1
|
Knutsson M, Salomonsson T, Durmo F, Johansson ER, Seidemo A, Lätt J, Rydelius A, Kinhult S, Englund E, Bengzon J, van Zijl PCM, Knutsson L, Sundgren PC. Differentiation between glioblastoma and solitary brain metastases using perfusion and amide proton transfer weighted MRI. Front Neurosci 2025; 19:1533799. [PMID: 39975970 PMCID: PMC11836003 DOI: 10.3389/fnins.2025.1533799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 01/22/2025] [Indexed: 02/21/2025] Open
Abstract
Objectives Early diagnostic separation between glioblastoma (GBM) and solitary metastases (MET) is important for patient management but remains challenging when based on imaging only. The objective of this study was to assess whether amide proton transfer weighted (APTw) MRI alone or combined with dynamic susceptibility contrast (DSC) MRI parameters, including cerebral blood volume (CBV), cerebral blood flow (CBF), and leakage parameter (K2) measurements, can differentiate GBM from MET. Methods APTw MRI and DSC-MRI were performed on 18 patients diagnosed with GBM (N = 10) or MET (N = 8). Quantitative parameter maps were calculated, and regions-of-interest (ROIs) were placed in whole tumor, contrast-enhanced tumor (ET), edema, necrosis and normal-appearing white matter (NAWM). The mean and max of the APTw signal, CBF, leakage-corrected CBV and K2 were obtained from each ROI. Except for K2, all were normalized to NAWM (nAPTwmean/max, nCBFmean/max, ncCBVmean/max,). Receiver Operating Characteristic (ROC) curves and area-under-the-curve (AUC) were assessed for different parameter combinations. Statistical analyses were performed using Mann-Whitney U test. Results When comparing GBM to MET, nAPTmax, nCBFmax, ncCBVmax and ncCBVmean were significantly increased (p < 0.05) in ET with AUC being 0.81, 0.83, 0.85, and 0.83, respectively. Combinations of nAPTwmax + ncCBVmax, nAPTwmean + ncCBVmean, nAPTwmax + nCBFmax, nAPTwmax + K2max and nAPTwmax + ncCBVmax + K2max in ET showed significant prediction in differentiating GBM and MET (AUC = 0.92, 0.82, 0.92, 0.85, and 0.92 respectively). Conclusion When assessed in Gd-enhanced tumor areas, nAPTw MRI signal intensity alone or combined with DSC-MRI parameters, was an excellent predictor for differentiating GBM and MET. However, the small cohort warrants future studies.
Collapse
Affiliation(s)
- Malte Knutsson
- Department of Clinical Sciences, Division of Radiology, Lund University, Lund, Sweden
| | - Tim Salomonsson
- Department of Clinical Sciences, Division of Radiology, Lund University, Lund, Sweden
| | - Faris Durmo
- Department of Clinical Sciences, Division of Radiology, Lund University, Lund, Sweden
| | - Emelie Ryd Johansson
- Department of Clinical Sciences, Division of Radiology, Lund University, Lund, Sweden
| | - Anina Seidemo
- Department of Clinical Sciences, Division of Radiology, Lund University, Lund, Sweden
| | - Jimmy Lätt
- Department of Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden
| | - Anna Rydelius
- Department of Clinical Sciences, Division of Neurology, Lund University, Lund, Sweden
| | - Sara Kinhult
- Department of Clinical Sciences, Division of Oncology, Lund University, Lund, Sweden
| | - Elisabet Englund
- Department of Clinical Sciences, Division of Pathology, Lund University, Lund, Sweden
| | - Johan Bengzon
- Department of Clinical Sciences, Division of Neurosurgery, Lund University, Lund, Sweden
| | - Peter C. M. van Zijl
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Linda Knutsson
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | - Pia C. Sundgren
- Department of Clinical Sciences, Division of Radiology, Lund University, Lund, Sweden
- Department of Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden
- LBIC, Lund University Bioimaging Center, Lund University, Lund, Sweden
| |
Collapse
|
2
|
Ying Y, Yahya N, Abdul Manan H. Apparent Diffusion Coefficient (ADC) and Magnetic Resonance Imaging (MRI) Nomogram for Differentiating a Solitary Fibrous Tumor (World Health Organization Grade II) From an Angiomatous Meningioma. Cureus 2025; 17:e79470. [PMID: 40135019 PMCID: PMC11933727 DOI: 10.7759/cureus.79470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2025] [Indexed: 03/27/2025] Open
Abstract
INTRODUCTION Accurate preoperative differentiation between intracranial solitary fibrous tumor (SFT, World Health Organization grade II) and angiomatous meningioma (AM) is crucial for surgical planning and prognosis prediction. While conventional magnetic resonance imaging (MRI) is widely used, distinguishing these tumors based on imaging alone remains challenging. This study aimed to evaluate clinical and MRI features to improve diagnostic accuracy between SFT and AM, focusing on the apparent diffusion coefficient (ADC) and conventional MRI parameters. METHODS A retrospective analysis was conducted on 51 patients (23 with SFT and 28 with AM) confirmed by pathology. Clinical and MRI characteristics were assessed using t-tests and chi-square tests. Logistic regression analysis was performed to identify independent predictors, and receiver operating characteristic (ROC) curve analysis evaluated diagnostic performance. A nomogram integrating ADC values with conventional MRI features was developed and validated using calibration curves. RESULTS Significant differences in tumor shape, cystic necrosis, T1-weighted imaging and T2-weighted imaging signal intensities, and ADC values were observed between SFT and AM (p < 0.05). Logistic regression analysis confirmed these factors as independent predictors, with ADC demonstrating the highest diagnostic performance at an optimal cutoff value of 1.08 × 10-³ mm²/second. The ROC analysis showed that combining ADC with conventional MRI features improved diagnostic accuracy. The calibration curve demonstrated strong agreement between nomogram predictions and actual outcomes. CONCLUSION Integrating ADC values with clinical and MRI features provides a reliable method for differentiating intracranial SFT from AM. This approach enhances diagnostic precision, aiding in optimized clinical decision-making and surgical planning.
Collapse
Affiliation(s)
- Yu Ying
- Department of Interventional Radiology, University Kebangsaan Malaysia Medical Centre, Kuala Lumpur, MYS
| | - Noorazrul Yahya
- Department of Diagnostic Imaging and Radiotherapy, Centre for Diagnostic, Therapeutic and Investigative Sciences, Faculty of Health Sciences, National University of Malaysia, Kuala Lumpur, MYS
| | - Hanani Abdul Manan
- Functional Image Processing Laboratory, Department of Radiology, National University of Malaysia, Kuala Lumpur, MYS
| |
Collapse
|
3
|
Hou H, Yu J, Diao Y, Xu M, Li Z, Song T, Liu Y, Wang L. Diagnostic performance of multiparametric nonenhanced magnetic resonance imaging (MRI) in grading glioma and correlating IDH mutation status. Clin Radiol 2024; 82:106791. [PMID: 39837107 DOI: 10.1016/j.crad.2024.106791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/07/2024] [Accepted: 12/24/2024] [Indexed: 01/23/2025]
Abstract
AIM To evaluate the diagnostic performance of nonenhanced magnetic resonance imaging (MRI) in grading glioma and correlating isocitrate dehydrogenase (IDH) mutation status. MATERIALS AND METHODS Patients with diagnoses confirmed by postoperative pathology were enrolled. Quantitative parameters, including the relative amide proton transfer-weighted (rAPTW), relative cerebral blood flow (CBF), and apparent diffusion coefficient (ADC) were applied to grade gliomas and correlate IDH mutation status. MRI parameters were compared with an independent-sample t-test. The diagnostic performance was assessed and compared with a receiver operating characteristic (ROC) curve and the area under the ROC curve (AUC). RESULTS The rAPTW signal and rCBF values were significantly higher in high-grade gliomas (HGG) than in low-grade glioma (LGG), whereas ADC values were significantly lower in HGG than in LGG. Compared with 3D-pCASL imaging and diffusion-weighted imaging (DWI), 3D-APTW imaging had the best diagnostic performance in distinguishing LGG from HGG, with an AUC of 0.930, a sensitivity of 91.2% and a specificity of 87.5%. By adding 3D-APTW imaging to 3D-pCASL imaging, or DWI, the diagnostic performance of both sequences increased. Furthermore, APTW, rAPTW, CBF, and rCBF values in the IDH mutant-type (IDH-mut) group were significantly lower than those in the IDH wild-type (IDH-wt) group, ADC values were significantly higher in IDH-mut group than in IDH-wt group. CONCLUSION 3D-APTW imaging demonstrated better diagnostic performance than DWI or 3D-pCASL imaging in grading gliomas. Moreover, 3D-APTW imaging had added value in addition to both 3D-pCASL imaging and DWI in distinguishing LGG from HGG. 3D-APTW, 3D-pCASL, and DWI imaging could be used to discriminate between IDH-mut and IDH-wt group.
Collapse
Affiliation(s)
- H Hou
- Department of Radiology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, 264200, China
| | - J Yu
- Department of Radiology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, 264200, China
| | - Y Diao
- Department of Radiology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 264200, China
| | - M Xu
- Department of Radiology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, 264200, China
| | - Z Li
- Department of Radiology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, 264200, China
| | - T Song
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
| | - Y Liu
- Department of Pathology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
| | - L Wang
- Department of Radiology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, 264200, China.
| |
Collapse
|
4
|
Borges de Almeida G, Pascuzzo R, Mambrin F, Aquino D, Verri M, Moscatelli M, Del Bene M, DiMeco F, Silvani A, Pollo B, Grisoli M, Doniselli FM. The Role of Amide Proton Transfer (APT)-Weighted Imaging in Glioma: Assessment of Tumor Grading, Molecular Profile and Survival in Different Tumor Components. Cancers (Basel) 2024; 16:3014. [PMID: 39272871 PMCID: PMC11394364 DOI: 10.3390/cancers16173014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Amide Proton Transfer-weighted (APTw) imaging is a molecular MRI technique used to quantify protein concentrations in gliomas, which have heterogeneous components with varying cellularity and metabolic activity. This study aimed to assess the correlation between the component-specific APT signal of the neoplasm and WHO grade, molecular profile and survival status. Sixty-one patients with adult-type diffuse gliomas were retrospectively analyzed. APT values were semi-automatically extracted from tumor solid and, whenever present, necrotic components. APT values were compared between groups stratified by WHO grade, IDH-mutation, MGMT promoter methylation and 1- and 2-year survival status using Wilcoxon rank-sum test, adjusting for multiple comparisons. Overall survival (OS) was analyzed in the subgroup of 48 patients with grade 4 tumors using Cox proportional-hazards models. Random-effects models were used to assess inter-subject heterogeneity of the mean APT values in each tumor component. APT values of the solid component significantly differed between patients with grades 2-3 and 4 tumors (mean 1.58 ± 0.50 vs. 2.04 ± 0.56, p = 0.028) and correlated with OS after 1 year (1.81 ± 0.58 in survivors vs. 2.17 ± 0.51 in deceased patients, p = 0.030). APT values did not differ by IDH-mutation, MGMT methylation, and 2-year survival status. Within grade 4 glioma patients, higher APT kurtosis of the solid component was a negative prognostic factor (hazard ratio = 1.60, p = 0.040). Mean APT values of the necrosis showed high inter-subject variability, although most necrotic tumors were grade 4 and IDH wildtype. In conclusion, APTw imaging in the solid component provided metrics associated with glioma grade and survival status but showed weak correlation with IDH-mutation and MGMT promoter methylation status, in contrast to previous works. Further research is needed to understand APT signal variability within the necrotic component of high-grade gliomas.
Collapse
Affiliation(s)
| | - Riccardo Pascuzzo
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy
| | - Francesca Mambrin
- Neuroradiology Unit, Department of Diagnostics and Pathology, Azienda Ospedaliera Universitaria Integrata Verona, Piazzale Aristide Stefani 1, 37126 Verona, Italy
| | - Domenico Aquino
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy
| | - Mattia Verri
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy
| | - Marco Moscatelli
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy
| | - Massimiliano Del Bene
- Neurosurgery Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy
| | - Francesco DiMeco
- Neurosurgery Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy
- Department of Oncology and Hematology-Oncology, Università Degli Studi di Milano, 20122 Milan, Italy
- Department of Neurological Surgery, Johns Hopkins Medical School, Baltimore, MD 21205, USA
| | - Antonio Silvani
- Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy
| | - Bianca Pollo
- Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy
| | - Marina Grisoli
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy
| | - Fabio Martino Doniselli
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy
| |
Collapse
|
5
|
Deng HZ, Zhang HW, Huang B, Deng JH, Luo SP, Li WH, Lei Y, Liu XL, Lin F. Advances in diffuse glioma assessment: preoperative and postoperative applications of chemical exchange saturation transfer. Front Neurosci 2024; 18:1424316. [PMID: 39148521 PMCID: PMC11325484 DOI: 10.3389/fnins.2024.1424316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024] Open
Abstract
Chemical Exchange Saturation Transfer (CEST) is a technique that uses specific off-resonance saturation pulses to pre-saturate targeted substances. This process influences the signal intensity of free water, thereby indirectly providing information about the pre-saturated substance. Among the clinical applications of CEST, Amide Proton Transfer (APT) is currently the most well-established. APT can be utilized for the preoperative grading of gliomas. Tumors with higher APTw signals generally indicate a higher likelihood of malignancy. In predicting preoperative molecular typing, APTw values are typically lower in tumors with favorable molecular phenotypes, such as isocitrate dehydrogenase (IDH) mutations, compared to IDH wild-type tumors. For differential diagnosis, the average APTw values of meningiomas are significantly lower than those of high-grade gliomas. Various APTw measurement indices assist in distinguishing central nervous system lesions with similar imaging features, such as progressive multifocal leukoencephalopathy, central nervous system lymphoma, solitary brain metastases, and glioblastoma. Regarding prognosis, APT effectively differentiates between tumor recurrence and treatment effects, and also possesses predictive capabilities for overall survival (OS) and progression-free survival (PFS).
