1
|
Markussen LK, Mandrup S. Adipocyte gene expression in obesity - insights gained and challenges ahead. Curr Opin Genet Dev 2023; 81:102060. [PMID: 37331148 DOI: 10.1016/j.gde.2023.102060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 06/20/2023]
Abstract
White adipocytes possess extraordinary plasticity with an unparalleled capacity to expand in size with nutritional overload. Several lines of evidence indicate that limitations to this plasticity, as found in both lipodystrophy and obesity, drive several of the comorbidities of these disease, thereby underscoring the need to understand the mechanisms of healthy and unhealthy adipose expansion. Recent single-cell technologies and studies of isolated adipocytes have allowed researchers to gain insight into the molecular mechanisms of adipocyte plasticity. Here, we review current insight into the effect of nutritional overload on white adipocyte gene expression and function. We review the role of adipocyte size and heterogeneity and discuss the challenges and future directions.
Collapse
Affiliation(s)
- Lasse K Markussen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark; Center for Adipocyte Signaling (ADIPOSIGN), Odense, Denmark; Center for Functional Genomics and Tissue Plasticity (ATLAS), Odense, Denmark. https://twitter.com/@ATLAS_SDU
| | - Susanne Mandrup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark; Center for Adipocyte Signaling (ADIPOSIGN), Odense, Denmark; Center for Functional Genomics and Tissue Plasticity (ATLAS), Odense, Denmark.
| |
Collapse
|
2
|
Whytock KL, Sun Y, Divoux A, Yu G, Smith SR, Walsh MJ, Sparks LM. Single cell full-length transcriptome of human subcutaneous adipose tissue reveals unique and heterogeneous cell populations. iScience 2022; 25:104772. [PMID: 35992069 PMCID: PMC9385549 DOI: 10.1016/j.isci.2022.104772] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/13/2022] [Accepted: 07/12/2022] [Indexed: 11/30/2022] Open
Abstract
White adipose tissue (WAT) is a complex mixture of adipocytes and non-adipogenic cells. Characterizing the cellular composition of WAT is critical for identifying where potential alterations occur that impact metabolism. Most single-cell (sc) RNA-Seq studies focused on the stromal vascular fraction (SVF) which does not contain adipocytes and have used technology that has a 3' or 5' bias. Using full-length sc/single-nuclei (sn) RNA-Seq technology, we interrogated the transcriptional composition of WAT using: snRNA-Seq of whole tissue, snRNA-Seq of isolated adipocytes, and scRNA-Seq of SVF. Whole WAT snRNA-Seq provided coverage of major cell types, identified three distinct adipocyte clusters, and was capable of tracking adipocyte differentiation with pseudotime. Compared to WAT, adipocyte snRNA-Seq was unable to match adipocyte heterogeneity. SVF scRNA-Seq provided greater resolution of non-adipogenic cells. These findings provide critical evidence for the utility of sc full-length transcriptomics in WAT and SVF in humans.
Collapse
Affiliation(s)
- Katie L. Whytock
- Translational Research Institute, AdventHealth, 301 E Princeton St, Orlando, FL 32804, USA
| | - Yifei Sun
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adeline Divoux
- Translational Research Institute, AdventHealth, 301 E Princeton St, Orlando, FL 32804, USA
| | - GongXin Yu
- Translational Research Institute, AdventHealth, 301 E Princeton St, Orlando, FL 32804, USA
| | - Steven R. Smith
- Translational Research Institute, AdventHealth, 301 E Princeton St, Orlando, FL 32804, USA
| | - Martin J. Walsh
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lauren M. Sparks
- Translational Research Institute, AdventHealth, 301 E Princeton St, Orlando, FL 32804, USA
| |
Collapse
|
3
|
Hinds TD, Kipp ZA, Xu M, Yiannikouris FB, Morris AJ, Stec DF, Wahli W, Stec DE. Adipose-Specific PPARα Knockout Mice Have Increased Lipogenesis by PASK-SREBP1 Signaling and a Polarity Shift to Inflammatory Macrophages in White Adipose Tissue. Cells 2021; 11:4. [PMID: 35011564 PMCID: PMC8750478 DOI: 10.3390/cells11010004] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/16/2022] Open
Abstract
The nuclear receptor PPARα is associated with reducing adiposity, especially in the liver, where it transactivates genes for β-oxidation. Contrarily, the function of PPARα in extrahepatic tissues is less known. Therefore, we established the first adipose-specific PPARα knockout (PparaFatKO) mice to determine the signaling position of PPARα in adipose tissue expansion that occurs during the development of obesity. To assess the function of PPARα in adiposity, female and male mice were placed on a high-fat diet (HFD) or normal chow for 30 weeks. Only the male PparaFatKO animals had significantly more adiposity in the inguinal white adipose tissue (iWAT) and brown adipose tissue (BAT) with HFD, compared to control littermates. No changes in adiposity were observed in female mice compared to control littermates. In the males, the loss of PPARα signaling in adipocytes caused significantly higher cholesterol esters, activation of the transcription factor sterol regulatory element-binding protein-1 (SREBP-1), and a shift in macrophage polarity from M2 to M1 macrophages. We found that the loss of adipocyte PPARα caused significantly higher expression of the Per-Arnt-Sim kinase (PASK), a kinase that activates SREBP-1. The hyperactivity of the PASK-SREBP-1 axis significantly increased the lipogenesis proteins fatty acid synthase (FAS) and stearoyl-Coenzyme A desaturase 1 (SCD1) and raised the expression of genes for cholesterol metabolism (Scarb1, Abcg1, and Abca1). The loss of adipocyte PPARα increased Nos2 in the males, an M1 macrophage marker indicating that the population of macrophages had changed to proinflammatory. Our results demonstrate the first adipose-specific actions for PPARα in protecting against lipogenesis, inflammation, and cholesterol ester accumulation that leads to adipocyte tissue expansion in obesity.
Collapse
Affiliation(s)
- Terry D. Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40508, USA; (Z.A.K.); (M.X.); (F.B.Y.)
- Barnstable Brown Diabetes Center, University of Kentucky, Lexington, KY 40508, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40508, USA
| | - Zachary A. Kipp
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40508, USA; (Z.A.K.); (M.X.); (F.B.Y.)
| | - Mei Xu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40508, USA; (Z.A.K.); (M.X.); (F.B.Y.)
| | - Frederique B. Yiannikouris
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40508, USA; (Z.A.K.); (M.X.); (F.B.Y.)
