1
|
Shiao MS, Liu ST, Siriwatcharapibool G, Thongpradit S, Khunpanich P, Tong SK, Huang CH, Jinawath N, Chou MY. Conserved expression of the zebrafish syt4 gene in GABAergic neurons in the cerebellum of adult fishes revealed by mammalian SYT4 immunoreactive-like signals. Heliyon 2024; 10:e30575. [PMID: 38765140 PMCID: PMC11098836 DOI: 10.1016/j.heliyon.2024.e30575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/21/2024] Open
Abstract
Synaptotagmin 4 (syt4) belongs to the synaptotagmin protein family, which has 17 and 28 family members in human and zebrafish, respectively. In zebrafish and rodents, syt4 is known to express abundantly in the entire central nervous system in the early developmental stages. In adult rodents, the gene expression shifts to be predominant in the cerebellum, mostly in Purkinje cells, a type of GABAergic neurons. However, there is no report of the expression pattern of syt4 in the adult zebrafish brain. Therefore, we hypothesize that the expression of syt4 is conserved in adult zebrafish and is specific to the GABAergic neurons, likely Purkinje cells, in the cerebellum. To examine the hypothesis, we first show that only one copy of syt4 gene remains in the zebrafish genome, and it is orthologous to the gene in other vertebrates. We further observe mammalian SYT4 antibody immunoreactive-like (mSYT4-ir) signals in several structures in the hindbrain including the medial divisions of the valvula cerebelli and the corpus cerebelli. In addition, our observations indicate the presence of mSYT4-ir signals in GABAergic neurons, most notably in the Purkinje cell layer of the molecular layer in the aforementioned structures. Conversely, mSYT4-ir signals are not observed in glutamatergic or cholinergic neurons. Therefore, we deduce that the syt4 gene in zebrafish exhibits a homologous expression pattern to those of previously studied vertebrate species, which is revealed by the positive immunoreactive-like signals of mammalian SYT4 antibodies.
Collapse
Affiliation(s)
- Meng-Shin Shiao
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Sian-Tai Liu
- Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | | | - Supranee Thongpradit
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Punnakorn Khunpanich
- International College, Mahidol University, Salaya, Nakhon Pathom, 73170, Thailand
| | - Sok-Keng Tong
- Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Chih-Hsuan Huang
- Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Natini Jinawath
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
- Integrative Computational Bioscience (ICBS) Center, Mahidol University, Nakhon Pathom, 73170, Thailand
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, 10540, Thailand
| | - Ming-Yi Chou
- Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
2
|
Hayase S, Shao C, Kobayashi M, Mori C, Liu WC, Wada K. Seasonal regulation of singing-driven gene expression associated with song plasticity in the canary, an open-ended vocal learner. Mol Brain 2021; 14:160. [PMID: 34715888 PMCID: PMC8556994 DOI: 10.1186/s13041-021-00869-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/16/2021] [Indexed: 11/10/2022] Open
Abstract
Songbirds are one of the few animal taxa that possess vocal learning abilities. Different species of songbirds exhibit species-specific learning programs during song acquisition. Songbirds with open-ended vocal learning capacity, such as the canary, modify their songs during adulthood. Nevertheless, the neural molecular mechanisms underlying open-ended vocal learning are not fully understood. We investigated the singing-driven expression of neural activity-dependent genes (Arc, Egr1, c-fos, Nr4a1, Sik1, Dusp6, and Gadd45β) in the canary to examine a potential relationship between the gene expression level and the degree of seasonal vocal plasticity at different ages. The expression of these genes was differently regulated throughout the critical period of vocal learning in the zebra finch, a closed-ended song learner. In the canary, the neural activity-dependent genes were induced by singing in the song nuclei throughout the year. However, in the vocal motor nucleus, the robust nucleus of the arcopallium (RA), all genes were regulated with a higher induction rate by singing in the fall than in the spring. The singing-driven expression of these genes showed a similar induction rate in the fall between the first year juvenile and the second year adult canaries, suggesting a seasonal, not age-dependent, regulation of the neural activity-dependent genes. By measuring seasonal vocal plasticity and singing-driven gene expression, we found that in RA, the induction intensity of the neural activity-dependent genes was correlated with the state of vocal plasticity. These results demonstrate a correlation between vocal plasticity and the singing-driven expression of neural activity-dependent genes in RA through song development, regardless of whether a songbird species possesses an open- or closed-ended vocal learning capacity.