Collapse
Affiliation(s)
- Hua-Zhen Deng
- Shantou University Medical College, Shantou City, China
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Han-Wen Zhang
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Biao Huang
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Jin-Huan Deng
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Si-Ping Luo
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Wei-Hua Li
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Yi Lei
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Xiao-Lei Liu
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Fan Lin
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| |
Collapse
|
6
|
Su Y, Cheng R, Guo J, Zhang M, Wang J, Ji H, Wang C, Hao L, He Y, Xu C. Differentiation of glioma and solitary brain metastasis: a multi-parameter magnetic resonance imaging study using histogram analysis. BMC Cancer 2024; 24:805. [PMID: 38969990 PMCID: PMC11225204 DOI: 10.1186/s12885-024-12571-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 06/27/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND Differentiation of glioma and solitary brain metastasis (SBM), which requires biopsy or multi-disciplinary diagnosis, remains sophisticated clinically. Histogram analysis of MR diffusion or molecular imaging hasn't been fully investigated for the differentiation and may have the potential to improve it. METHODS A total of 65 patients with newly diagnosed glioma or metastases were enrolled. All patients underwent DWI, IVIM, and APTW, as well as the T1W, T2W, T2FLAIR, and contrast-enhanced T1W imaging. The histogram features of apparent diffusion coefficient (ADC) from DWI, slow diffusion coefficient (Dslow), perfusion fraction (frac), fast diffusion coefficient (Dfast) from IVIM, and MTRasym@3.5ppm from APTWI were extracted from the tumor parenchyma and compared between glioma and SBM. Parameters with significant differences were analyzed with the logistics regression and receiver operator curves to explore the optimal model and compare the differentiation performance. RESULTS Higher ADCkurtosis (P = 0.022), frackurtosis (P<0.001),and fracskewness (P<0.001) were found for glioma, while higher (MTRasym@3.5ppm)10 (P = 0.045), frac10 (P<0.001),frac90 (P = 0.001), fracmean (P<0.001), and fracentropy (P<0.001) were observed for SBM. frackurtosis (OR = 0.431, 95%CI 0.256-0.723, P = 0.002) was independent factor for SBM differentiation. The model combining (MTRasym@3.5ppm)10, frac10, and frackurtosis showed an AUC of 0.857 (sensitivity: 0.857, specificity: 0.750), while the model combined with frac10 and frackurtosis had an AUC of 0.824 (sensitivity: 0.952, specificity: 0.591). There was no statistically significant difference between AUCs from the two models. (Z = -1.14, P = 0.25). CONCLUSIONS The frac10 and frackurtosis in enhanced tumor region could be used to differentiate glioma and SBM and (MTRasym@3.5ppm)10 helps improving the differentiation specificity.
Collapse
Affiliation(s)
- Yifei Su
- The Neurosurgery Department of Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, Shanxi, 030012, PR China
- Provincial Key Cultivation Laboratory of Intelligent Big Data Digital Neurosurgery of Shanxi Province, Taiyuan, Shanxi, PR China
| | - Rui Cheng
- The Neurosurgery Department of Shanxi Provincial People's Hospital, Taiyuan, Shanxi, 030012, PR China
- Provincial Key Cultivation Laboratory of Intelligent Big Data Digital Neurosurgery of Shanxi Province, Taiyuan, Shanxi, PR China
| | | | | | - Junhao Wang
- The Neurosurgery Department of Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, Shanxi, 030012, PR China
- Provincial Key Cultivation Laboratory of Intelligent Big Data Digital Neurosurgery of Shanxi Province, Taiyuan, Shanxi, PR China
| | - Hongming Ji
- The Neurosurgery Department of Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, Shanxi, 030012, PR China.
- Provincial Key Cultivation Laboratory of Intelligent Big Data Digital Neurosurgery of Shanxi Province, Taiyuan, Shanxi, PR China.
| | - Chunhong Wang
- The Neurosurgery Department of Shanxi Provincial People's Hospital, Taiyuan, Shanxi, 030012, PR China
- Provincial Key Cultivation Laboratory of Intelligent Big Data Digital Neurosurgery of Shanxi Province, Taiyuan, Shanxi, PR China
| | - Liangliang Hao
- The Radiology Department of Shanxi Provincial People's Hospital, Taiyuan, Shanxi, 030012, PR China
| | - Yexin He
- The Radiology Department of Shanxi Provincial People's Hospital, Taiyuan, Shanxi, 030012, PR China
| | - Cheng Xu
- The Radiology Department of Shanxi Provincial People's Hospital, Taiyuan, Shanxi, 030012, PR China.
| |
Collapse
|
7
|
Heidari M, Shokrani P. Imaging Role in Diagnosis, Prognosis, and Treatment Response Prediction Associated with High-grade Glioma. JOURNAL OF MEDICAL SIGNALS & SENSORS 2024; 14:7. [PMID: 38993200 PMCID: PMC11111132 DOI: 10.4103/jmss.jmss_30_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 07/31/2022] [Accepted: 03/14/2023] [Indexed: 07/13/2024]
Abstract
Background Glioma is one of the most drug and radiation-resistant tumors. Gliomas suffer from inter- and intratumor heterogeneity which makes the outcome of similar treatment protocols vary from patient to patient. This article is aimed to overview the potential imaging markers for individual diagnosis, prognosis, and treatment response prediction in malignant glioma. Furthermore, the correlation between imaging findings and biological and clinical information of glioma patients is reviewed. Materials and Methods The search strategy in this study is to select related studies from scientific websites such as PubMed, Scopus, Google Scholar, and Web of Science published until 2022. It comprised a combination of keywords such as Biomarkers, Diagnosis, Prognosis, Imaging techniques, and malignant glioma, according to Medical Subject Headings. Results Some imaging parameters that are effective in glioma management include: ADC, FA, Ktrans, regional cerebral blood volume (rCBV), cerebral blood flow (CBF), ve, Cho/NAA and lactate/lipid ratios, intratumoral uptake of 18F-FET (for diagnostic application), RD, ADC, ve, vp, Ktrans, CBFT1, rCBV, tumor blood flow, Cho/NAA, lactate/lipid, MI/Cho, uptakes of 18F-FET, 11C-MET, and 18F-FLT (for prognostic and predictive application). Cerebral blood volume and Ktrans are related to molecular markers such as vascular endothelial growth factor (VEGF). Preoperative ADCmin value of GBM tumors is associated with O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation status. 2-hydroxyglutarate metabolite and dynamic 18F-FDOPA positron emission tomography uptake are related to isocitrate dehydrogenase (IDH) mutations. Conclusion Parameters including ADC, RD, FA, rCBV, Ktrans, vp, and uptake of 18F-FET are useful for diagnosis, prognosis, and treatment response prediction in glioma. A significant correlation between molecular markers such as VEGF, MGMT, and IDH mutations with some diffusion and perfusion imaging parameters has been identified.
Collapse
Affiliation(s)
- Maryam Heidari
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parvaneh Shokrani
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
8
|
3D Amide Proton Transfer-Weighted Imaging for Grading Glioma and Correlating IDH Mutation Status: Added Value to 3D Pseudocontinuous Arterial Spin Labelling Perfusion. Mol Imaging Biol 2023; 25:343-352. [PMID: 35962302 DOI: 10.1007/s11307-022-01762-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 10/15/2022]
Abstract
PURPOSE The goal of this study was to evaluate the diagnostic performance of 3D amide proton transfer-weighted (3D-APTW) imaging and 3D pseudocontinuous arterial spin labelling (3D-pCASL) alone and in combination in grading gliomas (low-grade glioma (LGG) vs. high-grade glioma (HGG)) and correlating isocitrate dehydrogenase (IDH) mutation status. PROCEDURES Preoperatively, 81 patients with pathologically confirmed gliomas underwent 3.0-T magnetic resonance imaging (MRI) examinations. The APTW, relative APTW (rAPTW), cerebral blood flow (CBF), and relative CBF (rCBF) values were calculated to evaluate the solid components of the tumours. The MRI parameters were compared in the classification of gliomas by independent- and paired-samples t tests. A receiver operating characteristic (ROC) curve was constructed, and the area under the ROC curve (AUC) was calculated to assess the diagnostic performance of each parameter and the combination of the rAPTW and rCBF values. RESULTS Patients with HGG showed significantly higher APTW, rAPTW, CBF, and rCBF values than those with LGG (all p < 0.001). In the ROC curve analysis, the AUC of rAPTW was the highest at 0.90. By adding the rAPTW signal to the rCBF values, the diagnostic ability of the combined parameters improved from 0.90 to 0.96. The rAPTW value yielded the highest AUC (0.92) in correlating the IDH mutation status, and the diagnostic ability improved to 0.96 by adding it to the rCBF value. CONCLUSION 3D-APTW imaging combined with 3D-pCASL imaging may be used to aid assessment of grading glioma and IDH mutation status.
Collapse
|
9
|
Liu Z, Wen J, Wang M, Ren Y, Yang Q, Qian L, Luo H, Feng S, He C, Liu X, Wu Y, Luo D. Breast Amide Proton Transfer Imaging at 3 T: Diagnostic Performance and Association With Pathologic Characteristics. J Magn Reson Imaging 2023; 57:824-833. [PMID: 35816177 DOI: 10.1002/jmri.28335] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Amide proton transfer (APT) imaging has been increasingly applied in tumor characterization. However, its value in evaluating breast cancer remains undetermined. PURPOSE To assess the diagnostic performance of APT imaging in breast cancer and its association with prognostic histopathologic characteristics. STUDY TYPE Prospective. SUBJECTS Eighty-four patients with breast lesions. FIELD STRENGTH/SEQUENCE A 3.0 T/single-shot fast spin echo APT imaging. ASSESSMENT APTw signal in breast lesion was quantified. Lesion malignancy, T stage, grades, Ki-67 index, molecular biomarkers (estrogen receptor [ER] expression, progesterone receptor [PR] expression, human epidermal growth factor receptor [HER-2] expression), molecular subtypes (luminal A, luminal B, triple negative, and HER-2 enriched) were determined. STATISTICAL TESTS Student t-test, one-way analysis of variance, receiver operating characteristic analysis, and Pearson's correlation with P < 0.05 as statistical significance. RESULTS APTw signal was significantly higher in malignant lesions (1.55% ± 1.24%) than in benign lesions (0.54% ± 1.13%), and in grade III lesions than in grade II lesions (1.65% ± 0.84% vs. 0.96% ± 0.96%), and in T2- (1.57% ± 0.64%) and T3-stage lesions (1.54% ± 0.63%) than in T1-stage lesions (0.81% ± 0.64%) for invasive breast carcinoma of no special type. APTw signal significantly correlated with Ki-67 index (r = 0.364) but showed no significant difference in groups of ER (P = 0.069), PR (P = 0.069), HER-2 (P = 0.961), and among molecular subtypes (P = 0.073). DATA CONCLUSION APT imaging shows potential in differentiating breast lesion malignancy and associates with prognosis-related tumor grade, T stage, and proliferative activity. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Zhou Liu
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China.,Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Jie Wen
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Meng Wang
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Ya Ren
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Qian Yang
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Long Qian
- MR Research, GE Healthcare, Beijing, China
| | - Honghong Luo
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Sha Feng
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Cuiju He
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Xin Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Yin Wu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Dehong Luo
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China.,Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
10
|
Hou H, Diao Y, Yu J, Xu M, Wang L, Li Z, Song T, Liu Y, Yuan Z. Differentiation of true progression from treatment response in high-grade glioma treated with chemoradiation: a comparison study of 3D-APTW and 3D-PcASL imaging and DWI. NMR IN BIOMEDICINE 2023; 36:e4821. [PMID: 36031734 DOI: 10.1002/nbm.4821] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
PURPOSE To assess and compare the diagnostic performance of 3D amide proton-transfer-weighted (3D-APTW) imaging, 3D pseudocontinuous arterial spin-labeling (3D-PcASL) imaging, and diffusion-weighted imaging in distinguishing true progression (TP) from treatment response (TR) in posttreatment malignant glioma patients. MATERIALS AND METHODS Forty-eight patients with suspected tumor recurrence were prospectively enrolled. Histological or longitudinal routine MRI follow-up over six months was assessed to confirm lesion type. The apparent diffusion coefficient (ADC), relative APTWmax (rAPTW), and relative CBFmax values (rCBF) were measured in lesions with enhancing regions on post-gadolinium T1 -weighted MRI. MRI parameters between the TP and TR groups were compared using Student's t tests. In addition, a receiver operating characteristic (ROC) curve was constructed, and the area under the ROC curve (AUC) was calculated to assess the differentiation diagnostic performance of each parameter. RESULTS The TP group showed a significantly higher rAPTW and rCBF than the TR group; the AUCs of rAPTW and rCBF to distinguish between TP and TR were 0.911 (with sensitivity of 90.3% and specificity of 82.4%) and 0.852 (with sensitivity of 80.6% and specificity of 82.4%), respectively. By adding the rAPTW values to rCBF values, the diagnostic ability was improved from 0.852 to 0.951. ADC showed no significant differences between the TP and TR groups, with an AUC lower than 0.70. CONCLUSION Both 3D-PcASL and 3D-APTW imaging could distinguish TP from TR, and 3D-APTW had a better diagnostic performance. Combining the rAPTW values and rCBF values achieved a better diagnostic performance.