- Barnstable Brown Diabetes Center, University of Kentucky, Lexington, KY 40508, USA
| | - Andrew J. Morris
- Division of Cardiovascular Medicine, College of Medicine, University of Kentucky, Lexington, KY 40508, USA;
- Lexington Veterans Affairs Medical Center, Lexington, KY 40508, USA
| | - Donald F. Stec
- Small Molecule NMR Facility Core, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, USA;
| | - Walter Wahli
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, Singapore 308232, Singapore;
- Toxalim Research Center in Food Toxicology (UMR 1331), INRAE, ENVT, INP—PURPAN, UPS, Université de Toulouse, F-31300 Toulouse, France
- Center for Integrative Genomics, Université de Lausanne, Le Génopode, CH-1015 Lausanne, Switzerland
| | - David E. Stec
- Department of Physiology & Biophysics, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
4
|
Yang PK, Chou CH, Huang CC, Wen WF, Chen HF, Shun CT, Ho HN, Chen MJ. Obesity alters ovarian folliculogenesis through disrupted angiogenesis from increased IL-10 production. Mol Metab 2021; 49:101189. [PMID: 33592337 PMCID: PMC7933796 DOI: 10.1016/j.molmet.2021.101189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/02/2021] [Accepted: 02/09/2021] [Indexed: 12/28/2022] Open
Abstract
Objective Obesity has been reported to have a modulatory effect on the ovulatory functions of patients with polycystic ovary syndrome. The role of adipokines in this obesity-associated ovulatory disturbance has not been extensively explored. In this study, the relationships between obesity, adipokine production from visceral fat, and ovarian folliculogenesis were explored in a mice model of induced obesity. Methods Obesity was induced in female C57BL/6 mice fed ad libitum with high-fat feed and fructose water for 4 weeks. Follicular developments in the ovaries were assessed by histopathology in these diet-induced obese mice. Changes in adipokine expression in the peri-ovarian adipose tissues were screened with an adipokine array. The adipokine with the most significant increase over time was identified. The functions of the adipokine in angiogenic processes were evaluated in a cell model of endothelial proliferation. The in vivo effects of neutralizing this adipokine using specific antibodies were assessed in the same obesity model. Results A high-fat and fructose diet induced an accumulation of early ovarian follicles and a reduction in mature follicles and corpus lutea. The number of microvessels in the early follicles also decreased. The adipokine protein array of the peri-ovarian adipose tissues identified a progressive increase in IL-10 expression with the duration of the obesogenic diet. In vitro experiments in the endothelial cell model confirmed IL-10 as a disrupter of VEGF-induced angiogenesis. Administration of anti-IL-10 antibodies prevented the histopathological changes induced by the obesogenic diet and further highlighted the role of IL-10 in disrupting folliculogenesis. Conclusions Obesity may disrupt normal folliculogenesis through increased production of IL-10 in visceral fats. This relationship may help clarify the reported association between obesity and ovulatory dysfunction, which has been found in patients with polycystic ovary syndrome. However, the duration of this study was short, which limited conclusions on the long-term reproductive outcomes. Obesity increases IL-10 expression in visceral adipose. IL-10 disrupts VEGF-induced angiogenesis in an endothelial cell model. Disrupted angiogenesis is associated with disturbed folliculogenesis. Anti-IL-10 antibody prevents the altered folliculogenesis induced by obesity. Abnormal production of IL-10 may be a cause of dysovulation in obese individuals.
Collapse
Affiliation(s)
- Po-Kai Yang
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chia-Hung Chou
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chu-Chun Huang
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Wen-Fen Wen
- Department of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-Fu Chen
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Tung Shun
- Department of Forensic Medicine and Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hong-Nerng Ho
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan; College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Mei-Jou Chen
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan; Livia Shang Yu Wan Chair Professor of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
5
|
Abstract
Adipose tissue depots in distinct anatomical locations mediate key aspects of metabolism, including energy storage, nutrient release, and thermogenesis. Although adipocytes make up more than 90% of adipose tissue volume, they represent less than 50% of its cellular content. Here, I review recent advances in genetic lineage tracing and transcriptomics that reveal the identities of the heterogeneous cell populations constituting mouse and human adipose tissues. In addition to mature adipocytes and their progenitors, these include endothelial and various immune cell types that together orchestrate adipose tissue development and functions. One salient finding is the identification of progenitor subtypes that can modulate adipogenic capacity through paracrine mechanisms. Another is the description of fate trajectories of monocyte/macrophages, which can respond maladaptively to nutritional and thermogenic stimuli, leading to metabolic disease. These studies have generated an extraordinary source of publicly available data that can be leveraged to explore commonalities and differences among experimental models, providing new insights into adipose tissues and their role in metabolic disease.
Collapse
Affiliation(s)
- Silvia Corvera
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA;
| |
Collapse
|
6
|
Roh HC, Kumari M, Taleb S, Tenen D, Jacobs C, Lyubetskaya A, Tsai LTY, Rosen ED. Adipocytes fail to maintain cellular identity during obesity due to reduced PPARγ activity and elevated TGFβ-SMAD signaling. Mol Metab 2020; 42:101086. [PMID: 32992037 PMCID: PMC7559520 DOI: 10.1016/j.molmet.2020.101086] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/09/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022] Open
Abstract
Objective Obesity due to overnutrition causes adipose tissue dysfunction, which is a critical pathological step on the road to type 2 diabetes (T2D) and other metabolic disorders. In this study, we conducted an unbiased investigation into the fundamental molecular mechanisms by which adipocytes transition to an unhealthy state during obesity. Methods We used nuclear tagging and translating ribosome affinity purification (NuTRAP) reporter mice crossed with Adipoq-Cre mice to determine adipocyte-specific 1) transcriptional profiles (RNA-seq), 2) promoter and enhancer activity (H3K27ac ChIP-seq), 3) and PPARγ cistrome (ChIP-seq) profiles in mice fed chow or a high-fat diet (HFD) for 10 weeks. We also assessed the impact of the PPARγ agonist rosiglitazone (Rosi) on gene expression and cellular state of adipocytes from the HFD-fed mice. We integrated these data to determine the transcription factors underlying adipocyte responses to HFD and conducted functional studies using shRNA-mediated loss-of-function approaches in 3T3-L1 adipocytes. Results Adipocytes from the HFD-fed mice exhibited reduced expression of adipocyte markers and metabolic genes and enhanced expression of myofibroblast marker genes involved in cytoskeletal organization, accompanied by the formation of actin filament structures within the cell. PPARγ binding was globally reduced in adipocytes after HFD feeding, and Rosi restored the molecular and cellular phenotypes of adipocytes associated with HFD feeding. We identified the TGFβ1 effector protein SMAD to be enriched at HFD-induced promoters and enhancers and associated with myofibroblast signature genes. TGFβ1 treatment of mature 3T3-L1 adipocytes induced gene expression and cellular changes similar to those seen after HFD in vivo, and knockdown of Smad3 blunted the effects of TGFβ1. Conclusions Our data demonstrate that adipocytes fail to maintain cellular identity after HFD feeding, acquiring characteristics of a myofibroblast-like cell type through reduced PPARγ activity and elevated TGFβ-SMAD signaling. This cellular identity crisis may be a fundamental mechanism that drives functional decline of adipose tissues during obesity. Adipocytes after HFD intake exhibit defects in cellular identity maintenance. Adipocytes develop actin filament networks in obesity. Altered PPARγ activity mediates defective adipocyte identity phenotypes. TGFβ-SMAD pathways promote HFD-induced aberrant phenotype of adipocytes.
