue and Luxol fast blue staining were performed to assess pathology. The correlations of the mean grayscale value (mGSV) of the pathology results and the MRI metrics were analyzed to evaluate the multiparameter MRI results. One-way ANOVA and post hoc comparison showed that the normalized T2WI (T2-nor), fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD) values were significantly different among the six groups, while the mean phase (Φ) value of SWI was not significantly different among the groups. Correlation analysis showed that the correlation between the T2-nor and mGSV was higher than that among the other values. The correlations among the FA, RD, MD, and mGSV remained instructive. In conclusion, ultrahigh-field multiparameter MRI can reflect the pathological changes associated with and the underlying mechanisms of demyelination and remyelination in MS after the successful establishment of an acute CPZ-induced model.
Collapse
|
18
|
Wang H, Wen H, Li J, Chen Q, Li S, Wang Y, Wang Z. Characterization of Brain Microstructural Abnormalities in High Myopia Patients: A Preliminary Diffusion Kurtosis Imaging Study. Korean J Radiol 2021; 22:1142-1151. [PMID: 33987989 PMCID: PMC8236370 DOI: 10.3348/kjr.2020.0178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/28/2020] [Accepted: 07/17/2020] [Indexed: 11/21/2022] Open
Abstract
Objective To evaluate microstructural damage in high myopia (HM) patients using 3T diffusion kurtosis imaging (DKI). Materials and Methods This prospective study included 30 HM patients and 33 age- and sex-matched healthy controls (HCs) with DKI. Kurtosis parameters including kurtosis fractional anisotropy (FA), mean kurtosis (MK), axial kurtosis (AK), and radial kurtosis (RK) as well as diffusion metrics including FA, mean diffusivity, axial diffusivity (AD), and radial diffusivity derived from DKI were obtained. Group differences in these metrics were compared using tract-based spatial statistics. Partial correlation analysis was used to evaluate correlations between microstructural changes and disease duration. Results Compared to HCs, HM patients showed significantly reduced AK, RK, MK, and FA and significantly increased AD, predominately in the bilateral corticospinal tract, right inferior longitudinal fasciculus, superior longitudinal fasciculus, inferior fronto-occipital fasciculus, and left thalamus (all p < 0.05, threshold-free cluster enhancement corrected). In addition, DKI-derived kurtosis parameters (AK, RK, and MK) had negative correlations (r = −0.448 to −0.376, all p < 0.05) and diffusion parameter (AD) had positive correlations (r = 0.372 to 0.409, all p < 0.05) with disease duration. Conclusion HM patients showed microstructural alterations in the brain regions responsible for motor conduction and vision-related functions. DKI is useful for detecting white matter abnormalities in HM patients, which might be helpful for exploring and monitoring the pathogenesis of the disease.
Collapse
Affiliation(s)
- Huihui Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hongwei Wen
- Key Laboratory of Cognition and Personality (Ministry of Education), School of Psychology, Southwest University, Chongqing, China
| | - Jing Li
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Qian Chen
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shanshan Li
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yanling Wang
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
19
|
Maiter A, Riemer F, Allinson K, Zaccagna F, Crispin-Ortuzar M, Gehrung M, McLean MA, Priest AN, Grist J, Matys T, Graves MJ, Gallagher FA. Investigating the relationship between diffusion kurtosis tensor imaging (DKTI) and histology within the normal human brain. Sci Rep 2021; 11:8857. [PMID: 33893338 PMCID: PMC8065051 DOI: 10.1038/s41598-021-87857-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 03/26/2021] [Indexed: 01/13/2023] Open
Abstract
Measurements of water diffusion with MRI have been used as a biomarker of tissue microstructure and heterogeneity. In this study, diffusion kurtosis tensor imaging (DKTI) of the brain was undertaken in 10 healthy volunteers at a clinical field strength of 3 T. Diffusion and kurtosis metrics were measured in regions-of-interest on the resulting maps and compared with quantitative analysis of normal post-mortem tissue histology from separate age-matched donors. White matter regions showed low diffusion (0.60 ± 0.04 × 10-3 mm2/s) and high kurtosis (1.17 ± 0.06), consistent with a structured heterogeneous environment comprising parallel neuronal fibres. Grey matter showed intermediate diffusion (0.80 ± 0.02 × 10-3 mm2/s) and kurtosis (0.82 ± 0.05) values. An important finding is that the subcortical regions investigated (thalamus, caudate and putamen) showed similar diffusion and kurtosis properties to white matter. Histological staining of the subcortical nuclei demonstrated that the predominant grey matter was permeated by small white matter bundles, which could account for the similar kurtosis to white matter. Quantitative histological analysis demonstrated higher mean tissue kurtosis and vector standard deviation values for white matter (1.08 and 0.81) compared to the subcortical regions (0.34 and 0.59). Mean diffusion on DKTI was positively correlated with tissue kurtosis (r = 0.82, p < 0.05) and negatively correlated with vector standard deviation (r = -0.69, p < 0.05). This study demonstrates how DKTI can be used to study regional structural variations in the cerebral tissue microenvironment and could be used to probe microstructural changes within diseased tissue in the future.
Collapse
Affiliation(s)
- Ahmed Maiter
- Department of Radiology, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Box 218, Cambridge, CB2 0QQ, UK
| | - Frank Riemer
- Department of Radiology, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Box 218, Cambridge, CB2 0QQ, UK
- MMIV, Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Kieren Allinson
- Department of Pathology, Addenbrooke's Hospital NHS Foundation Trust, Cambridge, UK
| | - Fulvio Zaccagna
- Department of Radiology, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Box 218, Cambridge, CB2 0QQ, UK
| | | | - Marcel Gehrung
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Mary A McLean
- Department of Radiology, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Box 218, Cambridge, CB2 0QQ, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Andrew N Priest
- Department of Radiology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - James Grist
- Department of Radiology, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Box 218, Cambridge, CB2 0QQ, UK
| | - Tomasz Matys
- Department of Radiology, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Box 218, Cambridge, CB2 0QQ, UK
| | - Martin J Graves
- Department of Radiology, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Box 218, Cambridge, CB2 0QQ, UK
- Department of Radiology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Ferdia A Gallagher
- Department of Radiology, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Box 218, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
20
|
Tian H, Cheng Y, Zhang Y, Bai X, Jiang Y, Li J, Fan S, Ding H. 18β-Glycyrrhetinic acid alleviates demyelination by modulating the microglial M1/M2 phenotype in a mouse model of cuprizone-induced demyelination. Neurosci Lett 2021; 755:135871. [PMID: 33812928 DOI: 10.1016/j.neulet.2021.135871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 12/13/2022]
Abstract
This research aimed to examine the nutritious supplementary function of 18β-Glycyrrhetinic acid (18β-GA) in moderating the myelin sheath destruction and behavioral impairments observed in the cuprizone model of demyelination. Mice were fed daily on food containing cuprizone (0.3 %) and given doses of 18β-GA (5 or 1 mg/kg) for a period of five weeks. The groups treated with 18β-GA exhibited improvements in exploratory behavior, locomotive activity, and weight. As assessed using luxol-fast blue and myelin basic protein (MBP) staining, which were used to detect demyelination in the brain, 18β-GA both reduced and prevented instances of cuprizone-induced demyelinating lesions; treatment with 18β-GA also caused the MBP level in the corpus callosum to increase. Furthermore, alongside these positive results following 18β-GA treatment, microglial polarisation was also observed to shift towards the beneficial M2 phenotype. The results of this research thus indicate the potential clinical application of 18β-GA for the prevention of myelin damage and behavioral dysfunction.
Collapse
Affiliation(s)
- Hui Tian
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Yahong Cheng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Yiyuan Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Xinying Bai
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Yuan Jiang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Jinjin Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Shiqi Fan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, PR China
| | - Hong Ding
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, PR China.
| |
Collapse
|
21
|
Matijevic S, Ryan L. Tract Specificity of Age Effects on Diffusion Tensor Imaging Measures of White Matter Health. Front Aging Neurosci 2021; 13:628865. [PMID: 33790778 PMCID: PMC8006297 DOI: 10.3389/fnagi.2021.628865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/11/2021] [Indexed: 11/13/2022] Open
Abstract
Well-established literature indicates that older adults have poorer cerebral white matter integrity, as measured through diffusion tensor imaging (DTI). Age differences in DTI have been observed widely across white matter, although some tracts appear more sensitive to the effects of aging than others. Factors like APOE ε4 status and sex may contribute to individual differences in white matter integrity that also selectively impact certain tracts, and could influence DTI changes in aging. The present study explored the degree to which age, APOE ε4, and sex exerted global vs. tract specific effects on DTI metrics in cognitively healthy late middle-aged to older adults. Data from 49 older adults (ages 54–92) at two time-points separated by approximately 2.7 years were collected. DTI metrics, including fractional anisotropy (FA) and mean diffusivity (MD), were extracted from nine white matter tracts and global white matter. Results showed that across timepoints, FA and MD increased globally, with no tract-specific changes observed. Baseline age had a global influence on both measures, with increasing age associated with lower FA and higher MD. After controlling for global white matter FA, age additionally predicted FA for the genu, callosum body, inferior fronto-occipital fasciculus (IFOF), and both anterior and posterior cingulum. Females exhibited lower global FA on average compared to males. In contrast, MD was selectively elevated in the anterior cingulum and superior longitudinal fasciculus (SLF), for females compared to males. APOE ε4 status was not predictive of either measure. In summary, these results indicate that age and sex are associated with both global and tract-specific alterations to DTI metrics among a healthy older adult cohort. Older women have poorer white matter integrity compared to older men, perhaps related to menopause-induced metabolic changes. While age-related alterations to white matter integrity are global, there is substantial variation in the degree to which tracts are impacted, possibly as a consequence of tract anatomical variability. The present study highlights the importance of accounting for global sources of variation in DTI metrics when attempting to investigate individual differences (due to age, sex, or other factors) in specific white matter tracts.
