1
|
Alward BA, Balthazart J, Ball GF. Androgen signaling in LMAN regulates song stereotypy in male canaries. Horm Behav 2024; 165:105611. [PMID: 39089160 PMCID: PMC11402583 DOI: 10.1016/j.yhbeh.2024.105611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/15/2024] [Accepted: 07/22/2024] [Indexed: 08/03/2024]
Abstract
During breeding when testosterone concentrations are high, male songbirds that are open-ended vocal learners like canaries (Serinus canaria) tend to produce a stable, stereotyped song that facilitates mate attraction or territory defense. Outside breeding contexts, song becomes more variable. The neuroendocrine mechanisms controlling this vocal variability across seasons are not entirely clear. We tested whether androgen signaling within the lateral magnocellular nucleus of the anterior nidopallium (LMAN), a cortical-like brain region of the vocal control system known as a vocal variability generator, plays a role in seasonal vocal variability. We first characterized song in birds housed alone on a short day (SD) photoperiod, which simulates non-breeding conditions. Then, cannulae filled with the androgen receptor (AR) blocker flutamide or left empty as control were implanted bilaterally in LMAN. Birds were then transferred to long days (LD) to simulate the breeding season and song was analyzed again. Blocking AR in LMAN increased acoustic variability of song and the acoustic variability of syllables. However, blocking AR in LMAN did not impact the variability of syllable usage nor their sequencing in LD birds, song features that are controlled by androgen signaling in a somatosensory brain region of the vocal control system called HVC. These findings highlight the multifactorial, non-redundant actions of steroid hormones in controlling complex social behaviors such as birdsong. They also support the hypothesis that LMAN is a key brain area for the effects of testosterone on song plasticity both seasonally in adults and during the song crystallization process at sexual maturity.
Collapse
Affiliation(s)
- Beau A Alward
- Department of Psychology, T.I.M.E.S, University of Houston, Houston, TX 77204, USA; Department of Biology and Biochemistry, University of Houston, Houston, TX 77004, USA; Department of Psychology, Neural and Cognitive Science Program, University of Maryland, College Park, MD 20742, USA
| | | | - Gregory F Ball
- Department of Psychology, Neural and Cognitive Science Program, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
2
|
Brenowitz EA, Lent KL, Miller KE, Perkel DJ. Adult neurogenesis is necessary for functional regeneration of a forebrain neural circuit. Proc Natl Acad Sci U S A 2024; 121:e2400596121. [PMID: 38968119 PMCID: PMC11252730 DOI: 10.1073/pnas.2400596121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/21/2024] [Indexed: 07/07/2024] Open
Abstract
In adult songbirds, new neurons are born in large numbers in the proliferative ventricular zone in the telencephalon and migrate to the adjacent song control region HVC (acronym used as proper name) [A. Reiner et al., J. Comp. Neurol. 473, 377-414 (2004)]. Many of these new neurons send long axonal projections to the robust nucleus of the arcopallium (RA). The HVC-RA circuit is essential for producing stereotyped learned song. The function of adult neurogenesis in this circuit has not been clear. A previous study suggested that it is important for the production of well-structured songs [R. E. Cohen, M. Macedo-Lima, K. E. Miller, E. A. Brenowitz, J. Neurosci. 36, 8947-8956 (2016)]. We tested this hypothesis by infusing the neuroblast migration inhibitor cyclopamine into HVC of male Gambel's white-crowned sparrows (Zonotrichia leucophrys gambelii) to block seasonal regeneration of the HVC-RA circuit. Decreasing the number of new neurons in HVC prevented both the increase in spontaneous electrical activity of RA neurons and the improved structure of songs that would normally occur as sparrows enter breeding condition. These results show that the incorporation of new neurons into the adult HVC is necessary for the recovery of both electrical activity and song behavior in breeding birds and demonstrate the value of the bird song system as a model for investigating adult neurogenesis at the level of long projection neural circuits.
Collapse
Affiliation(s)
- Eliot A. Brenowitz
- Department of Psychology, University of Washington, Seattle, WA98195
- Department of Biology, University of Washington, Seattle, WA98195
| | - Karin L. Lent
- Department of Psychology, University of Washington, Seattle, WA98195
- Department of Biology, University of Washington, Seattle, WA98195
| | - Kimberly E. Miller
- Department of Psychology, University of Washington, Seattle, WA98195
- Department of Biology, University of Washington, Seattle, WA98195
| | - David J. Perkel
- Department of Biology, University of Washington, Seattle, WA98195
- Department of Otolaryngology, University of Washington, Seattle, WA98195
| |
Collapse
|
3
|
Fang YT, Kuo HC, Chen CY, Chou SJ, Lu CW, Hung CM. Brain Gene Regulatory Networks Coordinate Nest Construction in Birds. Mol Biol Evol 2024; 41:msae125. [PMID: 38916488 PMCID: PMC11223658 DOI: 10.1093/molbev/msae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/18/2024] [Accepted: 06/10/2024] [Indexed: 06/26/2024] Open
Abstract
Nest building is a vital behavior exhibited during breeding in birds, and is possibly induced by environmental and social cues. Although such behavioral plasticity has been hypothesized to be controlled by adult neuronal plasticity, empirical evidence, especially at the neurogenomic level, remains limited. Here, we aim to uncover the gene regulatory networks that govern avian nest construction and examine whether they are associated with circuit rewiring. We designed an experiment to dissect this complex behavior into components in response to pair bonding and nest material acquisition by manipulating the presence of mates and nest materials in 30 pairs of zebra finches. Whole-transcriptome analysis of 300 samples from five brain regions linked to avian nesting behaviors revealed nesting-associated gene expression enriched with neural rewiring functions, including neurogenesis and neuron projection. The enriched expression was observed in the motor/sensorimotor and social behavior networks of female finches, and in the dopaminergic reward system of males. Female birds exhibited predominant neurotranscriptomic changes to initiate the nesting stage, while males showed major changes after entering this stage, underscoring sex-specific roles in nesting behavior. Notably, major neurotranscriptomic changes occurred during pair bonding, with minor changes during nest material acquisition, emphasizing social interactions in nest construction. We also revealed gene expression associated with reproductive behaviors and tactile sensing for nesting behavior. This study presents novel neurogenomic evidence supporting the hypothesis of adult neural plasticity underlying avian nest-construction behavior. By uncovering the genetic toolkits involved, we offer novel insights into the evolution of animals' innate ability to construct nests.
Collapse
Affiliation(s)
- Yi-Ting Fang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Hao-Chih Kuo
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Cheng-Yu Chen
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Shen-Ju Chou
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Chia-Wei Lu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Chih-Ming Hung
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
4
|
Brittain CN, Bessler AM, Elgin AS, Layko RB, Park S, Still SE, Wada H, Swaddle JP, Cristol DA. Mercury causes degradation of spatial cognition in a model songbird species. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115483. [PMID: 37717355 DOI: 10.1016/j.ecoenv.2023.115483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/07/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
Mercury is a widespread pollutant of increasing global concern that exhibits a broad range of deleterious effects on organisms, including birds. Because the developing brain is well-known to be particularly vulnerable to the neurotoxic insults of mercury, many studies have focused on developmental effects such as on the embryonic brain and resulting behavioral impairment in adults. It is not well understood how the timing of exposure, for example exclusively in ovo versus throughout life, influences the impact of mercury. Using dietary exposure to environmentally relevant methylmercury concentrations, we examined the role that timing and duration of exposure play on spatial learning and memory in a model songbird species, the domesticated zebra finch (Taeniopygia guttata castanotis). We hypothesized that developmental exposure was both necessary and sufficient to disrupt spatial memory in adult finches. We documented profound disruption of memory for locations of hidden food at two spatial scales, cage- and room-sized enclosures, but found that both developmental and ongoing adult exposure were required to exhibit this behavioral impairment. Methylmercury-exposed birds made more mistakes before mastering the spatial task, because they revisited unrewarded locations repeatedly even after discovering the rewarded location. Contrary to our prediction, hippocampal volume was not affected in birds exposed to methylmercury over their lifetimes. The disruption of spatial cognition that we detected is severe and would likely have implications for survival and reproduction in wild birds; however, it appears that individuals that disperse or migrate from a contaminated site might recover later in life if no longer exposed to the toxicant.
Collapse
Affiliation(s)
- Cara N Brittain
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA.
| | - Amanda M Bessler
- Department of Biology, William & Mary, Williamsburg, VA 23185, USA
| | - Andrew S Elgin
- Department of Biology, William & Mary, Williamsburg, VA 23185, USA
| | - Rachel B Layko
- Department of Biology, William & Mary, Williamsburg, VA 23185, USA
| | - Sumin Park
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Shelby E Still
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Haruka Wada
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - John P Swaddle
- Department of Biology, William & Mary, Williamsburg, VA 23185, USA; Institute for Integrative Conservation, William & Mary, Williamsburg, VA 23185, USA
| | - Daniel A Cristol
- Department of Biology, William & Mary, Williamsburg, VA 23185, USA
| |
Collapse
|
5
|
Zubair H, Shamas S, Ullah H, Nabi G, Huma T, Ullah R, Hussain R, Shahab M. Morphometric and Myelin Basic Protein Expression Changes in Arcuate Nucleus Kisspeptin Neurons Underlie Activation of Hypothalamic Pituitary Gonadal-axis in Monkeys ( Macaca Mulatta) during the Breeding Season. Endocr Res 2022; 47:113-123. [PMID: 35866239 DOI: 10.1080/07435800.2022.2102649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
INTRODUCTION Kisspeptin is involved in the hypothalamic pituitary gonadal-axis' seasonal regulation in rodents and sheep. Studies of kisspeptin signaling in regulating the transition between breeding and nonbreeding seasons have focused on kisspeptin expression, myelin basic protein (MBP) expression around kisspeptin-ir cells, and quantifying the synaptic connections between kisspeptin and gonadotropin-releasing hormone (GnRH) neurons in various animal models; however, the role of kisspeptin in regulating the seasonal breeding of primates has not been explored yet. OBJECTIVE This study investigated changes in kisspeptin signaling during breeding and a non-breeding season in a non-human primate model, the rhesus monkey. METHODS Three adult male monkeys (n = 3) from the breeding season and two monkeys (n = 2) from the non-breeding season were used in this study. After measuring the testicular volume and collecting a single blood sample, all animals were humanely euthanized under controlled conditions, and their hypothalami were collected and processed. Two 20 µm thick hypothalamic sections (mediobasal hypothalamus) from each animal were processed for kisspeptin-MBP and kisspeptin-GnRH immunohistochemistry (IHC). One section from each animal was used as a primary antibody omitted control to check the nonspecific binding in each IHC. RESULTS Compared to the non-breeding season, plasma testosterone levels and testicular volumes were significantly higher in monkeys during the breeding season. Furthermore, compared to the non-breeding season, increased kisspeptin expression and a higher number of synaptic contacts between kisspeptin fibers and GnRH cell bodies were observed in the arcuate nucleus of the breeding season monkeys. In contrast, enlarged kisspeptin soma and higher MBP expression were observed in non-breeding monkeys. CONCLUSION Our results indicated enhanced kisspeptin signaling in primate hypothalamus during the breeding season. These findings support the idea that kisspeptin acts as a mediator for the seasonal regulation of the reproductive axis in higher primates.