Collapse
Affiliation(s)
- Huimin Hou
- Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Radiology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, China
| | - Yanzhao Diao
- Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jinchao Yu
- Department of Radiology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, China
| | - Min Xu
- Department of Radiology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, China
| | - Liming Wang
- Department of Radiology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, China
| | - Zhenzhi Li
- Department of Radiology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, China
| | - Tao Song
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yu Liu
- Department of Pathology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhenguo Yuan
- Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
11
|
Roy CW, Di Sopra L, Whitehead KK, Piccini D, Yerly J, Heerfordt J, Ghosh RM, Fogel MA, Stuber M. Free-running cardiac and respiratory motion-resolved 5D whole-heart coronary cardiovascular magnetic resonance angiography in pediatric cardiac patients using ferumoxytol. J Cardiovasc Magn Reson 2022; 24:39. [PMID: 35754040 PMCID: PMC9235103 DOI: 10.1186/s12968-022-00871-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Coronary cardiovascular magnetic resonance angiography (CCMRA) of congenital heart disease (CHD) in pediatric patients requires accurate planning, adequate sequence parameter adjustments, lengthy scanning sessions, and significant involvement from highly trained personnel. Anesthesia and intubation are commonplace to minimize movements and control respiration in younger subjects. To address the above concerns and provide a single-click imaging solution, we applied our free-running framework for fully self-gated (SG) free-breathing 5D whole-heart CCMRA to CHD patients after ferumoxytol injection. We tested the hypothesis that spatial and motion resolution suffice to visualize coronary artery ostia in a cohort of CHD subjects, both for intubated and free-breathing acquisitions. METHODS In 18 pediatric CHD patients, non-electrocardiogram (ECG) triggered 5D free-running gradient echo CCMRA with whole-heart 1 mm3 isotropic spatial resolution was performed in seven minutes on a 1.5T CMR scanner. Eleven patients were anesthetized and intubated, while seven were breathing freely without anesthesia. All patients were slowly injected with ferumoxytol (4 mg/kg) over 15 minutes. Cardiac and respiratory motion-resolved 5D images were reconstructed with a fully SG approach. To evaluate the performance of motion resolution, visibility of coronary artery origins was assessed. Intubated and free-breathing patient sub-groups were compared for image quality using coronary artery length and conspicuity as well as lung-liver interface sharpness. RESULTS Data collection using the free-running framework was successful in all patients in less than 8 min; scan planning was very simple without the need for parameter adjustments, while no ECG lead placement and triggering was required. From the resulting SG 5D motion-resolved reconstructed images, coronary artery origins could be retrospectively extracted in 90% of the cases. These general findings applied to both intubated and free-breathing pediatric patients (no difference in terms of lung-liver interface sharpness), while image quality and coronary conspicuity between both cohorts was very similar. CONCLUSIONS A simple-to-use push-button framework for 5D whole-heart CCMRA was successfully employed in pediatric CHD patients with ferumoxytol injection. This approach, working without any external gating and for a wide range of heart rates and body sizes provided excellent definition of cardiac anatomy for both intubated and free-breathing patients.
Collapse
Affiliation(s)
- Christopher W. Roy
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Rue de Bugnon 46, BH-8-84, 1011 Lausanne, Switzerland
| | - Lorenzo Di Sopra
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Rue de Bugnon 46, BH-8-84, 1011 Lausanne, Switzerland
| | - Kevin K. Whitehead
- Division of Cardiology, Department of Pediatrics, The Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Davide Piccini
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Rue de Bugnon 46, BH-8-84, 1011 Lausanne, Switzerland
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
| | - Jérôme Yerly
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Rue de Bugnon 46, BH-8-84, 1011 Lausanne, Switzerland
- Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| | - John Heerfordt
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Rue de Bugnon 46, BH-8-84, 1011 Lausanne, Switzerland
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
| | - Reena M. Ghosh
- Division of Cardiology, Department of Pediatrics, The Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Mark A. Fogel
- Division of Cardiology, Department of Pediatrics, The Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Matthias Stuber
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Rue de Bugnon 46, BH-8-84, 1011 Lausanne, Switzerland
- Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| |
Collapse
|
12
|
Zhou J, Zaiss M, Knutsson L, Sun PZ, Ahn SS, Aime S, Bachert P, Blakeley JO, Cai K, Chappell MA, Chen M, Gochberg DF, Goerke S, Heo HY, Jiang S, Jin T, Kim SG, Laterra J, Paech D, Pagel MD, Park JE, Reddy R, Sakata A, Sartoretti-Schefer S, Sherry AD, Smith SA, Stanisz GJ, Sundgren PC, Togao O, Vandsburger M, Wen Z, Wu Y, Zhang Y, Zhu W, Zu Z, van Zijl PCM. Review and consensus recommendations on clinical APT-weighted imaging approaches at 3T: Application to brain tumors. Magn Reson Med 2022; 88:546-574. [PMID: 35452155 PMCID: PMC9321891 DOI: 10.1002/mrm.29241] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 12/16/2022]
Abstract
Amide proton transfer-weighted (APTw) MR imaging shows promise as a biomarker of brain tumor status. Currently used APTw MRI pulse sequences and protocols vary substantially among different institutes, and there are no agreed-on standards in the imaging community. Therefore, the results acquired from different research centers are difficult to compare, which hampers uniform clinical application and interpretation. This paper reviews current clinical APTw imaging approaches and provides a rationale for optimized APTw brain tumor imaging at 3 T, including specific recommendations for pulse sequences, acquisition protocols, and data processing methods. We expect that these consensus recommendations will become the first broadly accepted guidelines for APTw imaging of brain tumors on 3 T MRI systems from different vendors. This will allow more medical centers to use the same or comparable APTw MRI techniques for the detection, characterization, and monitoring of brain tumors, enabling multi-center trials in larger patient cohorts and, ultimately, routine clinical use.
Collapse
Affiliation(s)
- Jinyuan Zhou
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Moritz Zaiss
- Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Institute of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Linda Knutsson
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Medical Radiation Physics, Lund University, Lund, Sweden.,F.M. Kirby Research Center for Functional Brain Imaging, Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, USA
| | - Phillip Zhe Sun
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Sung Soo Ahn
- Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Silvio Aime
- Molecular Imaging Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Peter Bachert
- Department of Medical Physics in Radiology, German Cancer Research Center, Heidelberg, Germany.,Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| | - Jaishri O Blakeley
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kejia Cai
- Department of Radiology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Michael A Chappell
- Mental Health and Clinical Neurosciences and Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK.,Nottingham Biomedical Research Centre, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Min Chen
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Daniel F Gochberg
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Physics, Vanderbilt University, Nashville, Tennessee, USA
| | - Steffen Goerke
- Department of Medical Physics in Radiology, German Cancer Research Center, Heidelberg, Germany
| | - Hye-Young Heo
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shanshan Jiang
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tao Jin
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science and Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - John Laterra
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, USA
| | - Daniel Paech
- Department of Radiology, German Cancer Research Center, Heidelberg, Germany.,Clinic for Neuroradiology, University Hospital Bonn, Bonn, Germany
| | - Mark D Pagel
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ji Eun Park
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Ravinder Reddy
- Center for Advance Metabolic Imaging in Precision Medicine, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Akihiko Sakata
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | - A Dean Sherry
- Advanced Imaging Research Center and Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas, USA
| | - Seth A Smith
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Greg J Stanisz
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Pia C Sundgren
- Department of Diagnostic Radiology/Clinical Sciences Lund, Lund University, Lund, Sweden.,Lund University Bioimaging Center, Lund University, Lund, Sweden.,Department of Medical Imaging and Physiology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Osamu Togao
- Department of Molecular Imaging and Diagnosis, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Zhibo Wen
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yin Wu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Yi Zhang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhongliang Zu
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Peter C M van Zijl
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, USA
| |
Collapse
|
13
|
Someya Y, Iima M, Imai H, Yoshizawa A, Kataoka M, Isoda H, Le Bihan D, Nakamoto Y. Investigation of breast cancer microstructure and microvasculature from time-dependent DWI and CEST in correlation with histological biomarkers. Sci Rep 2022; 12:6523. [PMID: 35444193 PMCID: PMC9021220 DOI: 10.1038/s41598-022-10081-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 03/24/2022] [Indexed: 12/24/2022] Open
Abstract
We investigated the associations of time-dependent DWI, non-Gaussian DWI, and CEST parameters with histological biomarkers in a breast cancer xenograft model. 22 xenograft mice (7 MCF-7 and 15 MDA-MB-231) were scanned at 4 diffusion times [Td = 2.5/5 ms with 11 b-values (0–600 s/mm2) and Td = 9/27.6 ms with 17 b-values (0–3000 s/mm2), respectively]. The apparent diffusion coefficient (ADC) was estimated using 2 b-values in different combinations (ADC0–600 using b = 0 and 600 s/mm2 and shifted ADC [sADC200–1500] using b = 200 and 1500 s/mm2) at each of those diffusion times. Then the change (Δ) in ADC/sADC between diffusion times was evaluated. Non-Gaussian diffusion and intravoxel incoherent motion (IVIM) parameters (ADC0, the virtual ADC at b = 0; K, Kurtosis from non-Gaussian diffusion; f, the IVIM perfusion fraction) were estimated. CEST images were acquired and the amide proton transfer signal intensity (APT SI) were measured. The ΔsADC9–27.6 (between \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{sADC}}_{{9\,{\text{ms}}}}^{200{-}1500}$$\end{document}sADC9ms200-1500 and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{sADC}}_{{27.6\,{\text{ms}}}}^{200{-}1500}$$\end{document}sADC27.6ms200-1500 and ΔADC2.5_sADC27.6 (between \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{ADC}}_{{2.5\, {\text{ms}}}}^{0{-}600}$$\end{document}ADC2.5ms0-600 and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{sADC}}_{{27.6\,{\text{ms}}}}^{200{-}1500}$$\end{document}sADC27.6ms200-1500) was significantly larger for MCF-7 groups, and ΔADC2.5_sADC27.6 was positively correlated with Ki67max and APT SI. ADC0 decreased significantly in MDA-MB-231 group and K increased significantly with Td in MCF-7 group. APT SI and cellular area had a moderately strong positive correlation in MDA-MB-231 and MCF-7 tumors combined, and there was a positive correlation in MDA-MB-231 tumors. There was a significant negative correlation between APT SI and the Ki-67-positive ratio in MDA-MB-231 tumors and when combined with MCF-7 tumors. The associations of ΔADC2.5_sADC27.6 and API SI with Ki-67 parameters indicate that the Td-dependent DW and CEST parameters are useful to predict the histological markers of breast cancers.
Collapse
Affiliation(s)
- Yuko Someya
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan.
| | - Mami Iima
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan.,Department of Clinical Innovative Medicine, Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital, Kyoto, 606-8507, Japan
| | - Hirohiko Imai
- Department of Systems Science, Graduate School of Informatics, Kyoto University, Kyoto, 606-8501, Japan
| | - Akihiko Yoshizawa
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, 606-8507, Japan
| | - Masako Kataoka
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Hiroyoshi Isoda
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Denis Le Bihan
- NeuroSpin/Joliot, CEA-Saclay Center, Paris-Saclay University, 91191, Gif-sur-Yvette, France.,Human Brain Research Center, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan.,National Institute for Physiological Sciences, Okazaki, 444-8585, Japan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| |
Collapse
|
14
|
Carrete LR, Young JS, Cha S. Advanced Imaging Techniques for Newly Diagnosed and Recurrent Gliomas. Front Neurosci 2022; 16:787755. [PMID: 35281485 PMCID: PMC8904563 DOI: 10.3389/fnins.2022.787755] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/19/2022] [Indexed: 12/12/2022] Open
Abstract
Management of gliomas following initial diagnosis requires thoughtful presurgical planning followed by regular imaging to monitor treatment response and survey for new tumor growth. Traditional MR imaging modalities such as T1 post-contrast and T2-weighted sequences have long been a staple of tumor diagnosis, surgical planning, and post-treatment surveillance. While these sequences remain integral in the management of gliomas, advances in imaging techniques have allowed for a more detailed characterization of tumor characteristics. Advanced MR sequences such as perfusion, diffusion, and susceptibility weighted imaging, as well as PET scans have emerged as valuable tools to inform clinical decision making and provide a non-invasive way to help distinguish between tumor recurrence and pseudoprogression. Furthermore, these advances in imaging have extended to the operating room and assist in making surgical resections safer. Nevertheless, surgery, chemotherapy, and radiation treatment continue to make the interpretation of MR changes difficult for glioma patients. As analytics and machine learning techniques improve, radiomics offers the potential to be more quantitative and personalized in the interpretation of imaging data for gliomas. In this review, we describe the role of these newer imaging modalities during the different stages of management for patients with gliomas, focusing on the pre-operative, post-operative, and surveillance periods. Finally, we discuss radiomics as a means of promoting personalized patient care in the future.
Collapse
Affiliation(s)
- Luis R. Carrete
- University of California San Francisco School of Medicine, San Francisco, CA, United States
| | - Jacob S. Young
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
- *Correspondence: Jacob S. Young,
| | - Soonmee Cha
- Department of Radiology, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
15
|
Huang J, Chen Z, Park SW, Lai JHC, Chan KWY. Molecular Imaging of Brain Tumors and Drug Delivery Using CEST MRI: Promises and Challenges. Pharmaceutics 2022; 14:451. [PMID: 35214183 PMCID: PMC8880023 DOI: 10.3390/pharmaceutics14020451] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/10/2022] Open
Abstract
Chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) detects molecules in their natural forms in a sensitive and non-invasive manner. This makes it a robust approach to assess brain tumors and related molecular alterations using endogenous molecules, such as proteins/peptides, and drugs approved for clinical use. In this review, we will discuss the promises of CEST MRI in the identification of tumors, tumor grading, detecting molecular alterations related to isocitrate dehydrogenase (IDH) and O-6-methylguanine-DNA methyltransferase (MGMT), assessment of treatment effects, and using multiple contrasts of CEST to develop theranostic approaches for cancer treatments. Promising applications include (i) using the CEST contrast of amide protons of proteins/peptides to detect brain tumors, such as glioblastoma multiforme (GBM) and low-grade gliomas; (ii) using multiple CEST contrasts for tumor stratification, and (iii) evaluation of the efficacy of drug delivery without the need of metallic or radioactive labels. These promising applications have raised enthusiasm, however, the use of CEST MRI is not trivial. CEST contrast depends on the pulse sequences, saturation parameters, methods used to analyze the CEST spectrum (i.e., Z-spectrum), and, importantly, how to interpret changes in CEST contrast and related molecular alterations in the brain. Emerging pulse sequence designs and data analysis approaches, including those assisted with deep learning, have enhanced the capability of CEST MRI in detecting molecules in brain tumors. CEST has become a specific marker for tumor grading and has the potential for prognosis and theranostics in brain tumors. With increasing understanding of the technical aspects and associated molecular alterations detected by CEST MRI, this young field is expected to have wide clinical applications in the near future.