Collapse
Affiliation(s)
- Stephanie Matijevic
- Cognition and Neuroimaging Laboratory, Department of Psychology, University of Arizona, Tucson, AZ, United States
| | - Lee Ryan
- Cognition and Neuroimaging Laboratory, Department of Psychology, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
22
|
Diffusion kurtosis imaging detects subclinical white matter abnormalities in Phenylketonuria. NEUROIMAGE-CLINICAL 2021; 29:102555. [PMID: 33461111 PMCID: PMC7814191 DOI: 10.1016/j.nicl.2020.102555] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/02/2020] [Accepted: 12/29/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Phenylketonuria (PKU) is an autosomal recessive disorder whereby deficiencies in phenylalanine metabolism cause progressive neurological dysfunction. Managing PKU is challenging, with disease monitoring focussed on short-term phenylalanine control rather than measures of neuronal damage. Conventional imaging lacks sensitivity, however diffusion kurtosis imaging (DKI), a new MRI method may reveal subclinical white matter structural changes in PKU. METHODS This cohort study involved adults with PKU recruited during routine clinical care. MRI, neurocognitive assessment and historical phenylalanine (Phe) levels were collected. A hypothesis-generating case study comparing diet-compliant and non-compliant siblings confirmed that DKI metrics are sensitive to dietary adherence and prompted a candidate metric (Krad/KFA ratio). We then tested this metric in a Replication cohort (PKU = 20; controls = 43). RESULTS Both siblings scored outside the range of controls for all DKI-based metrics, with severe changes in the periventricular white matter and a gradient of severity toward the cortex. Krad/KFA provided clear separation by diagnosis in the Replication cohort (p < 0.001 in periventricular, deep and pericortical compartments). The ratio also correlated negatively with attention (r = -0.51 & -0.50, p < 0.05) and positively with 3-year mean Phe (r = 0.45 & 0.58, p < 0.01). CONCLUSION DKI reveals regionally-specific, progressive abnormalities of brain diffusion characteristics in PKU, even in the absence of conspicuous clinical signs or abnormalities on conventional MRI. A DKI-based marker derived from these scores (Krad/KFA ratio) was sensitive to cognitive impairment and PKU control over the medium term and may provide a meaningful subclinical biomarker of end-organ damage.
Collapse
|
23
|
Zhu T, Peng Q, Ouyang A, Huang H. Neuroanatomical underpinning of diffusion kurtosis measurements in the cerebral cortex of healthy macaque brains. Magn Reson Med 2020; 85:1895-1908. [PMID: 33058286 DOI: 10.1002/mrm.28548] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/23/2020] [Accepted: 09/17/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE To investigate the neuroanatomical underpinning of healthy macaque brain cortical microstructure measured by diffusion kurtosis imaging (DKI), which characterizes non-Gaussian water diffusion. METHODS High-resolution DKI was acquired from 6 postmortem macaque brains. Neurofilament density (ND) was quantified based on structure tensor from neurofilament histological images of a different macaque brain sample. After alignment of DKI-derived mean kurtosis (MK) maps to the histological images, MK and histology-based ND were measured at corresponding regions of interests characterized by distinguished cortical MK values in the prefrontal/precentral-postcentral and temporal cortices. Pearson correlation was performed to test significant correlation between these cortical MK and ND measurements. RESULTS Heterogeneity of cortical MK across different cortical regions was revealed, with significantly and consistently higher MK measurements in the prefrontal/precentral-postcentral cortex compared to those in the temporal cortex across all six scanned macaque brains. Corresponding higher ND measurements in the prefrontal/precentral-postcentral cortex than in the temporal cortex were also found. The heterogeneity of cortical MK is associated with heterogeneity of histology-based ND measurements, with significant correlation between cortical MK and corresponding ND measurements (P < .005). CONCLUSION These findings suggested that DKI-derived MK can potentially be an effective noninvasive biomarker quantifying underlying neuroanatomical complexity inside the cerebral cortical mantle for clinical and neuroscientific research.
Collapse
Affiliation(s)
- Tianjia Zhu
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Qinmu Peng
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Austin Ouyang
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Hao Huang
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
24
|
Beck D, de Lange AMG, Maximov II, Richard G, Andreassen OA, Nordvik JE, Westlye LT. White matter microstructure across the adult lifespan: A mixed longitudinal and cross-sectional study using advanced diffusion models and brain-age prediction. Neuroimage 2020; 224:117441. [PMID: 33039618 DOI: 10.1016/j.neuroimage.2020.117441] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/11/2020] [Accepted: 10/05/2020] [Indexed: 12/22/2022] Open
Abstract
The macro- and microstructural architecture of human brain white matter undergoes substantial alterations throughout development and ageing. Most of our understanding of the spatial and temporal characteristics of these lifespan adaptations come from magnetic resonance imaging (MRI), including diffusion MRI (dMRI), which enables visualisation and quantification of brain white matter with unprecedented sensitivity and detail. However, with some notable exceptions, previous studies have relied on cross-sectional designs, limited age ranges, and diffusion tensor imaging (DTI) based on conventional single-shell dMRI. In this mixed cross-sectional and longitudinal study (mean interval: 15.2 months) including 702 multi-shell dMRI datasets, we combined complementary dMRI models to investigate age trajectories in healthy individuals aged 18 to 94 years (57.12% women). Using linear mixed effect models and machine learning based brain age prediction, we assessed the age-dependence of diffusion metrics, and compared the age prediction accuracy of six different diffusion models, including diffusion tensor (DTI) and kurtosis imaging (DKI), neurite orientation dispersion and density imaging (NODDI), restriction spectrum imaging (RSI), spherical mean technique multi-compartment (SMT-mc), and white matter tract integrity (WMTI). The results showed that the age slopes for conventional DTI metrics (fractional anisotropy [FA], mean diffusivity [MD], axial diffusivity [AD], radial diffusivity [RD]) were largely consistent with previous research, and that the highest performing advanced dMRI models showed comparable age prediction accuracy to conventional DTI. Linear mixed effects models and Wilk's theorem analysis showed that the 'FA fine' metric of the RSI model and 'orientation dispersion' (OD) metric of the NODDI model showed the highest sensitivity to age. The results indicate that advanced diffusion models (DKI, NODDI, RSI, SMT mc, WMTI) provide sensitive measures of age-related microstructural changes of white matter in the brain that complement and extend the contribution of conventional DTI.
Collapse
Affiliation(s)
- Dani Beck
- Department of Psychology, University of Oslo, PO Box 1094 Blindern, 0317 Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Sunnaas Rehabilitation Hospital HT, Nesodden, Oslo, Norway.
| | - Ann-Marie G de Lange
- Department of Psychology, University of Oslo, PO Box 1094 Blindern, 0317 Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, United Kingdom
| | - Ivan I Maximov
- Department of Psychology, University of Oslo, PO Box 1094 Blindern, 0317 Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Geneviève Richard
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | | | - Lars T Westlye
- Department of Psychology, University of Oslo, PO Box 1094 Blindern, 0317 Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway.
| |
Collapse
|
25
|
Zhou Z, Tong Q, Zhang L, Ding Q, Lu H, Jonkman LE, Yao J, He H, Zhu K, Zhong J. Evaluation of the diffusion MRI white matter tract integrity model using myelin histology and Monte-Carlo simulations. Neuroimage 2020; 223:117313. [PMID: 32882384 DOI: 10.1016/j.neuroimage.2020.117313] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022] Open
Abstract
Quantitative evaluation of brain myelination has drawn considerable attention. Conventional diffusion-based magnetic resonance imaging models, including diffusion tensor imaging and diffusion kurtosis imaging (DKI),1 have been used to infer the microstructure and its changes in neurological diseases. White matter tract integrity (WMTI) was proposed as a biophysical model to relate the DKI-derived metrics to the underlying microstructure. Although the model has been validated on ex vivo animal brains, it was not well evaluated with ex vivo human brains. In this study, histological samples (namely corpus callosum) from postmortem human brains have been investigated based on WMTI analyses on a clinical 3T scanner and comparisons with gold standard myelin staining in proteolipid protein and Luxol fast blue. In addition, Monte Carlo simulations were conducted to link changes from ex vivo to in vivo conditions based on the microscale parameters of water diffusivity and permeability. The results show that WMTI metrics, including axonal water fraction AWF, radial extra-axonal diffusivity De⊥, and intra-axonal diffusivity Dawere needed to characterize myelin content alterations. Thus, WMTI model metrics are shown to be promising candidates as sensitive biomarkers of demyelination.
Collapse
Affiliation(s)
- Zihan Zhou
- Center for Brain Imaging Science and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Zhouyiqing Building, Room 314, Yuquan Campus, Hangzhou 310027, China
| | - Qiqi Tong
- Center for Brain Imaging Science and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Zhouyiqing Building, Room 314, Yuquan Campus, Hangzhou 310027, China
| | - Lei Zhang
- China Brain Bank and Department of Neurology in Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, and Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Pathology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qiuping Ding
- Center for Brain Imaging Science and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Zhouyiqing Building, Room 314, Yuquan Campus, Hangzhou 310027, China
| | - Hui Lu
- China Brain Bank and Department of Neurology in Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, and Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Laura E Jonkman
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, location VUmc, the Netherlands
| | - Junye Yao
- Center for Brain Imaging Science and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Zhouyiqing Building, Room 314, Yuquan Campus, Hangzhou 310027, China
| | - Hongjian He
- Center for Brain Imaging Science and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Zhouyiqing Building, Room 314, Yuquan Campus, Hangzhou 310027, China.