Collapse
Affiliation(s)
- Hira Zubair
- Laboratory of Reproductive Neuroendocrinology, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Shazia Shamas
- Laboratory of Reproductive Neuroendocrinology, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Zoology, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| | - Hamid Ullah
- Laboratory of Reproductive Neuroendocrinology, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ghulam Nabi
- Institute of Nature Conservation, Polish Academy of Sciences, Krakow, Poland
| | - Tanzeel Huma
- Laboratory of Reproductive Neuroendocrinology, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Rahim Ullah
- Laboratory of Reproductive Neuroendocrinology, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, ZJ, China
| | - Rashad Hussain
- Department of Neurology, Center for Translational Neuro-medicine, University of Rochester, Rochester, NY, USA
| | - Muhammad Shahab
- Laboratory of Reproductive Neuroendocrinology, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
6
|
Rose EM, Haakenson CM, Ball GF. Sex differences in seasonal brain plasticity and the neuroendocrine regulation of vocal behavior in songbirds. Horm Behav 2022; 142:105160. [PMID: 35366412 DOI: 10.1016/j.yhbeh.2022.105160] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 11/20/2022]
Abstract
Birdsong is controlled in part by a discrete network of interconnected brain nuclei regulated in turn by steroid hormones and environmental stimuli. This complex interaction results in neural changes that occur seasonally as the environment varies (e.g., photoperiod, food/water availability, etc.). Variation in environment, vocal behavior, and neuroendocrine control has been primarily studied in male songbirds in both laboratory studies of captive birds and field studies of wild caught birds. The bias toward studying seasonality in the neuroendocrine regulation of song in male birds comes from a historic focus on sexually selected male behaviors. In fact, given that male song is often loud and accompanied by somewhat extravagant courtship behaviors, female song has long been overlooked. To compound this bias, the primary model songbird species for studies in the lab, zebra finches (Taeniopygia guttata) and canaries (Serinus canaria), exhibit little or no female song. Therefore, understanding the degree of variation and neuroendocrine control of seasonality in female songbirds is a major gap in our knowledge. In this review, we discuss the importance of studying sex differences in seasonal plasticity and the song control system. Specifically, we discuss sex differences in 1) the neuroanatomy of the song control system, 2) the distribution of receptors for androgens and estrogens and 3) the seasonal neuroplasticity of the hypothalamo-pituitary-gonadal axis as well as in the neural and cellular mechanisms mediating song system changes. We also discuss how these neuroendocrine mechanisms drive sex differences in seasonal behavior. Finally, we highlight specific gaps in our knowledge and suggest experiments critical for filling these gaps.
Collapse
Affiliation(s)
- Evangeline M Rose
- Department of Psychology, University of Maryland, College Park, MD, USA; Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA.
| | - Chelsea M Haakenson
- Department of Psychology, University of Maryland, College Park, MD, USA; Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| | - Gregory F Ball
- Department of Psychology, University of Maryland, College Park, MD, USA; Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| |
Collapse
|
7
|
Song learning and plasticity in songbirds. Curr Opin Neurobiol 2021; 67:228-239. [PMID: 33667874 DOI: 10.1016/j.conb.2021.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 11/20/2022]
Abstract
Birdsong provides a fascinating system to study both behavioral and neural plasticity. Oscine songbirds learn to sing, exhibiting behavioral plasticity both during and after the song-learning process. As a bird learns, its song progresses from a plastic and highly variable vocalization into a more stereotyped, crystallized song. However, even after crystallization, song plasticity can occur: some species' songs become more stereotyped over time, whereas other species can incorporate new song elements. Alongside the changes in song, songbirds' brains are also plastic. Both song and neural connections change with the seasons in many species, and new neurons can be added to the song system throughout life. In this review, we highlight important research on behavioral and neural plasticity at multiple timescales, from song development in juveniles to lifelong modifications of learned song.
Collapse
|
8
|
Mishra I, Batra T, Prabhat A, Agarwal N, Bhardwaj SK, Kumar V. Developmental effects of daily food availability times on song behaviour and neuronal plasticity of song-control system in male zebra finches. Behav Brain Res 2020; 382:112497. [DOI: 10.1016/j.bbr.2020.112497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/19/2020] [Accepted: 01/19/2020] [Indexed: 01/06/2023]
|
9
|
Phillips JN, Katti M. Anthropogenic noise affects winter song structure of a long-distance migrant, Gambel’s white-crowned sparrow. JOURNAL OF URBAN ECOLOGY 2020. [DOI: 10.1093/jue/juaa003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
AbstractMany animals learn to produce acoustic signals that are used to attract mates and defend territories. The structure of these signals can be influenced by external features of the environment, including the anthropogenic soundscape. In many sedentary species, habitat features and soundscape appears to influence the cultural evolution of songs, often with tradeoffs for better transmission over sexually selected song structure. However, none have investigated whether noise on the wintering grounds affects song structure, which for long-distance migrants may result in an acoustic ‘mismatch’ when returning to a breeding ground. This study investigates urban noise effects on song structure in a long-distance migrant, Zonotrichia leucophrys gambelii, on the wintering grounds in the Fresno Clovis Metropolitan Area and in outlying non-urban areas. Songs and background noise levels were recorded concurrently, and song measurements of frequency and duration were examined differences across noise levels and habitats . We found that the buzz and trill decrease in bandwidth in the presence of noise. The length of the whistle and buzz portion of the song also tends to decreases with noise in urban habitats. This trend toward short, pure tones in noisy areas may transmit better in noisy urban winter habitats, but may not be adaptive on quieter breeding grounds. We suggest that future studies should consider whether winter auditory feedback and song learning environments have consequences for song crystallization and breeding success for long-distance migrants.
Collapse
Affiliation(s)
- Jennifer N Phillips
- Department of Biological Sciences, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, CA 93407, USA
| | - Madhusudan Katti
- Department of Forestry and Environmental Resources, North Carolina State University, Jordan Hall Addition 5223, Raleigh, NC 27695, USA
| |
Collapse
|
10
|
Brain-Derived Neurotrophic Factor Has a Transsynaptic Trophic Effect on Neural Activity in an Adult Forebrain Circuit. J Neurosci 2019; 40:1226-1231. [PMID: 31857358 DOI: 10.1523/jneurosci.2375-19.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/02/2019] [Accepted: 12/11/2019] [Indexed: 11/21/2022] Open
Abstract
While hormone-driven plasticity in the adult brain is well studied, the underlying cellular and molecular mechanisms are less well understood. One example of this is seasonal plasticity in the avian brain, where song nuclei exhibit hormonally driven changes in response to changing photoperiod and circulating sex steroid hormones. Hormone receptor activation in song nucleus HVC (proper name) elicits a robust change in activity in target nucleus RA (robust nucleus of the arcopallium), but the molecular signal responsible for this is unknown. This study addressed whether brain-derived neurotrophic factor (BDNF) mediates a transsynaptic effect from HVC to RA in male Gambel's white-crowned sparrows (Zonotrichia leucophrys gambelii). In situ hybridization confirmed an increase in BDNF expression in HVC neurons of birds switched to a long-day (LD) photoperiod plus systemically elevated testosterone (T) levels, compared with short-day (SD) conditions. BDNF expression was virtually absent in RA neurons of SD birds, increasing to barely detectable levels in a small subset of cells in LD+T birds. Infusion of BDNF protein adjacent to the RA of SD birds caused an increase in the spontaneous neuron firing rate. Conversely, the infusion of ANA12, a specific antagonist of the tyrosine-related kinase B (TrkB) for BDNF, prevented the increase in RA neuron firing rate in LD+T birds. These results indicate that BDNF is sufficient, and TrkB receptor activation is necessary, for the transsynaptic trophic effect exerted by HVC on RA. The dramatic change in the activity of RA neurons during the breeding season provides a clear example of transsynaptic BDNF effects in the adult brain in a functionally relevant circuit.SIGNIFICANCE STATEMENT Sex steroid hormones drive changes in brain circuits in all vertebrates, both within specific neurons and on their synaptic targets. Such changes can lead to profound changes in behavior, but little is known about the precise molecular mechanisms that underlie this process. We addressed this question in a seasonally breeding songbird and found that the trophic effects of one forebrain song nucleus on its target are mediated transsynaptically by the neurotrophin BDNF. This suggests that, in addition to their role in development, neurotrophins have critical roles in adult brain plasticity.
Collapse
|
11
|
James LS, Fan R, Sakata JT. Behavioural responses to video and live presentations of females reveal a dissociation between performance and motivational aspects of birdsong. ACTA ACUST UNITED AC 2019; 222:jeb.206318. [PMID: 31331939 DOI: 10.1242/jeb.206318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/15/2019] [Indexed: 12/13/2022]
Abstract
Understanding the regulation of social behavioural expression requires insight into motivational and performance aspects. While a number of studies have independently assessed these aspects of social behaviours, few have examined how they relate to each other. By comparing behavioural variation in response to live or video presentations of conspecific females, we analysed how variation in the motivation to produce courtship song covaries with variation in performance aspects of courtship song in male zebra finches (Taeniopygia guttata). In agreement with previous reports, we observed that male zebra finches were less motivated to produce courtship songs to videos of females than to live presentations of females. However, we found that acoustic features that reflect song performance were not significantly different between songs produced in response to videos of females, and those produced in response to live females. For example, songs directed at video presentations of females were just as fast and stereotyped as songs directed at live females. These experimental manipulations and correlational analyses reveal a dissociation between motivational and performance aspects of birdsong and suggest a refinement of neural models of song production and control. In addition, they support the efficacy of videos to study both motivational and performance aspects of social behaviours.
Collapse
Affiliation(s)
- Logan S James
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada
| | - Raina Fan
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada
| | - Jon T Sakata
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada
| |
Collapse
|
12
|
Riters LV, Kelm-Nelson CA, Spool JA. Why Do Birds Flock? A Role for Opioids in the Reinforcement of Gregarious Social Interactions. Front Physiol 2019; 10:421. [PMID: 31031641 PMCID: PMC6473117 DOI: 10.3389/fphys.2019.00421] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/27/2019] [Indexed: 12/16/2022] Open
Abstract
The formation of social groups provides safety and opportunities for individuals to develop and practice important social skills. However, joining a social group does not result in any form of obvious, immediate reinforcement (e.g., it does not result in immediate copulation or a food reward), and individuals often remain in social groups despite agonistic responses from conspecifics. Much is known about neural and endocrine mechanisms underlying the motivation to perform mate- or offspring-directed behaviors. In contrast, relatively little is known about mechanisms underlying affiliative behaviors outside of these primary reproductive contexts. Studies on flocking behavior in songbirds are beginning to fill this knowledge gap. Here we review behavioral evidence that supports the hypothesis that non-sexual affiliative, flocking behaviors are both (1) rewarded by positive social interactions with conspecifics, and (2) reinforced because affiliative contact reduces a negative affective state caused by social isolation. We provide evidence from studies in European starlings, Sturnus vulgaris, that mu opioid receptors in the medial preoptic nucleus (mPOA) play a central role in both reward and the reduction of a negative affective state induced by social interactions in flocks, and discuss potential roles for nonapeptide/opioid interactions and steroid hormones. Finally, we develop the case that non-sexual affiliative social behaviors may be modified by two complementary output pathways from mPOA, with a projection from mPOA to the periaqueductal gray integrating information during social interactions that reduces negative affect and a projection from mPOA to the ventral tegmental area integrating information leading to social approach and reward.