Collapse
Affiliation(s)
- Jianpan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (J.H.); (Z.C.); (S.-W.P.); (J.H.C.L.)
| | - Zilin Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (J.H.); (Z.C.); (S.-W.P.); (J.H.C.L.)
| | - Se-Weon Park
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (J.H.); (Z.C.); (S.-W.P.); (J.H.C.L.)
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
| | - Joseph H. C. Lai
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (J.H.); (Z.C.); (S.-W.P.); (J.H.C.L.)
| | - Kannie W. Y. Chan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (J.H.); (Z.C.); (S.-W.P.); (J.H.C.L.)
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
- Tung Biomedical Science Centre, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
16
|
Wu Y, Wood TC, Arzanforoosh F, Hernandez-Tamames JA, Barker GJ, Smits M, Warnert EAH. 3D APT and NOE CEST-MRI of healthy volunteers and patients with non-enhancing glioma at 3 T. MAGMA (NEW YORK, N.Y.) 2022; 35:63-73. [PMID: 34994858 PMCID: PMC8901510 DOI: 10.1007/s10334-021-00996-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Clinical application of chemical exchange saturation transfer (CEST) can be performed with investigation of amide proton transfer (APT) and nuclear Overhauser enhancement (NOE) effects. Here, we investigated APT- and NOE-weighted imaging based on advanced CEST metrics to map tumor heterogeneity of non-enhancing glioma at 3 T. MATERIALS AND METHODS APT- and NOE-weighted maps based on Lorentzian difference (LD) and inverse magnetization transfer ratio (MTRREX) were acquired with a 3D snapshot CEST acquisition at 3 T. Saturation power was investigated first by varying B1 (0.5-2 µT) in 5 healthy volunteers then by applying B1 of 0.5 and 1.5 µT in 10 patients with non-enhancing glioma. Tissue contrast (TC) and contrast-to-noise ratios (CNR) were calculated between glioma and normal appearing white matter (NAWM) and grey matter, in APT- and NOE-weighted images. Volume percentages of the tumor showing hypo/hyperintensity (VPhypo/hyper,CEST) in APT/NOE-weighted images were calculated for each patient. RESULTS LD APT resulting from using a B1 of 1.5 µT was found to provide significant positive TCtumor,NAWM and MTRREX NOE (B1 of 1.5 µT) provided significant negative TCtumor,NAWM in tissue differentiation. MTRREX-based NOE imaging under 1.5 µT provided significantly larger VPhypo,CEST than MTRREX APT under 1.5 µT. CONCLUSION This work showed that with a rapid CEST acquisition using a B1 saturation power of 1.5 µT and covering the whole tumor, analysis of both LD APT and MTRREX NOE allows for observing tumor heterogeneity, which will be beneficial in future studies using CEST-MRI to improve imaging diagnostics for non-enhancing glioma.
Collapse
Affiliation(s)
- Yulun Wu
- Department of Radiology and Nuclear Medicine, Erasmus MC, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
- Brain Tumor Centre, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| | - Tobias C Wood
- Centre for Neuroimaging Science, King's College London, London, UK
| | - Fatemeh Arzanforoosh
- Department of Radiology and Nuclear Medicine, Erasmus MC, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
- Brain Tumor Centre, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Juan A Hernandez-Tamames
- Department of Radiology and Nuclear Medicine, Erasmus MC, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Gareth J Barker
- Centre for Neuroimaging Science, King's College London, London, UK
| | - Marion Smits
- Department of Radiology and Nuclear Medicine, Erasmus MC, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
- Brain Tumor Centre, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Esther A H Warnert
- Department of Radiology and Nuclear Medicine, Erasmus MC, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
- Brain Tumor Centre, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| |
Collapse
|
17
|
Hou M, Song K, Ren J, Wang K, Guo J, Niu Y, Li Z, Han D. Comparative analysis of the value of amide proton transfer-weighted imaging and diffusion kurtosis imaging in evaluating the histological grade of cervical squamous carcinoma. BMC Cancer 2022; 22:87. [PMID: 35057777 PMCID: PMC8780242 DOI: 10.1186/s12885-022-09205-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 01/14/2022] [Indexed: 01/21/2023] Open
Abstract
Background Uterine cervical cancer (UCC) was the fourth leading cause of cancer death among women worldwide. The conventional MRI hardly revealing the microstructure information. This study aimed to compare the value of amide proton transfer-weighted imaging (APTWI) and diffusion kurtosis imaging (DKI) in evaluating the histological grade of cervical squamous carcinoma (CSC) in addition to routine diffusion-weighted imaging (DWI). Methods Forty-six patients with CSC underwent pelvic DKI and APTWI. The magnetization transfer ratio asymmetry (MTRasym), apparent diffusion coefficient (ADC), mean diffusivity (MD) and mean kurtosis (MK) were calculated and compared based on the histological grade. Correlation coefficients between each parameter and histological grade were calculated. Results The MTRasym and MK values of grade 1 (G1) were significantly lower than those of grade 2 (G2), and those parameters of G2 were significantly lower than those of grade 3 (G3). The MD and ADC values of G1 were significantly higher than those of G2, and those of G2 were significantly higher than those of G3. MTRasym and MK were both positively correlated with histological grade (r = 0.789 and 0.743, P < 0.001), while MD and ADC were both negatively correlated with histological grade (r = − 0.732 and - 0.644, P < 0.001). For the diagnosis of G1 and G2 CSCs, AUC (APTWI+DKI + DWI) > AUC (DKI + DWI) > AUC (APTWI+DKI) > AUC (APTWI+DWI) > AUC (MTRasym) > AUC (MK) > AUC (MD) > AUC (ADC), where the differences between AUC (APTWI+DKI + DWI), AUC (DKI + DWI) and AUC (ADC) were significant. For the diagnosis of G2 and G3 CSCs, AUC (APTWI+DKI + DWI) > AUC (APTWI+DWI) > AUC (APTWI+DKI) > AUC (DKI + DWI) > AUC (MTRasym) > AUC (MK) > AUC (MD > AUC (ADC), where the differences between AUC (APTWI+DKI + DWI), AUC (APTWI+DWI) and AUC (ADC) were significant. Conclusion Compared with DWI and DKI, APTWI is more effective in identifying the histological grades of CSC. APTWI is recommended as a supplementary scan to routine DWI in CSCs.
Collapse
|
18
|
Rapalino O. Neuro-Oncology: Imaging Diagnosis. HYBRID PET/MR NEUROIMAGING 2022:527-537. [DOI: 10.1007/978-3-030-82367-2_46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
19
|
Merisaari H, Federau C. Signal to noise and b-value analysis for optimal intra-voxel incoherent motion imaging in the brain. PLoS One 2021; 16:e0257545. [PMID: 34555054 PMCID: PMC8459980 DOI: 10.1371/journal.pone.0257545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 09/06/2021] [Indexed: 11/28/2022] Open
Abstract
Intravoxel incoherent motion (IVIM) is a method that can provide quantitative information about perfusion in the human body, in vivo, and without contrast agent. Unfortunately, the IVIM perfusion parameter maps are known to be relatively noisy in the brain, in particular for the pseudo-diffusion coefficient, which might hinder its potential broader use in clinical applications. Therefore, we studied the conditions to produce optimal IVIM perfusion images in the brain. IVIM imaging was performed on a 3-Tesla clinical system in four healthy volunteers, with 16 b values 0, 10, 20, 40, 80, 110, 140, 170, 200, 300, 400, 500, 600, 700, 800, 900 s/mm2, repeated 20 times. We analyzed the noise characteristics of the trace images as a function of b-value, and the homogeneity of the IVIM parameter maps across number of averages and sub-sets of the acquired b values. We found two peaks of noise of the trace images as function of b value, one due to thermal noise at high b-value, and one due to physiological noise at low b-value. The selection of b value distribution was found to have higher impact on the homogeneity of the IVIM parameter maps than the number of averages. Based on evaluations, we suggest an optimal b value acquisition scheme for a 12 min scan as 0 (7), 20 (4), 140 (19), 300 (9), 500 (19), 700 (1), 800 (4), 900 (1) s/mm2.
Collapse
Affiliation(s)
- Harri Merisaari
- Department of Diagnostic Radiology, University of Turku, Turku, Finland
- Department of Future Technologies, University of Turku, Turku, Finland
| | - Christian Federau
- Institute for Biomedical Engineering, ETH, Zürich and University Zürich, Zürich, Switzerland
- AI Medical, Zürich, Switzerland
| |
Collapse
|
20
|
Lu J, Li X, Li H. Perfusion parameters derived from MRI for preoperative prediction of IDH mutation and MGMT promoter methylation status in glioblastomas. Magn Reson Imaging 2021; 83:189-195. [PMID: 34506909 DOI: 10.1016/j.mri.2021.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/14/2021] [Accepted: 09/05/2021] [Indexed: 12/11/2022]
Abstract
PURPOSE To investigate the feasibility for preoperative prediction of IDH mutation and MGMT promoter methylation status in glioblastomas(GBMs) by intravoxel incoherent motion(IVIM) and dynamic susceptibility contrast(DSC). METHODS Preoperative IVIM and DSC images of 71 patients(IDH mutation:45, IDH wildtype: 26; MGMT methylation: 31, MGMT unmethylation:40) with glioblastomas were analyzed retrospectively. Perfusion parameters including microcirculation perfusion coefficient(D*), perfusion fraction(f), cerebral blood volume(CBV) and cerebral blood flow(CBF) were measured. Corrected perfusion parameters containing corrected perfusion coefficient(ADCperf) and simplified perfusion fraction(SPF) were from the simplified IVIM with 3 b values. Correlations among parameters were analyzed by Spearman correlation. All parameters were compared with Mann-Whitney U test. Univariate and multivariate logistic regression models were constructed. The receiver operating characteristic(ROC) curve was analyzed. RESULTS The IVIM parameters showed merely moderate correlations with CBV and showed no correlation with CBF. IDH mutation GBMs showed lower D*, ADCperf, SPF, CBV and higher f than IDH wildtype GBMs(all p < 0.05). D* was the independent predictor for IDH mutation with the highest AUC of 0.912(95%CI: 0.821-0.966). The D*, ADCperf, SPF and CBV of MGMT promoter methylation GBMs were lower than unmethylation GBMs while f was higher(all p < 0.05). Multivariate model showed the highest prediction efficacy for MGMT promoter methylation with an AUC of 0.915(95%CI: 0.824-0.968). The CBF was not useful in distinguishing IDH mutation and MGMT promoter methylation status(p = 0.055, 0.215). CONCLUSION IDH mutation and MGMT promoter methylation status in GBMs can be assessed effectively by IVIM and DSC. Besides, D* was the independent predictor of IDH mutation status.
Collapse
Affiliation(s)
- Jun Lu
- Department of Radiology, The Affiliated Tumor Hospital of Zhengzhou University & Henan Cancer Hospital, China
| | - Xiang Li
- Department of Radiology, The Affiliated Tumor Hospital of Zhengzhou University & Henan Cancer Hospital, China
| | - Hailiang Li
- Department of Radiology, The Affiliated Tumor Hospital of Zhengzhou University & Henan Cancer Hospital, China.
| |
Collapse
|
21
|
Friismose AI, Markovic L, Nguyen N, Gerke O, Schulz MK, Mussmann BR. Amide proton transfer-weighted MRI in the clinical setting - correlation with dynamic susceptibility contrast perfusion in the post-treatment imaging of adult glioma patients at 3T. Radiography (Lond) 2021; 28:95-101. [PMID: 34509365 DOI: 10.1016/j.radi.2021.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022]
Abstract
INTRODUCTION We investigated the correlation between amide proton transfer-weighted magnetic resonance imaging (APTw MRI) and dynamic susceptibility contrast (DSC) perfusion in order to assess the potential of APTw MRI as an alternative to DSC in adult brain tumor (glioma) imaging. METHODS After Ethical Committee approval, forty adult patients, treated for histopathologically confirmed glioma (World Health Organization (WHO) grade II-IV), were prospectively imaged at 3 Tesla (3 T) with DSC perfusion and a commercially available three-dimensional (3D) APTw sequence. Two consultant neuroradiologists independently performed region of interest (ROI) measurements on relative cerebral blood volume (rCBV) and APTw maps, co-registered with anatomical images. The correlation APTw MRI-DSC perfusion was assessed using Spearman's rank-order test. Inter-observer agreement was evaluated by the intraclass correlation coefficient (ICC) and Bland-Altman (BA) plots. RESULTS A statistically significant moderately strong positive correlation was observed between maximum rCBV (rCBVmax) and maximum APTw (APTwmax) values (observer 1: r = 0.73; p < 0.01; observer 2: r = 0.62; p < 0.01). We found good inter-observer agreement for APTwmax (ICC = 0.82; 95% confidence interval (CI) 0.66-0.90), with somewhat broad outer 95% CI for the BA Limits of Agreement (LoA) (-1.6 to 1.9). ICC for APTwmax was higher than ICC for rCBVmax (ICC = 0.74; 95%; CI 0.50-0.86), but the difference was not statistically significant. CONCLUSION APTwmax values correlate positively with rCBVmax in patients treated for brain glioma. APTw imaging is a reproducible technique, with some observer dependence. Results need to be confirmed by a larger population analysis. IMPLICATIONS FOR PRACTICE APTw MRI can be a useful addition to glioma follow-up imaging and a potential alternative to DSC perfusion, especially in patients where contrast agent is contraindicated.