| | - Keqing Zhu
- China Brain Bank and Department of Neurology in Second Affiliated Hospital, Key Laboratory of Medical Neurobiology of Zhejiang Province, and Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Pathology, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Jianhui Zhong
- Center for Brain Imaging Science and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Zhouyiqing Building, Room 314, Yuquan Campus, Hangzhou 310027, China; Department of Imaging Sciences, University of Rochester, United States
| |
Collapse
|
26
|
Sullivan GM, Knutsen AK, Peruzzotti-Jametti L, Korotcov A, Bosomtwi A, Dardzinski BJ, Bernstock JD, Rizzi S, Edenhofer F, Pluchino S, Armstrong RC. Transplantation of induced neural stem cells (iNSCs) into chronically demyelinated corpus callosum ameliorates motor deficits. Acta Neuropathol Commun 2020; 8:84. [PMID: 32517808 PMCID: PMC7285785 DOI: 10.1186/s40478-020-00960-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 12/19/2022] Open
Abstract
Multiple Sclerosis (MS) causes neurologic disability due to inflammation, demyelination, and neurodegeneration. Immunosuppressive treatments can modify the disease course but do not effectively promote remyelination or prevent long term neurodegeneration. As a novel approach to mitigate chronic stage pathology, we tested transplantation of mouse induced neural stem cells (iNSCs) into the chronically demyelinated corpus callosum (CC) in adult mice. Male C57BL/6 mice fed 0.3% cuprizone for 12 weeks exhibited CC atrophy with chronic demyelination, astrogliosis, and microglial activation. Syngeneic iNSCs were transplanted into the CC after ending cuprizone and perfused for neuropathology 2 weeks later. Magnetic resonance imaging (MRI) sequences for magnetization transfer ratio (MTR), diffusion-weighted imaging (T2), and diffusion tensor imaging (DTI) quantified CC pathology in live mice before and after iNSC transplantation. Each MRI technique detected progressive CC pathology. Mice that received iNSCs had normalized DTI radial diffusivity, and reduced astrogliosis post-imaging. A motor skill task that engages the CC is Miss-step wheel running, which demonstrated functional deficits from cuprizone demyelination. Transplantation of iNSCs resulted in marked recovery of running velocity. Neuropathology after wheel running showed that iNSC grafts significantly increased host oligodendrocytes and proliferating oligodendrocyte progenitors, while modulating axon damage. Transplanted iNSCs differentiated along astrocyte and oligodendrocyte lineages, without myelinating, and many remained neural stem cells. Our findings demonstrate the applicability of neuroimaging and functional assessments for pre-clinical interventional trials during chronic demyelination and detect improved function from iNSC transplantation. Directly reprogramming fibroblasts into iNSCs facilitates the future translation towards exogenous autologous cell therapies.
Collapse
|
27
|
Aggarwal M, Smith MD, Calabresi PA. Diffusion-time dependence of diffusional kurtosis in the mouse brain. Magn Reson Med 2020; 84:1564-1578. [PMID: 32022313 DOI: 10.1002/mrm.28189] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 12/28/2022]
Abstract
PURPOSE To investigate diffusion-time dependency of diffusional kurtosis in the mouse brain using pulsed-gradient spin-echo (PGSE) and oscillating-gradient spin-echo (OGSE) sequences. METHODS 3D PGSE and OGSE kurtosis tensor data were acquired from ex vivo brains of adult, cuprizone-treated, and age-matched control mice with diffusion-time (tD ) ~ 20 ms and frequency (f) = 70 Hz, respectively. Further, 2D acquisitions were performed at multiple times/frequencies ranging from f = 140 Hz to tD = 30 ms with b-values up to 4000 s/mm2 . Monte Carlo simulations were used to investigate the coupled effects of varying restriction size and permeability on time/frequency-dependence of kurtosis with both diffusion-encoding schemes. Simulations and experiments were further performed to investigate the effect of varying number of cycles in OGSE waveforms. RESULTS Kurtosis and diffusivity maps exhibited significant region-specific changes with diffusion time/frequency across both gray and white matter areas. PGSE- and OGSE-based kurtosis maps showed reversed contrast between gray matter regions in the cerebellar and cerebral cortex. Localized time/frequency-dependent changes in kurtosis tensor metrics were found in the splenium of the corpus callosum in cuprizone-treated mouse brains, corresponding to regional demyelination seen with histological assessment. Monte Carlo simulations showed that kurtosis estimates with pulsed- and oscillating-gradient waveforms differ in their sensitivity to exchange. Both simulations and experiments showed dependence of kurtosis on number of cycles in OGSE waveforms for non-zero permeability. CONCLUSION The results show significant time/frequency-dependency of diffusional kurtosis in the mouse brain, which can provide sensitivity to probe intrinsic cellular heterogeneity and pathological alterations in gray and white matter.
Collapse
Affiliation(s)
- Manisha Aggarwal
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Matthew D Smith
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Peter A Calabresi
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
28
|
Chuhutin A, Hansen B, Wlodarczyk A, Owens T, Shemesh N, Jespersen SN. Diffusion Kurtosis Imaging maps neural damage in the EAE model of multiple sclerosis. Neuroimage 2019; 208:116406. [PMID: 31830588 PMCID: PMC9358435 DOI: 10.1016/j.neuroimage.2019.116406] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 01/22/2023] Open
Abstract
Diffusion kurtosis imaging (DKI) is an imaging modality that yields novel
disease biomarkers and in combination with nervous tissue modeling, provides
access to microstructural parameters. Recently, DKI and subsequent estimation of
microstructural model parameters has been used for assessment of tissue changes
in neurodegenerative diseases and associated animal models. In this study, mouse
spinal cords from the experimental autoimmune encephalomyelitis (EAE) model of
multiple sclerosis (MS) were investigated for the first time using DKI in
combination with biophysical modeling to study the relationship between
microstructural metrics and degree of animal dysfunction. Thirteen spinal cords
were extracted from animals with varied grades of disability and scanned in a
high-field MRI scanner along with five control specimen. Diffusion weighted data
were acquired together with high resolution T2*
images. Diffusion data were fit to estimate diffusion and kurtosis tensors and
white matter modeling parameters, which were all used for subsequent statistical
analysis using a linear mixed effects model. T2*
images were used to delineate focal demyelination/inflammation. Our results
reveal a strong relationship between disability and measured microstructural
parameters in normal appearing white matter and gray matter. Relationships
between disability and mean of the kurtosis tensor, radial kurtosis, radial
diffusivity were similar to what has been found in other hypomyelinating MS
models, and in patients. However, the changes in biophysical modeling parameters
and in particular in extra-axonal axial diffusivity were clearly different from
previous studies employing other animal models of MS. In conclusion, our data
suggest that DKI and microstructural modeling can provide a unique contrast
capable of detecting EAE-specific changes correlating with clinical
disability.
Collapse
Affiliation(s)
| | | | - Agnieszka Wlodarczyk
- Department of Neurobiology Research, Institute for Molecular Medicine,University of South Denmark, Odense, Denmark
| | - Trevor Owens
- Department of Neurobiology Research, Institute for Molecular Medicine,University of South Denmark, Odense, Denmark
| | - Noam Shemesh
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Sune Nørhøj Jespersen
- CFIN, Aarhus University, Aarhus, Denmark; Department of Physics, Aarhus University, Aarhus, Denmark
| |
Collapse
|
29
|
Guglielmetti C, Boucneau T, Cao P, Van der Linden A, Larson PEZ, Chaumeil MM. Longitudinal evaluation of demyelinated lesions in a multiple sclerosis model using ultrashort echo time magnetization transfer (UTE-MT) imaging. Neuroimage 2019; 208:116415. [PMID: 31811900 DOI: 10.1016/j.neuroimage.2019.116415] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/16/2019] [Accepted: 11/28/2019] [Indexed: 11/27/2022] Open
Abstract
Alterations in myelin integrity are involved in many neurological disorders and demyelinating diseases, such as multiple sclerosis (MS). Although magnetic resonance imaging (MRI) is the gold standard method to diagnose and monitor MS patients, clinically available MRI protocols show limited specificity for myelin detection, notably in cerebral grey matter areas. Ultrashort echo time (UTE) MRI has shown great promise for direct imaging of lipids and myelin sheaths, and thus holds potential to improve lesion detection. In this study, we used a sequence combining magnetization transfer (MT) with UTE ("UTE-MT", TE = 76 μs) and with short TE ("STE-MT", TE = 3000 μs) to evaluate spatial and temporal changes in brain myelin content in the cuprizone mouse model for MS on a clinical 7 T scanner. During demyelination, UTE-MT ratio (UTE-MTR) and STE-MT ratio (STE-MTR) values were significantly decreased in most white matter and grey matter regions. However, only UTE-MTR detected cortical changes. After remyelination in subcortical and cortical areas, UTE-MTR values remained lower than baseline values, indicating that UTE-MT, but not STE-MT, imaging detected long-lasting changes following a demyelinating event. Next, we evaluated the potential correlations between imaging values and underlying histopathological markers. The strongest correlation was observed between UTE-MTR and percent coverage of myelin basic protein (MBP) immunostaining (r2 = 0.71). A significant, although lower, correlation was observed between STE-MTR and MBP (r2 = 0.48), and no correlation was found between UTE-MTR or STE-MTR and gliosis immunostaining. Interestingly, correlations varied across brain substructures. Altogether, our results demonstrate that UTE-MTR values significantly correlate with myelin content as measured by histopathology, not only in white matter, but also in subcortical and cortical grey matter regions in the cuprizone mouse model for MS. Readily implemented on a clinical 7 T system, this approach thus holds great potential for detecting demyelinating/remyelinating events in both white and grey matter areas in humans. When applied to patients with neurological disorders, including MS patient populations, UTE-MT methods may improve the non-invasive longitudinal monitoring of brain lesions, not only during disease progression but also in response to next generation remyelinating therapies.