Collapse
Affiliation(s)
- Hyun Cheol Roh
- Division of Endocrinology, Diabetes and Obesity, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA; Broad Institute, Cambridge, MA, 02142, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Manju Kumari
- Division of Endocrinology, Diabetes and Obesity, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Solaema Taleb
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Danielle Tenen
- Division of Endocrinology, Diabetes and Obesity, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA; Broad Institute, Cambridge, MA, 02142, USA
| | - Christopher Jacobs
- Division of Endocrinology, Diabetes and Obesity, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA; Broad Institute, Cambridge, MA, 02142, USA
| | - Anna Lyubetskaya
- Division of Endocrinology, Diabetes and Obesity, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA; Broad Institute, Cambridge, MA, 02142, USA
| | - Linus T-Y Tsai
- Division of Endocrinology, Diabetes and Obesity, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA; Broad Institute, Cambridge, MA, 02142, USA
| | - Evan D Rosen
- Division of Endocrinology, Diabetes and Obesity, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA; Broad Institute, Cambridge, MA, 02142, USA.
| |
Collapse
|
7
|
Gordon DM, Neifer KL, Hamoud ARA, Hawk CF, Nestor-Kalinoski AL, Miruzzi SA, Morran MP, Adeosun SO, Sarver JG, Erhardt PW, McCullumsmith RE, Stec DE, Hinds TD. Bilirubin remodels murine white adipose tissue by reshaping mitochondrial activity and the coregulator profile of peroxisome proliferator-activated receptor α. J Biol Chem 2020; 295:9804-9822. [PMID: 32404366 DOI: 10.1074/jbc.ra120.013700] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/11/2020] [Indexed: 12/18/2022] Open
Abstract
Activation of lipid-burning pathways in the fat-storing white adipose tissue (WAT) is a promising strategy to improve metabolic health and reduce obesity, insulin resistance, and type II diabetes. For unknown reasons, bilirubin levels are negatively associated with obesity and diabetes. Here, using mice and an array of approaches, including MRI to assess body composition, biochemical assays to measure bilirubin and fatty acids, MitoTracker-based mitochondrial analysis, immunofluorescence, and high-throughput coregulator analysis, we show that bilirubin functions as a molecular switch for the nuclear receptor transcription factor peroxisome proliferator-activated receptor α (PPARα). Bilirubin exerted its effects by recruiting and dissociating specific coregulators in WAT, driving the expression of PPARα target genes such as uncoupling protein 1 (Ucp1) and adrenoreceptor β 3 (Adrb3). We also found that bilirubin is a selective ligand for PPARα and does not affect the activities of the related proteins PPARγ and PPARδ. We further found that diet-induced obese mice with mild hyperbilirubinemia have reduced WAT size and an increased number of mitochondria, associated with a restructuring of PPARα-binding coregulators. We conclude that bilirubin strongly affects organismal body weight by reshaping the PPARα coregulator profile, remodeling WAT to improve metabolic function, and reducing fat accumulation.
Collapse
Affiliation(s)
- Darren M Gordon
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA.,Center for Diabetes and Endocrine Research (CeDER), University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Kari L Neifer
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Abdul-Rizaq Ali Hamoud
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Charles F Hawk
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Andrea L Nestor-Kalinoski
- Advanced Microscopy and Imaging Center, Department of Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Scott A Miruzzi
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Michael P Morran
- Advanced Microscopy and Imaging Center, Department of Surgery, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Samuel O Adeosun
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Jeffrey G Sarver
- Center for Drug Design and Development (CD3), Department of Pharmacology and Experimental Therapeutics, University of Toledo College of Pharmacy and Pharmaceutical Sciences, Toledo, Ohio, USA
| | - Paul W Erhardt
- Center for Drug Design and Development (CD3), Department of Medicinal and Biological Chemistry, University of Toledo College of Pharmacy and Pharmaceutical Sciences, Toledo, Ohio, USA
| | - Robert E McCullumsmith
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA.,ProMedica, Toledo, Ohio, USA
| | - David E Stec
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Terry D Hinds
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA .,Center for Diabetes and Endocrine Research (CeDER), University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| |
Collapse
|
8
|
Biliverdin Reductase A (BVRA) Knockout in Adipocytes Induces Hypertrophy and Reduces Mitochondria in White Fat of Obese Mice. Biomolecules 2020; 10:biom10030387. [PMID: 32131495 PMCID: PMC7175174 DOI: 10.3390/biom10030387] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 12/15/2022] Open
Abstract
Biliverdin reductase (BVR) is an enzymatic and signaling protein that has multifaceted roles in physiological systems. Despite the wealth of knowledge about BVR, no data exist regarding its actions in adipocytes. Here, we generated an adipose-specific deletion of biliverdin reductase-A (BVRA) (BlvraFatKO) in mice to determine the function of BVRA in adipocytes and how it may impact adipose tissue expansion. The BlvraFatKO and littermate control (BlvraFlox) mice were placed on a high-fat diet (HFD) for 12 weeks. Body weights were measured weekly and body composition, fasting blood glucose and insulin levels were quantitated at the end of the 12 weeks. The data showed that the percent body fat and body weights did not differ between the groups; however, BlvraFatKO mice had significantly higher visceral fat as compared to the BlvraFlox. The loss of adipocyte BVRA decreased the mitochondrial number in white adipose tissue (WAT), and increased inflammation and adipocyte size, but this was not observed in brown adipose tissue (BAT). There were genes significantly reduced in WAT that induce the browning effect such as Ppara and Adrb3, indicating that BVRA improves mitochondria function and beige-type white adipocytes. The BlvraFatKO mice also had significantly higher fasting blood glucose levels and no changes in plasma insulin levels, which is indicative of decreased insulin signaling in WAT, as evidenced by reduced levels of phosphorylated AKT (pAKT) and Glut4 mRNA. These results demonstrate the essential role of BVRA in WAT in insulin signaling and adipocyte hypertrophy.