Collapse
Affiliation(s)
- A I Friismose
- Radiology Department, Odense University Hospital, Odense, Denmark.
| | - L Markovic
- Radiology Department, Odense University Hospital, Odense, Denmark
| | - N Nguyen
- Radiology Department, Odense University Hospital, Odense, Denmark
| | - O Gerke
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - M K Schulz
- Department of Neurosurgery, Odense University Hospital, Odense, Denmark
| | - B R Mussmann
- Radiology Department, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark; OPEN, Odense Patient Data Exploratory Network, Odense University Hospital, Odense, Denmark; Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
| |
Collapse
|
22
|
Wei RL, Wei XT. Advanced Diagnosis of Glioma by Using Emerging Magnetic Resonance Sequences. Front Oncol 2021; 11:694498. [PMID: 34422648 PMCID: PMC8374052 DOI: 10.3389/fonc.2021.694498] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022] Open
Abstract
Glioma, the most common primary brain tumor in adults, can be difficult to discern radiologically from other brain lesions, which affects surgical planning and follow-up treatment. Recent advances in MRI demonstrate that preoperative diagnosis of glioma has stepped into molecular and algorithm-assisted levels. Specifically, the histology-based glioma classification is composed of multiple different molecular subtypes with distinct behavior, prognosis, and response to therapy, and now each aspect can be assessed by corresponding emerging MR sequences like amide proton transfer-weighted MRI, inflow-based vascular-space-occupancy MRI, and radiomics algorithm. As a result of this novel progress, the clinical practice of glioma has been updated. Accurate diagnosis of glioma at the molecular level can be achieved ahead of the operation to formulate a thorough plan including surgery radical level, shortened length of stay, flexible follow-up plan, timely therapy response feedback, and eventually benefit patients individually.
Collapse
Affiliation(s)
- Ruo-Lun Wei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin-Ting Wei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
23
|
Abstract
The signal acquired in vivo using a diffusion-weighted MR imaging (DWI) sequence is influenced by blood motion in the tissue. This means that perfusion information from a DWI sequence can be obtained in addition to thermal diffusion, if the appropriate sequence parameters and postprocessing methods are applied. This is commonly regrouped under the denomination intravoxel incoherent motion (IVIM) perfusion MR imaging. Of relevance, the perfusion information acquired with IVIM is essentially local, quantitative and acquired without intravenous injection of contrast media. The aim of this work is to review the IVIM method and its clinical applications.
Collapse
Affiliation(s)
- Christian Federau
- University and ETH Zürich, Institute for Biomedical Engineering, Gloriastrasse 35, Zürich 8092, Switzerland; Ai Medical AG, Goldhaldenstr 22a, Zollikon 8702, Switzerland.
| |
Collapse
|
24
|
Luo H, He L, Cheng W, Gao S. The diagnostic value of intravoxel incoherent motion imaging in differentiating high-grade from low-grade gliomas: a systematic review and meta-analysis. Br J Radiol 2021; 94:20201321. [PMID: 33876653 DOI: 10.1259/bjr.20201321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE This meta-analysis was carried out for assessing the accuracy of intravoxel incoherent motion (IVIM) parameters true diffusion coefficient (D), pseudo-diffusion coefficient (D*), and perfusion fraction (f) in differentiating low-grade gliomas (LGGs) from high-grade gliomas (HGGs). METHODS Literatures concerning IVIM in the grading of brain gliomas published prior to October 20, 2020, searched in the Embase, PubMed, and Cochrane library. Use the quality assessment of diagnostic accuracy studies 2 (QUADAS 2) to evaluate the quality of studies. We estimated the pooled sensitivity, specificity, and the area under the summary ROC (SROC) curve to identification the accuracy of IVIM parameters D, D*, and f evaluation in grading gliomas. RESULTS Totally, 6 articles including 252 brain gliomas conform to the inclusion criteria. The pooled sensitivity of parameters D, D*, and f derived from IVIM were 0.85 (95%Cl, 0.76-0.91), 0.78 (95%Cl, 0.71-0.85), and 0.89 (95%Cl, 0.76-0.96), respectively. The pooled specificity were 0.78 (95%Cl, 0.60-0.90), 0.68 (95%Cl, 0.56-0.79), and 0.88 (95%Cl, 0.76-0.94), respectively. Meanwhile, the AUC of SROC curve were 0.89 (95%Cl, 0.86-0.92) , 0.81 (95%Cl, 0.77-0.84), and 0.94 (95%Cl, 0.92-0.96), respectively. CONCLUSION This meta-analysis suggested that IVIM parameters D, D*, and f have moderate or high diagnosis value accuracy in differentiating HGGs from LGGs, and the parameter f has greater sensitivity and specificity. Standardized methodology is warranted to guide the use of this method for clinical decision-making. However, more clinical studies are needed to prove our view. ADVANCES IN KNOWLEDGE IVIM parameter f showed greater sensitivity and specificity, as well as excellent performance than parameter D* and D.
Collapse
Affiliation(s)
- Hechuan Luo
- Department of Radiology, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Ling He
- Department of Radiology, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Weiqin Cheng
- Department of Radiology, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Sijie Gao
- Department of Radiology, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
25
|
The diagnostic function of intravoxel incoherent motion for distinguishing between pilocytic astrocytoma and ependymoma. PLoS One 2021; 16:e0247899. [PMID: 33647051 PMCID: PMC7920344 DOI: 10.1371/journal.pone.0247899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/16/2021] [Indexed: 01/03/2023] Open
Abstract
Introduction Intravoxel incoherent motion (IVIM) imaging concurrently measures diffusion and perfusion parameters and has potential applications for brain tumor classification. However, the effectiveness of IVIM for the differentiation between pilocytic astrocytoma and ependymoma has not been verified. The aim of this study was to determine the potential diagnostic role of IVIM for the distinction between ependymoma and pilocytic astrocytoma. Methods Between February 2019 and October 2020, 22 children (15 males and 7 females; median age 4 years) with either ependymoma or pilocytic astrocytoma were recruited for this prospective study. IVIM parameters were fitted using 7 b-values (0–1,500 s/mm2), to develop a bi-exponential model. The diffusivity (D), perfusion fraction (f), and pseudo diffusivity (D*) were measured in both tumors and the adjacent normal-appearing parenchyma. These IVIM parameters were compared using the Mann-Whitney U test. Receiver operating characteristic (ROC) curve analysis was employed to assess diagnostic performance. Results The median D values for ependymoma and pilocytic astrocytoma were 0.87 and 1.25 × 10−3 mm2/s (p < 0.05), respectively, whereas the f values were 0.11% and 0.15% (p < 0.05). The ratios of the median D values for ependymoma and pilocytic astrocytoma relative to the median D values for the adjacent, normal-appearing parenchyma were 1.45 and 2.10 (p < 0.05), respectively. ROC curve analysis found that the D value had the best diagnostic performance for the differentiation between pilocytic astrocytoma and ependymoma, with an area under the ROC curve of 1. Conclusion IVIM is a beneficial, effective, non-invasive, and endogenous-contrast imaging technique. The D value derived from IVIM was the most essential factor for differentiating ependymoma from pilocytic astrocytoma.
Collapse
|
26
|
Warnert EAH, Wood TC, Incekara F, Barker GJ, Vincent AJP, Schouten J, Kros JM, van den Bent M, Smits M, Tamames JAH. Mapping tumour heterogeneity with pulsed 3D CEST MRI in non-enhancing glioma at 3 T. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2021; 35:53-62. [PMID: 33606114 PMCID: PMC8901516 DOI: 10.1007/s10334-021-00911-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 11/28/2022]
Abstract
Objective Amide proton transfer (APT) weighted chemical exchange saturation transfer (CEST) imaging is increasingly used to investigate high-grade, enhancing brain tumours. Non-enhancing glioma is currently less studied, but shows heterogeneous pathophysiology with subtypes having equally poor prognosis as enhancing glioma. Here, we investigate the use of CEST MRI to best differentiate non-enhancing glioma from healthy tissue and image tumour heterogeneity. Materials & Methods A 3D pulsed CEST sequence was applied at 3 Tesla with whole tumour coverage and 31 off-resonance frequencies (+6 to -6 ppm) in 18 patients with non-enhancing glioma. Magnetisation transfer ratio asymmetry (MTRasym) and Lorentzian difference (LD) maps at 3.5 ppm were compared for differentiation of tumour versus normal appearing white matter. Heterogeneity was mapped by calculating volume percentages of the tumour showing hyperintense APT-weighted signal. Results LDamide gave greater effect sizes than MTRasym to differentiate non-enhancing glioma from normal appearing white matter. On average, 17.9 % ± 13.3 % (min–max: 2.4 %–54.5 %) of the tumour volume showed hyperintense LDamide in non-enhancing glioma. Conclusion This works illustrates the need for whole tumour coverage to investigate heterogeneity in increased APT-weighted CEST signal in non-enhancing glioma. Future work should investigate whether targeting hyperintense LDamide regions for biopsies improves diagnosis of non-enhancing glioma. Supplementary Information The online version of this article (10.1007/s10334-021-00911-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Esther A H Warnert
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, NL, the Netherlands.
| | - Tobias C Wood
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Fatih Incekara
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, NL, the Netherlands.,Department of Neurosurgery, Erasmus MC, Rotterdam, NL, the Netherlands
| | - Gareth J Barker
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | | | - Joost Schouten
- Department of Neurosurgery, Erasmus MC, Rotterdam, NL, the Netherlands
| | - Johan M Kros
- Department of Pathology, Erasmus MC, Rotterdam, NL, the Netherlands
| | | | - Marion Smits
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, NL, the Netherlands
| | | |
Collapse
|
27
|
Xu Z, Ke C, Liu J, Xu S, Han L, Yang Y, Qian L, Liu X, Zheng H, Lv X, Wu Y. Diagnostic performance between MR amide proton transfer (APT) and diffusion kurtosis imaging (DKI) in glioma grading and IDH mutation status prediction at 3 T. Eur J Radiol 2020; 134:109466. [PMID: 33307459 DOI: 10.1016/j.ejrad.2020.109466] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/21/2020] [Accepted: 12/01/2020] [Indexed: 01/04/2023]
Abstract
PURPOSE Accurate glioma grading and IDH mutation status prediction are critically essential for individualized preoperative treatment decisions. This study aims to compare the diagnostic performance of magnetic resonance (MR) amide proton transfer (APT) and diffusion kurtosis imaging (DKI) in glioma grading and IDH mutation status prediction. METHOD Fifty-one glioma patients without treatment were retrospectively included. APT-weighted (APTw) effect and DKI indices, including mean diffusivity (MD), fractional anisotropy (FA), mean kurtosis (MK), and kurtosis FA (KFA) were obtained from APT and diffusion-weighted images, respectively. DKI indices in tumors were normalized to that in contralateral normal appearing white matter (CNAWM) and the APTw difference (ΔAPTw) between the two regions was calculated. Student's t-test, one-way ANOVA and ROC analyses were conducted. RESULTS Among the enrolled 51 patients, 13 had glioma-II, 17 had glioma-III and 21 had glioma-IV. 25 patients were diagnosed as IDH-mutant, and 26 as IDH-wild type. MD and MK differed significantly between glioma-IV and glioma II/III (P < 0.05), but not between glioma-II and glioma-III. FA and KFA showed no significant difference among the three groups (P > 0.05). IDH-mutant group exhibited significantly higher MD and lower FA, MK and ΔAPTw than IDH-wild type (P < 0.05), whereas the two groups showed comparable KFA values. In contrast, ΔAPTw differed significantly across tumor grades and IDH mutation status (P < 0.05), with consistently better discriminatory performance than DKI indices in glioma grading and IDH mutation status prediction. CONCLUSIONS APT imaging was superior to DKI in glioma grading and IDH mutation status prediction, benefiting accurate diagnoses and treatment decisions.
Collapse
Affiliation(s)
- Zongwei Xu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Chao Ke
- Department of Neurosurgery, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Jie Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Shijie Xu
- Department of Neurosurgery, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Lujun Han
- Department of Medical Imaging, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Yadi Yang
- Department of Medical Imaging, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Long Qian
- MR Research, GE Healthcare, Beijing, China
| | - Xin Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China; Key Laboratory of Health Informatics, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China; Key Laboratory of Health Informatics, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Xiaofei Lv
- Department of Medical Imaging, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China.
| | - Yin Wu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China; Key Laboratory of Health Informatics, Chinese Academy of Sciences, Shenzhen, Guangdong, China.
| |
Collapse
|
28
|
Sotirios B, Demetriou E, Topriceanu CC, Zakrzewska Z. The role of APT imaging in gliomas grading: A systematic review and meta-analysis. Eur J Radiol 2020; 133:109353. [PMID: 33120241 DOI: 10.1016/j.ejrad.2020.109353] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/15/2020] [Accepted: 10/11/2020] [Indexed: 01/08/2023]
Abstract
PURPOSE Gliomas are diagnosed and staged by conventional MRI. Although non-conventional sequences such as perfusion-weighted MRI may differentiate low-grade from high-grade gliomas, they are not reliable enough yet. The latter is of paramount importance for patient management. In this regard, we aim to evaluate the role of Amide Proton Transfer (APT) imaging in grading gliomas as a non-invasive tool to provide reliable differentiation across tumour grades. METHODS A systematic search of PubMed, Medline and Embase was conducted to identify relevant publications between 01/01/2008 and 15/09/2020. Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) was used to assess studies' quality. A random-effects model standardized mean difference meta-analysis was performed to assess APT's ability to differentiate low-grade gliomas (LGGs) from high-grade gliomas (HGGs), WHO 2-4 grades, wild-type from mutated isocitrate dehydrogenase (IDH) gliomas, methylated from unmethylated O6-methylguanine-DNA methyltransferase (MGMT) gliomas. Area under the curve (AUC) of the Receiver Operating Characteristic (ROC) meta-analysis was employed to assess the diagnostic performance of APT. RESULTS 23 manuscripts met the inclusion criteria and reported the use of APT to differentiate glioma grades with histopathology as reference standard. APT-weighted signal intensity can differentiate LGGs from HGGs with an estimated size effect of (-1.61 standard deviations (SDs), p < 0.0001), grade 2 from grade 3 (-1.83 SDs, p = 0.005), grade 2 from grade 4 (-2.34 SDs, p < 0.0001) and IDH wild-type from IDH mutated (0.94 SDs, p = 0.003) gliomas. The combined AUC of 0.84 highlights the good diagnostic performance of APT-weighted imaging in differentiating LGGs from HGGs. CONCLUSIONS APT imaging is an exciting prospect in differentiating LGGs from HGGs and with potential to predict the histopathological grade. However, more studies are required to optimize and improve its reliability.