Collapse
Affiliation(s)
- Caroline Guglielmetti
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, USA; Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA; Bio-Imaging Laboratory, Department of Biomedical Sciences, University of Antwerp, 2000, Antwerp, Belgium
| | - Tanguy Boucneau
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Peng Cao
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Annemie Van der Linden
- Bio-Imaging Laboratory, Department of Biomedical Sciences, University of Antwerp, 2000, Antwerp, Belgium
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, Berkeley and University of California, San Francisco, CA, USA
| | - Myriam M Chaumeil
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, CA, USA; Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, Berkeley and University of California, San Francisco, CA, USA.
| |
Collapse
|
30
|
Wang N, Zhuang J, Wie H, Dibb R, Qi Y, Liu C. Probing demyelination and remyelination of the cuprizone mouse model using multimodality MRI. J Magn Reson Imaging 2019; 50:1852-1865. [PMID: 31012202 PMCID: PMC6810724 DOI: 10.1002/jmri.26758] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 04/07/2019] [Accepted: 04/08/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Various studies by MRI exhibit that the corpus callosum (CC) is the most vulnerable to cuprizone administration, detecting the demyelination and remyelination process using different MRI parameters are, however, lacking. PURPOSE To investigate the sensitivity of multiparametric MRI both in vivo and ex vivo for demyelination and remyelination. STUDY TYPE Prospective. ANIMAL MODEL A cuprizone mice model with an age-matched control group (n = 5), 4-week cuprizone exposure group followed by 9-week on a normal diet (n = 6), and a 13-week cuprizone exposure group (n = 6). FIELD STRENGTH/SEQUENCE 3D gradient recalled echo, T2 -weighted, and diffusion tensor imaging (DTI) at 7.0T and 9.4T. ASSESSMENT Quantification of DTI metrics, quantitative susceptibility mapping (QSM), and T2 -weighted imaging intensity in major white matter bundles. STATISTICAL TESTS Nonparametric permutation tests were used with a cluster-forming threshold as 3.09 (equivalent to P = 0.001), and the significant level as P = 0.05 with family-wise correction. RESULTS In vivo susceptibility values increased from -11.7 to -0.7 ppb (P < 0.001) in CC and from -13.7 to -5.1 ppb (P < 0.001) in the anterior commissure (AC) after the 13-week cuprizone exposure. Ex vivo susceptibility values increased from -25.4 to 7.4 ppb (P < 0.001) in CC and from -41.6 to -15.8 ppb (P < 0.001) in AC. Susceptibility values showed high variations to demyelination for in vivo studies (94.0% in CC, 62.8% in AC). Susceptibility values exhibited higher variations than radial diffusivity for ex vivo studies (129.1% vs. 28.3% in CC, 62.0% vs. 25.0% in AC). In addition to the differential susceptibility variations in different white matter tracts, intraregional demyelination variation was also present not only in CC but also in the AC area by voxel-based analysis. DATA CONCLUSION QSM is sensitive to the demyelination process of cuprizone exposure, which can be a complementary technique to conventional T2 -weighted images and DTI metrics. LEVEL OF EVIDENCE 2 Technical Efficacy Stage: 2 J. Magn. Reson. Imaging 2019;50:1852-1865.
Collapse
Affiliation(s)
- Nian Wang
- Center for In Vivo Microscopy, Duke University, Durham, North Carolina, USA
- Brain Imaging and Analysis Center, Duke University, Durham, North Carolina, USA
| | - Jie Zhuang
- Brain Imaging and Analysis Center, Duke University, Durham, North Carolina, USA
| | - Hongjiang Wie
- Brain Imaging and Analysis Center, Duke University, Durham, North Carolina, USA
| | - Russell Dibb
- Center for In Vivo Microscopy, Duke University, Durham, North Carolina, USA
| | - Yi Qi
- Center for In Vivo Microscopy, Duke University, Durham, North Carolina, USA
| | - Chunlei Liu
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| |
Collapse
|
31
|
Chung S, Fieremans E, Wang X, Kucukboyaci NE, Morton CJ, Babb J, Amorapanth P, Foo FYA, Novikov DS, Flanagan SR, Rath JF, Lui YW. White Matter Tract Integrity: An Indicator of Axonal Pathology after Mild Traumatic Brain Injury. J Neurotrauma 2019; 35:1015-1020. [PMID: 29239261 DOI: 10.1089/neu.2017.5320] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We seek to elucidate the underlying pathophysiology of injury sustained after mild traumatic brain injury (mTBI) using multi-shell diffusion magnetic resonance imaging, deriving compartment-specific white matter tract integrity (WMTI) metrics. WMTI allows a more biophysical interpretation of white matter (WM) changes by describing microstructural characteristics in both intra- and extra-axonal environments. Thirty-two patients with mTBI within 30 days of injury and 21 age- and sex-matched controls were imaged on a 3 Tesla magnetic resonance scanner. Multi-shell diffusion acquisition was performed with five b-values (250-2500 sec/mm2) along 6-60 diffusion encoding directions. Tract-based spatial statistics (TBSS) was used with family-wise error (FWE) correction for multiple comparisons. TBSS results demonstrated focally lower intra-axonal diffusivity (Daxon) in mTBI patients in the splenium of the corpus callosum (sCC; p < 0.05, FWE-corrected). The area under the curve value for Daxon was 0.76 with a low sensitivity of 46.9% but 100% specificity. These results indicate that Daxon may be a useful imaging biomarker highly specific for mTBI-related WM injury. The observed decrease in Daxon suggests restriction of the diffusion along the axons occurring shortly after injury.
Collapse
Affiliation(s)
- Sohae Chung
- 1 Department of Radiology, Center for Advanced Imaging Innovation and Research, New York University School of Medicine , New York, New York.,2 Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine , New York, New York
| | - Els Fieremans
- 1 Department of Radiology, Center for Advanced Imaging Innovation and Research, New York University School of Medicine , New York, New York.,2 Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine , New York, New York
| | - Xiuyuan Wang
- 1 Department of Radiology, Center for Advanced Imaging Innovation and Research, New York University School of Medicine , New York, New York.,2 Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine , New York, New York
| | - Nuri E Kucukboyaci
- 3 Department of Rehabilitation Medicine, New York University School of Medicine , New York, New York
| | - Charles J Morton
- 1 Department of Radiology, Center for Advanced Imaging Innovation and Research, New York University School of Medicine , New York, New York.,2 Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine , New York, New York
| | - James Babb
- 1 Department of Radiology, Center for Advanced Imaging Innovation and Research, New York University School of Medicine , New York, New York.,2 Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine , New York, New York
| | - Prin Amorapanth
- 3 Department of Rehabilitation Medicine, New York University School of Medicine , New York, New York
| | - Farng-Yang A Foo
- 4 Department of Neurology, New York University Langone Health , New York, New York
| | - Dmitry S Novikov
- 1 Department of Radiology, Center for Advanced Imaging Innovation and Research, New York University School of Medicine , New York, New York.,2 Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine , New York, New York
| | - Steven R Flanagan
- 3 Department of Rehabilitation Medicine, New York University School of Medicine , New York, New York
| | - Joseph F Rath
- 3 Department of Rehabilitation Medicine, New York University School of Medicine , New York, New York
| | - Yvonne W Lui
- 1 Department of Radiology, Center for Advanced Imaging Innovation and Research, New York University School of Medicine , New York, New York.,2 Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine , New York, New York
| |
Collapse
|
32
|
Li L, Chopp M, Ding G, Davoodi-Bojd E, Li Q, Mahmood A, Xiong Y, Jiang Q. Diffuse white matter response in trauma-injured brain to bone marrow stromal cell treatment detected by diffusional kurtosis imaging. Brain Res 2019; 1717:127-135. [PMID: 31009610 PMCID: PMC6571170 DOI: 10.1016/j.brainres.2019.04.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/25/2019] [Accepted: 04/18/2019] [Indexed: 12/14/2022]
Abstract
Diffuse white matter (WM) response to traumatic brain injury (TBI) and transplantation of human bone marrow stromal cells (hMSCs) after the injury were non-invasively and dynamically investigated. Male Wistar rats (300-350 g) subjected to TBI were intravenously injected with 1 ml of saline (n = 10) or with hMSCs in suspension (∼3 × 106 hMSCs, n = 10) 1-week post-TBI. MRI measurements of T2-weighted imaging and diffusional kurtosis imaging (DKI) were acquired on all animals at multiple time points up to 3-months post-injury. Functional outcome was assessed using the Morris water maze test. DKI-derived metrics of fractional anisotropy (FA), axonal water fraction (AWF) and radial kurtosis (RK) longitudinally reveal an evolving pattern of structural alteration post-TBI occurring in the brain region remote from primary impact site. The progressive structural change is characterized by gradual disruption of WM integrity at an early stage (weeks post-TBI), followed by spontaneous recovery at a later stage (months post-TBI). Transplantation of hMSCs post-TBI promotes this structural plasticity as indicated by significantly increased FA and AWF in conjunction with substantially elevated RK at the later stage. Our long-term imaging data demonstrate that hMSC therapy leads to modified temporal profiles of these metrics, inducing an earlier presence of enhanced structural remodeling, which may contribute to improved functional recovery.
Collapse
Affiliation(s)
- Lian Li
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA.
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; Department of Physics, Oakland University, Rochester, MI 48309, USA.
| | - Guangliang Ding
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA.
| | | | - Qingjiang Li
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA.
| | - Asim Mahmood
- Department of Neurosurgery, Henry Ford Health System, Detroit, MI 48208, USA.
| | - Ye Xiong
- Department of Neurosurgery, Henry Ford Health System, Detroit, MI 48208, USA.
| | - Quan Jiang
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA.
| |
Collapse
|
33
|
Bells S, Lefebvre J, Longoni G, Narayanan S, Arnold DL, Yeh EA, Mabbott DJ. White matter plasticity and maturation in human cognition. Glia 2019; 67:2020-2037. [PMID: 31233643 DOI: 10.1002/glia.23661] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/21/2019] [Accepted: 05/29/2019] [Indexed: 12/17/2022]
Abstract
White matter plasticity likely plays a critical role in supporting cognitive development. However, few studies have used the imaging methods specific to white matter tissue structure or experimental designs sensitive to change in white matter necessary to elucidate these relations. Here we briefly review novel imaging approaches that provide more specific information regarding white matter microstructure. Furthermore, we highlight recent studies that provide greater clarity regarding the relations between changes in white matter and cognition maturation in both healthy children and adolescents and those with white matter insult. Finally, we examine the hypothesis that white matter is linked to cognitive function via its impact on neural synchronization. We test this hypothesis in a population of children and adolescents with recurrent demyelinating syndromes. Specifically, we evaluate group differences in white matter microstructure within the optic radiation; and neural phase synchrony in visual cortex during a visual task between 25 patients and 28 typically developing age-matched controls. Children and adolescents with demyelinating syndromes show evidence of myelin and axonal compromise and this compromise predicts reduced phase synchrony during a visual task compared to typically developing controls. We investigate one plausible mechanism at play in this relationship using a computational model of gamma generation in early visual cortical areas. Overall, our findings show a fundamental connection between white matter microstructure and neural synchronization that may be critical for cognitive processing. In the future, longitudinal or interventional studies can build upon our knowledge of these exciting relations between white matter, neural communication, and cognition.