Collapse
Affiliation(s)
- Shin Hayase
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Chengru Shao
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Masahiko Kobayashi
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Chihiro Mori
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, Japan.,Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Kaga, Itabashi-ku, Tokyo, Japan
| | - Wan-Chun Liu
- Department of Psychology, Colgate University, Hamilton, NY, USA
| | - Kazuhiro Wada
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, Japan. .,Department of Biological Sciences, Hokkaido University, Sapporo, Hokkaido, Japan. .,Faculty of Science, Hokkaido University, North 10, West 8, Kita-ku, Sapporo, Hokkaido, Japan.
| |
Collapse
|
3
|
James LS, Fan R, Sakata JT. Behavioural responses to video and live presentations of females reveal a dissociation between performance and motivational aspects of birdsong. ACTA ACUST UNITED AC 2019; 222:jeb.206318. [PMID: 31331939 DOI: 10.1242/jeb.206318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/15/2019] [Indexed: 12/13/2022]
Abstract
Understanding the regulation of social behavioural expression requires insight into motivational and performance aspects. While a number of studies have independently assessed these aspects of social behaviours, few have examined how they relate to each other. By comparing behavioural variation in response to live or video presentations of conspecific females, we analysed how variation in the motivation to produce courtship song covaries with variation in performance aspects of courtship song in male zebra finches (Taeniopygia guttata). In agreement with previous reports, we observed that male zebra finches were less motivated to produce courtship songs to videos of females than to live presentations of females. However, we found that acoustic features that reflect song performance were not significantly different between songs produced in response to videos of females, and those produced in response to live females. For example, songs directed at video presentations of females were just as fast and stereotyped as songs directed at live females. These experimental manipulations and correlational analyses reveal a dissociation between motivational and performance aspects of birdsong and suggest a refinement of neural models of song production and control. In addition, they support the efficacy of videos to study both motivational and performance aspects of social behaviours.
Collapse
Affiliation(s)
- Logan S James
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada
| | - Raina Fan
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada
| | - Jon T Sakata
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada
| |
Collapse
|
4
|
Vocal practice regulates singing activity-dependent genes underlying age-independent vocal learning in songbirds. PLoS Biol 2018; 16:e2006537. [PMID: 30208028 PMCID: PMC6152990 DOI: 10.1371/journal.pbio.2006537] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/24/2018] [Accepted: 08/30/2018] [Indexed: 12/31/2022] Open
Abstract
The development of highly complex vocal skill, like human language and bird songs, is underlain by learning. Vocal learning, even when occurring in adulthood, is thought to largely depend on a sensitive/critical period during postnatal development, and learned vocal patterns emerge gradually as the long-term consequence of vocal practice during this critical period. In this scenario, it is presumed that the effect of vocal practice is thus mainly limited by the intrinsic timing of age-dependent maturation factors that close the critical period and reduce neural plasticity. However, an alternative, as-yet untested hypothesis is that vocal practice itself, independently of age, regulates vocal learning plasticity. Here, we explicitly discriminate between the influences of age and vocal practice using a songbird model system. We prevented zebra finches from singing during the critical period of sensorimotor learning by reversible postural manipulation. This enabled to us to separate lifelong vocal experience from the effects of age. The singing-prevented birds produced juvenile-like immature song and retained sufficient ability to acquire a tutored song even at adulthood when allowed to sing freely. Genome-wide gene expression network analysis revealed that this adult vocal plasticity was accompanied by an intense induction of singing activity-dependent genes, similar to that observed in juvenile birds, rather than of age-dependent genes. The transcriptional changes of activity-dependent genes occurred in the vocal motor robust nucleus of the arcopallium (RA) projection neurons that play a critical role in the production of song phonology. These gene expression changes were accompanied by neuroanatomical changes: dendritic spine pruning in RA projection neurons. These results show that self-motivated practice itself changes the expression dynamics of activity-dependent genes associated with vocal learning plasticity and that this process is not tightly linked to age-dependent maturational factors. How is plasticity associated with vocal learning regulated during a critical period? Although there are abundant studies on the critical period in sensory systems, which are passively regulated by the external environment, few studies have manipulated the sensorimotor experience through the entire critical period. Thus, it is a commonly held belief that age or intrinsic maturation is a crucial factor for the closure of the critical period of vocal learning. Contrary to this idea, our study using songbirds provides a new insight that self-motivated vocal practice, not age, regulates vocal learning plasticity during the critical period. To examine the effects of vocal practice on vocal learning, we prevented juvenile zebra finches from singing during the critical period by postural manipulation, which separated the contribution of lifelong vocal experience from that of age. When these birds were allowed to freely sing as adults, they generated highly plastic songs and maintained the ability to mimic tutored songs, as normal juveniles did. Genome-wide transcriptome analysis revealed that both juveniles and singing-prevented adults, but not normally reared adults, expressed a similar set of singing-dependent genes in a song nucleus in the brain that regulates syllable acoustics. However, age-dependent genes were still similarly expressed in both singing-prevented and normally reared adult birds. These results exhibit that vocal learning plasticity is actively controlled by self-motivated vocal practice.
