1
|
Fadhul T, Park SH, Ali H, Alsiraj Y, Wali JA, Simpson SJ, Softic S. Fructose-Induced Metabolic Dysfunction Is Dependent on the Baseline Diet, the Length of the Dietary Exposure, and Sex of the Mice. Nutrients 2024; 17:124. [PMID: 39796558 PMCID: PMC11722689 DOI: 10.3390/nu17010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Background/Objectives: High sugar intake, particularly fructose, is implicated in obesity and metabolic complications. On the other hand, fructose from fruits and vegetables has undisputed benefits for metabolic health. This raises a paradoxical question-how the same fructose molecule can be associated with detrimental health effects in some studies and beneficial in others. This study investigates how diet and sex interact with fructose to modulate the metabolic outcomes. Methods: Male and female mice were fed different normal chow diets, Boston chow diet (BCD; 23% protein, 22% fat, 55% carbohydrates), Lexington chow diet (LXD; 24% protein, 18% fat, 58% carbohydrates), and low-fat diet (LFD; 20% protein, 10% fat, 70% carbohydrates), supplemented with 30% fructose in water. Results: Fructose-supplemented male mice on BCD gained weight and developed glucose intolerance and hepatic steatosis. Conversely, male mice given fructose on LXD did not gain weight, remained glucose-tolerant, and had normal hepatic lipid content. Furthermore, fructose-fed male mice on LFD did not gain weight. However, upon switching to BCD, they gained weight, exhibited worsening liver steatosis, and advanced hepatic insulin resistance. The effects of fructose are sex-dependent. Thus, female mice did not gain weight and remained insulin-sensitive with fructose supplementation on BCD, despite developing hepatic steatosis. These differences in metabolic outcomes correlate with the propensity of the baseline diet to suppress hepatic ketohexokinase expression and the de novo lipogenesis pathway. This is likely driven by the dietary fat-to-carbohydrate ratio. Conclusions: Metabolic dysfunction attributed to fructose intake is not a universal outcome. Instead, it depends on baseline diet, dietary exposure length, and sex.
Collapse
Affiliation(s)
- Taghreed Fadhul
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA; (T.F.); (S.-H.P.); (Y.A.)
| | - Se-Hyung Park
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA; (T.F.); (S.-H.P.); (Y.A.)
- Department of Pediatrics and Gastroenterology, University of Kentucky College of Medicine, Lexington, KY 40536, USA;
| | - Heba Ali
- Department of Pediatrics and Gastroenterology, University of Kentucky College of Medicine, Lexington, KY 40536, USA;
| | - Yasir Alsiraj
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA; (T.F.); (S.-H.P.); (Y.A.)
- Department of Pediatrics and Gastroenterology, University of Kentucky College of Medicine, Lexington, KY 40536, USA;
| | - Jibran A. Wali
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Stephen J. Simpson
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Samir Softic
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA; (T.F.); (S.-H.P.); (Y.A.)
- Department of Pediatrics and Gastroenterology, University of Kentucky College of Medicine, Lexington, KY 40536, USA;
| |
Collapse
|
2
|
Miller KC, Geyer B, Alexopoulos AS, Moylan CA, Pagidipati N. Disparities in Metabolic Dysfunction-Associated Steatotic Liver Disease Prevalence, Diagnosis, Treatment, and Outcomes: A Narrative Review. Dig Dis Sci 2024:10.1007/s10620-024-08722-0. [PMID: 39560808 DOI: 10.1007/s10620-024-08722-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 10/26/2024] [Indexed: 11/20/2024]
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD), is a leading cause of morbidity and mortality, and health disparities have been shown to influence disease burden. AIM In this review, we aim to characterize disparities in prevalence, diagnosis, treatment, and outcomes of MASLD, and to make recommendations for next steps to minimize these disparities. METHODS Literature search on PubMed and Scopus databases was conducted to identify relevant articles published before September 2, 2024. RESULTS Relative to women and White populations, MASLD is more common in men and Hispanic populations and less common in Black populations. It is also more prevalent among those with lower SES. Noninvasive clinical scores may perform differently across groups, and screening practices vary both for initial disease and for progression to metabolic dysfunctionassociated steatohepatitis (MASH), formerly called non-alcoholic steatohepatitis (NASH). Women and Black and Hispanic patients suffer worse outcomes including rates of progression to MASH and mortality. CONCLUSIONS Health disparities related to race, ethnicity, gender, and socioeconomic factors impact multiple stages of care for patients with MASLD.