Collapse
Affiliation(s)
- Lauren V. Riters
- Department of Integrative Biology, University of Wisconsin–Madison, Madison, WI, United States
| | - Cynthia A. Kelm-Nelson
- Division of Otolaryngology-Head & Neck Surgery, Department of Surgery, University of Wisconsin–Madison, Madison, WI, United States
| | - Jeremy A. Spool
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
13
|
Larson TA, Thatra NM, Hou D, Hu RA, Brenowitz EA. Seasonal changes in neuronal turnover in a forebrain nucleus in adult songbirds. J Comp Neurol 2018; 527:767-779. [PMID: 30291632 DOI: 10.1002/cne.24552] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 09/19/2018] [Accepted: 09/28/2018] [Indexed: 01/27/2023]
Abstract
Neuronal death and replacement, or neuronal turnover, in the adult brain are one of many fundamental processes of neural plasticity. The adult avian song control circuit provides an excellent model for exploring mature neuronal death and replacement by new neurons. In the song control nucleus, HVC of adult male Gambel's white-crowned sparrows (Zonotrichia leucophrys gambelli) nearly 68,000 neurons are added each breeding season and die during the subsequent nonbreeding season. To accommodate large seasonal differences in HVC neuron number, the balance between neuronal addition and death in HVC must differ between seasons. To determine whether maintenance of new HVC neurons changes within and between breeding and nonbreeding conditions, we pulse-labeled two different cohorts of new HVC neurons under both conditions and quantified their maintenance. We show that the maintenance of new HVC neurons, as well as new nonneuronal cells, was higher at the onset of breeding conditions than at the onset of nonbreeding conditions. Once a steady-state HVC volume and neuronal number were attained in either breeding or nonbreeding conditions, neuronal and nonneuronal maintenance were similarly low. We found that new neuronal number correlated with a new nonneuronal number within each cohort of new neurons. Together, these data suggest that sex steroids promote the survival of an initial population of new neurons and nonneuronal cells entering HVC. However, once HVC is fully grown or regressed, neuronal and nonneuronal cell turnover is regulated by a common mechanism likely independent of direct sex steroid signaling.
Collapse
Affiliation(s)
- Tracy A Larson
- Department of Biology, University of Washington, Seattle, Washington.,Department of Psychology, University of Washington, Seattle, Washington
| | - Nivretta M Thatra
- Department of Biology, University of Washington, Seattle, Washington.,Department of Psychology, University of Washington, Seattle, Washington
| | - Daren Hou
- Department of Psychology, University of Washington, Seattle, Washington
| | - Rachael A Hu
- Department of Biology, University of Washington, Seattle, Washington.,Department of Psychology, University of Washington, Seattle, Washington
| | - Eliot A Brenowitz
- Department of Biology, University of Washington, Seattle, Washington.,Department of Psychology, University of Washington, Seattle, Washington
| |
Collapse
|
14
|
Wei YC, Wang SR, Xu XH. Sex differences in brain-derived neurotrophic factor signaling: Functions and implications. J Neurosci Res 2017; 95:336-344. [PMID: 27870405 DOI: 10.1002/jnr.23897] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 07/18/2016] [Accepted: 08/01/2016] [Indexed: 02/03/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) regulates diverse processes such as neuronal survival, differentiation, and plasticity. Accumulating evidence suggests that molecular events that direct sexual differentiation of the brain interact with BDNF signaling pathways. This Mini-Review first examines potential hormonal and epigenetic mechanisms through which sex influences BDNF signaling. We then examine how sex-specific regulation of BDNF signaling supports the development and function of sexually dimorphic neural circuits that underlie male-specific genital reflexes in rats and song production in birds. Finally, we discuss the implications of sex differences in BDNF signaling for gender-biased presentation of neurological and psychiatric diseases such as Alzheimer's disease. Although this Mini-Review focuses on BDNF, we try to convey the general message that sex influences brain functions in complex ways and underscore the requirement for and challenge of expanding research on sex differences in neuroscience. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yi-Chao Wei
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Shao-Ran Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Xiao-Hong Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
15
|
Dissociable Effects on Birdsong of Androgen Signaling in Cortex-Like Brain Regions of Canaries. J Neurosci 2017; 37:8612-8624. [PMID: 28821656 DOI: 10.1523/jneurosci.3371-16.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 07/14/2017] [Accepted: 07/24/2017] [Indexed: 12/12/2022] Open
Abstract
The neural basis of how learned vocalizations change during development and in adulthood represents a major challenge facing cognitive neuroscience. This plasticity in the degree to which learned vocalizations can change in both humans and songbirds is linked to the actions of sex steroid hormones during ontogeny but also in adulthood in the context of seasonal changes in birdsong. We investigated the role of steroid hormone signaling in the brain on distinct features of birdsong using adult male canaries (Serinus canaria), which show extensive seasonal vocal plasticity as adults. Specifically, we bilaterally implanted the potent androgen receptor antagonist flutamide in two key brain regions that control birdsong. We show that androgen signaling in the motor cortical-like brain region, the robust nucleus of the arcopallium (RA), controls syllable and trill bandwidth stereotypy, while not significantly affecting higher order features of song such syllable-type usage (i.e., how many times each syllable type is used) or syllable sequences. In contrast, androgen signaling in the premotor cortical-like brain region, HVC (proper name), controls song variability by increasing the variability of syllable-type usage and syllable sequences, while having no effect on syllable or trill bandwidth stereotypy. Other aspects of song, such as the duration of trills and the number of syllables per song, were also differentially affected by androgen signaling in HVC versus RA. These results implicate androgens in regulating distinct features of complex motor output in a precise and nonredundant manner.SIGNIFICANCE STATEMENT Vocal plasticity is linked to the actions of sex steroid hormones, but the precise mechanisms are unclear. We investigated this question in adult male canaries (Serinus canaria), which show extensive vocal plasticity throughout their life. We show that androgens in two cortex-like vocal control brain regions regulate distinct aspects of vocal plasticity. For example, in HVC (proper name), androgens regulate variability in syntax but not phonology, whereas androgens in the robust nucleus of the arcopallium (RA) regulate variability in phonology but not syntax. Temporal aspects of song were also differentially affected by androgen signaling in HVC versus RA. Thus, androgen signaling may reduce vocal plasticity by acting in a nonredundant and precise manner in the brain.
Collapse
|
16
|
Adult Neurogenesis Leads to the Functional Reconstruction of a Telencephalic Neural Circuit. J Neurosci 2017; 36:8947-56. [PMID: 27559175 DOI: 10.1523/jneurosci.0553-16.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 07/08/2016] [Indexed: 01/19/2023] Open
Abstract
UNLABELLED Seasonally breeding songbirds exhibit pronounced annual changes in song behavior, and in the morphology and physiology of the telencephalic neural circuit underlying production of learned song. Each breeding season, new adult-born neurons are added to the pallial nucleus HVC in response to seasonal changes in steroid hormone levels, and send long axonal projections to their target nucleus, the robust nucleus of the arcopallium (RA). We investigated the role that adult neurogenesis plays in the seasonal reconstruction of this circuit. We labeled newborn HVC neurons with BrdU, and RA-projecting HVC neurons (HVCRA) with retrograde tracer injected in RA of adult male white-crowned sparrows (Zonotrichia leucophrys gambelii) in breeding or nonbreeding conditions. We found that there were many more HVCRA neurons in breeding than nonbreeding birds. Furthermore, we observed that more newborn HVC neurons were back-filled by the tracer in breeding animals. Behaviorally, song structure degraded as the HVC-RA circuit degenerated, and recovered as the circuit regenerated, in close correlation with the number of new HVCRA neurons. These results support the hypothesis that the HVC-RA circuit degenerates in nonbreeding birds, and that newborn neurons reconstruct the circuit in breeding birds, leading to functional recovery of song behavior. SIGNIFICANCE STATEMENT We investigated the role that adult neurogenesis plays in the seasonal reconstruction of a telencephalic neural circuit that controls song behavior in white-crowned sparrows. We showed that nonbreeding birds had a 36%-49% reduction in the number of projection neurons compared with breeding birds, and the regeneration of the circuit in the breeding season is due to the integration of adult-born projection neurons. Additionally, song structure degraded as the circuit degenerated and recovered as the circuit regenerated, in close correlation with new projection neuron number. This study demonstrates that steroid hormones can help reestablish functional neuronal circuits following degeneration in the adult brain and shows non-injury-induced degeneration and reconstruction of a neural circuit critical for producing a learned behavior.
Collapse
|
17
|
Longmoor GK, Lange CH, Darvell H, Walker L, Rytkönen S, Vatka E, Hohtola E, Orell M, Smulders TV. Different Seasonal Patterns in Song System Volume in Willow Tits and Great Tits. BRAIN, BEHAVIOR AND EVOLUTION 2016; 87:265-74. [PMID: 27442125 DOI: 10.1159/000447114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 05/25/2016] [Indexed: 11/19/2022]
Abstract
In most species of seasonally breeding songbirds studied to date, the brain areas that control singing (i.e. the song control system, SCS) are larger during the breeding season than at other times of the year. In the family of titmice and chickadees (Paridae), one species, the blue tit (Cyanistes caeruleus), shows the typical pattern of seasonal changes, while another species, the black-capped chickadee (Poecile atricapillus), shows, at best, very reduced seasonal changes in the SCS. To test whether this pattern holds up in the two Parid lineages to which these two species belong, and to rule out that the differences in seasonal patterns observed were due to differences in geography or laboratory, we compared the seasonal patterns in two song system nuclei volumes (HVC and Area X) in willow tits (Poecile montanus), closely related to black-capped chickadees, and in great tits (Parus major), more closely related to blue tits, from the same area around Oulu, Finland. Both species had larger gonads in spring than during the rest of the year. Great tit males had a larger HVC in spring than at other times of the year, but their Area X did not change in size. Willow tits showed no seasonal change in HVC or Area X size, despite having much larger gonads in spring than the great tits. Our findings suggest that the song system of willow tits and their relatives may be involved in learning and producing nonsong social vocalizations. Since these vocalizations are used year-round, there may be a year-round demand on the song system. The great tit and blue tit HVC may change seasonally because the demand is only placed on the song system during the breeding season, since they only produce learned vocalizations during this time. We suggest that changes were not observed in Area X because its main role is in song learning, and there is evidence that great tits do not learn new songs after their first year of life. Further study is required to determine whether our hypothesis about the role of the song system in the learned, nonsong vocalizations of the willow tit and chickadee is correct, and to test our hypothesis about the role of Area X in the great tit song system.