Collapse
|
5
|
Heston JB, Simon J, Day NF, Coleman MJ, White SA. Bidirectional scaling of vocal variability by an avian cortico-basal ganglia circuit. Physiol Rep 2018; 6:e13638. [PMID: 29687960 PMCID: PMC5913712 DOI: 10.14814/phy2.13638] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 01/31/2018] [Accepted: 02/02/2018] [Indexed: 12/14/2022] Open
Abstract
Behavioral variability is thought to be critical for trial and error learning, but where such motor exploration is generated in the central nervous system is unclear. The zebra finch songbird species offers a highly appropriate model in which to address this question. The male song is amenable to detailed measurements of variability, while the brain contains an identified cortico-basal ganglia loop that underlies this behavior. We used pharmacogenetic interventions to separately interrogate cortical and basal ganglia nodes of zebra finch song control circuitry. We show that bidirectional manipulations of each node produce near mirror image changes in vocal control: Cortical activity promotes song variability, whereas basal ganglia activity promotes song stability. Furthermore, female conspecifics can detect these pharmacogenetically elicited changes in song quality. Our results indicate that cortex and striatopallidum can jointly and reciprocally affect behaviorally relevant levels of vocal variability, and point to endogenous mechanisms for its control.
Collapse
Affiliation(s)
- Jonathan B. Heston
- Interdepartmental Program in NeuroscienceUniversity of CaliforniaLos AngelesCalifornia
| | - Joseph Simon
- Undergraduate Interdepartmental Program for NeuroscienceUniversity of CaliforniaLos AngelesCalifornia
| | - Nancy F. Day
- Department of Integrative Biology and PhysiologyUniversity of CaliforniaLos AngelesCalifornia
| | - Melissa J. Coleman
- W. M. Keck Science Department of Claremont McKenna CollegePitzer College, and Scripps CollegeClaremontCalifornia
| | - Stephanie A. White
- Interdepartmental Program in NeuroscienceUniversity of CaliforniaLos AngelesCalifornia
- Undergraduate Interdepartmental Program for NeuroscienceUniversity of CaliforniaLos AngelesCalifornia
- Department of Integrative Biology and PhysiologyUniversity of CaliforniaLos AngelesCalifornia
| |
Collapse
|
6
|
Mori C, Wada K. Songbird: a unique animal model for studying the molecular basis of disorders of vocal development and communication. Exp Anim 2015; 64:221-30. [PMID: 25912323 PMCID: PMC4547995 DOI: 10.1538/expanim.15-0008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Like humans, songbirds are one of the few animal groups that learn vocalization. Vocal
learning requires coordination of auditory input and vocal output using auditory feedback
to guide one’s own vocalizations during a specific developmental stage known as the
critical period. Songbirds are good animal models for understand the neural basis of vocal
learning, a complex form of imitation, because they have many parallels to humans with
regard to the features of vocal behavior and neural circuits dedicated to vocal learning.
In this review, we will summarize the behavioral, neural, and genetic traits of birdsong.
We will also discuss how studies of birdsong can help us understand how the development of
neural circuits for vocal learning and production is driven by sensory input (auditory
information) and motor output (vocalization).
Collapse
Affiliation(s)
- Chihiro Mori
- Graduate School of Life Science, Hokkaido University, Japan
| | | |
Collapse
|
7
|
Audition-independent vocal crystallization associated with intrinsic developmental gene expression dynamics. J Neurosci 2015; 35:878-89. [PMID: 25609608 DOI: 10.1523/jneurosci.1804-14.2015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Complex learned behavior is influenced throughout development by both genetic and environmental factors. Birdsong, like human speech, is a complex vocal behavior acquired through sensorimotor learning and is based on coordinated auditory input and vocal output to mimic tutor song. Song is primarily learned during a specific developmental stage called the critical period. Although auditory input is crucial for acquiring complex vocal patterns, its exact role in neural circuit maturation for vocal learning and production is not well understood. Using audition-deprived songbirds, we examined whether auditory experience affects developmental gene expression in the major elements of neural circuits that mediate vocal learning and production. Compared with intact zebra finches, early-deafened zebra finches showed excessively delayed vocal development, but their songs eventually crystallized. In contrast to the different rates of song development between the intact and deafened birds, developmental gene expression in the motor circuit is conserved in an age-dependent manner from the juvenile stage until the older adult stage, even in the deafened birds, which indicates the audition-independent robustness of gene expression dynamics during development. Furthermore, even after adult deafening, which degrades crystallized song, the deteriorated songs ultimately restabilized at the same point when the early-deafened birds stabilized their songs. These results indicate a genetic program-associated inevitable termination of vocal plasticity that results in audition-independent vocal crystallization.