Collapse
|
3
|
Handzlik G, Owczarek AJ, Więcek A, Mossakowska M, Zdrojewski T, Chudek A, Olszanecka-Glinianowicz M, Chudek J. Fibroblast growth factor 21 inversely correlates with survival in elderly population - the results of the Polsenior2 study. Aging (Albany NY) 2024; 16:12673-12684. [PMID: 39302236 PMCID: PMC11501387 DOI: 10.18632/aging.206114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/18/2024] [Indexed: 09/22/2024]
Abstract
Fibroblast growth factor 21 (FGF21) is a liver-secreted hormone involved in the regulation of lipid, glucose, and energy metabolism. Its serum concentration increases with age but also is higher in numerous diseases. FGF21 is being investigated for biomarker properties and as a potential therapeutic target. The present study aimed to assess the prognostic value of FGF21 in an older population-based cohort, the PolSenior2 study participants. In the sub-analysis of 3512 individuals, aged 60 and older, stratified according to FGF21 into tertiles, the survival estimate was worse in participants with middle and high levels compared to the lowest tertile. These results were consistent with univariable Cox regression analysis, in which participants in the middle and the high FGF21 tertiles after adjustment for age had 1.43-fold (HR, 1.31; 95% CI, 1.05 - 1.62) and 2.56-fold (HR, 1.94; 95% CI, 1.59 - 2.37) higher risk for mortality, respectively, compared with those in the lowest tertile. In multivariable Cox regression analysis, the highest levels of FGF21 were associated with increased mortality (HR 1.53; 95% CI, 1.22 - 1.92) independently of co-morbidities and blood parameters. These results indicate that higher serum FGF21 concentration is an independent predictor of all-cause mortality in the general population of older adults.
Collapse
Affiliation(s)
- Gabriela Handzlik
- Department of Internal Medicine and Oncological Chemotherapy, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Aleksander J. Owczarek
- Health Promotion and Obesity Management Unit, Department of Pathophysiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Andrzej Więcek
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, Katowice, Poland
| | - Małgorzata Mossakowska
- Study on Aging and Longevity, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Tomasz Zdrojewski
- Division of Preventive Medicine and Education, Medical University of Gdansk, Gdansk, Poland
| | - Anna Chudek
- Health Promotion and Obesity Management Unit, Department of Pathophysiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Magdalena Olszanecka-Glinianowicz
- Health Promotion and Obesity Management Unit, Department of Pathophysiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Jerzy Chudek
- Department of Internal Medicine and Oncological Chemotherapy, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
4
|
Wang T, Xie TN, Shi JH, Zhang WJ. Dietary fructose regulates hepatic manganese homeostasis in female mice. Heliyon 2024; 10:e33278. [PMID: 39022091 PMCID: PMC11253509 DOI: 10.1016/j.heliyon.2024.e33278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/31/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
Arginase, an enzyme dependent on manganese (Mn), plays a crucial role in the production of urea and processing of ammonia in the liver. Previous studies have shown that overconsumption of fructose disrupts Mn homeostasis in the liver of male mice. However, the potential sex-specific differences in the impact of fructose on hepatic Mn homeostasis remain uncertain. In this study, we provide evidence that heightened fructose intake disrupts liver Mn homeostasis in female mice. Elevated fructose exposure led to a reduction in liver Mn levels, resulting in decreased arginase and manganese superoxide dismutase (Mn-SOD) activity in the liver of female mice. The underlying mechanism involves the upregulation of carbohydrate-responsive element binding protein (ChREBP) expression and the Mn exporting gene Slc30a10 in the liver in response to fructose consumption. In summary, our findings support the involvement of fructose in liver Mn metabolism via the ChREBP/Slc30a10 pathway in female mice, and indicate that there is no disparity in the impact of fructose on hepatic Mn homeostasis between sexes.