Collapse
Affiliation(s)
- Sonya Bells
- Neurosciences and Mental Health Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jérémie Lefebvre
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Mathematics, University of Toronto, Toronto, Ontario, Canada
| | - Giulia Longoni
- Neurosciences and Mental Health Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Neurology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Sridar Narayanan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Douglas L Arnold
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Eleun Ann Yeh
- Neurosciences and Mental Health Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Neurology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Donald J Mabbott
- Neurosciences and Mental Health Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
34
|
White matter alterations in adult with autism spectrum disorder evaluated using diffusion kurtosis imaging. Neuroradiology 2019; 61:1343-1353. [PMID: 31209529 DOI: 10.1007/s00234-019-02238-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/29/2019] [Indexed: 12/21/2022]
Abstract
PURPOSE Autism spectrum disorder (ASD) is related to impairment in various white matter (WM) pathways. Utility of the recently developed two-compartment model of diffusion kurtosis imaging (DKI) to analyse axial diffusivity of WM is restricted by several limitations. The present study aims to validate the utility of model-free DKI in the evaluation of WM alterations in ASD and analyse the potential relationship between DKI-evident WM alterations and personality scales. METHODS Overall, 15 participants with ASD and 15 neurotypical (NT) controls were scanned on a 3 T magnetic resonance (MR) scanner, and scores for autism quotient (AQ), systemising quotient (SQ) and empathising quotient (EQ) were obtained for both groups. Multishell diffusion-weighted MR data were acquired using two b-values (1000 and 2000 s/mm2). Differences in mean kurtosis (MK), radial kurtosis (RK) and axial kurtosis (AK) between the groups were evaluated using tract-based spatial statistics (TBSS). Finally, the relationships between the kurtosis indices and personality quotients were examined. RESULTS The ASD group demonstrated significantly lower AK in the body and splenium of corpus callosum than the NT group; however, no other significant differences were identified. Negative correlations were found between AK and AQ or SQ, predominantly in WM areas related to social-emotional processing such as uncinate fasciculus, inferior fronto-occipital fasciculus, and inferior and superior longitudinal fasciculi. CONCLUSIONS Model-free DKI and its indices may represent a novel, objective method for detecting the disease severity and WM alterations in patients with ASD.
Collapse
|
35
|
Kremneva EI, Legostaeva LA, Morozova SN, Sergeev DV, Sinitsyn DO, Iazeva EG, Suslin AS, Suponeva NA, Krotenkova MV, Piradov MA, Maximov II. Feasibility of Non-Gaussian Diffusion Metrics in Chronic Disorders of Consciousness. Brain Sci 2019; 9:brainsci9050123. [PMID: 31137909 PMCID: PMC6562474 DOI: 10.3390/brainsci9050123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 01/06/2023] Open
Abstract
Diagnostic accuracy of different chronic disorders of consciousness (DOC) can be affected by the false negative errors in up to 40% cases. In the present study, we aimed to investigate the feasibility of a non-Gaussian diffusion approach in chronic DOC and to estimate a sensitivity of diffusion kurtosis imaging (DKI) metrics for the differentiation of vegetative state/unresponsive wakefulness syndrome (VS/UWS) and minimally conscious state (MCS) from a healthy brain state. We acquired diffusion MRI data from 18 patients in chronic DOC (11 VS/UWS, 7 MCS) and 14 healthy controls. A quantitative comparison of the diffusion metrics for grey (GM) and white (WM) matter between the controls and patient group showed a significant (p < 0.05) difference in supratentorial WM and GM for all evaluated diffusion metrics, as well as for brainstem, corpus callosum, and thalamus. An intra-subject VS/UWS and MCS group comparison showed only kurtosis metrics and fractional anisotropy differences using tract-based spatial statistics, owing mainly to macrostructural differences on most severely lesioned hemispheres. As a result, we demonstrated an ability of DKI metrics to localise and detect changes in both WM and GM and showed their capability in order to distinguish patients with a different level of consciousness.
Collapse
Affiliation(s)
- Elena I Kremneva
- Research Center of Neurology, 80 Volokolamskoe shosse, 125367 Moscow, Russia.
| | | | - Sofya N Morozova
- Research Center of Neurology, 80 Volokolamskoe shosse, 125367 Moscow, Russia.
| | - Dmitry V Sergeev
- Research Center of Neurology, 80 Volokolamskoe shosse, 125367 Moscow, Russia.
| | - Dmitry O Sinitsyn
- Research Center of Neurology, 80 Volokolamskoe shosse, 125367 Moscow, Russia.
| | - Elizaveta G Iazeva
- Research Center of Neurology, 80 Volokolamskoe shosse, 125367 Moscow, Russia.
| | - Aleksandr S Suslin
- Research Center of Neurology, 80 Volokolamskoe shosse, 125367 Moscow, Russia.
| | - Natalia A Suponeva
- Research Center of Neurology, 80 Volokolamskoe shosse, 125367 Moscow, Russia.
| | - Marina V Krotenkova
- Research Center of Neurology, 80 Volokolamskoe shosse, 125367 Moscow, Russia.
| | - Michael A Piradov
- Research Center of Neurology, 80 Volokolamskoe shosse, 125367 Moscow, Russia.
| | - Ivan I Maximov
- Department of Psychology, University of Oslo, Forskningsveien 3A, 0373 Oslo, Norway.
- Norwegian Centre for Mental Disorders Research (NORMENT), Norway and Institute of Clinical Medicine, University of Oslo, Oslo Universitetssykehus Bygg 48 Ullevål, 0317 Oslo, Norway.
| |
Collapse
|
36
|
Nie X, Falangola MF, Ward R, McKinnon ET, Helpern JA, Nietert PJ, Jensen JH. Diffusion MRI detects longitudinal white matter changes in the 3xTg-AD mouse model of Alzheimer's disease. Magn Reson Imaging 2019; 57:235-242. [PMID: 30543850 PMCID: PMC6331227 DOI: 10.1016/j.mri.2018.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/19/2018] [Accepted: 12/08/2018] [Indexed: 12/13/2022]
Abstract
The sensitivity of multiple diffusion MRI (dMRI) parameters to longitudinal changes in white matter microstructure was investigated for the 3xTg-AD transgenic mouse model of Alzheimer's disease, which manifests both amyloid beta plaques and neurofibrillary tangles. By employing a specific dMRI method known as diffusional kurtosis imaging, eight different diffusion parameters were quantified to characterize distinct aspects of water diffusion. Four female 3xTg-AD mice were imaged at five time points, ranging from 4.5 to 18 months of age, and the diffusion parameters were investigated in four white matter regions (fimbria, external capsule, internal capsule and corpus callosum). Significant changes were observed in several diffusion parameters, particularly in the fimbria and in the external capsule, with a statistically significant decrease in diffusivity and a statistically significant increase in kurtosis. Our preliminary results demonstrate that dMRI can detect microstructural changes in white matter for the 3xTg-AD mouse model due to aging and/or progression of pathology, depending strongly on the diffusion parameter and anatomical region.
Collapse
Affiliation(s)
- Xingju Nie
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA; Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA.
| | - Maria Fatima Falangola
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA; Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA
| | - Ralph Ward
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Emilie T McKinnon
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA; Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA; Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
| | - Joseph A Helpern
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA; Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA; Department of Neurology, Medical University of South Carolina, Charleston, SC, USA; Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Paul J Nietert
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Jens H Jensen
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA; Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA; Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
37
|
Novikov DS, Fieremans E, Jespersen SN, Kiselev VG. Quantifying brain microstructure with diffusion MRI: Theory and parameter estimation. NMR IN BIOMEDICINE 2019; 32:e3998. [PMID: 30321478 PMCID: PMC6481929 DOI: 10.1002/nbm.3998] [Citation(s) in RCA: 271] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 06/11/2018] [Accepted: 06/28/2018] [Indexed: 05/18/2023]
Abstract
We review, systematize and discuss models of diffusion in neuronal tissue, by putting them into an overarching physical context of coarse-graining over an increasing diffusion length scale. From this perspective, we view research on quantifying brain microstructure as occurring along three major avenues. The first avenue focusses on transient, or time-dependent, effects in diffusion. These effects signify the gradual coarse-graining of tissue structure, which occurs qualitatively differently in different brain tissue compartments. We show that transient effects contain information about the relevant length scales for neuronal tissue, such as the packing correlation length for neuronal fibers, as well as the degree of structural disorder along the neurites. The second avenue corresponds to the long-time limit, when the observed signal can be approximated as a sum of multiple nonexchanging anisotropic Gaussian components. Here, the challenge lies in parameter estimation and in resolving its hidden degeneracies. The third avenue employs multiple diffusion encoding techniques, able to access information not contained in the conventional diffusion propagator. We conclude with our outlook on future directions that could open exciting possibilities for designing quantitative markers of tissue physiology and pathology, based on methods of studying mesoscopic transport in disordered systems.
Collapse
Affiliation(s)
- Dmitry S. Novikov
- Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, NY, USA
| | - Els Fieremans
- Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, NY, USA
| | - Sune N. Jespersen
- CFIN/MINDLab, Department of Clinical Medicine and Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - Valerij G. Kiselev
- Medical Physics, Deptartment of Radiology, Faculty of Medicine, University of Freiburg, Germany
| |
Collapse
|
38
|
Abe Y, Komaki Y, Seki F, Shibata S, Okano H, Tanaka KF. Correlative study using structural MRI and super-resolution microscopy to detect structural alterations induced by long-term optogenetic stimulation of striatal medium spiny neurons. Neurochem Int 2019; 125:163-174. [PMID: 30825601 DOI: 10.1016/j.neuint.2019.02.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 02/20/2019] [Accepted: 02/22/2019] [Indexed: 11/27/2022]
Abstract
Striatal medium spiny neurons (MSNs) control motor function. Hyper- or hypo-activity of MSNs coincides with basal ganglia-related movement disorders. Based on the assumption that lasting alterations in neuronal activity lead to structural changes in the brain, understanding these structural alterations may be used to infer MSN functional abnormalities. To infer MSN function from structural data, understanding how long-lasting alterations in MSN activity affect brain morphology is essential. To address this, we utilized a simplified model of functional induction by stimulating MSNs expressing channelrhodopsin 2 (ChR2). Subsequent structural alterations which induced long-term activity changes in these MSNs were investigated in the striatal pathway and its associated regions by diffusion tensor imaging (DTI) and histological assessment with super-resolution microscopy. DTI detected changes in the striatum, substantia nigra, and motor cortex. Histological assessment found a reduction in the diameter of myelinated cortical axons as well as MSN dendrites and axons. The structural changes showed a high correlation between DTI parameters and histological data. These results demonstrated that long-term neural activation in the MSNs alters the diameter of MSN and cortical neurons fibers. This study provides a tool for understanding the causal relationship between functional and structural alterations.