Collapse
|
8
|
Moghadam PK, Jackson MB. The functional significance of synaptotagmin diversity in neuroendocrine secretion. Front Endocrinol (Lausanne) 2013; 4:124. [PMID: 24065953 PMCID: PMC3776153 DOI: 10.3389/fendo.2013.00124] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 08/31/2013] [Indexed: 11/25/2022] Open
Abstract
Synaptotagmins (syts) are abundant, evolutionarily conserved integral membrane proteins that play essential roles in regulated exocytosis in nervous and endocrine systems. There are at least 17 syt isoforms in mammals, all with tandem C-terminal C2 domains with highly variable capacities for Ca(2+) binding. Many syts play roles in neurotransmitter release or hormone secretion or both, and a growing body of work supports a role for some syts as Ca(2+) sensors of exocytosis. Work in many types of endocrine cells has documented the presence of a number of syt isoforms on dense-core vesicles containing various hormones. Syts can influence the kinetics of exocytotic fusion pores and the choice of release mode between kiss-and-run and full-fusion. Vesicles harboring different syt isoforms can preferentially undergo distinct modes of exocytosis with different forms of stimulation. The diverse properties of syt isoforms enable these proteins to shape Ca(2+) sensing in endocrine cells, thus contributing to the regulation of hormone release and the organization of complex endocrine functions.
Collapse
Affiliation(s)
| | - Meyer B. Jackson
- Department of Neuroscience, University of Wisconsin, Madison, WI, USA
- *Correspondence: Meyer B. Jackson, Department of Neuroscience, University of Wisconsin, 1300 University Avenue, Madison, WI 53706-1510, USA e-mail:
| |
Collapse
|
9
|
Specialized motor-driven dusp1 expression in the song systems of multiple lineages of vocal learning birds. PLoS One 2012; 7:e42173. [PMID: 22876306 PMCID: PMC3410896 DOI: 10.1371/journal.pone.0042173] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 07/04/2012] [Indexed: 11/19/2022] Open
Abstract
Mechanisms for the evolution of convergent behavioral traits are largely unknown. Vocal learning is one such trait that evolved multiple times and is necessary in humans for the acquisition of spoken language. Among birds, vocal learning is evolved in songbirds, parrots, and hummingbirds. Each time similar forebrain song nuclei specialized for vocal learning and production have evolved. This finding led to the hypothesis that the behavioral and neuroanatomical convergences for vocal learning could be associated with molecular convergence. We previously found that the neural activity-induced gene dual specificity phosphatase 1 (dusp1) was up-regulated in non-vocal circuits, specifically in sensory-input neurons of the thalamus and telencephalon; however, dusp1 was not up-regulated in higher order sensory neurons or motor circuits. Here we show that song motor nuclei are an exception to this pattern. The song nuclei of species from all known vocal learning avian lineages showed motor-driven up-regulation of dusp1 expression induced by singing. There was no detectable motor-driven dusp1 expression throughout the rest of the forebrain after non-vocal motor performance. This pattern contrasts with expression of the commonly studied activity-induced gene egr1, which shows motor-driven expression in song nuclei induced by singing, but also motor-driven expression in adjacent brain regions after non-vocal motor behaviors. In the vocal non-learning avian species, we found no detectable vocalizing-driven dusp1 expression in the forebrain. These findings suggest that independent evolutions of neural systems for vocal learning were accompanied by selection for specialized motor-driven expression of the dusp1 gene in those circuits. This specialized expression of dusp1 could potentially lead to differential regulation of dusp1-modulated molecular cascades in vocal learning circuits.
Collapse
|
10
|
Hilliard AT, Miller JE, Fraley ER, Horvath S, White SA. Molecular microcircuitry underlies functional specification in a basal ganglia circuit dedicated to vocal learning. Neuron 2012; 73:537-52. [PMID: 22325205 DOI: 10.1016/j.neuron.2012.01.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2012] [Indexed: 12/30/2022]
Abstract
Similarities between speech and birdsong make songbirds advantageous for investigating the neurogenetics of learned vocal communication--a complex phenotype probably supported by ensembles of interacting genes in cortico-basal ganglia pathways of both species. To date, only FoxP2 has been identified as critical to both speech and birdsong. We performed weighted gene coexpression network analysis on microarray data from singing zebra finches to discover gene ensembles regulated during vocal behavior. We found ∼2,000 singing-regulated genes comprising three coexpression groups unique to area X, the basal ganglia subregion dedicated to learned vocalizations. These contained known targets of human FOXP2 and potential avian targets. We validated biological pathways not previously implicated in vocalization. Higher-order gene coexpression patterns, rather than expression levels, molecularly distinguish area X from the ventral striato-pallidum during singing. The previously unknown structure of singing-driven networks enables prioritization of molecular interactors that probably bear on human motor disorders, especially those affecting speech.