Collapse
|
9
|
Wang S, Ahmadi S, Nagpal R, Jain S, Mishra SP, Kavanagh K, Zhu X, Wang Z, McClain DA, Kritchevsky SB, Kitzman DW, Yadav H. Lipoteichoic acid from the cell wall of a heat killed Lactobacillus paracasei D3-5 ameliorates aging-related leaky gut, inflammation and improves physical and cognitive functions: from C. elegans to mice. GeroScience 2020; 42:333-352. [PMID: 31814084 PMCID: PMC7031475 DOI: 10.1007/s11357-019-00137-4] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/12/2019] [Indexed: 12/22/2022] Open
Abstract
Increased inflammation associated with leaky gut is a major risk factor for morbidity and mortality in older adults; however, successful preventive and therapeutic strategies against these conditions are not available. In this study, we demonstrate that a human-origin Lactobacillus paracasei D3-5 strain (D3-5), even in the non-viable form, extends life span of Caenorhabditis elegans. In addition, feeding of heat-killed D3-5 to old mice (> 79 weeks) prevents high- fat diet-induced metabolic dysfunctions, decreases leaky gut and inflammation, and improves physical and cognitive functions. D3-5 feeding significantly increases mucin production, and proportionately, the abundance of mucin-degrading bacteria Akkermansia muciniphila also increases. Mechanistically, we show that the lipoteichoic acid (LTA), a cell wall component of D3-5, enhances mucin (Muc2) expression by modulating TLR-2/p38-MAPK/NF-kB pathway, which in turn reduces age-related leaky gut and inflammation. The findings indicate that the D3-5 and its LTA can prevent/treat age-related leaky gut and inflammation.
Collapse
Affiliation(s)
- Shaohua Wang
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Shokouh Ahmadi
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Ravinder Nagpal
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Shalini Jain
- Department of Endocrinology and Metabolism, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Mouse Metabolic Phenotyping Core, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Sidharth P Mishra
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Kylie Kavanagh
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Pathology-Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Biomedical Sciences, University of Tasmania, Hobart, Australia
| | - Xuewei Zhu
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Zhan Wang
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Donald A McClain
- Department of Endocrinology and Metabolism, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Mouse Metabolic Phenotyping Core, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Stephen B Kritchevsky
- Department of Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Dalane W Kitzman
- Department of Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Cardiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Hariom Yadav
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
10
|
Liu B, Page AJ, Hatzinikolas G, Chen M, Wittert GA, Heilbronn LK. Intermittent Fasting Improves Glucose Tolerance and Promotes Adipose Tissue Remodeling in Male Mice Fed a High-Fat Diet. Endocrinology 2019; 160:169-180. [PMID: 30476012 DOI: 10.1210/en.2018-00701] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/15/2018] [Indexed: 02/06/2023]
Abstract
Obesity is associated with increased macrophage and extracellular matrix accumulation in adipose tissue, which can be partially reversed following weight loss by daily caloric restriction. This study examined the effects of 8 weeks of intermittent fasting (IF; 24-hour fast on 3 nonconsecutive days per week) in mice fed a chow or high-fat diet (HFD; 43% fat) on markers of adipose tissue inflammation and fibrosis. We found that IF decreased energy intake, body weight, and fat cell size in HFD-fed mice and decreased fat mass and improved glucose tolerance in chow- and HFD-fed mice. IF decreased mRNA levels of macrophage markers (Lgals3, Itgax, Ccl2, and Ccl3) in inguinal and gonadal fat, as well as adipose tissue macrophage numbers in HFD-fed mice only, and altered genes involved in NLRP3 inflammasome pathway in both diet groups. IF increased mRNA levels of matrix metallopeptidase 9, which is involved in extracellular matrix degradation, and reduced mRNA levels of collagen 6 α-1 and tissue inhibitor of matrix metallopeptidase 1, as well as fibrosis in gonadal fat in HFD-fed mice. In summary, our results show that intermittent fasting improved glucose tolerance in chow- and HFD-fed mice and ameliorated adipose tissue inflammation and fibrosis in HFD-fed mice.
Collapse
Affiliation(s)
- Bo Liu
- Centre for Nutrition and Gastrointestinal Disease, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
- Nutrition and Metabolism, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Amanda J Page
- Centre for Nutrition and Gastrointestinal Disease, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
- Nutrition and Metabolism, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - George Hatzinikolas
- Centre for Nutrition and Gastrointestinal Disease, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
- Nutrition and Metabolism, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Miaoxin Chen
- Centre for Nutrition and Gastrointestinal Disease, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
- Nutrition and Metabolism, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- Centre for Reproductive Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Gary A Wittert
- Centre for Nutrition and Gastrointestinal Disease, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
- Nutrition and Metabolism, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Leonie K Heilbronn
- Centre for Nutrition and Gastrointestinal Disease, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
- Nutrition and Metabolism, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| |
Collapse
|
11
|
Ishaq A, Dufour D, Cameron K, von Zglinicki T, Saretzki G. Metabolic memory of dietary restriction ameliorates DNA damage and adipocyte size in mouse visceral adipose tissue. Exp Gerontol 2018; 113:228-236. [PMID: 30312736 DOI: 10.1016/j.exger.2018.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/24/2018] [Accepted: 10/08/2018] [Indexed: 11/30/2022]
Abstract
Dietary restriction (DR) is thought to exert its beneficial effects on healthspan at least partially by a senolytic and senostatic action, i.e. by reducing frequencies of cells with markers of DNA damage and senescence in multiple tissues. Due to its importance in metabolic and inflammation regulation, fat is a prime tissue for health span determination as well as a prime target for DR. We aimed to determine here whether the beneficial effects of DR would be retained over a subsequent period of ad libitum (AL) feeding. Male mice were kept under either 40% DR or AL feeding regimes from 3 to 12 months of age and then either switched back to the opposite feeding regimen or kept in the same state for another 3 months. Visceral adipose tissue from 4 to 5 mice per group for all conditions was analysed for markers of senescence (adipocyte size, γH2A.X, p16, p21) and inflammation (e.g. IL-6, TNFα, IL-1β) using immuno-staining or qPCR. Macrophages were detected by immunohistochemistry. We found that both 9 and 12 months DR (long term) as well as 3 month (short term, mid-life onset) DR reduced the number of cells harbouring DNA damage and adipocyte size (area and perimeter) in visceral adipocytes with similar efficiency. Importantly, beneficial health markers induced by DR such as small adipocyte size and low DNA damage were maintained for at least 3 month after termination of DR, demonstrating that the previously identified 'metabolic memory' of the DR state in male mice extends to senescence markers in visceral fat.