Collapse
Affiliation(s)
- Georgia K Longmoor
- Centre for Behaviour and Evolution, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Surbhi, Rastogi A, Malik S, Rani S, Kumar V. Seasonal neuronal plasticity in song-control and auditory forebrain areas in subtropical nonmigratory and palearctic-indian migratory male songbirds. J Comp Neurol 2016; 524:2914-29. [DOI: 10.1002/cne.24000] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Surbhi
- DST-IRHPA Center for Excellence in Biological Rhythms Research and Indo-U.S. Center for Biological Timing, University of Delhi; Delhi 110 007 India
- Department of Zoology; University of Delhi; Delhi 110 007 India
| | - Ashutosh Rastogi
- DST-IRHPA Center for Excellence in Biological Rhythms Research and Indo-U.S. Center for Biological Timing, University of Delhi; Delhi 110 007 India
- Department of Zoology; University of Lucknow; Lucknow 226 007 India
| | - Shalie Malik
- DST-IRHPA Center for Excellence in Biological Rhythms Research and Indo-U.S. Center for Biological Timing, University of Delhi; Delhi 110 007 India
- Department of Zoology; University of Lucknow; Lucknow 226 007 India
| | - Sangeeta Rani
- DST-IRHPA Center for Excellence in Biological Rhythms Research and Indo-U.S. Center for Biological Timing, University of Delhi; Delhi 110 007 India
- Department of Zoology; University of Lucknow; Lucknow 226 007 India
| | - Vinod Kumar
- DST-IRHPA Center for Excellence in Biological Rhythms Research and Indo-U.S. Center for Biological Timing, University of Delhi; Delhi 110 007 India
- Department of Zoology; University of Delhi; Delhi 110 007 India
| |
Collapse
|
19
|
Guigueno MF, Sherry DF, MacDougall-Shackleton SA. Sex and seasonal differences in neurogenesis and volume of the song-control system are associated with song in brood-parasitic and non-brood-parasitic icterid songbirds. Dev Neurobiol 2016; 76:1226-1240. [PMID: 26898912 DOI: 10.1002/dneu.22385] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 01/10/2016] [Accepted: 02/16/2016] [Indexed: 01/15/2023]
Abstract
The song-control system in the brain of songbirds is important for the production and acquisition of song and exhibits both remarkable seasonal plasticity and some of the largest neural sex differences observed in vertebrates. We measured sex and seasonal differences in two nuclei of the song-control system of brood-parasitic brown-headed cowbirds (Molothrus ater) and closely-related non-parasitic red-winged blackbirds (Agelaius phoeniceus). These species differ in both the development and function of song. Brown-headed cowbirds have a larger sex difference in song than red-winged blackbirds. Female cowbirds never sing, whereas female blackbirds do though much less than males. In cowbirds, song primarily functions in mate choice and males modify their song as they approach sexual maturity and interact with females. In red-winged blackbirds, song is used primarily in territorial defence and is crystalized earlier in life. We found that the HVC was more likely to be discernable in breeding female blackbirds than in breeding female cowbirds. Compared to males, females had a smaller HVC and a smaller robust nucleus of the arcopallium (RA). However, females had higher doublecortin immunoreactivity (DCX+) in HVC, a measure of neurogenesis. Consistent with sex differences in song, the sex difference in RA volume was greater in cowbirds than in blackbirds. Males of both species had a smaller HVC with higher DCX+ in post-breeding condition than in breeding condition when song is more plastic. Sex and seasonal differences in the song-control system were closely related to variation in song in these two icterid songbirds. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1226-1240, 2016.
Collapse
Affiliation(s)
- Mélanie F Guigueno
- Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada. .,Department of Biology, University of Western Ontario, London, Ontario, Canada.
| | - David F Sherry
- Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada.,Department of Biology, University of Western Ontario, London, Ontario, Canada.,Department of Psychology, University of Western Ontario, London, Ontario, Canada
| | - Scott A MacDougall-Shackleton
- Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada.,Department of Biology, University of Western Ontario, London, Ontario, Canada.,Department of Psychology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
20
|
Rendon NM, Keesom SM, Amadi C, Hurley LM, Demas GE. Vocalizations convey sex, seasonal phenotype, and aggression in a seasonal mammal. Physiol Behav 2015; 152:143-50. [PMID: 26386405 DOI: 10.1016/j.physbeh.2015.09.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 08/30/2015] [Accepted: 09/14/2015] [Indexed: 01/22/2023]
Abstract
Seasonal variation in social behavior is often accompanied by seasonal variation in communication. In mammals, how seasonal environmental cues influence aggressive vocalizations remains underexplored. Photoperiod is the primary cue coordinating seasonal responses in most temperate zone animals, including Siberian hamsters (Phodopus sungorus), a species that undergoes reproductive inhibition and increased aggression in winter. During same-sex aggressive encounters, hamsters emit both broadband calls (BBCs) and ultrasonic vocalizations (USVs) that indicate aggression and the vocalizer's sex, respectively; however, it is not known whether these rodents adjust specific elements of their vocal repertoire to reflect their photoperiod-induced seasonal phenotypes. To address this, we recorded vocalizations emitted during dyadic interactions between male or female pairs of hamsters housed in long or short photoperiods and measured serum testosterone levels. USV emission rate remained stable across photoperiods, but proportional use of USV subtypes varied in novel ways: 'jump' USVs were sensitive to seasonal phenotype, but not the vocalizer's sex, whereas 'plain' USVs were sensitive only to the sex of the vocalizer. BBC emission rate varied with seasonal phenotype; short-day non-reproductive hamsters produced more BBCs and demonstrated increased aggression compared with reproductive hamsters. Testosterone, however, was not related to vocalization rates. Collectively, these findings demonstrate that changes in the vocal repertoire of Siberian hamsters reflect sex, aggression, and seasonal phenotype, suggesting that both BBCs and USVs are important signals used during same-sex social encounters.
Collapse
Affiliation(s)
- Nikki M Rendon
- Department of Biology, Center for the Integrative Study of Animal Behavior, Program in Neuroscience, Indiana University, Bloomington, IN 47405, USA.
| | - Sarah M Keesom
- Department of Biology, Center for the Integrative Study of Animal Behavior, Program in Neuroscience, Indiana University, Bloomington, IN 47405, USA
| | - Chima Amadi
- Department of Animal Sciences, Cornell University, Ithaca, NY 14850, USA
| | - Laura M Hurley
- Department of Biology, Center for the Integrative Study of Animal Behavior, Program in Neuroscience, Indiana University, Bloomington, IN 47405, USA
| | - Gregory E Demas
- Department of Biology, Center for the Integrative Study of Animal Behavior, Program in Neuroscience, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
21
|
Small TW, Brenowitz EA, Wojtenek W, Moore IT. Testosterone Mediates Seasonal Growth of the Song Control Nuclei in a Tropical Bird. BRAIN, BEHAVIOR AND EVOLUTION 2015; 86:110-21. [PMID: 26346733 DOI: 10.1159/000437412] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 06/24/2015] [Indexed: 11/19/2022]
Abstract
In mid- to high-latitude songbirds, seasonal reproduction is stimulated by increasing day length accompanied by elevated plasma sex steroid levels, increased singing, and growth of the song control nuclei (SCN). Plasticity of the SCN and song behavior are primarily mediated by testosterone (T) and its metabolites in most species studied thus far. However, the majority of bird species are tropical and have less pronounced seasonal reproductive cycles. We have previously documented that equatorial rufous-collared sparrows (Zonotrichia capensis) exhibit seasonal neuroplasticity in the SCN. Manipulating T in these birds, however, did not alter singing behavior. In the current study, we investigated whether T mediates plasticity of the SCN in a similar manner to temperate songbirds. In the first experiment, we treated captive male birds with T or blank implants during the nonbreeding season. In a second experiment, we treated captive male birds with either blank implants, T-filled implants, T with flutamide (FLU; an androgen receptor antagonist) or T with FLU and 1,4,6-androstatriene-3,17-dione (ATD; an estrogen synthesis inhibitor) during the breeding season. In both experiments, the volumes of the brain areas high vocal center (HVC), Area X, and robust nucleus of the arcopallium (RA) were measured along with singing behavior. In summary, T stimulated growth of HVC and RA, and the combined effect of FLU and ATD reversed this effect in HVC. Area X was not affected by T treatment in either experiment. Neither T-treated birds nor controls sang in captivity during either experiment. Together, these data indicate that T mediates seasonal changes in the HVC and RA of both tropical and higher- latitude bird species even if the environmental signals differ. However, unlike most higher-latitude songbirds, we found no evidence that motivation to sing or growth of Area X are stimulated by T under captive conditions.
Collapse
Affiliation(s)
- Thomas W Small
- Department of Biological Sciences, Virginia Tech, Blacksburg, Va., USA
| | | | | | | |
Collapse
|
22
|
Potvin DA, MacDougall-Shackleton SA. Experimental chronic noise exposure affects adult song in zebra finches. Anim Behav 2015. [DOI: 10.1016/j.anbehav.2015.06.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
23
|
Perfito N, Zann RA, Hau M, Bentley GE. Seasonal-like variation in song control system volume of wild zebra finches. ACTA ACUST UNITED AC 2015; 323:586-91. [DOI: 10.1002/jez.1956] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/06/2015] [Accepted: 07/07/2015] [Indexed: 02/02/2023]
Affiliation(s)
- Nicole Perfito
- Max-Planck Institute for Ornithology; Radolfzell Germany
- Department of Integrative Biology and Helen Wills Neuroscience Institute; University of California at Berkeley; Berkeley California
| | - Richard A. Zann
- Department of Zoology; La Trobe University; Melbourne Australia
| | - Michaela Hau
- Max-Planck Institute for Ornithology; Radolfzell Germany
| | - George E. Bentley
- Department of Integrative Biology and Helen Wills Neuroscience Institute; University of California at Berkeley; Berkeley California
| |
Collapse
|
24
|
Abstract
Vertebrate audition is a dynamic process, capable of exhibiting both short- and long-term adaptations to varying listening conditions. Precise spike timing has long been known to play an important role in auditory encoding, but its role in sensory plasticity remains largely unexplored. We addressed this issue in Gambel's white-crowned sparrow (Zonotrichia leucophrys gambelii), a songbird that shows pronounced seasonal fluctuations in circulating levels of sex-steroid hormones, which are known to be potent neuromodulators of auditory function. We recorded extracellular single-unit activity in the auditory forebrain of males and females under different breeding conditions and used a computational approach to explore two potential strategies for the neural discrimination of sound level: one based on spike counts and one based on spike timing reliability. We report that breeding condition has robust sex-specific effects on spike timing. Specifically, in females, breeding condition increases the proportion of cells that rely solely on spike timing information and increases the temporal resolution required for optimal intensity encoding. Furthermore, in a functionally distinct subset of cells that are particularly well suited for amplitude encoding, female breeding condition enhances spike timing-based discrimination accuracy. No effects of breeding condition were observed in males. Our results suggest that high-resolution temporal discharge patterns may provide a plastic neural substrate for sensory coding.