Collapse
Affiliation(s)
- Austin T Hilliard
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California, USA
| | | | | | | | | |
Collapse
|
11
|
Zhang Z, Wu Y, Wang Z, Dunning FM, Rehfuss J, Ramanan D, Chapman ER, Jackson MB. Release mode of large and small dense-core vesicles specified by different synaptotagmin isoforms in PC12 cells. Mol Biol Cell 2011; 22:2324-36. [PMID: 21551071 PMCID: PMC3128534 DOI: 10.1091/mbc.e11-02-0159] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Different synaptotagmin isoforms (syt I, VII, and IX) sort to populations of dense-core vesicles with different sizes. These isoforms differ in their sensitivities to divalent cations and trigger different modes of exocytosis. Exocytosis triggered by these isoforms also differs in its sensitivity to inhibition by another isoform, syt IV. Many cells release multiple substances in different proportions according to the specific character of a stimulus. PC12 cells, a model neuroendocrine cell line, express multiple isoforms of the exocytotic Ca2+ sensor synaptotagmin. We show that these isoforms sort to populations of dense-core vesicles that differ in size. These synaptotagmins differ in their Ca2+ sensitivities, their preference for full fusion or kiss-and-run, and their sensitivity to inhibition by synaptotagmin IV. In PC12 cells, vesicles that harbor these different synaptotagmin isoforms can be preferentially triggered to fuse by different forms of stimulation. The mode of fusion is specified by the synaptotagmin isoform activated, and because kiss-and-run exocytosis can filter small molecules through a size-limiting fusion pore, the activation of isoforms that favor kiss-and-run will select smaller molecules over larger molecules packaged in the same vesicle. Thus synaptotagmin isoforms can provide multiple levels of control in the release of different molecules from the same cell.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Physiology, University of Wisconsin School of Medical and Public Health, Madison, WI 53706, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
White SA. Genes and vocal learning. BRAIN AND LANGUAGE 2010; 115:21-28. [PMID: 19913899 PMCID: PMC2888939 DOI: 10.1016/j.bandl.2009.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 09/25/2009] [Accepted: 10/12/2009] [Indexed: 05/28/2023]
Abstract
Could a mutation in a single gene be the evolutionary lynchpin supporting the development of human language? A rare mutation in the molecule known as FOXP2 discovered in a human family seemed to suggest so, and its sequence phylogeny reinforced a Chomskian view that language emerged wholesale in humans. Spurred by this discovery, research in primates, rodents and birds suggests that FoxP2 and other language-related genes are interactors in the neuromolecular networks that underlie subsystems of language, such symbolic understanding, vocal learning and theory of mind. The whole picture will only come together through comparative and integrative study into how the human language singularity evolved.
Collapse
Affiliation(s)
- Stephanie A White
- Department of Physiological Science, University of California, Los Angeles, 90095, USA.
| |
Collapse
|
13
|
Panaitof SC, Abrahams BS, Dong H, Geschwind DH, White SA. Language-related Cntnap2 gene is differentially expressed in sexually dimorphic song nuclei essential for vocal learning in songbirds. J Comp Neurol 2010; 518:1995-2018. [PMID: 20394055 PMCID: PMC2864722 DOI: 10.1002/cne.22318] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Multiple studies, involving distinct clinical populations, implicate contactin associated protein-like 2 (CNTNAP2) in aspects of language development and performance. While CNTNAP2 is broadly distributed in developing rodent brain, it shows a striking gradient of frontal cortical enrichment in developing human brain, consistent with a role in patterning circuits that subserve higher cognition and language. To test the hypothesis that CNTNAP2 may be important for learned vocal communication in additional species, we employed in situ hybridization to characterize transcript distribution in the zebra finch, an experimentally tractable songbird for which the neural substrate of this behavior is well established. Consistent with an important role in learned vocalization, Cntnap2 was enriched or diminished in key song control nuclei relative to adjacent brain tissue. Importantly, this punctuated expression was observed in males, but not females, in accord with the sexual dimorphism of neural circuitry and vocal learning in this species. Ongoing functional work will provide important insights into the relationship between Cntnap2 and vocal communication in songbirds and thereby clarify mechanisms at play in disorders of human cognition and language.