Collapse
Affiliation(s)
- Abbas Ishaq
- The Ageing Biology Centre, Newcastle Institute for Ageing, Institute for Cell and Molecular Biosciences, Campus of Ageing and Vitality, Newcastle upon Tyne, UK
| | - Damien Dufour
- The Ageing Biology Centre, Newcastle Institute for Ageing, Institute for Cell and Molecular Biosciences, Campus of Ageing and Vitality, Newcastle upon Tyne, UK
| | - Kerry Cameron
- The Ageing Biology Centre, Newcastle Institute for Ageing, Institute for Cell and Molecular Biosciences, Campus of Ageing and Vitality, Newcastle upon Tyne, UK
| | - Thomas von Zglinicki
- The Ageing Biology Centre, Newcastle Institute for Ageing, Institute for Cell and Molecular Biosciences, Campus of Ageing and Vitality, Newcastle upon Tyne, UK
| | - Gabriele Saretzki
- The Ageing Biology Centre, Newcastle Institute for Ageing, Institute for Cell and Molecular Biosciences, Campus of Ageing and Vitality, Newcastle upon Tyne, UK.
| |
Collapse
|
12
|
Thelen K, Watts SW, Contreras GA. Adipogenic potential of perivascular adipose tissue preadipocytes is improved by coculture with primary adipocytes. Cytotechnology 2018; 70:1435-1445. [PMID: 30051281 PMCID: PMC6214855 DOI: 10.1007/s10616-018-0238-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/19/2018] [Indexed: 12/21/2022] Open
Abstract
Perivascular adipose tissue (PVAT) has the capacity to secrete vasoactive mediators with the potential to regulate vascular function. Given its location adjacent to the vasculature, PVAT dysfunction may be part of the pathophysiology of cardiovascular diseases. To study the mechanisms of PVAT dysfunction, several adipogenic models have been proposed. However, these approaches do not adequately reflect PVAT adipocyte phenotypes variability that depends on their anatomical location. Despite PVAT importance in modulating vascular function, to date, there is not a depot-specific adipogenic model for PVAT adipocytes. We present a model that uses coculturing of PVAT stromal vascular fraction derived preadipocytes with primary adipocytes isolated from the same PVAT. Preadipocytes were isolated from thoracic aorta PVAT and mesenteric resistance artery PVAT (mPVAT). Upon confluency, cells were induced to differentiate for 7 and 14 days using a standard protocol (SP) or standard protocol cocultured with primary adipocytes isolated from the same adipose depots (SPA) for 96, 120, and 144 h. SPA reduced the time for differentiation of stromal vascular fraction derived preadipocytes and increased their capacity to store lipids compared with SP as indicated by lipid accumulation, lipolytic responses, gene marker profile expression, and adiponectin secretion. The coculture system improved adipogenesis efficiency by enhancing lipid accumulation and reducing the time of induction, therefore, is a more efficient method compared to SP alone.
Collapse
Affiliation(s)
- Kyan Thelen
- Department of Large Animal Clinical Sciences, Michigan State University, 736 Wilson Road, Room D202, East Lansing, MI, 48824, USA
| | - Stephanie W Watts
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - G Andres Contreras
- Department of Large Animal Clinical Sciences, Michigan State University, 736 Wilson Road, Room D202, East Lansing, MI, 48824, USA.
| |
Collapse
|
13
|
Kim Y, Bayona PW, Kim M, Chang J, Hong S, Park Y, Budiman A, Kim YJ, Choi CY, Kim WS, Lee J, Cho KW. Macrophage Lamin A/C Regulates Inflammation and the Development of Obesity-Induced Insulin Resistance. Front Immunol 2018; 9:696. [PMID: 29731750 PMCID: PMC5920030 DOI: 10.3389/fimmu.2018.00696] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 03/21/2018] [Indexed: 01/28/2023] Open
Abstract
Obesity-induced chronic low-grade inflammation, in particular in adipose tissue, contributes to the development of insulin resistance and type 2 diabetes. However, the mechanism by which obesity induces adipose tissue inflammation has not been completely elucidated. Recent studies suggest that alteration of the nuclear lamina is associated with age-associated chronic inflammation in humans and fly. These findings led us to investigate whether the nuclear lamina regulates obesity-mediated chronic inflammation. In this study, we show that lamin A/C mediates inflammation in macrophages. The gene and protein expression levels of lamin A/C are significantly increased in epididymal adipose tissues from obese rodent models and omental fat from obese human subjects compared to their lean controls. Flow cytometry and gene expression analyses reveal that the protein and gene expression levels of lamin A/C are increased in adipose tissue macrophages (ATMs) by obesity. We further show that ectopic overexpression of lamin A/C in macrophages spontaneously activates NF-κB, and increases the gene expression levels of proinflammatory genes, such as Il6, Tnf, Ccl2, and Nos2. Conversely, deletion of lamin A/C in macrophages reduces LPS-induced expression of these proinflammatory genes. Importantly, we find that myeloid cell-specific lamin A/C deficiency ameliorates obesity-induced insulin resistance and adipose tissue inflammation. Thus, our data suggest that lamin A/C mediates the activation of ATM inflammation by regulating NF-κB, thereby contributing to the development of obesity-induced insulin resistance.