Collapse
Affiliation(s)
- Bisdas Sotirios
- Department of Neuroradiology, The National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London, United Kingdom; Department of Brain Repair & Rehabilitation, Queen Square Institute of Neurology, University College London, London, United Kingdom.
| | - Eleni Demetriou
- Department of Brain Repair & Rehabilitation, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | | | | |
Collapse
|
29
|
Simplified perfusion fraction from diffusion-weighted imaging in preoperative prediction of IDH1 mutation in WHO grade II-III gliomas: comparison with dynamic contrast-enhanced and intravoxel incoherent motion MRI. Radiol Oncol 2020; 54:301-310. [PMID: 32559177 PMCID: PMC7409598 DOI: 10.2478/raon-2020-0037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/13/2020] [Indexed: 11/20/2022] Open
Abstract
Background Effect of isocitr ate dehydrogenase 1 (IDH1) mutation in neovascularization might be linked with tissue perfusion in gliomas. At present, the need of injection of contrast agent and the increasing scanning time limit the application of perfusion techniques. We used a simplified intravoxel incoherent motion (IVIM)-derived perfusion fraction (SPF) calculated from diffusion-weighted imaging (DWI) using only three b-values to quantitatively assess IDH1-linked tissue perfusion changes in WHO grade II-III gliomas (LGGs). Additionally, by comparing accuracy with dynamic contrast-enhanced (DCE) and full IVIM MRI, we tried to find the optimal imaging markers to predict IDH1 mutation status. Patients and methods Thirty patients were prospectively examined using DCE and multi-b-value DWI. All parameters were compared between the IDH1 mutant and wild-type LGGs using the Mann-Whitney U test, including the DCE MRI-derived Ktrans, ve and vp, the conventional apparen t diffusion coefficient (ADC0,1000), IVIM-de rived perfusion fraction (f), diffusion coefficient (D) and pseudo-diffusion coefficient (D*), SPF. We evaluated the diagnostic performance by receive r operating characteristic (ROC) analysis. Results Significant differences were detected between WHO grade II-III gliomas for all perfusion and diffusion parameters (P < 0.05). When compared to IDH1 mutant LGGs, IDH1 wild-type LGGs exhibited significantly higher perfusion metrics (P < 0.05) and lower diffusion metrics (P < 0.05). Among all parameters, SPF showed a higher diagnostic performance (area under the curve 0.861), with 94.4% sensitivity and 75% specificity. Conclusions DWI, DCE and IVIM MRI may noninvasively help discriminate IDH1 mutation statuses in LGGs. Specifically, simplified DWI-derived SPF showed a superior diagnostic performance.
Collapse
|
30
|
Meng N, Wang X, Sun J, Han D, Ma X, Wang K, Wang M. Application of the amide proton transfer-weighted imaging and diffusion kurtosis imaging in the study of cervical cancer. Eur Radiol 2020; 30:5758-5767. [DOI: 10.1007/s00330-020-06884-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/16/2020] [Accepted: 04/09/2020] [Indexed: 12/21/2022]
|
31
|
Kang XW, Xi YB, Liu TT, Wang N, Zhu YQ, Wang XR, Guo F. Grading of Glioma: combined diagnostic value of amide proton transfer weighted, arterial spin labeling and diffusion weighted magnetic resonance imaging. BMC Med Imaging 2020; 20:50. [PMID: 32408867 PMCID: PMC7227252 DOI: 10.1186/s12880-020-00450-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 05/01/2020] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND To investigate the ability of amide proton transfer (APT) weighted magnetic resonance imaging (MRI), arterial spin labeling (ASL), diffusion weighted imaging (DWI) and the combination for differentiating high-grade gliomas (HGGs) from low-grade gliomas (LGGs). METHODS Twenty-seven patients including nine LGGs and eighteen HGGs underwent conventional, APT, ASL and DWI MRI with a 3.0-T MR scanner. Histogram analyses was performed and quantitative parameters including mean apparent diffusion coefficient (ADC mean), 20th-percentile ADC (ADC 20th), mean APT (APT mean), 90th-percentile APT (APT 90th), relative mean cerebral blood flow (rCBF mean) and relative 90th-percentile CBF (rCBF 90th) were compared between HGGs and LGGs. The diagnostic performance was evaluated with receiver operating characteristic (ROC) analysis of each parameter and their combination. Correlations were analyzed among the MRI parameters and Ki-67. RESULTS The APT values were significantly higher in the HGGs compared to the LGGs (p < 0.005), whereas ADC values were significantly lower in HGGs than LGGs (P < 0.0001). The ADC 20th and APT mean had higher discrimination abilities compared with other single parameters, with the area under the ROC curve (AUC) of 0.877 and 0.840. Adding ADC parameter, the discrimination ability of APT and rCBF significantly improved. The ADC was negatively correlated with the APT and rCBF value, respectively, while APT value was positively correlated with rCBF value. Significant correlations between ADC values and Ki-67 were also observed. CONCLUSIONS APT and DWI are valuable in differentiating HGGs from LGGs. The combination of APT, DWI and ASL imaging could improve the ability for discriminating HGGs from LGGs.
Collapse
Affiliation(s)
- Xiao-Wei Kang
- Department of Radiology, Xi'an People's Hospital, Xi'an, ShaanXi, China
- Department of Radiology, Xijing Hospital, Xi'an, ShaanXi, China
| | - Yi-Bin Xi
- Department of Radiology, Xi'an People's Hospital, Xi'an, ShaanXi, China
- Department of Radiology, Xijing Hospital, Xi'an, ShaanXi, China
| | - Ting-Ting Liu
- Department of Radiology, Xijing Hospital, Xi'an, ShaanXi, China
- Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, ShaanXi, China
| | - Ning Wang
- Department of Radiology, Xijing Hospital, Xi'an, ShaanXi, China
- Department of Radiology, The Second Affliated Hospital of Xi'an Medical College, Xi'an, ShaanXi, China
| | - Yuan-Qiang Zhu
- Department of Radiology, Xijing Hospital, Xi'an, ShaanXi, China
| | - Xing-Rui Wang
- Department of Radiology, Xijing Hospital, Xi'an, ShaanXi, China
- Department of Radiology, The Affiliated Hospital of Northwest University (Xi'an No.3 Hospital), Xi'an, ShaanXi, China
| | - Fan Guo
- Department of Radiology, Xijing Hospital, Xi'an, ShaanXi, China.
- Key Laboratory of Molecular Imaging of the Chinese Academy of Sciences, Institute of Automation, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
32
|
Song Q, Zhang C, Chen X, Cheng Y. Comparing amide proton transfer imaging with dynamic susceptibility contrast-enhanced perfusion in predicting histological grades of gliomas: a meta-analysis. Acta Radiol 2020; 61:549-557. [PMID: 31495179 DOI: 10.1177/0284185119871667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background As a subtype of chemical exchange saturation transfer imaging without contrast agent administration, amide proton transfer (APT) imaging has demonstrated the potential for differentiating the histologic grades of gliomas. Dynamic susceptibility contrast-enhanced perfusion, a perfusion-weighted imaging technique, is a well-established technique in grading gliomas. Purpose To compare the ability of amide proton transfer and dynamic susceptibility contrast-enhanced imaging for predicting the grades of gliomas. Material and Methods A comprehensive literature search was performed independently by two observers to identify articles about the diagnostic performance of amide proton transfer and dynamic susceptibility contrast-enhanced perfusion in predicting the grade of gliomas. Summary estimates of diagnostic accuracy were obtained by using a random-effects model. Results Of 179 studies identified, 23 studies were included the analysis. Eight studies evaluated amide proton transfer and 16 studies evaluated dynamic susceptibility contrast-enhanced perfusion with the parameter rCBV. The pooled sensitivities and specificities of each study’s best performing parameter were 88% (95% confidence interval [CI] 74–95) and 89% (95% CI 78–95) for amide proton transfer, and 95% (95% CI 87–98), 88% (95% CI 81–93) for perfusion-weighted imaging–dynamic susceptibility contrast-enhanced perfusion, respectively. The pooled sensitivities and specificities for grading gliomas using the two most commonly evaluated parameters, were 92% (95% CI 80–97) and 90% (95% CI 75–96) for APTmax, and 97% (95% CI 91–99) and 87% (95% CI 80–92) for rCBVmax, respectively. Conclusion Considering the similar performance of APT and dynamic susceptibility contrast-enhanced (DSC) in predicting glioma grade, the former method appears preferable since it needs no contrast agent.
Collapse
Affiliation(s)
- Qingxu Song
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, PR China
| | - Chencheng Zhang
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, PR China
| | - Xin Chen
- Department of MR, Shandong Medical Imaging Research Institute, Shandong University, Jinan, PR China
| | - Yufeng Cheng
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, PR China
| |
Collapse
|
33
|
Okuchi S, Hammam A, Golay X, Kim M, Thust S. Endogenous Chemical Exchange Saturation Transfer MRI for the Diagnosis and Therapy Response Assessment of Brain Tumors: A Systematic Review. Radiol Imaging Cancer 2020; 2:e190036. [PMID: 33778693 PMCID: PMC7983695 DOI: 10.1148/rycan.2020190036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/13/2019] [Accepted: 10/21/2019] [Indexed: 01/09/2023]
Abstract
Purpose To generate a narrative synthesis of published data on the use of endogenous chemical exchange saturation transfer (CEST) MRI in brain tumors. Materials and Methods A systematic database search (PubMed, Ovid Embase, Cochrane Library) was used to collate eligible studies. Two researchers independently screened publications according to predefined exclusion and inclusion criteria, followed by comprehensive data extraction. All included studies were subjected to a bias risk assessment using the Quality Assessment of Diagnostic Accuracy Studies tool. Results The electronic database search identified 430 studies, of which 36 fulfilled the inclusion criteria. The final selection of included studies was categorized into five groups as follows: grading gliomas, 19 studies (area under the receiver operating characteristic curve [AUC], 0.500-1.000); predicting molecular subtypes of gliomas, five studies (AUC, 0.610-0.920); distinction of different brain tumor types, seven studies (AUC, 0.707-0.905); therapy response assessment, three studies (AUC not given); and differentiating recurrence from treatment-related changes, five studies (AUC, 0.880-0.980). A high bias risk was observed in a substantial proportion of studies. Conclusion Endogenous CEST MRI offers valuable, potentially unique information in brain tumors, but its diagnostic accuracy remains incompletely known. Further research is required to assess the method's role in support of molecular genetic diagnosis, to investigate its use in the posttreatment phase, and to compare techniques with a view to standardization.Keywords: Brain/Brain Stem, MR-Imaging, Neuro-OncologySupplemental material is available for this article.© RSNA, 2020.
Collapse
Affiliation(s)
- Sachi Okuchi
- From the Department of Brain Repair and Rehabilitation, University College London, Institute of Neurology, London, England (S.O., A.H., X.G., M.K., S.T.); Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan (S.O.); and Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, England (S.T.)
| | - Ahmed Hammam
- From the Department of Brain Repair and Rehabilitation, University College London, Institute of Neurology, London, England (S.O., A.H., X.G., M.K., S.T.); Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan (S.O.); and Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, England (S.T.)
| | - Xavier Golay
- From the Department of Brain Repair and Rehabilitation, University College London, Institute of Neurology, London, England (S.O., A.H., X.G., M.K., S.T.); Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan (S.O.); and Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, England (S.T.)
| | - Mina Kim
- From the Department of Brain Repair and Rehabilitation, University College London, Institute of Neurology, London, England (S.O., A.H., X.G., M.K., S.T.); Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan (S.O.); and Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, England (S.T.)
| | - Stefanie Thust
- From the Department of Brain Repair and Rehabilitation, University College London, Institute of Neurology, London, England (S.O., A.H., X.G., M.K., S.T.); Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan (S.O.); and Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, England (S.T.)
| |
Collapse
|
34
|
Variation of amide proton transfer signal intensity and apparent diffusion coefficient values among phases of the menstrual cycle in the normal uterus: A preliminary study. Magn Reson Imaging 2019; 63:21-28. [DOI: 10.1016/j.mri.2019.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 07/13/2019] [Indexed: 12/19/2022]
|
35
|
Dou W, Lin CYE, Ding H, Shen Y, Dou C, Qian L, Wen B, Wu B. Chemical exchange saturation transfer magnetic resonance imaging and its main and potential applications in pre-clinical and clinical studies. Quant Imaging Med Surg 2019; 9:1747-1766. [PMID: 31728316 PMCID: PMC6828581 DOI: 10.21037/qims.2019.10.03] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/29/2019] [Indexed: 12/26/2022]
Abstract
Chemical exchange saturation transfer (CEST) imaging is a novel contrast mechanism, relying on the exchange between mobile protons in amide (-NH), amine (-NH2) and hydroxyl (-OH) groups and bulk water. Due to the targeted protons present in endogenous molecules or exogenous compounds applied externally, CEST imaging can respectively, generate endogenous or exogenous contrast. Nowadays, CEST imaging for endogenous contrast has been explored in pre-clinical and clinical studies. Amide CEST, also called amide proton transfer weighted (APT) imaging, generates CEST effect at 3.5 ppm away from the water signal and has been widely investigated. Given the sensitivity to amide proton concentration and pH level, APT imaging has shown robust performance in the assessment of ischemia, brain tumors, breast and prostate cancer as well as neurodegenerative diseases. With advanced methods proposed, pure APT and Nuclear Overhauser Effect (NOE) mediated CEST effects were separately fitted from original APT signal. Using both effects, early but promising results were obtained for glioma patients in the evaluation of tumor response to therapy and patient survival. Compared to amide CEST, amine CEST is also mobile proton concentration and pH dependent, but has a faster exchange rate between amine protons and water. The resultant CEST effect is usually introduced at 1.8-3 ppm. Glutamate and creatine, as two main metabolites with amine groups for CEST imaging, have been applied to quantitatively assess diseases in the central nervous system and muscle system, respectively. Glycosaminoglycan (Gag) as a representative metabolite with hydroxyl groups has also been measured to evaluate the cartilage of knee or intervertebral discs in CEST MRI. Due to limited frequency difference between hydroxyl protons and water, 7T for better spectral separation is preferred over 3T for GagCEST measurement. The applications of CEST MRI with exogenous contrast agents are still quite limited in clinic. While certain diamagnetic CEST agents, such as dynamic-glucose, have been tried in human for brain tumor or neck cancer assessment, most exogenous agents, i.e., paramagnetic CEST agents, are still tested in the pre-clinical stage, mainly due to potential toxicity. Engineered tissues for tissue regeneration and drug delivery have also shown a great potential in CEST imaging, as many of them, such as hydrogel and polyamide materials, contain mobile protons or can be incorporated with CEST specific chemical compounds. These engineered tissues can thus generate CEST effect in vivo, allowing a possibility to understand the fate of them in vivo longitudinally. Although the CEST MRI with engineered tissues has only been established in early stage, the obtained first evidence is crucial for further optimizing these biomaterials and finally accomplishing the translation into clinical use.