Collapse
Affiliation(s)
- S. Carmen Panaitof
- Department of Physiological Science, University of California, Los Angeles, CA, 90095
| | - Brett S. Abrahams
- Program in Neurobehavioral Genetics and Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095
| | - Hongmei Dong
- Program in Neurobehavioral Genetics and Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095
| | - Daniel H. Geschwind
- Program in Neurobehavioral Genetics and Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095
| | - Stephanie A. White
- Department of Physiological Science, University of California, Los Angeles, CA, 90095
| |
Collapse
|
14
|
Arthur CP, Dean C, Pagratis M, Chapman ER, Stowell MHB. Loss of synaptotagmin IV results in a reduction in synaptic vesicles and a distortion of the Golgi structure in cultured hippocampal neurons. Neuroscience 2010; 167:135-42. [PMID: 20138128 DOI: 10.1016/j.neuroscience.2010.01.056] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 01/26/2010] [Accepted: 01/26/2010] [Indexed: 01/12/2023]
Abstract
Fusion of synaptic vesicles with the plasma membrane is mediated by the SNARE (soluble NSF attachment receptor) proteins and is regulated by synaptotagmin (syt). There are at least 17 syt isoforms that have the potential to act as modulators of membrane fusion events. Synaptotagmin IV (syt IV) is particularly interesting; it is an immediate early gene that is regulated by seizures and certain classes of drugs, and, in humans, syt IV maps to a region of chromosome 18 associated with schizophrenia and bipolar disease. Syt IV has recently been found to localize to dense core vesicles in hippocampal neurons, where it regulates neurotrophin release. Here we have examined the ultrastructure of cultured hippocampal neurons from wild-type and syt IV -/- mice using electron tomography. Perhaps surprisingly, we observed a potential synaptic vesicle transport defect in syt IV -/- neurons, with the accumulation of large numbers of small clear vesicles (putative axonal transport vesicles) near the trans-Golgi network. We also found an interaction between syt IV and KIF1A, a kinesin known to be involved in vesicle trafficking to the synapse. Finally, we found that syt IV -/- synapses exhibited reduced numbers of synaptic vesicles and a twofold reduction in the proportion of docked vesicles compared to wild-type. The proportion of docked vesicles in syt IV -/- boutons was further reduced, 5-fold, following depolarization.
Collapse
Affiliation(s)
- C P Arthur
- MCD Biology, University of Colorado, Boulder, CO 80309, USA
| | | | | | | | | |
Collapse
|
15
|
Craxton M. A manual collection of Syt, Esyt, Rph3a, Rph3al, Doc2, and Dblc2 genes from 46 metazoan genomes--an open access resource for neuroscience and evolutionary biology. BMC Genomics 2010; 11:37. [PMID: 20078875 PMCID: PMC2823689 DOI: 10.1186/1471-2164-11-37] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 01/15/2010] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Synaptotagmin proteins were first identified in nervous tissue, residing in synaptic vesicles. Synaptotagmins were subsequently found to form a large family, some members of which play important roles in calcium triggered exocytic events. These members have been investigated intensively, but other family members are not well understood, making it difficult to grasp the meaning of family membership in functional terms. Further difficulty arises as families are defined quite legitimately in different ways: by common descent or by common possession of distinguishing features. One definition does not necessarily imply the other. The evolutionary range of genome sequences now available, can shed more light on synaptotagmin gene phylogeny and clarify family relationships. The aim of compiling this open access collection of synaptotagmin and synaptotagmin-like sequences, is that its use may lead to greater understanding of the biological function of these proteins in an evolutionary context. RESULTS 46 metazoan genomes were examined and their complement of Syt, Esyt, Rph3a, Rph3al, Doc2 and Dblc2 genes identified. All of the sequences were compared, named, then examined in detail. Esyt genes were formerly named Fam62. The species in this collection are Trichoplax, Nematostella, Capitella, Helobdella, Lottia, Ciona, Strongylocentrotus, Branchiostoma, Ixodes, Daphnia, Acyrthosiphon, Tribolium, Nasonia, Apis, Anopheles, Drosophila, Caenorhabditis, Takifugu, Tetraodon, Gasterosteus, Oryzias, Danio, Xenopus, Anolis, Gallus, Taeniopygia,Ornithorhynchus, Monodelphis, Mus and Homo. All of the data described in this paper is available as additional files. CONCLUSIONS Only a subset of synaptotagmin proteins appear able to function as calcium triggers. Syt1, Syt7 and Syt9 are ancient conserved synaptotagmins of this type. Some animals carry extensive repertoires of synaptotagmin genes. Other animals of no less complexity, carry only a small repertoire. Current understanding does not explain why this is so. The biological roles of many synaptotagmins remain to be understood. This collection of genes offers prospects for fruitful speculation about the functional roles of the synaptotagmin repertoires of different animals and includes a great range of biological complexity. With reference to this gene collection, functional relationships among Syt, Esyt, Rph3a, Rph3al, Doc2 and Dblc2 genes, which encode similar proteins, can better be assessed in future.