Collapse
Affiliation(s)
- Youngjo Kim
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheon-an, South Korea
| | - Princess Wendy Bayona
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheon-an, South Korea
| | - Miri Kim
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheon-an, South Korea
| | - Jiyeon Chang
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheon-an, South Korea
| | - Sunmin Hong
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheon-an, South Korea
| | - Yoona Park
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheon-an, South Korea
| | - Andrea Budiman
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheon-an, South Korea
| | - Yong-Jin Kim
- Department of Surgery, Soonchunhyang University Hospital, Seoul, South Korea
| | - Chang Yong Choi
- Department of Plastic and Reconstructive Surgery, Soonchunhyang University Hospital, Gumi, South Korea
| | - Woo Seok Kim
- Department of Surgery, Soonchunhyang University Gumi Hospital, Gumi, South Korea
| | - Jongsoon Lee
- The Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Kae Won Cho
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheon-an, South Korea
| |
Collapse
|
14
|
de Jong AJ, Klein-Wieringa IR, Andersen SN, Kwekkeboom JC, Herb-van Toorn L, de Lange-Brokaar BJE, van Delft D, Garcia J, Wei W, van der Heide HJL, Bastiaansen-Jenniskens YM, van Osch GJVM, Zuurmond AM, Stojanovic-Susulic V, Nelissen RGHH, Toes REM, Kloppenburg M, Ioan-Facsinay A. Lack of high BMI-related features in adipocytes and inflammatory cells in the infrapatellar fat pad (IFP). Arthritis Res Ther 2017; 19:186. [PMID: 28800775 PMCID: PMC5553811 DOI: 10.1186/s13075-017-1395-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/24/2017] [Indexed: 01/02/2023] Open
Abstract
Background Obesity is associated with the development and progression of osteoarthritis (OA). Although the infrapatellar fat pad (IFP) could be involved in this association, due to its intracapsular localization in the knee joint, there is currently little known about the effect of obesity on the IFP. Therefore, we investigated cellular and molecular body mass index (BMI)-related features in the IFP of OA patients. Methods Patients with knee OA (N = 155, 68% women, mean age 65 years, mean (SD) BMI 29.9 kg/m2 (5.7)) were recruited: IFP volume was determined by magnetic resonance imaging in 79 patients with knee OA, while IFPs and subcutaneous adipose tissue (SCAT) were obtained from 106 patients undergoing arthroplasty. Crown-like structures (CLS) were determined using immunohistochemical analysis. Adipocyte size was determined by light microscopy and histological analysis. Stromal vascular fraction (SVF) cells were characterized by flow cytometry. Results IFP volume (mean (SD) 23.6 (5.4) mm3) was associated with height, but not with BMI or other obesity-related features. Likewise, volume and size of IFP adipocytes (mean 271 pl, mean 1933 μm) was not correlated with BMI. Few CLS were observed in the IFP, with no differences between overweight/obese and lean individuals. Moreover, high BMI was not associated with higher SVF immune cell numbers in the IFP, nor with changes in their phenotype. No BMI-associated molecular differences were observed, besides an increase in TNFα expression with high BMI. Macrophages in the IFP were mostly pro-inflammatory, producing IL-6 and TNFα, but little IL-10. Interestingly, however, CD206 and CD163 were associated with an anti-inflammatory phenotype, were the most abundantly expressed surface markers on macrophages (81% and 41%, respectively) and CD163+ macrophages had a more activated and pro-inflammatory phenotype than their CD163- counterparts. Conclusions BMI-related features usually observed in SCAT and visceral adipose tissue could not be detected in the IFP of OA patients, a fat depot implicated in OA pathogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s13075-017-1395-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anja J de Jong
- Department of Rheumatology, Leiden University Medical Centre, C1-R, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Inge R Klein-Wieringa
- Department of Rheumatology, Leiden University Medical Centre, C1-R, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Stefan N Andersen
- Department of Rheumatology, Leiden University Medical Centre, C1-R, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Joanneke C Kwekkeboom
- Department of Rheumatology, Leiden University Medical Centre, C1-R, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Linda Herb-van Toorn
- Department of Rheumatology, Leiden University Medical Centre, C1-R, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Badelog J E de Lange-Brokaar
- Department of Rheumatology, Leiden University Medical Centre, C1-R, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Danny van Delft
- Department of Orthopaedics, Leiden University Medical Center, Leiden, The Netherlands
| | - John Garcia
- Department of Orthopaedics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.,ISTM, Keele University, Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, UK
| | - Wu Wei
- Department of Orthopaedics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | | | | | - Gerjo J V M van Osch
- Department of Orthopaedics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | | | | | - Rob G H H Nelissen
- Department of Orthopaedics, Leiden University Medical Center, Leiden, The Netherlands
| | - René E M Toes
- Department of Rheumatology, Leiden University Medical Centre, C1-R, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Margreet Kloppenburg
- Department of Rheumatology, Leiden University Medical Centre, C1-R, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Andreea Ioan-Facsinay
- Department of Rheumatology, Leiden University Medical Centre, C1-R, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| |
Collapse
|
15
|
Wu J, Jiao ZY, Li RZ, Lu HL, Zhang HH, Cianflone K. Cholinergic activation suppresses palmitate-induced macrophage activation and improves acylation stimulating protein resistance in co-cultured adipocytes. Exp Biol Med (Maywood) 2017; 242:961-973. [PMID: 28440734 DOI: 10.1177/1535370217700522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Acylation-stimulating protein (ASP), produced through activation of the alternative complement immune system, modulates lipid metabolism. Using a trans-well co-culture cell model, the mitigating role of α7-nicotinic acetylcholine receptor (α7nAChR)-mediated cholinergic pathway on ASP resistance was evaluated. ASP signaling in adipocytes via its receptor C5L2 and signaling intermediates Gαq, Gβ, phosphorylated protein kinase C-α, and protein kinase C-ζ were markedly suppressed in the presence of TNFα or medium from palmitate-treated RAW264.7 macrophages, indicating ASP resistance. There was no direct effect of α7nAChR activation in 3T3-L1 cell culture. However, α7nAChR activation almost completely reversed the ASP resistance in adipocytes co-cultured with palmitate-treated RAW264.7 macrophages. Further, α7nAChR activation could suppress the production of pro-inflammatory molecules TNFα and interleukin-6 produced from palmitate-treated co-cultured macrophages. These results suggest that macrophages play a significant role in the pathogenesis of ASP resistance and α7nAChR activation secondarily improves adipose ASP resistance through suppression of inflammation in macrophages. Impact statement 1. Adipocyte-macrophage interaction in acylation-stimulating protein (ASP) resistance 2. Lipotoxicity induced inflammatory response in ASP resistance 3. A vicious circle between lipotoxicity and inflammatory response in ASP resistance 4. Cholinergic modulation of inflammatory response in adipocyte and macrophage.