Collapse
Affiliation(s)
- Weiqiang Dou
- MR Research, GE Healthcare, Beijing 100076, China
| | | | - Hongyuan Ding
- Department of Radiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yong Shen
- MR Enhanced Application, GE Healthcare, Beijing 100076, China
| | - Carol Dou
- Faculty of Medicine, University of British Columbia, British Columbia, Canada
| | - Long Qian
- MR Research, GE Healthcare, Beijing 100076, China
| | - Baohong Wen
- Department of MRI, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Bing Wu
- MR Research, GE Healthcare, Beijing 100076, China
| |
Collapse
|
36
|
Lin Y, Luo X, Yu L, Zhang Y, Zhou J, Jiang Y, Zhang C, Zhang J, Li C, Chen M. Amide proton transfer-weighted MRI for predicting histological grade of hepatocellular carcinoma: comparison with diffusion-weighted imaging. Quant Imaging Med Surg 2019; 9:1641-1651. [PMID: 31728308 DOI: 10.21037/qims.2019.08.07] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background Hepatocellular carcinoma (HCC) is the most common primary malignant tumor of the liver, preoperative grading of HCC is of great clinical significance. Amide proton transfer-weighted (APTw) imaging, as a novel contrast mechanism in the field of molecular imaging, provided new diagnostic ideas for the grading of HCC. Methods Between May 2017 and April 2018, 32 consecutive patients with pathologically confirmed HCC were enrolled, including 19 high-grade HCCs and 13 low-grade HCCs. DWI and APTw scanning was performed on a 3T MRI scanner. Two observers drew regions of interest independently by referring to the axial T2-weighted imaging, and APTw and apparent diffusion coefficient (ADC) values were obtained. Inter- and intra-observer agreements were assessed with the intraclass correlation coefficients (ICCs). The independent sample t test was used to compare the APTw and ADC values between the high- and low-grade HCC tumor parenchyma. The receiver operating characteristic curve was used to analyze the diagnostic efficacy of high- from low-grade HCC tumors. Spearman correlation analysis was used to assess the relationship between APTw and ADC values and HCC histological grades. Results There were significant differences between the APTw or ADC values for the high- and low-grade HCCs (P=0.034 and 0.010). Both APTw and DWI had good diagnostic performance in differentiating the high- from the low-grade HCCs, with areas under the curves of 0.814 and 0.745, respectively. Moderate correlations existed between APTw values and histological grades (r=0.534; P=0.002), as well as ADC values and histological grades (r=-0.417; P=0.018). Conclusions The APTw imaging is a useful imaging biomarker that complements DWI for the more accurate and comprehensive HCC characterization.
Collapse
Affiliation(s)
- Yue Lin
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Beijing 100730, China.,Graduate School of Peking Union Medical College, Beijing 100730, China
| | - Xiaojie Luo
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Beijing 100730, China
| | - Lu Yu
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Beijing 100730, China.,Graduate School of Peking Union Medical College, Beijing 100730, China
| | - Yi Zhang
- Center for Brain Imaging Science and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310058, China
| | - Jinyuan Zhou
- Department of Radiology, Johns Hopkins University, Baltimore, MD, USA
| | - Yuwei Jiang
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Beijing 100730, China
| | - Chen Zhang
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Beijing 100730, China
| | - Jintao Zhang
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Beijing 100730, China
| | - Chunmei Li
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Beijing 100730, China
| | - Min Chen
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Beijing 100730, China.,Graduate School of Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
37
|
Wang X, Chen XZ, Shi L, Dai JP. Glioma grading and IDH1 mutational status: assessment by intravoxel incoherent motion MRI. Clin Radiol 2019; 74:651.e7-651.e14. [DOI: 10.1016/j.crad.2019.03.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/22/2019] [Indexed: 01/07/2023]
|
38
|
Meng N, Wang J, Sun J, Liu W, Wang X, Yan M, Dwivedi A, Zheng D, Wang K, Han D. Using amide proton transfer to identify cervical squamous carcinoma/adenocarcinoma and evaluate its differentiation grade. Magn Reson Imaging 2019; 61:9-15. [PMID: 31071471 DOI: 10.1016/j.mri.2019.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/28/2019] [Accepted: 05/04/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE To explore the possibility of using amide proton transfer-weighted imaging (APTWI) for the identification and diagnosis of cervical squamous carcinoma (CSC), cervical adenocarcinoma (CA) and different levels of CSC. MATERIALS AND METHODS Seventy-six patients with newly diagnosed uterine cervical cancer (UCC) were studied prior to treatment, including 20 with poorly differentiated (Grade 3) CSC, 23 with moderately differentiated (Grade 2) CSC, 17 with well-differentiated (Grade 1) CSC, and 16 with CA (13 with poorly differentiated (Grade 3) CA and 3 with moderately differentiated (Grade 2) CA). Differences in the magnetization transfer ratio at 3.5 ppm (MTRasym (3.5 ppm)) were identified between CSC and CA and between high-level (Grade 3) CSC and low-level (Grade 2 and Grade 1) CSC, as well as among all three grades of CSC differentiation. Receiver operating characteristic (ROC) curve analysis was used to evaluate the diagnostic thresholds and performance of the parameters. Spearman correlation analysis was used to examine the correlation between the MTRasym (3.5 ppm) and histological grade. RESULTS The MTRasym (3.5 ppm) in CA was higher than that in CSC (P = 0.001). The MTRasym (3.5 ppm) in high-level CSC was higher than that in low-level CSC (P = 0.001). The MTRasym (3.5 ppm) was positively correlated with the grade of CSC differentiation (r = 0.498, P = 0.001). The MTRasym (3.5 ppm) in Grade 3 CSC was higher than that in Grade 2 and Grade 1 CSC (P = 0.02/0.01). No significant difference in the MTRasym (3.5 ppm) was found between Grade 2 CSC and Grade 1 CSC (P = 0.173). The area under the ROC curve (AUC) for the MTRasym (3.5 ppm) in distinguishing CSC and CA was 0.779, with a cut-off, sensitivity, and specificity of 2.97%, 60.0% and 82.5%, respectively. The AUC for distinguishing high-/low-level CSC was 0.756, with a cut-off, sensitivity, and specificity of 3.29%, 68.8% and 83.3%, respectively. CONCLUSION APTWI may be a useful technique for the identification and diagnosis of CSC, CA and different levels of CSC, which may have an important impact on clinical strategies for treating patients with UCC.
Collapse
Affiliation(s)
- Nan Meng
- Department of MR, the First Affiliated Hospital, Xinxiang Medical University, 88 Jiankang Road, Weihui 453100, PR China
| | - Jing Wang
- Department of MR, the First Affiliated Hospital, Xinxiang Medical University, 88 Jiankang Road, Weihui 453100, PR China
| | - Jing Sun
- Department of Pediatrics, Zhengzhou Central Hospital, Zhengzhou University, 195 Tongbai Road, Zhengzhou 450000, PR China
| | - Wenling Liu
- Department of MR, the First Affiliated Hospital, Xinxiang Medical University, 88 Jiankang Road, Weihui 453100, PR China
| | - Xuejia Wang
- Department of MR, the First Affiliated Hospital, Xinxiang Medical University, 88 Jiankang Road, Weihui 453100, PR China
| | - Minghuan Yan
- Department of MR, the First Affiliated Hospital, Xinxiang Medical University, 88 Jiankang Road, Weihui 453100, PR China
| | - Akshay Dwivedi
- Department of MR, the First Affiliated Hospital, Xinxiang Medical University, 88 Jiankang Road, Weihui 453100, PR China
| | - Dandan Zheng
- MR Research China, GE Healthcare, Beijing 100000, PR China
| | - Kaiyu Wang
- MR Research China, GE Healthcare, Beijing 100000, PR China.
| | - Dongming Han
- Department of MR, the First Affiliated Hospital, Xinxiang Medical University, 88 Jiankang Road, Weihui 453100, PR China.
| |
Collapse
|
39
|
Yu H, Wen X, Wu P, Chen Y, Zou T, Wang X, Jiang S, Zhou J, Wen Z. Can amide proton transfer-weighted imaging differentiate tumor grade and predict Ki-67 proliferation status of meningioma? Eur Radiol 2019; 29:5298-5306. [PMID: 30887206 DOI: 10.1007/s00330-019-06115-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/15/2019] [Accepted: 02/15/2019] [Indexed: 12/30/2022]
Abstract
OBJECTIVES To determine the utility of the amide proton transfer-weighted MR imaging in differentiating the WHO grade and predict proliferative activity of meningioma. METHODS Fifty-three patients with WHO grade I meningiomas and 26 patients with WHO grade II meningiomas underwent conventional and APT-weighted sequences on a 3.0 Tesla MR before clinical intervention. The APT-weighted (APTw) parameters in the solid tumor region were obtained and compared between two grades using the t test; the receiver operating characteristic (ROC) curve was used to assess the best parameter for predicting the grade of meningiomas. Pearson's correlation coefficient was calculated between the APTwmax and Ki-67 labeling index in meningiomas. RESULTS The APTwmax and APTwmean values were not significantly different between WHO grade I and grade II meningiomas (p = 0.103 and p = 0.318). The APTwmin value was higher and the APTwmax-min value was lower in WHO grade II meningiomas than in WHO grade I tumors (p = 0.027 and p = 0.019). But the APTwmin was higher and the APTwmax-min was lower in microcystic meningiomas than in WHO grade II meningiomas (p = 0.001 and p = 0.006). The APTwmin combined with APTwmax-min showed the best diagnostic performance in predicting the grade of meningiomas with an AUC of 0.772. The APTwmax value was positively correlated with Ki-67 labeling index (r = 0.817, p < 0.001) in meningiomas; the regression equation for the Ki-67 labeling index (%) (Y) and APTwmax (%) (X) was Y = 4.9 × X - 12.4 (R2 = 0.667, p < 0.001). CONCLUSION As a noninvasive imaging method, the ability of APTw-MR imaging in differentiating the grade of meningiomas is limited, but the technology can be used to predict the proliferative activity of meningioma. KEY POINTS • The APTw min value was higher and the APTw max-min value was lower in WHO grade II meningioma than in grade I tumors. • The APTw min value was higher and the APTw max-min value was lower in microcystic meningiomas than in WHO grade II meningiomas. • The APTw max value was positively correlated with meningioma proliferation index.
Collapse
Affiliation(s)
- Hao Yu
- Department of Radiology, Affiliated Hospital of Jining Medical University, Jining Medical University, Guhuai Road No. 89, Rencheng District, Jining, 272029, Shandong, China.,Department of Radiology, Zhujiang Hospital, Southern Medical University, Gongye Road M No. 253, Haizhu District, Guangzhou, 510282, Guangdong, China
| | - Xinrui Wen
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Gongye Road M No. 253, Haizhu District, Guangzhou, 510282, Guangdong, China
| | - Pingping Wu
- Department of Clinical Laboratory, Jining NO. 1 People's Hospital, 6 Jiankang Road, Jining, 272011, China
| | - Yueqin Chen
- Department of Radiology, Affiliated Hospital of Jining Medical University, Jining Medical University, Guhuai Road No. 89, Rencheng District, Jining, 272029, Shandong, China
| | - Tianyu Zou
- Department of Radiology, Weihai Municipal Hospital, Heping Road M No.70, Weihai, 264200, Shandong, China
| | - Xianlong Wang
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Gongye Road M No. 253, Haizhu District, Guangzhou, 510282, Guangdong, China
| | - Shanshan Jiang
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Gongye Road M No. 253, Haizhu District, Guangzhou, 510282, Guangdong, China.,Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, 600N. Wolfe Street, Park 336, Baltimore, MD, 21287, USA
| | - Jinyuan Zhou
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, 600N. Wolfe Street, Park 336, Baltimore, MD, 21287, USA
| | - Zhibo Wen
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Gongye Road M No. 253, Haizhu District, Guangzhou, 510282, Guangdong, China.
| |
Collapse
|
40
|
He Y, Li Y, Lin C, Qi Y, Wang X, Zhou H, Yang J, Xiang Y, Xue H, Jin Z. Three‐dimensional turbo‐spin‐echo amide proton transfer‐weighted mri for cervical cancer: A preliminary study. J Magn Reson Imaging 2019; 50:1318-1325. [DOI: 10.1002/jmri.26710] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 12/24/2022] Open
Affiliation(s)
- Yong‐Lan He
- Department of Radiology, Peking Union Medical College HospitalPeking Union Medical College and Chinese Academy of Medical Sciences Beijing PR China
| | - Yuan Li
- Department of OB&GYN, Peking Union Medical College HospitalPeking Union Medical College and Chinese Academy of Medical Sciences Beijing PR China
| | - Cheng‐Yu Lin
- Department of Radiology, Peking Union Medical College HospitalPeking Union Medical College and Chinese Academy of Medical Sciences Beijing PR China
| | - Ya‐Fei Qi
- Department of Radiology, Peking Union Medical College HospitalPeking Union Medical College and Chinese Academy of Medical Sciences Beijing PR China
| | | | - Hai‐Long Zhou
- Department of Radiology, Peking Union Medical College HospitalPeking Union Medical College and Chinese Academy of Medical Sciences Beijing PR China
| | - Jun‐Jun Yang
- Department of OB&GYN, Peking Union Medical College HospitalPeking Union Medical College and Chinese Academy of Medical Sciences Beijing PR China
| | - Yang Xiang
- Department of OB&GYN, Peking Union Medical College HospitalPeking Union Medical College and Chinese Academy of Medical Sciences Beijing PR China
| | - Hua‐Dan Xue
- Department of Radiology, Peking Union Medical College HospitalPeking Union Medical College and Chinese Academy of Medical Sciences Beijing PR China
| | - Zheng‐Yu Jin
- Department of Radiology, Peking Union Medical College HospitalPeking Union Medical College and Chinese Academy of Medical Sciences Beijing PR China
| |
Collapse
|
41
|
Zhao J, Huang S, Xie H, Li W. An evidence-based approach to evaluate the accuracy of amide proton transfer-weighted MRI in characterization of gliomas. Medicine (Baltimore) 2019; 98:e14768. [PMID: 30855481 PMCID: PMC6417527 DOI: 10.1097/md.0000000000014768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUD To perform a meta-analysis to evaluate the diagnostic accuracy of the amide proton transfer (APT) technique in differentiating high-grade gliomas (HGGs) from low grade gliomas (LGGs). METHODS Medical literature databases were searched for studies that evaluated the diagnostic accuracy of APT in patients suspected of brain tumor who underwent APT MRI and surgery. Only English language studies and published before September 2018 were considered to be included in this project. Homogeneity was assessed by the inconsistency index. Mean difference (MD) at 95% confidence interval (CI) of all parameters derived from APT was calculated. Publication bias was explored by Egger's funnel plot. RESULTS Six eligible studies were included in the meta-analysis, comprising 144 HGGs and 122 LGGs. The APT-related parameter signal intensity (SI) was significantly higher in the HGG than the LGG (WMD = 0.86 (0.61-1.1), P < .0001); A significant difference was also found between grade II and grade III (WMD = 0.6 (0.4-0.8), P < .0001), and between grade II and grade IV (WMD = 1.07 (0.65-1.49), P < .0001). CONCLUSIONS APT imaging may be a useful imaging biomarker for discriminating between LGGs and HGGs. However, large randomized control trials (RCT) were necessary to evaluate its clinical value.