Collapse
|
25
|
Rouse ML, Ball GF. Lesions targeted to the anterior forebrain disrupt vocal variability associated with testosterone-induced sensorimotor song development in adult female canaries, Serinus canaria. Dev Neurobiol 2015; 76:3-18. [PMID: 25864444 DOI: 10.1002/dneu.22295] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 02/20/2015] [Accepted: 04/08/2015] [Indexed: 12/25/2022]
Abstract
Learned communication was a trait observed in a limited number of vertebrates such as humans but also songbirds (i.e., species in the suborder passeri sometimes called oscines). Robust male-biased sex-differences in song development and production have been observed in several songbird species. However, in some of these species treating adult females with testosterone (T) induced neuro-behavioral changes such that females become more male-like in brain and behavior. T-treatment in these adult females seemed to stimulate sensorimotor song development to facilitate song masculinization. In male songbirds it was known that the lateral magnocellular nucleus of the anterior nidopallium (LMAN) played a modulatory role during song development. LMAN was androgen sensitive and may be a key target of a T-induced recapitulation of a developmental process in adult females. This hypothesis was tested. Adult female canaries were given either a chemical lesion of LMAN or a control sham-surgery. Prior to surgery birds were individually housed for 2-weeks in sound-attenuated chambers to record baseline vocal behavior. Post-surgery birds were given 1-week to recover before subcutaneous implantation with silastic capsules filled with crystalline-T. Birds remained on treatment for 3-weeks (behavioral recordings continued throughout). Birds with a lesion to LMAN had less variability in their song compared with controls. The diversity of syllable and phrase type(s) was greater in sham controls as compared with birds with LMAN lesions. Birds did not differ in song rate. These data suggested that the sustention and conclusion of T-induced sensorimotor song development in adult female canaries required an intact LMAN.
Collapse
Affiliation(s)
- Melvin L Rouse
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland.,Department of Reproductive Medicine, University of California, San Diego, La Jolla, California
| | - Gregory F Ball
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
26
|
Rouse ML, Stevenson TJ, Fortune ES, Ball GF. Reproductive state modulates testosterone-induced singing in adult female European starlings (Sturnus vulgaris). Horm Behav 2015; 72:78-87. [PMID: 25989596 PMCID: PMC4469036 DOI: 10.1016/j.yhbeh.2015.04.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 04/27/2015] [Accepted: 04/29/2015] [Indexed: 01/13/2023]
Abstract
European starlings (Sturnus vulgaris) exhibit seasonal changes in singing and in the volumes of the neural substrate. Increases in song nuclei volume are mediated at least in part by increases in day length, which is also associated with increases in plasma testosterone (T), reproductive activity, and singing behavior in males. The correlations between photoperiod (i.e. daylength), T, reproductive state and singing hamper our ability to disentangle causal relationships. We investigated how photoperiodic-induced variation in reproductive state modulates the effects of T on singing behavior and song nuclei volumes in adult female starlings. Female starlings do not naturally produce measureable levels of circulating T but nevertheless respond to exogenous T, which induces male-like singing. We manipulated photoperiod by placing birds in a photosensitive or photorefractory state and then treated them with T-filled or empty silastic implants. We recorded morning singing behavior for 3 weeks, after which we assessed reproductive condition and measured song nuclei volumes. We found that T-treated photosensitive birds sang significantly more than all other groups including T-treated photorefractory birds. All T-treated birds had larger song nuclei volumes than with blank-treated birds (despite photorefractory T-treated birds not increasing song-rate). There was no effect of photoperiod on the song nuclei volumes of T-treated birds. These data show that the behavioral effects of exogenous T can be modulated by reproductive state in adult female songbirds. Furthermore, these data are consistent with other observations that increases in singing rate in response to T are not necessarily due to the direct effects of T on song nuclei volume.
Collapse
Affiliation(s)
- Melvin L Rouse
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA.
| | - Tyler J Stevenson
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Eric S Fortune
- Department of Biological Sciences, New Jersey Institute of Technology, University Heights, Newark, NJ, USA
| | - Gregory F Ball
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
27
|
Abstract
New neurons are added throughout the forebrain of adult birds. The song-control system is a model to investigate the addition of new long-projection neurons to a cortical circuit that regulates song, a learned sensorimotor behavior. Neuroblasts destined for the song nucleus HVC arise in the walls of the lateral ventricle, and wander through the pallium to reach HVC. The survival of new HVC neurons is supported by gonadally secreted testosterone and its downstream effectors including neurotrophins, vascularization, and electrical activity of postsynaptic neurons in nucleus RA (robust nucleus of the arcopallium). In seasonal species, the HVC→RA circuit degenerates in nonbreeding birds, and is reconstructed by the incorporation of new projection neurons in breeding birds. There is a functional linkage between the death of mature HVC neurons and the birth of new neurons. Various hypotheses for the function of adult neurogenesis in the song system can be proposed, but this remains an open question.
Collapse
Affiliation(s)
- Eliot A Brenowitz
- Departments of Biology and Psychology, University of Washington, Seattle, Washington 98195
| | - Tracy A Larson
- Departments of Biology and Psychology, University of Washington, Seattle, Washington 98195
| |
Collapse
|
28
|
Fokidis HB, Adomat HH, Kharmate G, Hosseini-Beheshti E, Guns ES, Soma KK. Regulation of local steroidogenesis in the brain and in prostate cancer: lessons learned from interdisciplinary collaboration. Front Neuroendocrinol 2015; 36:108-29. [PMID: 25223867 DOI: 10.1016/j.yfrne.2014.08.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 08/28/2014] [Accepted: 08/28/2014] [Indexed: 11/16/2022]
Abstract
Sex steroids play critical roles in the regulation of the brain and many other organs. Traditionally, researchers have focused on sex steroid signaling that involves travel from the gonads via the circulation to intracellular receptors in target tissues. This classic concept has been challenged, however, by the growing number of cases in which steroids are synthesized locally and act locally within diverse tissues. For example, the brain and prostate carcinoma were previously considered targets of gonadal sex steroids, but under certain circumstances, these tissues can upregulate their steroidogenic potential, particularly when circulating sex steroid concentrations are low. We review some of the similarities and differences between local sex steroid synthesis in the brain and prostate cancer. We also share five lessons that we have learned during the course of our interdisciplinary collaboration, which brought together neuroendocrinologists and cancer biologists. These lessons have important implications for future research in both fields.
Collapse
Affiliation(s)
- H Bobby Fokidis
- Department of Biology, Rollins College, Winter Park, FL 37289, USA; Department of Psychology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada.
| | - Hans H Adomat
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | | | | | - Emma S Guns
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada; Department of Urological Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Kiran K Soma
- Department of Psychology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Brain Research Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
29
|
Kaplan G. Animal communication. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2014; 5:661-677. [PMID: 26308872 DOI: 10.1002/wcs.1321] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 07/16/2014] [Accepted: 08/04/2014] [Indexed: 02/03/2023]
Abstract
UNLABELLED Animal communication is first and foremost about signal transmission and aims to understand how communication occurs. It is a field that has contributed to and been inspired by other fields, from information technology to neuroscience, in finding ever better methods to eavesdrop on the actual 'message' that forms the basis of communication. Much of this review deals with vocal communication as an example of the questions that research on communication has tried to answer and it provides an historical overview of the theoretical arguments proposed. Topics covered include signal transmission in different environments and different species, referential signaling, and intentionality. The contention is that animal communication may reveal significant thought processes that enable some individuals in a small number of species so far investigated to anticipate what conspecifics might do, although some researchers think of such behavior as adaptive or worth dismissing as anthropomorphizing. The review further points out that some species are more likely than others to develop more complex communication patterns. It is a matter of asking how animals categorize their world and which concepts require cognitive processes and which are adaptive. The review concludes with questions of life history, social learning, and decision making, all criteria that have remained relatively unexplored in communication research. Long-lived, cooperative social animals have so far offered especially exciting prospects for investigation. There are ample opportunities and now very advanced technologies as well to tap further into expressions of memory of signals, be they vocal or expressed in other modalities. WIREs Cogn Sci 2014, 5:661-677. doi: 10.1002/wcs.1321 For further resources related to this article, please visit the WIREs website. CONFLICT OF INTEREST The author has declared no conflicts of interest for this article.
Collapse
Affiliation(s)
- Gisela Kaplan
- Centre for Neuroscience and Animal Behaviour, School of Science and Technology, University of New England, Armidale, Australia
| |
Collapse
|
30
|
Larson TA, Thatra NM, Lee BH, Brenowitz EA. Reactive neurogenesis in response to naturally occurring apoptosis in an adult brain. J Neurosci 2014; 34:13066-76. [PMID: 25253853 PMCID: PMC4172801 DOI: 10.1523/jneurosci.3316-13.2014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 08/15/2014] [Accepted: 08/18/2014] [Indexed: 11/21/2022] Open
Abstract
Neuronal birth and death are tightly coordinated to establish and maintain properly functioning neural circuits. Disruption of the equilibrium between neuronal birth and death following brain injury or pharmacological insult often induces reactive, and in some cases regenerative, neurogenesis. Many neurodegenerative disorders are not injury-induced, however, so it is critical to determine if and how reactive neurogenesis occurs under noninjury-induced neurodegenerative conditions. Here, we used a model of naturally occurring neural degradation in a neural circuit that controls song behavior in Gambel's white-crowned sparrows (Zonotrichia leucophrys gambelii) and examined the temporal dynamics between neuronal birth and death. We found that during seasonal-like regression of the song, control nucleus HVC (proper name), caspase-mediated apoptosis increased within 2 d following transition from breeding to nonbreeding conditions and neural stem-cell proliferation in the nearby ventricular zone (VZ) increased shortly thereafter. We show that inhibiting caspase-mediated apoptosis in HVC decreased neural stem-cell proliferation in the VZ. In baseline conditions the extent of neural stem-cell proliferation correlated positively with the number of dying cells in HVC. We demonstrate that as apoptosis increased and the number of both recently born and pre-existing neurons in HVC decreased, the structure of song, a learned sensorimotor behavior, degraded. Our data illustrate that reactive neurogenesis is not limited to injury-induced neuronal death, but also can result from normally occurring degradation of a telencephalic neural circuit.