Collapse
Affiliation(s)
- Jing Wu
- 1 Department of Pediatrics, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhou-Yang Jiao
- 2 Department of Cardiovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Rui-Zhen Li
- 3 Department of Endocrinology, Wuhan Children's Hospital, Wuhan Medical and Healthcare Center for Women and Children, Wuhan 430016, China
| | - Hui-Ling Lu
- 4 Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hao-Hao Zhang
- 5 Department of Endocrinology, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Katherine Cianflone
- 6 Centre de Recherche Institut Universitaire de Cardiologie and Pneumologie de Québec, Université Laval, Ville de Québec, QC G1V 4G5, Canada
| |
Collapse
|
16
|
Vargovic P, Laukova M, Ukropec J, Manz G, Kvetnansky R. Lipopolysaccharide induces catecholamine production in mesenteric adipose tissue of rats previously exposed to immobilization stress. Stress 2016; 19:439-47. [PMID: 27314578 DOI: 10.1080/10253890.2016.1203414] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Catecholamines (CAs) are mainly produced by sympathoadrenal system but their de novo production has been also observed in adipose tissue cells. The aim of this work was to investigate whether immune challenge induced by lipopolysaccharide (LPS) modulates biosynthesis of CAs in mesenteric adipose tissue (MWAT), as well as whether previous exposure to immobilization (IMO) stress could modulate this process. Sprague-Dawley rats were exposed to single (2 h) or repeated (2 h/7 days) IMO and afterwards injected with LPS (i.p., 100 μg/kg body weight) and sacrificed 3 h later. LPS did not alter CA biosynthesis in MWAT in control rats. Single and repeated IMO elevated CAs and expression of CA biosynthetic enzymes in MWAT, including adipocyte and stromal/vascular fractions (SVF). Repeated IMO followed by LPS treatment led to the up-regulation of CA-biosynthetic enzymes expression, elevation of CAs in SVF but depletion of norepinephrine and epinephrine in adipocyte fraction. Prior IMO caused a marked LPS-induced macrophage infiltration in MWAT as evaluated by F4/80 expression. A positive correlation between expression of tyrosine hydroxylase and F4/80 suggests macrophages as the main source of LPS-induced CA production in MWAT. Furthermore, prior exposure to the single or repeated IMO differently affected immune responses following LPS treatment by modulation of inflammatory cytokine expression. These data suggest that stress might be a significant modulator of immune response in MWAT via stimulation of the macrophage infiltration associated with cytokine response and de novo production of CAs.
Collapse
Affiliation(s)
- P Vargovic
- a Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences , Bratislava , Slovakia
| | - M Laukova
- a Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences , Bratislava , Slovakia
- b Department of Environmental Health Science, School of Health Sciences and Practice , Institute of Public Health, New York Medical College , Valhalla , NY , USA
| | - J Ukropec
- a Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences , Bratislava , Slovakia
| | - G Manz
- c LDN Labor Diagnostica Nord , Nordhorn , Germany
| | - R Kvetnansky
- a Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences , Bratislava , Slovakia
| |
Collapse
|
17
|
Durandt C, van Vollenstee FA, Dessels C, Kallmeyer K, de Villiers D, Murdoch C, Potgieter M, Pepper MS. Novel flow cytometric approach for the detection of adipocyte subpopulations during adipogenesis. J Lipid Res 2016; 57:729-42. [PMID: 26830859 PMCID: PMC4808761 DOI: 10.1194/jlr.d065664] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Indexed: 12/17/2022] Open
Abstract
The ability of mesenchymal stromal cells (MSCs) to differentiate into adipocytes provides a cellular model of human origin to study adipogenesis in vitro. One of the major challenges in studying adipogenesis is the lack of tools to identify and monitor the differentiation of various subpopulations within the heterogeneous pool of MSCs. Cluster of differentiation (CD)36 plays an important role in the formation of intracellular lipid droplets, a key characteristic of adipocyte differentiation/maturation. The objective of this study was to develop a reproducible quantitative method to study adipocyte differentiation by comparing two lipophilic dyes [Nile Red (NR) and Bodipy 493/503] in combination with CD36 surface marker staining. We identified a subpopulation of adipose-derived stromal cells that express CD36 at intermediate/high levels and show that combining CD36 cell surface staining with neutral lipid-specific staining allows us to monitor differentiation of adipose-derived stromal cells that express CD36intermediate/high during adipocyte differentiation in vitro. The gradual increase of CD36intermediate/high/NRpositive cells during the 21 day adipogenesis induction period correlated with upregulation of adipogenesis-associated gene expression.
Collapse
Affiliation(s)
- Chrisna Durandt
- Institute for Cellular and Molecular Medicine, South African Medical Research Council Extramural Unit for Stem Cell Research and Therapy, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Fiona A van Vollenstee
- Institute for Cellular and Molecular Medicine, South African Medical Research Council Extramural Unit for Stem Cell Research and Therapy, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Carla Dessels
- Institute for Cellular and Molecular Medicine, South African Medical Research Council Extramural Unit for Stem Cell Research and Therapy, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Karlien Kallmeyer
- Institute for Cellular and Molecular Medicine, South African Medical Research Council Extramural Unit for Stem Cell Research and Therapy, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Danielle de Villiers
- Institute for Cellular and Molecular Medicine, South African Medical Research Council Extramural Unit for Stem Cell Research and Therapy, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Candice Murdoch
- Institute for Cellular and Molecular Medicine, South African Medical Research Council Extramural Unit for Stem Cell Research and Therapy, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Marnie Potgieter
- Institute for Cellular and Molecular Medicine, South African Medical Research Council Extramural Unit for Stem Cell Research and Therapy, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Michael S Pepper
- Institute for Cellular and Molecular Medicine, South African Medical Research Council Extramural Unit for Stem Cell Research and Therapy, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
18
|
Tulsulkar J, Nada SE, Slotterbeck BD, McInerney MF, Shah ZA. Obesity and hyperglycemia lead to impaired post-ischemic recovery after permanent ischemia in mice. Obesity (Silver Spring) 2016; 24:417-23. [PMID: 26694743 PMCID: PMC4731242 DOI: 10.1002/oby.21388] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/20/2015] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Obesity-induced diabetes has increased over the years and has become one of the risk factors for stroke. We investigated the influence of diet-induced obesity and hyperglycemia on permanent distal middle cerebral artery occlusion (pMCAO)-induced ischemic stroke in mice. METHODS Male C57/Bl6 mice were treated with a high-fat/high-carbohydrate diet [HFCD/obese and hyperglycemia (O/H)] or a normal diet (control) for 3.5 months, subjected to pMCAO, and sacrificed after 7 days. RESULTS Infarct volume analysis showed no differences between the O/H and control group, whereas neurological deficits were significantly higher in the O/H group compared to the control group. Sirtuin (Sirt1) was overexpressed and NADPH oxidase was reduced in the O/H group. O/H mice had significantly lower expression of Wnt and glycogen synthase kinase 3 α and β, a key component in the Wnt signaling pathway. Translocation of apoptosis inducing factor (AIF) to the nucleus was observed in both the O/H and control groups, but O/H mice showed a higher expression of AIF in the nucleus. CONCLUSIONS These data suggest that impaired Wnt signaling and active apoptosis result in reduced post-stroke recovery in obese and hyperglycemic mice.