Collapse
Affiliation(s)
- Yoshifumi Abe
- Department of Neuropsychiatry, Keio University School of Medicine, Japan.
| | - Yuji Komaki
- Department of Physiology, Keio University School of Medicine, Japan; Live Imaging Center, Central Institute for Experimental Animals, Japan
| | - Fumiko Seki
- Department of Physiology, Keio University School of Medicine, Japan; Live Imaging Center, Central Institute for Experimental Animals, Japan
| | - Shinsuke Shibata
- Department of Physiology, Keio University School of Medicine, Japan; Electron Microscope Laboratory, Keio University School of Medicine, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Japan; Electron Microscope Laboratory, Keio University School of Medicine, Japan; Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Japan
| | - Kenji F Tanaka
- Department of Neuropsychiatry, Keio University School of Medicine, Japan
| |
Collapse
|
39
|
Huber E, Henriques RN, Owen JP, Rokem A, Yeatman JD. Applying microstructural models to understand the role of white matter in cognitive development. Dev Cogn Neurosci 2019; 36:100624. [PMID: 30927705 PMCID: PMC6969248 DOI: 10.1016/j.dcn.2019.100624] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 12/18/2018] [Accepted: 01/29/2019] [Indexed: 11/25/2022] Open
Abstract
Diffusion MRI (dMRI) holds great promise for illuminating the biological changes that underpin cognitive development. The diffusion of water molecules probes the cellular structure of brain tissue, and biophysical modeling of the diffusion signal can be used to make inferences about specific tissue properties that vary over development or predict cognitive performance. However, applying these models to study development requires that the parameters can be reliably estimated given the constraints of data collection with children. Here we collect repeated scans using a typical multi-shell diffusion MRI protocol in a group of children (ages 7-12) and use two popular modeling techniques to examine individual differences in white matter structure. We first assess scan-rescan reliability of model parameters and show that axon water faction can be reliably estimated from a relatively fast acquisition, without applying spatial smoothing or de-noising. We then investigate developmental changes in the white matter, and individual differences that correlate with reading skill. Specifically, we test the hypothesis that previously reported correlations between reading skill and diffusion anisotropy in the corpus callosum reflect increased axon water fraction in poor readers. Both models support this interpretation, highlighting the utility of these approaches for testing specific hypotheses about cognitive development.
Collapse
Affiliation(s)
- Elizabeth Huber
- Institute for Learning & Brain Sciences and Department of Speech and Hearing Sciences, University of Washington, Seattle, WA, 98195, United States.
| | - Rafael Neto Henriques
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Julia P Owen
- Department of Radiology, University of Washington, Seattle, WA, 98195, United States
| | - Ariel Rokem
- eScience Institute, University of Washington, Seattle, WA, 98195, United States
| | - Jason D Yeatman
- Institute for Learning & Brain Sciences and Department of Speech and Hearing Sciences, University of Washington, Seattle, WA, 98195, United States
| |
Collapse
|
40
|
Petiet A, Adanyeguh I, Aigrot MS, Poirion E, Nait-Oumesmar B, Santin M, Stankoff B. Ultrahigh field imaging of myelin disease models: Toward specific markers of myelin integrity? J Comp Neurol 2019; 527:2179-2189. [PMID: 30520034 DOI: 10.1002/cne.24598] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 12/20/2022]
Abstract
Specific magnetic resonance imaging (MRI) markers of myelin are critical for the evaluation and development of regenerative therapies for demyelinating diseases. Several MRI methods have been developed for myelin imaging, based either on acquisition schemes or on mathematical modeling of the signal. They generally showed good sensitivity but validation for specificity toward myelin is still warranted to allow a reliable interpretation in an in vivo complex pathological environment. Experimental models of dys-/demyelination are characterized by various levels of myelin disorders, axonal damage, gliosis and inflammation, and offer the opportunity for powerful correlative studies between imaging metrics and histology. Here, we review how ultrahigh field MRI markers have been correlated with histology in these models and provide insights into the trends for future developments of MRI tools in human myelin diseases. To this end, we present the biophysical basis of the main MRI methods for myelin imaging based on T1 , T2 , water diffusion, and magnetization transfer signal, the characteristics of animal models used and the outcomes of histological validations. To date such studies are limited, and demonstrate partial correlations with immunohistochemical and electron microscopy measures of myelin. These MRI metrics also often correlate with axons, glial, or inflammatory cells in models where axonal degeneration or inflammation occur as potential confounding factors. Therefore, the MRI markers' specificity for myelin is still perfectible and future developments should improve mathematical modeling of the MR signal based on more complex systems or provide multimodal approaches to better disentangle the biological processes underlying the MRI metrics.
Collapse
Affiliation(s)
- Alexandra Petiet
- Sorbonne Université, UPMC Paris 06, Brain and Spine Institute, ICM, Hôpital de la Pitié Salpêtrière, Paris, France.,Center for Neuroimaging Research, Brain and Spine Institute, Paris, France
| | - Isaac Adanyeguh
- Sorbonne Université, UPMC Paris 06, Brain and Spine Institute, ICM, Hôpital de la Pitié Salpêtrière, Paris, France.,Center for Neuroimaging Research, Brain and Spine Institute, Paris, France
| | - Marie-Stéphane Aigrot
- Sorbonne Université, UPMC Paris 06, Brain and Spine Institute, ICM, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Emilie Poirion
- Sorbonne Université, UPMC Paris 06, Brain and Spine Institute, ICM, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Brahim Nait-Oumesmar
- Sorbonne Université, UPMC Paris 06, Brain and Spine Institute, ICM, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Mathieu Santin
- Sorbonne Université, UPMC Paris 06, Brain and Spine Institute, ICM, Hôpital de la Pitié Salpêtrière, Paris, France.,Center for Neuroimaging Research, Brain and Spine Institute, Paris, France
| | - Bruno Stankoff
- Sorbonne Université, UPMC Paris 06, Brain and Spine Institute, ICM, Hôpital de la Pitié Salpêtrière, Paris, France.,Department of Neurology, AP-HP, Saint-Antoine hospital, Paris, France
| |
Collapse
|
41
|
Sui YV, Donaldson J, Miles L, Babb JS, Castellanos FX, Lazar M. Diffusional kurtosis imaging of the corpus callosum in autism. Mol Autism 2018; 9:62. [PMID: 30559954 PMCID: PMC6293510 DOI: 10.1186/s13229-018-0245-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 11/20/2018] [Indexed: 12/31/2022] Open
Abstract
Background The corpus callosum is implicated in the pathophysiology of autism spectrum disorder (ASD). However, specific structural deficits and underlying mechanisms are yet to be well defined. Methods We employed diffusional kurtosis imaging (DKI) metrics to characterize white matter properties within five discrete segments of the corpus callosum in 17 typically developing (TD) adults and 16 age-matched participants with ASD without co-occurring intellectual disability (ID). The DKI metrics included axonal water fraction (faxon) and intra-axonal diffusivity (Daxon), which reflect axonal density and caliber, and extra-axonal radial (RDextra) and axial (ADextra) diffusivities, which reflect myelination and microstructural organization of the extracellular space. The relationships between DKI metrics and processing speed, a cognitive feature known to be impaired in ASD, were also examined. Results ASD group had significantly decreased callosal faxon and Daxon (p = .01 and p = .045), particularly in the midbody, isthmus, and splenium. Regression analysis showed that variation in DKI metrics, primarily in the mid and posterior callosal regions explained up to 70.7% of the variance in processing speed scores for TD (p = .001) but not for ASD (p > .05). Conclusion Decreased DKI metrics suggested that ASD may be associated with axonal deficits such as reduced axonal caliber and density in the corpus callosum, especially in the mid and posterior callosal areas. These data suggest that impaired interhemispheric connectivity may contribute to decreased processing speed in ASD participants. Electronic supplementary material The online version of this article (10.1186/s13229-018-0245-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yu Veronica Sui
- 1Department of Radiology, New York University School of Medicine, New York, NY USA.,4Center for Biomedical Imaging, NYU Langone Health, 660 First Ave, 4th floor, New York, NY 10016 USA
| | - Jeffrey Donaldson
- 1Department of Radiology, New York University School of Medicine, New York, NY USA
| | - Laura Miles
- 1Department of Radiology, New York University School of Medicine, New York, NY USA
| | - James S Babb
- 1Department of Radiology, New York University School of Medicine, New York, NY USA
| | - Francisco Xavier Castellanos
- 2Department of Child and Adolescent Psychiatry, Hassenfeld Children's Hospital at NYU Langone, New York, NY USA.,3Nathan Kline Institute for Psychiatric Research, Orangeburg, NY USA
| | - Mariana Lazar
- 1Department of Radiology, New York University School of Medicine, New York, NY USA.,4Center for Biomedical Imaging, NYU Langone Health, 660 First Ave, 4th floor, New York, NY 10016 USA
| |
Collapse
|
42
|
Pasternak O, Kelly S, Sydnor VJ, Shenton ME. Advances in microstructural diffusion neuroimaging for psychiatric disorders. Neuroimage 2018; 182:259-282. [PMID: 29729390 PMCID: PMC6420686 DOI: 10.1016/j.neuroimage.2018.04.051] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 04/18/2018] [Accepted: 04/23/2018] [Indexed: 12/18/2022] Open
Abstract
Understanding the neuropathological underpinnings of mental disorders such as schizophrenia, major depression, and bipolar disorder is an essential step towards the development of targeted treatments. Diffusion MRI studies utilizing the diffusion tensor imaging (DTI) model have been extremely successful to date in identifying microstructural brain abnormalities in individuals suffering from mental illness, especially in regions of white matter, although identified abnormalities have been biologically non-specific. Building on DTI's success, in recent years more advanced diffusion MRI methods have been developed and applied to the study of psychiatric populations, with the aim of offering increased sensitivity to subtle neurological abnormalities, as well as improved specificity to candidate pathologies such as demyelination and neuroinflammation. These advanced methods, however, usually come at the cost of prolonged imaging sequences or reduced signal to noise, and they are more difficult to evaluate compared with the more simplified approach taken by the now common DTI model. To date, a limited number of advanced diffusion MRI methods have been employed to study schizophrenia, major depression and bipolar disorder populations. In this review we survey these studies, compare findings across diverse methods, discuss the main benefits and limitations of the different methods, and assess the extent to which the application of more advanced diffusion imaging approaches has led to novel and transformative information with regards to our ability to better understand the etiology and pathology of mental disorders.