Collapse
Affiliation(s)
| | - Nivretta M Thatra
- Departments of Biology and Psychology, University of Washington, Seattle, Washington 98195, and
| | - Brian H Lee
- Psychology, University of Washington, Seattle, Washington 98195, and Department of Neuroscience, John's Hopkins University, Baltimore, Maryland 21218
| | - Eliot A Brenowitz
- Departments of Biology and Psychology, University of Washington, Seattle, Washington 98195, and
| |
Collapse
|
31
|
Wang G, Harpole CE, Paulose J, Cassone VM. The role of the pineal gland in the photoperiodic control of bird song frequency and repertoire in the house sparrow, Passer domesticus. Horm Behav 2014; 65:372-9. [PMID: 24589991 DOI: 10.1016/j.yhbeh.2014.02.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 02/18/2014] [Accepted: 02/20/2014] [Indexed: 11/25/2022]
Abstract
Temperate zone birds are highly seasonal in many aspects of their physiology. In mammals, but not in birds, the pineal gland is an important component regulating seasonal patterns of primary gonadal functions. Pineal melatonin in birds instead affects seasonal changes in brain song control structures, suggesting the pineal gland regulates seasonal song behavior. The present study tests the hypothesis that the pineal gland transduces photoperiodic information to the control of seasonal song behavior to synchronize this important behavior to the appropriate phenology. House sparrows, Passer domesticus, expressed a rich array of vocalizations ranging from calls to multisyllabic songs and motifs of songs that varied under a regimen of different photoperiodic conditions that were simulated at different times of year. Control (SHAM) birds exhibited increases in song behavior when they were experimentally transferred from short days, simulating winter, to equinoctial and long days, simulating summer, and decreased vocalization when they were transferred back to short days. When maintained in long days for longer periods, the birds became reproductively photorefractory as measured by the yellowing of the birds' bills; however, song behavior persisted in the SHAM birds, suggesting a dissociation of reproduction from the song functions. Pinealectomized (PINX) birds expressed larger, more rapid increases in daily vocal rate and song repertoire size than did the SHAM birds during the long summer days. These increases gradually declined upon the extension of the long days and did not respond to the transfer to short days as was observed in the SHAM birds, suggesting that the pineal gland conveys photoperiodic information to the vocal control system, which in turn regulates song behavior.
Collapse
Affiliation(s)
- Gang Wang
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | | | - Jiffin Paulose
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Vincent M Cassone
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA.
| |
Collapse
|
32
|
Maney DL. The incentive salience of courtship vocalizations: hormone-mediated 'wanting' in the auditory system. Hear Res 2013; 305:19-30. [PMID: 23665125 DOI: 10.1016/j.heares.2013.04.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 04/12/2013] [Accepted: 04/19/2013] [Indexed: 12/27/2022]
Abstract
Conspecific vocalizations differ from many other sounds in that they have natural incentive salience. Our thinking about auditory responses to vocalizations may therefore benefit from models originally developed to understand reward. According to those models, the brain attributes incentive salience to rewarding stimuli via the activity of monoaminergic neuromodulators. These neuromodulators, in turn, mediate the effects of experience and internal state. Songbirds lend themselves well to this discussion because the natural incentive salience of song is clearly modulated by both factors. Their auditory responses have been well-studied, particularly the song-induced expression of plasticity-associated genes such as ZENK. Here I review evidence that ZENK responses to song are regulated by monoamine neuromodulators, and I interpret this evidence in the context of incentive salience. First, hearing conspecific song engages monoaminergic activity in the auditory system and elsewhere. Second, in females this activity may be regulated by the same hormones that regulate behavioral preferences for song. Finally, much of the evidence thought to implicate neuromodulators in song discrimination and memory suggests that they may affect incentive salience. Expanding the study of incentive salience beyond the mesolimbic reward system may reveal some new ways of thinking about its underlying neural basis. This article is part of a Special Issue entitled "Communication Sounds and the Brain: New Directions and Perspectives".
Collapse
Affiliation(s)
- Donna L Maney
- Department of Psychology, 36 Eagle Row, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
33
|
Abstract
Sex steroids modulate vertebrate sensory processing, but the impact of circulating hormone levels on forebrain function remains unclear. We tested the hypothesis that circulating sex steroids modulate single-unit responses in the avian telencephalic auditory nucleus, field L. We mimicked breeding or nonbreeding conditions by manipulating plasma 17β-estradiol levels in wild-caught female Gambel's white-crowned sparrows (Zonotrichia leucophrys gambelii). Extracellular responses of single neurons to tones and conspecific songs presented over a range of intensities revealed that estradiol selectively enhanced auditory function in cells that exhibited monotonic rate level functions to pure tones. In these cells, estradiol treatment increased spontaneous and maximum evoked firing rates, increased pure tone response strengths and sensitivity, and expanded the range of intensities over which conspecific song stimuli elicited significant responses. Estradiol did not significantly alter the sensitivity or dynamic ranges of cells that exhibited non-monotonic rate level functions. Notably, there was a robust correlation between plasma estradiol concentrations in individual birds and physiological response properties in monotonic, but not non-monotonic neurons. These findings demonstrate that functionally distinct classes of anatomically overlapping forebrain neurons are differentially regulated by sex steroid hormones in a dose-dependent manner.
Collapse
|
34
|
Apfelbeck B, Mortega K, Kiefer S, Kipper S, Vellema M, Villavicencio CP, Gahr M, Goymann W. Associated and disassociated patterns in hormones, song, behavior and brain receptor expression between life-cycle stages in male black redstarts, Phoenicurus ochruros. Gen Comp Endocrinol 2013; 184:93-102. [PMID: 23337030 DOI: 10.1016/j.ygcen.2012.11.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 10/24/2012] [Accepted: 11/22/2012] [Indexed: 12/22/2022]
Abstract
Testosterone has been suggested to be involved in the regulation of male territorial behavior. For example, seasonal peaks in testosterone typically coincide with periods of intense competition between males for territories and mating partners. However, some species also express territorial behavior outside a breeding context when testosterone levels are low and, thus, the degree to which testosterone facilitates territorial behavior in these species is not well understood. We studied territorial behavior and its neuroendocrine correlates in male black redstarts. Black redstarts defend territories in spring during the breeding period, but also in the fall outside a reproductive context when testosterone levels are low. In the present study we assessed if song output and structure remain stable across life-cycle stages. Furthermore, we assessed if brain anatomy may give insight into the role of testosterone in the regulation of territorial behavior in black redstarts. We found that males sang spontaneously at a high rate during the nonbreeding period when testosterone levels were low; however the trill-like components of spontaneously produced song contained less repetitive elements during nonbreeding than during breeding. This higher number of repetitive elements in trills did not, however, correlate with a larger song control nucleus HVC during breeding. However, males expressed more aromatase mRNA in the preoptic area - a brain nucleus important for sexual and aggressive behavior - during breeding than during nonbreeding. In combination with our previous studies on black redstarts our results suggest that territorial behavior in this species only partly depends on sex steroids: spontaneous song output, seasonal variation in trills and non-vocal territorial behavior in response to a simulated territorial intruder seem to be independent of sex steroids. However, context-dependent song during breeding may be facilitated by testosterone - potentially by conversion of testosterone to estradiol in the preoptic area.
Collapse
Affiliation(s)
- Beate Apfelbeck
- Abteilung für Verhaltensneurobiologie, Max-Planck-Institut für Ornithologie, Seewiesen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Schwartz C, Andrews MT. Circannual transitions in gene expression: lessons from seasonal adaptations. Curr Top Dev Biol 2013; 105:247-73. [PMID: 23962845 DOI: 10.1016/b978-0-12-396968-2.00009-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Circannual timing is important for the coordination of seasonal activities, particularly promoting the survival of individuals in adverse conditions through adaptive physiological and behavioral changes. This includes optimizing the survival of offspring by coordinating reproductive efforts at appropriate times. Thus, timing is very important for overall fitness. In this chapter, we provide several examples of circannually timed events, including mammalian hibernation, discussing the physiological changes that accompany these events, and some of the known genes and pathways underlying these changes. We then describe five candidate systems that are potentially involved in circannual timing. Finally, we discuss several recent advances in molecular biology and animal husbandry that have made the use of nonmodel organisms for research more feasible, which will hopefully promote and encourage further advancement in the knowledge of circannual timing.
Collapse
Affiliation(s)
- Christine Schwartz
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota, USA
| | | |
Collapse
|
36
|
Stevenson TJ, Small TW, Ball GF, Moore IT. Variation in the gonadotrophin-releasing hormone-1 and the song control system in the tropical breeding rufous-collared sparrow (Zonotrichia capensis) is dependent on sex and reproductive state. Gen Comp Endocrinol 2012; 178:1-7. [PMID: 22522049 PMCID: PMC3389232 DOI: 10.1016/j.ygcen.2012.03.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 03/07/2012] [Accepted: 03/31/2012] [Indexed: 11/18/2022]
Abstract
Seasonal breeding in temperate zone vertebrates is characterised by pronounced variation in both central and peripheral reproductive physiology as well as behaviour. In contrast, many tropical species have a comparatively longer and less of a seasonal pattern of breeding than their temperate zone counterparts. These extended, more "flexible" reproductive periods may be associate with a lesser degree of annual variation in reproductive physiology. Here we investigated variation in the neuroendocrine control of reproduction in relation to the changes in the neural song control system in a tropical breeding songbird the rufous-collared sparrows (Zonotrichia capensis). Using in situ hybridization, we show that the optical density of GnRH1 mRNA expression is relatively constant across pre-breeding and breeding states. However, males were found to have significantly greater expression compared to females regardless of breeding state. Both males and females showed marked variation in measures of peripheral reproductive physiology with greater gonadal volumes and concentrations of sex steroids in the blood (i.e. testosterone in males; estrogen in females) during the breeding season as compared to the pre-breeding season. These findings suggest that the environmental cues regulating breeding in a tropical breeding bird ultimately exert their effects on physiology at the level of the median eminence and regulate the release of GnRH1. In addition, histological analysis of the song control system HVC, RA and Area X revealed that breeding males had significantly larger volumes of these brain nuclei as compared to non-breeding males, breeding females, and non-breeding females. Females did not exhibit a significant difference in the size of song control regions across breeding states. Together, these data show a marked sex difference in the extent to which there is breeding-associated variation in reproductive physiology and brain plasticity that is dependent on the reproductive state in a tropical breeding songbird.
Collapse
Affiliation(s)
- Tyler J Stevenson
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA.
| | | | | | | |
Collapse
|
37
|
Sakata JT, Vehrencamp SL. Integrating perspectives on vocal performance and consistency. ACTA ACUST UNITED AC 2012; 215:201-9. [PMID: 22189763 DOI: 10.1242/jeb.056911] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recent experiments in divergent fields of birdsong have revealed that vocal performance is important for reproductive success and under active control by distinct neural circuits. Vocal consistency, the degree to which the spectral properties (e.g. dominant or fundamental frequency) of song elements are produced consistently from rendition to rendition, has been highlighted as a biologically important aspect of vocal performance. Here, we synthesize functional, developmental and mechanistic (neurophysiological) perspectives to generate an integrated understanding of this facet of vocal performance. Behavioral studies in the field and laboratory have found that vocal consistency is affected by social context, season and development, and, moreover, positively correlated with reproductive success. Mechanistic investigations have revealed a contribution of forebrain and basal ganglia circuits and sex steroid hormones to the control of vocal consistency. Across behavioral, developmental and mechanistic studies, a convergent theme regarding the importance of vocal practice in juvenile and adult songbirds emerges, providing a basis for linking these levels of analysis. By understanding vocal consistency at these levels, we gain an appreciation for the various dimensions of song control and plasticity and argue that genes regulating the function of basal ganglia circuits and sex steroid hormones could be sculpted by sexual selection.