Collapse
Affiliation(s)
- Molly Craxton
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB20QH, UK.
| |
Collapse
|
16
|
Miller JE, Hilliard AT, White SA. Song practice promotes acute vocal variability at a key stage of sensorimotor learning. PLoS One 2010; 5:e8592. [PMID: 20066039 PMCID: PMC2797613 DOI: 10.1371/journal.pone.0008592] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Accepted: 12/03/2009] [Indexed: 11/24/2022] Open
Abstract
Background Trial by trial variability during motor learning is a feature encoded by the basal ganglia of both humans and songbirds, and is important for reinforcement of optimal motor patterns, including those that produce speech and birdsong. Given the many parallels between these behaviors, songbirds provide a useful model to investigate neural mechanisms underlying vocal learning. In juvenile and adult male zebra finches, endogenous levels of FoxP2, a molecule critical for language, decrease two hours after morning song onset within area X, part of the basal ganglia-forebrain pathway dedicated to song. In juveniles, experimental ‘knockdown’ of area X FoxP2 results in abnormally variable song in adulthood. These findings motivated our hypothesis that low FoxP2 levels increase vocal variability, enabling vocal motor exploration in normal birds. Methodology/Principal Findings After two hours in either singing or non-singing conditions (previously shown to produce differential area X FoxP2 levels), phonological and sequential features of the subsequent songs were compared across conditions in the same bird. In line with our prediction, analysis of songs sung by 75 day (75d) birds revealed that syllable structure was more variable and sequence stereotypy was reduced following two hours of continuous practice compared to these features following two hours of non-singing. Similar trends in song were observed in these birds at 65d, despite higher overall within-condition variability at this age. Conclusions/Significance Together with previous work, these findings point to the importance of behaviorally-driven acute periods during song learning that allow for both refinement and reinforcement of motor patterns. Future work is aimed at testing the observation that not only does vocal practice influence expression of molecular networks, but that these networks then influence subsequent variability in these skills.
Collapse
Affiliation(s)
- Julie E. Miller
- Department of Physiological Science, University of California Los Angeles, Los Angeles, California, United States of America
| | - Austin T. Hilliard
- Department of Physiological Science, University of California Los Angeles, Los Angeles, California, United States of America
- Interdepartmental Program in Neuroscience, University of California Los Angeles, Los Angeles, California, United States of America
| | - Stephanie A. White
- Department of Physiological Science, University of California Los Angeles, Los Angeles, California, United States of America
- Interdepartmental Program in Neuroscience, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
17
|
Barber CF, Jorquera RA, Melom JE, Littleton JT. Postsynaptic regulation of synaptic plasticity by synaptotagmin 4 requires both C2 domains. ACTA ACUST UNITED AC 2009; 187:295-310. [PMID: 19822673 PMCID: PMC2768828 DOI: 10.1083/jcb.200903098] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Analogous to synaptotagmin 1, a calcium-sensitive regulator of presynaptic vesicle fusion, synaptotagmin 4 needs both of its calcium-binding sites to regulate synaptic plasticity via postsynaptic retrograde signaling. Ca2+ influx into synaptic compartments during activity is a key mediator of neuronal plasticity. Although the role of presynaptic Ca2+ in triggering vesicle fusion though the Ca2+ sensor synaptotagmin 1 (Syt 1) is established, molecular mechanisms that underlie responses to postsynaptic Ca2+ influx remain unclear. In this study, we demonstrate that fusion-competent Syt 4 vesicles localize postsynaptically at both neuromuscular junctions (NMJs) and central nervous system synapses in Drosophila melanogaster. Syt 4 messenger RNA and protein expression are strongly regulated by neuronal activity, whereas altered levels of postsynaptic Syt 4 modify synaptic growth and presynaptic release properties. Syt 4 is required for known forms of activity-dependent structural plasticity at NMJs. Synaptic proliferation and retrograde signaling mediated by Syt 4 requires functional C2A and C2B Ca2+–binding sites, as well as serine 284, an evolutionarily conserved substitution for a key Ca2+-binding aspartic acid found in other synaptotagmins. These data suggest that Syt 4 regulates activity-dependent release of postsynaptic retrograde signals that promote synaptic plasticity, similar to the role of Syt 1 as a Ca2+ sensor for presynaptic vesicle fusion.