Collapse
Affiliation(s)
| | - Songtao Huang
- Department of Radiology, Guang’an People's Hospital, Sichuan
| | - Huan Xie
- Department of Radiology, Guang’an People's Hospital, Sichuan
| | - Wenfei Li
- Department of Radiology, First Hospital of Qinhuangdao, Hebei, China
| |
Collapse
|
42
|
Neal A, Moffat BA, Stein JM, Nanga RPR, Desmond P, Shinohara RT, Hariharan H, Glarin R, Drummond K, Morokoff A, Kwan P, Reddy R, O'Brien TJ, Davis KA. Glutamate weighted imaging contrast in gliomas with 7 Tesla magnetic resonance imaging. NEUROIMAGE-CLINICAL 2019; 22:101694. [PMID: 30822716 PMCID: PMC6396013 DOI: 10.1016/j.nicl.2019.101694] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 01/10/2019] [Accepted: 01/27/2019] [Indexed: 01/04/2023]
Abstract
Introduction Diffuse gliomas are incurable malignancies, which undergo inevitable progression and are associated with seizure in 50–90% of cases. Glutamate has the potential to be an important glioma biomarker of survival and local epileptogenicity if it can be accurately quantified noninvasively. Methods We applied the glutamate-weighted imaging method GluCEST (glutamate chemical exchange saturation transfer) and single voxel MRS (magnetic resonance spectroscopy) at 7 Telsa (7 T) to patients with gliomas. GluCEST contrast and MRS metabolite concentrations were quantified within the tumour region and peritumoural rim. Clinical variables of tumour aggressiveness (prior adjuvant therapy and previous radiological progression) and epilepsy (any prior seizures, seizure in last month and drug refractory epilepsy) were correlated with respective glutamate concentrations. Images were separated into post-hoc determined patterns and clinical variables were compared across patterns. Results Ten adult patients with a histo-molecular (n = 9) or radiological (n = 1) diagnosis of grade II-III diffuse glioma were recruited, 40.3 +/− 12.3 years. Increased tumour GluCEST contrast was associated with prior adjuvant therapy (p = .001), and increased peritumoural GluCEST contrast was associated with both recent seizures (p = .038) and drug refractory epilepsy (p = .029). We distinguished two unique GluCEST contrast patterns with distinct clinical and radiological features. MRS glutamate correlated with GluCEST contrast within the peritumoural voxel (R = 0.89, p = .003) and a positive trend existed in the tumour voxel (R = 0.65, p = .113). Conclusion This study supports the role of glutamate in diffuse glioma biology. It further implicates elevated peritumoural glutamate in epileptogenesis and altered tumour glutamate homeostasis in glioma aggressiveness. Given the ability to non-invasively visualise and quantify glutamate, our findings raise the prospect of 7 T GluCEST selecting patients for individualised therapies directed at the glutamate pathway. Larger studies with prospective follow-up are required. 7 T GluCEST glioma imaging is feasible, producing high quality quantifiable images. Increased peritumoural GluCEST contrast correlates with drug resistant epilepsy. Increased tumour GluCEST contrast is associated with prior adjuvant therapy. Two GluCEST patterns were identified with distinct clinico-radiological features. GluCEST contrast correlates with MRS glutamate in peritumoural regions.
Collapse
Affiliation(s)
- Andrew Neal
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Australia; Department of Neurology, Royal Melbourne Hospital, Australia.
| | - Bradford A Moffat
- Melbourne Node of the National Imaging Facility, Department of Radiology, University of Melbourne, Australia
| | - Joel M Stein
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Ravi Prakash Reddy Nanga
- Center for Magnetic Resonance & Optical Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Patricia Desmond
- Department of Radiology, Royal Melbourne Hospital, Australia; Department of Radiology and Medicine, University of Melbourne, Australia
| | - Russell T Shinohara
- Department of Biostatistics, Epidemiology, and Informatics, Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, PA, United States
| | - Hari Hariharan
- Center for Magnetic Resonance & Optical Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Rebecca Glarin
- Department of Radiology, Royal Melbourne Hospital, Australia; Department of Radiology and Medicine, University of Melbourne, Australia
| | - Katharine Drummond
- Department of Neurosurgery, Royal Melbourne Hospital, Australia; Department of Surgery, University of Melbourne, Australia; Melbourne Brain Centre, The Royal Melbourne Hospital, Australia
| | - Andrew Morokoff
- Department of Neurosurgery, Royal Melbourne Hospital, Australia; Department of Surgery, University of Melbourne, Australia
| | - Patrick Kwan
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Australia; Department of Neurology, Royal Melbourne Hospital, Australia; Department of Neuroscience, Central Clinical School, Monash University, Australia; Department of Neurology, The Alfred Hospital Monash University, Australia
| | - Ravinder Reddy
- Center for Magnetic Resonance & Optical Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Terence J O'Brien
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Australia; Department of Neurology, Royal Melbourne Hospital, Australia; Department of Neuroscience, Central Clinical School, Monash University, Australia; Department of Neurology, The Alfred Hospital Monash University, Australia
| | - Kathryn A Davis
- Penn Epilepsy Center, Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
43
|
Suh CH, Park JE, Jung SC, Choi CG, Kim SJ, Kim HS. Amide proton transfer-weighted MRI in distinguishing high- and low-grade gliomas: a systematic review and meta-analysis. Neuroradiology 2019; 61:525-534. [PMID: 30666352 DOI: 10.1007/s00234-018-02152-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 12/25/2018] [Indexed: 12/13/2022]
Abstract
PURPOSE Grading of brain gliomas is of clinical importance, and noninvasive molecular imaging may help differentiate low- and high-grade gliomas. We aimed to evaluate the diagnostic performance of amide proton transfer-weighted (APTw) MRI for differentiating low- and high-grade gliomas on 3-T scanners. METHODS A systematic literature search of Ovid-MEDLINE and EMBASE was performed up to March 28, 2018. Original articles evaluating the diagnostic performance of APTw MRI for differentiating low- and high-grade gliomas were selected. The pooled sensitivity and specificity were calculated using a bivariate random-effects model. A coupled forest plot and a hierarchical summary receiver operating characteristic curve were obtained. Heterogeneity was investigated using Higgins inconsistency index (I2) test. Meta-regression was performed. RESULTS Ten original articles with a total of 353 patients were included. High-grade gliomas showed significantly higher APT signal intensity than low-grade gliomas. The pooled sensitivity and specificity for the diagnostic performance of APTw MRI for differentiating low-grade and high-grade gliomas were 88% (95% CI, 77-94%) and 91% (95% CI, 82-96%), respectively. Higgins I2 statistic demonstrated heterogeneity in the sensitivity (I2 = 68.17%), whereas no heterogeneity was noted in the specificity (I2 = 44.84%). In meta-regression, RF saturation power was associated with study heterogeneity. Correlation coefficients between APT signal intensity and Ki-67 cellular proliferation index ranged from 0.430 to 0.597, indicating moderate correlation. All studies showed excellent interobserver agreement. CONCLUSIONS Although heterogeneous protocols were used, APTw MRI demonstrated excellent diagnostic performance for differentiating low- and high-grade gliomas. APTw MRI could be a reliable technique for glioma grading in clinical practice.
Collapse
Affiliation(s)
- Chong Hyun Suh
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 43 Olympic-ro 88, Songpa-Gu, Seoul, 05505, South Korea
| | - Ji Eun Park
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 43 Olympic-ro 88, Songpa-Gu, Seoul, 05505, South Korea.
| | - Seung Chai Jung
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 43 Olympic-ro 88, Songpa-Gu, Seoul, 05505, South Korea
| | - Choong Gon Choi
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 43 Olympic-ro 88, Songpa-Gu, Seoul, 05505, South Korea
| | - Sang Joon Kim
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 43 Olympic-ro 88, Songpa-Gu, Seoul, 05505, South Korea
| | - Ho Sung Kim
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 43 Olympic-ro 88, Songpa-Gu, Seoul, 05505, South Korea
| |
Collapse
|
44
|
Zhou J, Heo HY, Knutsson L, van Zijl PCM, Jiang S. APT-weighted MRI: Techniques, current neuro applications, and challenging issues. J Magn Reson Imaging 2019; 50:347-364. [PMID: 30663162 DOI: 10.1002/jmri.26645] [Citation(s) in RCA: 233] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/26/2018] [Accepted: 12/27/2018] [Indexed: 02/06/2023] Open
Abstract
Amide proton transfer-weighted (APTw) imaging is a molecular MRI technique that generates image contrast based predominantly on the amide protons in mobile cellular proteins and peptides that are endogenous in tissue. This technique, the most studied type of chemical exchange saturation transfer imaging, has been used successfully for imaging of protein content and pH, the latter being possible due to the strong dependence of the amide proton exchange rate on pH. In this article we briefly review the basic principles and recent technical advances of APTw imaging, which is showing promise clinically, especially for characterizing brain tumors and distinguishing recurrent tumor from treatment effects. Early applications of this approach to stroke, Alzheimer's disease, Parkinson's disease, multiple sclerosis, and traumatic brain injury are also illustrated. Finally, we outline the technical challenges for clinical APT-based imaging and discuss several controversies regarding the origin of APTw imaging signals in vivo. Level of Evidence: 3 Technical Efficacy Stage: 3 J. Magn. Reson. Imaging 2019;50:347-364.
Collapse
Affiliation(s)
- Jinyuan Zhou
- Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Hye-Young Heo
- Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Linda Knutsson
- Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | - Peter C M van Zijl
- Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Shanshan Jiang
- Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
45
|
Liu R, Jiang G, Gao P, Li G, Nie L, Yan J, Jiang M, Duan R, Zhao Y, Luo J, Yin Y, Li C. Non-invasive Amide Proton Transfer Imaging and ZOOM Diffusion-Weighted Imaging in Differentiating Benign and Malignant Thyroid Micronodules. Front Endocrinol (Lausanne) 2018; 9:747. [PMID: 30631303 PMCID: PMC6315121 DOI: 10.3389/fendo.2018.00747] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 11/26/2018] [Indexed: 12/12/2022] Open
Abstract
Background: Pre-operative non-invasive differentiation of benign and malignant thyroid nodules is difficult for doctors. This study aims to determine whether amide proton transfer (APT) imaging and zonally oblique multi-slice (ZOOM) diffusion-weighted imaging (DWI) can provide increased accuracy in differentiating benign and malignant thyroid nodules. Methods: This retrospective study was approved by the institutional review board and included 60 thyroid nodules in 50 patients. All of the nodules were classified as malignant (n = 21) or benign (n = 39) based on pathology. It was meaningful to analyze the APT and apparent diffusion coefficient (ADC) values of the two groups by independent t-test to identify the benign and malignant thyroid nodules. The relationship between APT and ZOOM DWI was explored through Pearson correlation analysis. The diagnostic efficacy of APT and ZOOM DWI in determining if thyroid nodules were benign or malignant was compared using receiver operating characteristic (ROC) curve analysis. Results: The mean APTw value of the benign nodules was 2.99 ± 0.79, while that of the malignant nodules was 2.14 ± 0.73. Additionally, there was a significant difference in the APTw values of the two groups (P < 0.05). The mean ADC value of the benign nodules was 1.84 ± 0.41, and was significantly different from that of the malignant nodules, which was 1.21 ± 0.19 (P < 0.05). Scatter point and Pearson test showed a moderate positive correlation between the APT and ADC values (P < 0.05). The ROC curve showed that the area under the curve (AUC) value of ZOOM DWI (AUC = 0.937) was greater than that of APT (AUC = 0.783) (P = 0.028). Conclusion: APT and ZOOM DWI imaging improved the accuracy of distinguishing between benign and malignant thyroid nodules. ZOOM DWI is superior to APTw imaging (Z = 2.198, P < 0.05).
Collapse
Affiliation(s)
- Ruijian Liu
- Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Guihuang Jiang
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Peng Gao
- Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Guoming Li
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Linghui Nie
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Jianhao Yan
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Min Jiang
- Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Renpeng Duan
- Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yue Zhao
- Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Jinxian Luo
- Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yi Yin
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Cheng Li
- Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou, China
- *Correspondence: Cheng Li
| |
Collapse
|