Collapse
Affiliation(s)
- Ofer Pasternak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Sinead Kelly
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Valerie J Sydnor
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Martha E Shenton
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Veteran Affairs Boston Healthcare System, Brockton Division, Brockton, MA, USA
| |
Collapse
|
43
|
Duarte KCN, Soares TT, Magri AMP, Garcia LA, Le Sueur-Maluf L, Renno ACM, Monteiro de Castro G. Low-level laser therapy modulates demyelination in mice. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 189:55-65. [PMID: 30312921 DOI: 10.1016/j.jphotobiol.2018.09.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 08/28/2018] [Accepted: 09/25/2018] [Indexed: 11/15/2022]
Abstract
There are no effective therapies for remyelination. Low-level laser therapy (LLLT) has been found advantageous in neurogenesis promotion, cell death prevention, and modulation of inflammation in central and peripheral nervous system models. The purpose of this study was to analyse LLLT effects on cuprizone-induced demyelination. Mice were randomly distributed into three groups: Control Laser (CTL), Cuprizone (CPZ), and Cuprizone Laser (CPZL). Mice from CPZ and CPZL groups were exposed to a 0.2% cuprizone oral diet for four complete weeks. Six sessions of transcranial laser irradiation were applied on three consecutive days, during the third and fourth weeks, with parameters of 36 J/cm2, 50 mW, 0.028 cm2 spot area, continuous wave, 1 J, 20 s, 1.78 W/cm2 in a single point equidistant between the eyes and ears of CTL and CPZL mice. Motor coordination was assessed by the rotarod test. Twenty-four hours after the last laser session, all animals were euthanized, and brains were extracted. Serum was obtained for lactate dehydrogenase toxicity testing. Histomorphological analyses consisted of Luxol Fast Blue staining and immunohistochemistry. The results showed that laser-treated animals presented motor performance improvement, attenuation of demyelination, increased number of oligodendrocyte precursor cells, modulated microglial and astrocytes activation, and a milder toxicity by cuprizone. Although further studies are required, it is suggested that LLLT represents a feasible therapy for demyelinating diseases.
Collapse
Affiliation(s)
- Katherine Chuere Nunes Duarte
- Programa Interdisciplinar em Ciências da Saúde, Universidade Federal de São Paulo, UNIFESP, Av. Ana Costa, 95, Santos, SP 11060-001, Brazil; Departamento de Biociências, Universidade Federal de São Paulo, UNIFESP, Rua Silva Jardim, 136, Santos, SP 11015-020, Brazil
| | - Thaís Torres Soares
- Programa Interdisciplinar em Ciências da Saúde, Universidade Federal de São Paulo, UNIFESP, Av. Ana Costa, 95, Santos, SP 11060-001, Brazil; Departamento de Biociências, Universidade Federal de São Paulo, UNIFESP, Rua Silva Jardim, 136, Santos, SP 11015-020, Brazil
| | - Angela Maria Paiva Magri
- Programa Interdisciplinar em Ciências da Saúde, Universidade Federal de São Paulo, UNIFESP, Av. Ana Costa, 95, Santos, SP 11060-001, Brazil; Departamento de Biociências, Universidade Federal de São Paulo, UNIFESP, Rua Silva Jardim, 136, Santos, SP 11015-020, Brazil
| | - Lívia Assis Garcia
- Programa Interdisciplinar em Ciências da Saúde, Universidade Federal de São Paulo, UNIFESP, Av. Ana Costa, 95, Santos, SP 11060-001, Brazil; Departamento de Biociências, Universidade Federal de São Paulo, UNIFESP, Rua Silva Jardim, 136, Santos, SP 11015-020, Brazil
| | - Luciana Le Sueur-Maluf
- Programa Interdisciplinar em Ciências da Saúde, Universidade Federal de São Paulo, UNIFESP, Av. Ana Costa, 95, Santos, SP 11060-001, Brazil; Departamento de Biociências, Universidade Federal de São Paulo, UNIFESP, Rua Silva Jardim, 136, Santos, SP 11015-020, Brazil
| | - Ana Cláudia Muniz Renno
- Programa Interdisciplinar em Ciências da Saúde, Universidade Federal de São Paulo, UNIFESP, Av. Ana Costa, 95, Santos, SP 11060-001, Brazil; Departamento de Biociências, Universidade Federal de São Paulo, UNIFESP, Rua Silva Jardim, 136, Santos, SP 11015-020, Brazil; Programa de Bioprodutos e Bioprocessos, Universidade Federal de São Paulo, UNIFESP, Av. Ana Costa, 95, Santos, SP 11060-001, Brazil
| | - Gláucia Monteiro de Castro
- Programa Interdisciplinar em Ciências da Saúde, Universidade Federal de São Paulo, UNIFESP, Av. Ana Costa, 95, Santos, SP 11060-001, Brazil; Departamento de Biociências, Universidade Federal de São Paulo, UNIFESP, Rua Silva Jardim, 136, Santos, SP 11015-020, Brazil.
| |
Collapse
|
44
|
Benitez A, Jensen JH, Falangola MF, Nietert PJ, Helpern JA. Modeling white matter tract integrity in aging with diffusional kurtosis imaging. Neurobiol Aging 2018; 70:265-275. [PMID: 30055412 PMCID: PMC6195210 DOI: 10.1016/j.neurobiolaging.2018.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/03/2018] [Accepted: 07/10/2018] [Indexed: 01/25/2023]
Abstract
Myelin breakdown and neural fiber loss occur in aging. This study used white matter tract integrity metrics derived from biophysical modeling using Diffusional Kurtosis Imaging to assess loss of myelin (i.e., extraaxonal diffusivity, radial direction, De,⊥) and axonal density (i.e., axonal water fraction) in cognitively unimpaired older adults. Tract-based spatial statistics and region of interest analyses sought to identify ontogenic differences and age-related changes in white matter tracts using cross-sectional and longitudinal data analyzed with general linear and mixed-effects models. In addition to pure diffusion parameters (i.e., fractional anisotropy, mean diffusivity, mean kurtosis), we found that white matter tract integrity metrics significantly differentiated early- from late-myelinating tracts, correlated with age in spatially distinct regions, and identified primarily extraaxonal changes over time. Percent metric changes were |0.3-0.9|% and |0.0-1.9|% per year using cross-sectional data and longitudinal data, respectively. There was accelerated decline in some late- versus early-myelinating tracts in older age. These results demonstrate that these metrics may inform further study of the transition from age-related changes to neurodegenerative decline.
Collapse
Affiliation(s)
- Andreana Benitez
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA; Department of Neurology, Medical University of South Carolina, Charleston, SC, USA; Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA.
| | - Jens H Jensen
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA; Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA; Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Maria Fatima Falangola
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA; Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA; Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Paul J Nietert
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Joseph A Helpern
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, USA; Department of Neurology, Medical University of South Carolina, Charleston, SC, USA; Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA; Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
45
|
Alawieh A, Andersen M, Adkins DL, Tomlinson S. Acute Complement Inhibition Potentiates Neurorehabilitation and Enhances tPA-Mediated Neuroprotection. J Neurosci 2018; 38:6527-6545. [PMID: 29921716 PMCID: PMC6052238 DOI: 10.1523/jneurosci.0111-18.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 05/25/2018] [Accepted: 05/31/2018] [Indexed: 12/23/2022] Open
Abstract
Because complement activation in the subacute or chronic phase after stroke was recently shown to stimulate neural plasticity, we investigated how complement activation and complement inhibition in the acute phase after murine stroke interacts with subsequent rehabilitation therapy to modulate neuroinflammation and neural remodeling. We additionally investigated how complement and complement inhibition interacts with tissue plasminogen activator (tPA), the other standard of care therapy for stroke, and a U.S. Food and Drug Administration preclinical requirement for translation of an experimental stroke therapy. CR2fH, an injury site-targeted inhibitor of the alternative complement pathway, significantly reduced infarct volume, hemorrhagic transformation, and mortality and significantly improved long-term motor and cognitive performance when administered 1.5 or 24 h after middle cerebral artery occlusion. CR2fH interrupted a poststroke inflammatory process and significantly reduced inflammatory cytokine release, microglial activation, and astrocytosis. Rehabilitation alone showed mild anti-inflammatory effects, including reduced complement activation, but only improved cognitive recovery. CR2fH combined with rehabilitation significantly potentiated cognitive and motor recovery compared with either intervention alone and was associated with higher growth factor release and enhanced rehabilitation-induced neuroblast migration and axonal remodeling. Similar outcomes were seen in adult, aged, and female mice. Using a microembolic model, CR2fH administered in combination with acute tPA therapy improved overall survival and enhanced the neuroprotective effects of tPA, extending the treatment window for tPA therapy. A human counterpart of CR2fH has been shown to be safe and nonimmunogenic in humans and we have demonstrated robust deposition of C3d, the CR2fH targeting epitope, in ischemic human brains after stroke.SIGNIFICANCE STATEMENT Complement inhibition is a potential therapeutic approach for stroke, but it is not known how complement inhibition would interact with current standards of care. We show that, after murine ischemic stroke, rehabilitation alone induced mild anti-inflammatory effects and improved cognitive, but not motor recovery. However, brain-targeted and specific inhibition of the alternative complement pathway, when combined with rehabilitation, significantly potentiated cognitive and motor recovery compared with either intervention alone via mechanisms involving neuroregeneration and enhanced brain remodeling. Further, inhibiting the alternative pathway of complement significantly enhanced the neuroprotective effects of thrombolytic therapy and markedly expanded the therapeutic window for thrombolytic therapy.