Collapse
Affiliation(s)
- Cynthia F Barber
- Department of Biology, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
18
|
Zhang Z, Bhalla A, Dean C, Chapman ER, Jackson MB. Synaptotagmin IV: a multifunctional regulator of peptidergic nerve terminals. Nat Neurosci 2009; 12:163-71. [PMID: 19136969 PMCID: PMC2710815 DOI: 10.1038/nn.2252] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Accepted: 12/02/2008] [Indexed: 12/31/2022]
Abstract
Many members of the synaptotagmin (Syt) protein family bind Ca(2+) and trigger exocytosis, but some Syt proteins appear to have no Ca(2+)-dependent actions and their biological functions remain obscure. Syt IV is an activity-induced brain protein with no known Ca(2+)-dependent interactions and its subcellular localization and biological functions have sparked considerable controversy. We found Syt IV on both micro- and dense-core vesicles in posterior pituitary nerve terminals in mice. In terminals from Syt IV knockout mice compared with those from wild types, low Ca(2+) entry triggered more exocytosis, high Ca(2+) entry triggered less exocytosis and endocytosis was accelerated. In Syt IV knockouts, dense-core and microvesicle fusion was enhanced in cell-attached patches and dense-core vesicle fusion pores had conductances that were half as large as those in wild types. Given the neuroendocrine functions of the posterior pituitary, changes in Syt IV levels could be involved in endocrine transitions involving alterations in the release of the neuropeptides oxytocin and vasopressin.
Collapse
Affiliation(s)
- Zhenjie Zhang
- Department of Physiology, University of Wisconsin School of Medicine and Public Health, 1300 University Avenue, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
19
|
Abstract
The consolidation of long-lasting sensory memories requires the activation of gene expression programs in the brain. Despite considerable knowledge about the early components of this response, little is known about late components (i.e., genes regulated 2-6 h after stimulation) and the relationship between early and late genes. Birdsong represents one of the best natural behaviors to study sensory-induced gene expression in awake, freely behaving animals. Here we show that the expression of several isoforms of synapsins, a group of phosphoproteins thought to regulate the dynamics of synaptic vesicle storage and release, is induced by auditory stimulation with birdsong in the caudomedial nidopallium (NCM) of the zebra finch (Taeniopygia guttata) brain. This induction occurs mainly in excitatory (non-GABAergic) neurons and is modulated (suppressed) by early song-inducible proteins. We also show that ZENK, an early song-inducible transcription factor, interacts with the syn3 promoter in vivo, consistent with a direct regulatory effect and an emerging novel view of ZENK action. These results demonstrate that synapsins are a late component of the genomic response to neuronal activation and that their expression depends on a complex set of regulatory interactions between early and late regulated genes.
Collapse
|
20
|
Abstract
Neurotransmitter release at synapses involves a highly specialized form of membrane fusion that is triggered by Ca(2+) ions and is optimized for speed. These observations were established decades ago, but only recently have the molecular mechanisms that underlie this process begun to come into view. Here, we summarize findings obtained from genetically modified neurons and neuroendocrine cells, as well as from reconstituted systems, which are beginning to reveal the molecular mechanism by which Ca(2+)-acting on the synaptic vesicle (SV) protein synaptotagmin I (syt)-triggers rapid exocytosis. This work sheds light not only on presynaptic aspects of synaptic transmission, but also on the fundamental problem of membrane fusion, which has remained a puzzle that has yet to be solved in any biological system.
Collapse
Affiliation(s)
- Edwin R Chapman
- Howard Hughes Medical Institute and Department of Physiology, University of Wisconsin, Madison, WI 53706, USA.
| |
Collapse
|
21
|
Miller JE, Spiteri E, Condro MC, Dosumu-Johnson RT, Geschwind DH, White SA. Birdsong decreases protein levels of FoxP2, a molecule required for human speech. J Neurophysiol 2008; 100:2015-25. [PMID: 18701760 DOI: 10.1152/jn.90415.2008] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cognitive and motor deficits associated with language and speech are seen in humans harboring FOXP2 mutations. The neural bases for FOXP2 mutation-related deficits are thought to reside in structural abnormalities distributed across systems important for language and motor learning including the cerebral cortex, basal ganglia, and cerebellum. In these brain regions, our prior research showed that FoxP2 mRNA expression patterns are strikingly similar between developing humans and songbirds. Within the songbird brain, this pattern persists throughout life and includes the striatal subregion, Area X, that is dedicated to song development and maintenance. The persistent mRNA expression suggests a role for FoxP2 that extends beyond the formation of vocal learning circuits to their ongoing use. Because FoxP2 is a transcription factor, a role in shaping circuits likely depends on FoxP2 protein levels which might not always parallel mRNA levels. Indeed our current study shows that FoxP2 protein, like its mRNA, is acutely downregulated in mature Area X when adult males sing with some differences. Total corticosterone levels associated with the different behavioral contexts did not vary, indicating that differences in FoxP2 levels are not likely attributable to stress. Our data, together with recent reports on FoxP2's target genes, suggest that lowered FoxP2 levels may allow for expression of genes important for circuit modification and thus vocal variability.
Collapse
Affiliation(s)
- Julie E Miller
- Department of Physiological Science, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|