Collapse
Affiliation(s)
- Jon T Sakata
- Department of Biology, McGill University, Montreal, QC, Canada, H3A 1B1.
| | | |
Collapse
|
38
|
Seasonal changes in patterns of gene expression in avian song control brain regions. PLoS One 2012; 7:e35119. [PMID: 22529977 PMCID: PMC3329558 DOI: 10.1371/journal.pone.0035119] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 03/13/2012] [Indexed: 01/23/2023] Open
Abstract
Photoperiod and hormonal cues drive dramatic seasonal changes in structure and function of the avian song control system. Little is known, however, about the patterns of gene expression associated with seasonal changes. Here we address this issue by altering the hormonal and photoperiodic conditions in seasonally-breeding Gambel's white-crowned sparrows and extracting RNA from the telencephalic song control nuclei HVC and RA across multiple time points that capture different stages of growth and regression. We chose HVC and RA because while both nuclei change in volume across seasons, the cellular mechanisms underlying these changes differ. We thus hypothesized that different genes would be expressed between HVC and RA. We tested this by using the extracted RNA to perform a cDNA microarray hybridization developed by the SoNG initiative. We then validated these results using qRT-PCR. We found that 363 genes varied by more than 1.5 fold (>log2 0.585) in expression in HVC and/or RA. Supporting our hypothesis, only 59 of these 363 genes were found to vary in both nuclei, while 132 gene expression changes were HVC specific and 172 were RA specific. We then assigned many of these genes to functional categories relevant to the different mechanisms underlying seasonal change in HVC and RA, including neurogenesis, apoptosis, cell growth, dendrite arborization and axonal growth, angiogenesis, endocrinology, growth factors, and electrophysiology. This revealed categorical differences in the kinds of genes regulated in HVC and RA. These results show that different molecular programs underlie seasonal changes in HVC and RA, and that gene expression is time specific across different reproductive conditions. Our results provide insights into the complex molecular pathways that underlie adult neural plasticity.
Collapse
|
39
|
Abstract
New neurons are added to the high vocal center (HVC) of adult males in seasonally breeding songbirds such as the canary (Serinus canaria) that learns new songs in adulthood, and the song sparrow (Melospiza melodia) that does not. In both cases, the new neurons numerically replace others that have died, resulting in a seasonal fluctuation in HVC volume and neuron number. Peaks in neuronal replacement in both species occur in the fall when breeding is over and song is variable. New neurons are added, too, to the HVC of zebra finches (Taeniopygia guttata) that do not learn new songs in adulthood and whose song remains stereotyped throughout the year. Here, we show that, in contrast to the observations in seasonal songbirds, neurons added to the zebra finch HVC are not part of a replacement process. Rather, they lead to a doubling in the number of neurons that project from HVC to the robust nucleus of the arcopallium (RA). As this happens, HVC volume remains constant and the packing density of its neurons increases. The HVC-RA neurons are part of a descending pathway that carries the pattern of learned song; some HVC-RA neurons are also responsive to song playback. The addition of HVC-RA neurons happens in zebra finches housed singly, but becomes more acute if the birds are housed communally. We speculate that new neurons added to the adult HVC may help with the production or perception of learned song, or both.
Collapse
|
40
|
Androgens and estrogens synergistically regulate the expression of doublecortin and enhance neuronal recruitment in the song system of adult female canaries. J Neurosci 2011; 31:9649-57. [PMID: 21715630 DOI: 10.1523/jneurosci.0088-11.2011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Vocal control nuclei in songbirds display seasonal changes in volume that are regulated by testosterone (T) and its androgenic (5α-dihydrotestosterone; DHT) or estrogenic (17β-estradiol; E(2)) metabolites. In male canaries, T regulates expression of the microtubule-associated protein doublecortin (DCX), a marker of neurogenesis. We examined the effect of T and its two metabolites alone or in combination on DCX expression in adult female canaries. Treatment with T or with DHT+E(2) increased HVC volume and neuron numbers as well as the total numbers of fusiform (migrating) and round (differentiating) DCX neurons in the nucleus but generally not in adjacent areas. DHT or E(2) alone did not increase these measures but increased the density of fusiform DCX cells per section. Similar results were observed in area X, although some effects did not reach significance, presumably because plasticity in X is mediated transsynaptically and follows HVC changes with some delay. There was no effect of any treatment on the total number of neurons in area X, and no change in DCX cell densities was detected in the lateral magnocellular nucleus of the anterior nidopallium, nor in other parts of the nidopallium. DHT and E(2) by themselves thus increase density of DCX cells migrating through HVC but are not sufficient in isolation to induce the recruitment of these newborn neurons in the nucleus. These effects are generally not observed in the rest of the nidopallium, implying that steroids only act on the attraction and recruitment of new neurons in HVC without having any major effects on their production at the ventricle wall.
Collapse
|
41
|
Zhang X, Zeng S, Zhang X, Zuo M. Comparative study on the song behavior and song control nuclei in male and female Mongolian larks (Melanocorypha mongolica). Behav Brain Res 2011; 222:98-105. [PMID: 21440576 DOI: 10.1016/j.bbr.2011.03.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Revised: 03/16/2011] [Accepted: 03/17/2011] [Indexed: 11/26/2022]
Abstract
Songbirds can produce a remarkable diversity of songs, which is well-characterized learned behavior that reflects the basic processes of language learning in humans. As song control nuclei governing song behavior has been identified, bird song provides an excellent model to address the relationship between brain areas and their controlling behavior. The Mongolian lark (Melanocorypha mongolica), a species of the Alaudidae family, is well known for its elaborate singing and ability to learn new songs, even in adulthood. Here, we studied the singing behavior and underlying neural structures of the Mongolian lark in both sexes. We found that the sizes of song bouts and song phrases (song repertoires) in male Mongolian larks are extremely large, and that each song repertoire or phrase has a complex structure, comprising several different syllables that seldom appear in other types of song bouts. In accordance with these complex songs, Mongolian lark song control nuclei are well developed and can be easily detected by Nissl staining. In contrast to male Mongolian larks, females were not observed to sing. However, they possess significant song control nuclei with abundant neural connectivity within them despite their small sizes compared with males. These data provide new evidence that help further clarify the mechanisms by which songbirds sing. Our results also have implications for the evolution of complex birdsongs and song control nuclei in oscine birds.
Collapse
Affiliation(s)
- Xuebo Zhang
- Key Laboratory for Cell Proliferation and Regulation Biology, Ministry of Education, Beijing Normal University, Beijing, China
| | | | | | | |
Collapse
|
42
|
Stevenson TJ, Ball GF. Photoperiodic differences in a forebrain nucleus involved in vocal plasticity: enkephalin immunoreactivity reveals volumetric variation in song nucleus lMAN but not NIf in male European starlings (Sturnus vulgaris). Dev Neurobiol 2010; 70:751-63. [PMID: 20556824 DOI: 10.1002/dneu.20808] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Seasonal variation in the volume of various song control nuclei in many passerine species remains one of the best examples of naturally occurring adult neuroplasticity among vertebrates. The lateral portion of the magnocellular nucleus of the anterior nidopallium (lMAN) is a song nucleus that is important for song learning and seems to be critical for inducing variability in the song structure that is later pruned via a feedback process to produce adult crystallized song. To date, lMAN has not been shown to exhibit seasonal changes in volume, probably because it is difficult to resolve the boundaries of lMAN when employing histological methods based on Nissl staining. Here, lMAN(core) volumes were examined in intact photostimulated (i.e., breeding), castrated photostimulated and photorefractory (i.e., nonbreeding) male starlings (Sturnus vulgaris) to investigate the degree of seasonal variation in brain morphology. We present data demonstrating that the volumes of the total MAN and lMAN(core) delineated by enkephalin immunoreactivity are greater in photostimulated male starlings as compared to photorefractory males. Moreover, two other regions associated with the song system that have not been investigated previously in the context of seasonal plasticity namely (i) the medial portion of MAN (mMAN), and (ii) the nucleus interfacialis (NIf) did not display significant volumetric variation. We propose that greater lMAN(core) volumes are associated with the increase in vocal plasticity that is generally observed prior to production of stereotyped song.
Collapse
Affiliation(s)
- Tyler J Stevenson
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland 21218, USA.
| | | |
Collapse
|
43
|
De Groof G, Van der Linden A. Love songs, bird brains and diffusion tensor imaging. NMR IN BIOMEDICINE 2010; 23:873-883. [PMID: 20669169 DOI: 10.1002/nbm.1551] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The song control system of songbirds displays a remarkable seasonal neuroplasticity in species in which song output also changes seasonally. Thus far, this song control system has been extensively analyzed by histological and electrophysiological methods. However, these approaches do not provide a global view of the brain and/or do not allow repeated measurements, which are necessary to establish causal correlations between alterations in neural substrate and behavior. Research has primarily been focused on the song nuclei themselves, largely neglecting their interconnections and other brain regions involved in seasonally changing behavior. In this review, we introduce and explore the song control system of songbirds as a natural model for brain plasticity. At the same time, we point out the added value of the songbird brain model for in vivo diffusion tensor techniques and its derivatives. A compilation of the diffusion tensor imaging (DTI) data obtained thus far in this system demonstrates the usefulness of this in vivo method for studying brain plasticity. In particular, it is shown to be a perfect tool for long-term studies of morphological and cellular changes of specific brain circuits in different endocrine/photoperiod conditions. The method has been successfully applied to obtain quantitative measurements of seasonal changes of fiber tracts and nuclei from the song control system. In addition, outside the song control system, changes have been discerned in the optic chiasm and in an interhemispheric connection. DTI allows the detection of seasonal changes in a region analogous to the mammalian secondary auditory cortex and in regions of the 'social behavior network', an interconnected group of structures that controls multiple social behaviors, including aggression and courtship. DTI allows the demonstration, for the first time, that the songbird brain in its entirety exhibits an extreme seasonal plasticity which is not merely limited to the song control system as was generally believed.
Collapse
Affiliation(s)
- Geert De Groof
- Bio-Imaging Laboratory, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | | |
Collapse
|
44
|
Peripheral auditory processing changes seasonally in Gambel's white-crowned sparrow. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2010; 196:581-99. [PMID: 20563817 DOI: 10.1007/s00359-010-0545-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2010] [Revised: 05/30/2010] [Accepted: 05/30/2010] [Indexed: 01/19/2023]
Abstract
Song in oscine birds is a learned behavior that plays important roles in breeding. Pronounced seasonal differences in song behavior and in the morphology and physiology of the neural circuit underlying song production are well documented in many songbird species. Androgenic and estrogenic hormones largely mediate these seasonal changes. Although much work has focused on the hormonal mechanisms underlying seasonal plasticity in songbird vocal production, relatively less work has investigated seasonal and hormonal effects on songbird auditory processing, particularly at a peripheral level. We addressed this issue in Gambel's white-crowned sparrow (Zonotrichia leucophrys gambelii), a highly seasonal breeder. Photoperiod and hormone levels were manipulated in the laboratory to simulate natural breeding and non-breeding conditions. Peripheral auditory function was assessed by measuring the auditory brainstem response (ABR) and distortion product otoacoustic emissions (DPOAEs) of males and females in both conditions. Birds exposed to breeding-like conditions demonstrated elevated thresholds and prolonged peak latencies when compared with birds housed under non-breeding-like conditions. There were no changes in DPOAEs, however, which indicates that the seasonal differences in ABRs do not arise from changes in hair cell function. These results suggest that seasons and hormones impact auditory processing as well as vocal production in wild songbirds.