Collapse
Affiliation(s)
- Ali Alawieh
- Department of Microbiology and Immunology
- Medical Scientist Training Program, College of Medicine
| | | | - DeAnna L Adkins
- Department of Neurosciences
- College of Health Professions, Medical University of South Carolina, Charleston, South Carolina 29425, and
- Ralph Johnson VA Medical Center, Charleston, South Carolina 29425
| | - Stephen Tomlinson
- Department of Microbiology and Immunology,
- Ralph Johnson VA Medical Center, Charleston, South Carolina 29425
| |
Collapse
|
46
|
Diffusion kurtosis imaging as a neuroimaging biomarker in patients with carbon monoxide intoxication. Neurotoxicology 2018; 68:38-46. [PMID: 30017424 DOI: 10.1016/j.neuro.2018.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/10/2018] [Accepted: 07/02/2018] [Indexed: 11/23/2022]
Abstract
Attempting suicide by burning charcoal can lead to carbon monoxide (CO) intoxication and cognitive deficits. Changes in white matter (WM) quantified by diffusion tensor imaging (DTI)-derived parameters have been validated to reflect cognitive test scores. As diffusion kurtosis imaging (DKI) measures biological microstructures using non-Gaussian diffusivity, we assessed the added-information of DKI with neuropsychological test scores as the major outcome measure. A total of 45 patients were enrolled and compared with 30 age-matched controls. The patients were stratified into acute or chronic phase according to the intervals of intoxication and assessments. WM status was assessed using tract-based spatial statistics for DKI and DTI topographies, and the sensitivity/specificity of either model was tested using area under the curve (AUC) analysis. To evaluate their clinical significance, values of DKI- and DTI-derived parameters were extracted from seven regions of interest (ROI) and correlated with neuropsychiatric scores. The kurtosis parameters were lower in the patients than in the controls but none of the parameters provided differentiations between the acute or chronic phase. Kurtosis fractional anisotropy (KFA) had a higher AUC than fractional anisotropy while the other 3 DTI parameters had higher AUC than the corresponding DKI ones. In clinical correlations, KFA value of right posterior WM correlated with visual memory (r = 0.326, p = 0.029), and KFA values of bilateral posterior WM correlated with the digit forward score (right: r = 0.302, p = 0.043; left: r = 0.314, p = 0.036). Although DTI was more sensitive in reflecting disease status, KFA may be more sensitive and specific than fractional anisotropy in cognitive test score predictions.
Collapse
|
47
|
Goryawala MZ, Heros DO, Komotar RJ, Sheriff S, Saraf-Lavi E, Maudsley AA. Value of diffusion kurtosis imaging in assessing low-grade gliomas. J Magn Reson Imaging 2018; 48:1551-1558. [PMID: 29573042 DOI: 10.1002/jmri.26012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 03/02/2018] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Diffusion kurtosis imaging (DKI) measures have been shown to provide increased sensitivity relative to diffusion tensor imaging (DTI) in detecting pathologies. PURPOSE To compare the sensitivity of DKI-derived kurtosis and diffusion maps for assessment of low-grade gliomas (LGG). STUDY TYPE Prospective study. POPULATION In all, 19 LGG patients and 26 healthy control subjects were recruited. FIELD STRENGTH/SEQUENCE Echo-planar-imaging diffusion-weighted MR images (b-values = 0, 1000, and 2000 with 30 diffusion gradient directions) were acquired on a 3T scanner. ASSESSMENT Maps for mean, axial, and radial diffusivity (MD, AD, and RD) and kurtosis (MK, AK, and RK), and fractional anisotropy (FA) were evaluated in the tumor, perilesional white matter, and contralateral normal-appearing white matter regions. STATISTICAL TESTING General linear models (GLM), Cohen's d for effect size estimates, false discovery rate (FDR) for multiple corrections, Cochran Q-test. RESULTS Pairwise differences were observed for all diffusion and kurtosis measures between the studied regions (FDR P < 0.001), except an FA map that failed to show significant differences between the lesion and perilesional white matter (FDR P = 0.373). Effect size analysis showed that kurtosis metrics were found to be 18.8% (RK, P = 0.144) to 29.1% (AK, P < 0.05) more sensitive in discriminating perilesional regions from the lesion than corresponding diffusion metrics, whereas AK provided a 25.0% (P < 0.05) increase in sensitivity in discriminating perilesional and contralateral white matter. RK was found to be the most sensitive to contralateral white matter differences between low-grade gliomas and controls, with MK and RK providing a significantly greater sensitivity of 587.2% (P < 0.001) and 320.7% (P < 0.001) than MD and RD, respectively. DATA CONCLUSION Kurtosis maps showed increased sensitivity, as compared to counterpart diffusion maps, for evaluation of microstructural changes in gliomas with a 3-6-fold increment in assessing changes in contralateral white matter. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2018;48:1551-1558.
Collapse
Affiliation(s)
| | - Deborah O Heros
- Department of Neurology, University of Miami, Miami, Florida, USA
| | - Ricardo J Komotar
- Department of Neurological Surgery, University of Miami, Miami, Florida, USA
| | - Sulaiman Sheriff
- Department of Radiology, University of Miami, Miami, Florida, USA
| | - Efrat Saraf-Lavi
- Department of Radiology, University of Miami, Miami, Florida, USA
| | | |
Collapse
|
48
|
Chung S, Fieremans E, Kucukboyaci NE, Wang X, Morton CJ, Novikov DS, Rath JF, Lui YW. Working Memory And Brain Tissue Microstructure: White Matter Tract Integrity Based On Multi-Shell Diffusion MRI. Sci Rep 2018; 8:3175. [PMID: 29453439 PMCID: PMC5816650 DOI: 10.1038/s41598-018-21428-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 02/05/2018] [Indexed: 11/30/2022] Open
Abstract
Working memory is a complex cognitive process at the intersection of sensory processing, learning, and short-term memory and also has a general executive attention component. Impaired working memory is associated with a range of neurological and psychiatric disorders, but very little is known about how working memory relates to underlying white matter (WM) microstructure. In this study, we investigate the association between WM microstructure and performance on working memory tasks in healthy adults (right-handed, native English speakers). We combine compartment specific WM tract integrity (WMTI) metrics derived from multi-shell diffusion MRI as well as diffusion tensor/kurtosis imaging (DTI/DKI) metrics with Wechsler Adult Intelligence Scale-Fourth Edition (WAIS-IV) subtests tapping auditory working memory. WMTI is a novel tool that helps us describe the microstructural characteristics in both the intra- and extra-axonal environments of WM such as axonal water fraction (AWF), intra-axonal diffusivity, extra-axonal axial and radial diffusivities, allowing a more biophysical interpretation of WM changes. We demonstrate significant positive correlations between AWF and letter-number sequencing (LNS), suggesting that higher AWF with better performance on complex, more demanding auditory working memory tasks goes along with greater axonal volume and greater myelination in specific regions, causing efficient and faster information process.
Collapse
Affiliation(s)
- Sohae Chung
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, NY, 10016, USA
- Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, New York, NY, 10016, USA
| | - Els Fieremans
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, NY, 10016, USA
- Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, New York, NY, 10016, USA
| | | | - Xiuyuan Wang
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, NY, 10016, USA
- Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, New York, NY, 10016, USA
| | - Charles J Morton
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, NY, 10016, USA
- Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, New York, NY, 10016, USA
| | - Dmitry S Novikov
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, NY, 10016, USA
- Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, New York, NY, 10016, USA
| | - Joseph F Rath
- Department of Rehabilitation Medicine, New York University School of Medicine, New York, NY, 10016, USA
| | - Yvonne W Lui
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, NY, 10016, USA.
- Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
49
|
Zhang Q, Li Z, Wu S, Li X, Sang Y, Li J, Niu Y, Ding H. Myricetin alleviates cuprizone-induced behavioral dysfunction and demyelination in mice by Nrf2 pathway. Food Funct 2018; 7:4332-4342. [PMID: 27713953 DOI: 10.1039/c6fo00825a] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Multiple sclerosis (MS) is a demyelinating disease occurring in the central nervous system. In the present study, we evaluated the function of myricetin on the alleviation of behavioral dysfunction and myelin protection in the cuprizone-induced demyelination model. Mice were daily fed with fodder including 0.2% cuprizone and were administrated myricetin (100 mg kg-1) by gavage administration for 5 weeks. The treatment of myricetin ameliorated hyper-locomotion and behavior impairment induced by cuprizone toxicity. With the administration of myricetin, the demyelinating lesion was lessened via increasing the LFB staining area and myelin phosphatide protein (MBP) expression. In addition, myricetin evidently promoted Nrf2 translocation in the nuclear fraction and enhanced the HO-1 and NQO1 expression levels. Our data revealed that myricetin may be a potential candidate for mitigating motor defects and demyelination in a cuprizone-induced mouse model via activating the Nrf2 pathway.
Collapse
Affiliation(s)
- Qianying Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, P. R. China.
| | - Zhike Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, P. R. China.
| | - Shuangchan Wu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, P. R. China.
| | - Xiaofei Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, P. R. China.
| | - Ying Sang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, P. R. China.
| | - Jian Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, P. R. China.
| | - Yunhui Niu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, P. R. China.
| | - Hong Ding
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, P. R. China.
| |
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW Despite major progress in multiple sclerosis (MS) treatment, to date, accumulation of irreversible clinical disability is not sufficiently prevented with immunotherapies. In this context, repair strategies aimed at reducing axonal damage are becoming a very active field of preclinical and clinical research. RECENT FINDINGS Improved understanding of the cellular and molecular mechanisms of myelin repair, together with the emergence of new therapeutic candidates are paving the way for novel therapeutic strategies in MS. In parallel, there is a very active development of imaging methods to assess lesions ongoing remyelination that are crucially needed to evaluate therapeutic efficacy. SUMMARY The current development of a very dynamic and multidisciplinary research on remyelination should accelerate the development of myelin repair strategies in MS, to prevent disability progression.
Collapse
|