Collapse
Affiliation(s)
- Jatin Tulsulkar
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo Ohio
| | - Shadia E. Nada
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo Ohio
| | - Brandon D. Slotterbeck
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo Ohio
| | - Marcia F. McInerney
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo Ohio
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo Ohio
- Center for Diabetes and Endocrine Research (CeDER), University of Toledo, Toledo Ohio
| | - Zahoor A. Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo Ohio
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo Ohio
- Corresponding Author: Zahoor A. Shah, PhD, Department of Medicinal and Biological Chemistry, Department of Pharmacology and Experimental Therapeutics, University of Toledo, 3000 Arlington Avenue, Toledo, Ohio, 43614. Phone: 419-383-1587.
| |
Collapse
|
19
|
Lester SG, Russo L, Ghanem SS, Khuder SS, DeAngelis AM, Esakov EL, Bowman TA, Heinrich G, Al-Share QY, McInerney MF, Philbrick WM, Najjar SM. Hepatic CEACAM1 Over-Expression Protects Against Diet-Induced Fibrosis and Inflammation in White Adipose Tissue. Front Endocrinol (Lausanne) 2015; 6:116. [PMID: 26284027 PMCID: PMC4522571 DOI: 10.3389/fendo.2015.00116] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/13/2015] [Indexed: 01/14/2023] Open
Abstract
CEACAM1 promotes insulin extraction, an event that occurs mainly in liver. Phenocopying global Ceacam1 null mice (Cc1(-/-) ), C57/BL6J mice fed a high-fat (HF) diet exhibited reduced hepatic CEACAM1 levels and impaired insulin clearance, followed by hyperinsulinemia, insulin resistance, and visceral obesity. Conversely, forced liver-specific expression of CEACAM1 protected insulin sensitivity and energy expenditure, and limited gain in total fat mass by HF diet in L-CC1 mice. Because CEACAM1 protein is barely detectable in white adipose tissue (WAT), we herein investigated whether hepatic CEACAM1-dependent insulin clearance pathways regulate adipose tissue biology in response to dietary fat. While HF diet caused a similar body weight gain in L-CC1, this effect was delayed and less intense relative to wild-type (WT) mice. Histological examination revealed less expansion of adipocytes in L-CC1 than WT by HF intake. Immunofluorescence analysis demonstrated a more limited recruitment of crown-like structures, and qRT-PCR analysis showed no significant rise in TNFα mRNA levels in response to HF intake in L-CC1 than WT mice. Unlike WT, HF diet did not activate TGF-β in WAT of L-CC1 mice, as assessed by Western analysis of Smad2/3 phosphorylation. Consistently, HF diet caused relatively less collagen deposition in L-CC1 than WT mice, as shown by Trichrome staining. Coupled with reduced lipid redistribution from liver to visceral fat, lower inflammation and fibrosis could contribute to protected energy expenditure against HF diet in L-CC1 mice. The data underscore the important role of hepatic insulin clearance in the regulation of adipose tissue inflammation and fibrosis.
Collapse
Affiliation(s)
- Sumona G. Lester
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Lucia Russo
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Simona S. Ghanem
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Saja S. Khuder
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Anthony M. DeAngelis
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Emily L. Esakov
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH, USA
| | - Thomas A. Bowman
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Garrett Heinrich
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Qusai Y. Al-Share
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Marcia F. McInerney
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH, USA
| | - William M. Philbrick
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Sonia M. Najjar
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| |
Collapse
|
20
|
Abstract
OBJECTIVE This review will focus on the immunological aspects of adipose tissue and its potential role in development of chronic inflammation that instigates obesity-associated comorbidities. METHODS The review used PubMed searches of current literature to examine adipose tissue leukocytosis. RESULTS AND CONCLUSIONS The adipose tissue of obese subjects becomes inflamed and contributes to the development of insulin resistance, type 2 diabetes, and metabolic syndrome. Numerous immune cells including B cells, T cells, macrophages, and neutrophils have been identified in adipose tissue, and obesity influences both the quantity and the nature of immune cell subtypes, which emerges as an active immunological organ capable of modifying whole-body metabolism through paracrine and endocrine mechanisms. Adipose tissue is a large immunologically active organ during obesity and displays hallmarks of both and innate and adaptive immune response. Despite the presence of hematopoietic lineage cells in adipose tissue, it is unclear whether the adipose compartment has a direct role in immune surveillance or host defense. Understanding the interactions between leukocytes and adipocytes may reveal the clinically relevant pathways that control adipose tissue inflammation and is likely to reveal mechanisms by which obesity contributes to increased susceptibility to both metabolic and certain infectious diseases.
Collapse
Affiliation(s)
- Ryan W. Grant
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA
| | - Vishwa Deep Dixit
- Section of Comparative Medicine, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
21
|
Buckman LB, Anderson-Baucum EK, Hasty AH, Ellacott KLJ. Regulation of S100B in white adipose tissue by obesity in mice. Adipocyte 2014; 3:215-20. [PMID: 25068089 PMCID: PMC4110099 DOI: 10.4161/adip.28730] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/24/2014] [Accepted: 03/31/2014] [Indexed: 11/29/2022] Open
Abstract
S100B is a calcium binding protein found in adipose tissue; however, relatively little is known about the physiologic regulation or distribution of the protein within this organ. We examined plasma S100B concentration and white adipose tissue (WAT) s100b mRNA levels in lean and diet-induced obese (DIO) mice. Plasma S100B levels were increased by obesity. In WAT, s100b gene expression was also significantly increased by obesity and this increase was reversed following weight-loss. s100b gene expression was detected in both the adipocyte-enriched and stromal-vascular fractions of WAT; however, the increase in s100b gene expression in obese animals was only detected in the adipocyte-enriched fraction. Our results support published in vitro data indicating that WAT S100B may contribute to obesity-associated inflammation.
Collapse
|