Collapse
|
45
|
Wang R, Sun Y, Zhang X, Zeng S, Xie W, Yu Y, Zhang X, Zuo M. Song control nuclei in male and female large-billed crows (Corvus macrorhynchos). Zoolog Sci 2010; 26:771-7. [PMID: 19877837 DOI: 10.2108/zsj.26.771] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We show that the learned vocalizations of male and female large-billed crows (Corvus macrorhynchos) are similar and that their functions and physical features show significant differences from those of other oscine species. We investigate whether the song control nuclei of crows show any sexual differences in size, reflecting differences in their singing behavior, and whether these nuclei are different from those of other songbirds in terms of neural connectivity size and relative to the forebrain. Our Nissl staining results reveal that 1) of the four song nuclei examined (HVC; the robust nucleus of the arcopallium [RA]; Area X; and the dorsolateral medial nucleus [DLM]), HVC, RA, and Area X volumes are significantly larger in males than in females, but DLM volume and body and brain weights show no significant gender differences; and 2) the sizes of song nuclei relative to the forebrain are within the range of other oscines. By injecting a neural tract tracer (DiI) into various song nuclei in brain slices, we found that, as in other songbirds, HVC projects to RA and Area X, while Area X projects to the lateral magnocellular nucleus of the anterior nidopallium (IMAN) and DLM, DLM to IMAN, and IMAN to RA. Our results Indicate that, although the crow has songs very different from those of other oscine species, Its song nuclei and the connections between them are not obviously different.
Collapse
Affiliation(s)
- Rui Wang
- Beijing Key Lab of Gene Engineering Drugs & Biological Technology, Beijing Normal University, Beijing 100875, China
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Fraley GS, Steiner RA, Lent KL, Brenowitz EA. Seasonal changes in androgen receptor mRNA in the brain of the white-crowned sparrow. Gen Comp Endocrinol 2010; 166:66-71. [PMID: 19686750 PMCID: PMC2824064 DOI: 10.1016/j.ygcen.2009.08.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 07/30/2009] [Accepted: 08/11/2009] [Indexed: 11/23/2022]
Abstract
In songbirds, neurons that regulate learned song behavior undergo extensive seasonal plasticity in their number and size in relation to the bird's reproductive status. Seasonal plasticity of these brain regions is primarily regulated by changes in circulating concentrations of testosterone. Androgen receptors are present in all of the major song nuclei, but it is unknown whether levels of androgen receptor mRNA in the telencephalic song regions HVC, the robust nucleus of the arcopallium, and the lateral magnocellular nucleus of the anterior nidopallium change as a function of season in white-crowned sparrows. To determine whether seasonal changes in levels of androgen receptor mRNA are specific to the song control system, we also measured levels of androgen receptor mRNA in a limbic nucleus, the lateral division of the bed nucleus of the stria terminalis (the lateral division of the bed nucleus of the stria terminalis). We found that levels of androgen receptor mRNA were higher in HVC and the lateral division of the bed nucleus of the stria terminalis of birds in the breeding condition compared with the nonbreeding condition; however, we observed no seasonal differences in levels of androgen receptor mRNA in either the robust nucleus of the arcopallium or the lateral magnocellular nucleus of the anterior nidopallium. These results are consistent with previous observations that seasonal plasticity of the song nuclei results from testosterone acting directly on HVC, which then exerts transsynaptic trophic effects on its efferent targets. The seasonal change in the expression of androgen receptor in HVC may be one component of the cellular mechanisms underlying androgenic effects on seasonal plasticity of the song control nuclei.
Collapse
Affiliation(s)
- Gregory S Fraley
- Department of Biology & Neuroscience Program, Hope College, Holland, MI 49423, USA
| | | | | | | |
Collapse
|
47
|
Chalivoix S, Bagnolini A, Caraty A, Cognié J, Malpaux B, Dufourny L. Effects of photoperiod on kisspeptin neuronal populations of the ewe diencephalon in connection with reproductive function. J Neuroendocrinol 2010; 22:110-8. [PMID: 20002963 DOI: 10.1111/j.1365-2826.2009.01939.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Kisspeptin (Kiss) is a key regulator of reproductive function in both prepubertal and adult mammals. Its expression appears to vary throughout the year in seasonal species. We aimed to determine the impact of a change of photoperiod on the size of Kiss neuronal populations found in the preoptic area (POA) and arcuate nucleus (ARC) of the ewe brain. Using immunocytochemistry, we first examined the proportion of neurones expressing Kiss, using HuC/D as a neuronal marker, at different time-points after transition from long days (LD; 16 : 8 h light/dark cycle) to short days (SD; 8 : 16 h light/dark cycle). Luteinising hormone (LH) secretion was measured in ovariectomised oestradiol replaced ewes from the month preceding the transition to SD until the sacrifice of the animals at days 0, 45 and 112 from this photoperiodic transition. High LH levels were only observed in animals killed at day 112. The number of Kiss neurones/mm(2) doubled in the caudal ARC at day 112. The percentage of neurones showing Kiss immunoreactivity increased significantly in both the POA and ARC in the day 112 group. In a second experiment, ewes kept in LD received an i.c.v. injection of colchicine 20 h before sacrifice. Colchicine treatment increased the number and the percentage of neurones with Kiss in both the POA and caudal ARC. The data obtained suggest that the increase in Kiss neurones detected in the POA and caudal ARC after transition to SD stemmed from an increase in Kiss synthesis. This up-regulation of Kiss content under the shorter day condition appears to be a late event within the cascade activated by a longer secretion of melatonin, which is a critical factor in switching gonadotrophin-releasing hormone secretion to a breeding season profile.
Collapse
Affiliation(s)
- S Chalivoix
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | | | | | | | | | | |
Collapse
|
48
|
Ball GF, Balthazart J. Seasonal and hormonal modulation of neurotransmitter systems in the song control circuit. J Chem Neuroanat 2009; 39:82-95. [PMID: 19712741 DOI: 10.1016/j.jchemneu.2009.08.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 08/18/2009] [Accepted: 08/19/2009] [Indexed: 12/12/2022]
Abstract
In the years following the discovery of the song system, it was realized that this specialized circuit controlling learned vocalizations in songbirds (a) constitutes a specific target for sex steroid hormone action and expresses androgen and (for some nuclei) estrogen receptors, (b) exhibits a chemical neuroanatomical pattern consisting in a differential expression of various neuropeptides and neurotransmitters receptors as compared to surrounding structures and (c) shows pronounced seasonal variations in volume and physiology based, at least in the case of HVC, on a seasonal change in neuron recruitment and survival. During the past 30 years numerous studies have investigated how seasonal changes, transduced largely but not exclusively through changes in sex steroid concentrations, affect singing frequency and quality by modulating the structure and activity of the song control circuit. These studies showed that testosterone or its metabolite estradiol, control seasonal variation in singing quality by a direct action on song control nuclei. These studies also gave rise to the hypothesis that the probability of song production in response to a given stimulus (i.e. its motivation) is controlled through effects on the medial preoptic area and on catecholaminergic cell groups that project to song control nuclei. Selective pharmacological manipulations confirmed that the noradrenergic system indeed plays a role in the control of singing behavior. More experimental work is, however, needed to identify specific genes related to neurotransmission that are regulated by steroids in functionally defined brain areas to enhance different aspects of song behavior.
Collapse
Affiliation(s)
- Gregory F Ball
- Department of Psychological and Brain Sciences, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA.
| | | |
Collapse
|
49
|
London SE, Remage-Healey L, Schlinger BA. Neurosteroid production in the songbird brain: a re-evaluation of core principles. Front Neuroendocrinol 2009; 30:302-14. [PMID: 19442685 PMCID: PMC2724309 DOI: 10.1016/j.yfrne.2009.05.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 05/01/2009] [Accepted: 05/04/2009] [Indexed: 11/17/2022]
Abstract
Concepts of brain-steroid signaling have traditionally placed emphasis on the gonads and adrenals as the source of steroids, the strict dichotomy of early developmental ("organizational") and mature ("activational") effects, and a relatively slow mechanism of signaling through intranuclear receptors. Continuing research shows that these concepts are not inaccurate, but they are certainly incomplete. In this review, we focus on the song control circuit of songbird species to demonstrate how each of these concepts is limited. We discuss the solid evidence for steroid synthesis within the brain ("neurosteroidogenesis"), the role of neurosteroids in organizational events that occur both early in development and later in life, and how neurosteroids can act in acute and non-traditional ways. The songbird model therefore illustrates how neurosteroids can dramatically increase the diversity of steroid-sensitive brain functions in a behaviorally-relevant system. We hope this inspires further research and thought into neurosteroid signaling in songbirds and other animals.
Collapse
Affiliation(s)
- Sarah E. London
- Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801
| | - Luke Remage-Healey
- Department of Physiological Science &, Ecology and Evolutionary Biology, Brain Research Institute, University of California, Los Angeles, Los Angeles, California 90095
| | - Barney A. Schlinger
- Department of Physiological Science &, Ecology and Evolutionary Biology, Brain Research Institute, University of California, Los Angeles, Los Angeles, California 90095
| |
Collapse
|
50
|
Abstract
The avian song control system undergoes pronounced seasonal plasticity in response to photoperiod and hormonal cues. The action of testosterone (T) and its metabolites in the song nucleus HVC is both necessary and sufficient to promote breeding season-like growth of its efferent nuclei RA (robust nucleus of the arcopallium) and Area X, suggesting that HVC may release a trophic factor such as brain-derived neurotrophic factor (BDNF) into RA and X. BDNF is involved in many forms of adult neural plasticity in other systems and is present in the avian song system. We used a combination of in situ hybridization and intracerebral infusions to test whether BDNF plays a role in the seasonal-like growth of the song system in adult male white-crowned sparrows. BDNF mRNA levels increased in HVC in response to breeding conditions, and BDNF infusion into RA was sufficient to promote breeding-like changes in somatic area and neuronal density. Expression of the mRNA for the Trk B receptor of BDNF, however, did not vary with seasonal conditions in either HVC or RA. Local blockade of BDNF activity in RA via infusion of Trk-Fc fusion proteins inhibited the response to breeding conditions. Our results indicate that BDNF is sufficient to promote the seasonal plasticity in somatic area and cell density in RA, although NT-3 may also contribute to this process, and suggest that HVC may be a presynaptic source of increased levels of BDNF in RA of breeding-condition birds.
Collapse
|