Collapse
Affiliation(s)
- Ting Wang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Tie-Ning Xie
- Department of Pathophysiology, Naval Medical University, Shanghai, China
| | - Jian-Hui Shi
- Department of Pathophysiology, Naval Medical University, Shanghai, China
| | - Weiping J. Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- Department of Pathophysiology, Naval Medical University, Shanghai, China
| |
Collapse
|
5
|
Al-Kuraishy HM, Al-Gareeb AI, Saad HM, Batiha GES. The potential effect of metformin on fibroblast growth factor 21 in type 2 diabetes mellitus (T2DM). Inflammopharmacology 2023:10.1007/s10787-023-01255-4. [PMID: 37337094 DOI: 10.1007/s10787-023-01255-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 06/21/2023]
Abstract
Fibroblast growth factor 21 (FGF21) is a peptide hormone mainly synthesized and released from the liver. FGF21 acts on FGF21 receptors (FGFRs) and β-Klotho, which is a transmembrane co-receptor. In type 2 diabetes mellitus (T2DM), inflammatory disorders stimulate the release of FGF21 to overcome insulin resistance (IR). FGF21 improves insulin sensitivity and glucose homeostasis. Metformin which is used in the management of T2DM may increase FGF21 expression. Accordingly, the objective of this review was to clarify the metformin effect on FGF21 in T2DM. FGF21 level and expression of FGF2Rs are dysregulated in T2DM due to the development of FGF21 resistance. Metformin stimulates the hepatic expression of FGF21/FGF2Rs by different signaling pathways. Besides, metformin improves the expression of β-Klotho which improves FGF21 sensitivity. In conclusion, metformin advances FGF21 signaling and decreases FGF21 resistance in T2DM, and this might be an innovative mechanism for metformin in the enhancement of glucose homeostasis and metabolic disorders in T2DM patients.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Pharmacology, Toxicology and Medicine, Medical Faculty, College of Medicine, Al-Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Pharmacology, Toxicology and Medicine, Medical Faculty, College of Medicine, Al-Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, 51744, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt.
| |
Collapse
|
6
|
Geidl-Flueck B, Hochuli M, Spinas GA, Gerber PA. Do Sugar-Sweetened Beverages Increase Fasting FGF21 Irrespective of the Type of Added Sugar? A Secondary Exploratory Analysis of a Randomized Controlled Trial. Nutrients 2022; 14:4169. [PMID: 36235821 PMCID: PMC9572320 DOI: 10.3390/nu14194169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/16/2022] [Accepted: 10/01/2022] [Indexed: 11/05/2022] Open
Abstract
Human fibroblast growth factor 21 (FGF21) is a multifaceted metabolic regulator considered to control sugar intake and to exert beneficial effects on glucose and lipid metabolism. Elevated serum FGF21 levels are associated with metabolic syndrome, suggesting a state of FGF21 resistance. Further, given the evidence of a hepatic ChREBP and FGF21 signaling axis, it can be assumed that SSBs containing fructose would possibly increase FGF21 concentrations. We investigated the effects of sugar-sweetened beverage (SSB) consumption on fasting FGF21 levels in healthy, lean men, discriminating the effects of glucose, fructose, and their disaccharide sucrose by secondary data analysis from a randomized controlled trial. Seven weeks of daily SSB consumption resulted in increased fasting FGF21 in healthy, lean men, irrespective of the sugar type. Medians of ΔFGF21 between post-SSB intervention values (week 7) and no-intervention period values (IQR) in pg/mL were: glucose 17.4 (0.4-45.8), fructose 22.9 (-8.6-35.1), and sucrose 13.7 (2.2-46.1). In contrast, this change in FGF21 concentration was only 6.3 (-20.1-26.9) pg/mL in the control group. The lack of a fructose-specific effect on FGF21 concentrations is contrary to our assumption. It is concluded that SSB intake may impact FGF21 concentrations and could contribute to the increased FGF21 concentrations observed in subjects suffering from metabolic syndrome that is possibly associated with decreased FGF21 responsiveness.
Collapse
Affiliation(s)
- Bettina Geidl-Flueck
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ), 8091 Zurich and University of Zurich (UZH), 8006 Zurich, Switzerland
| | - Michel Hochuli
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism, Inselspital, Bern University Hospital and University of Bern, 3010 Bern, Switzerland
| | - Giatgen A. Spinas
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ), 8091 Zurich and University of Zurich (UZH), 8006 Zurich, Switzerland
| | - Philipp A. Gerber
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ), 8091 Zurich and University of Zurich (UZH), 8006 Zurich, Switzerland
| |
Collapse
|
7
|
Alves JM, Yunker AG, Luo S, Jann K, Angelo B, DeFendis A, Pickering TA, Smith A, Monterosso JR, Page KA. FGF21 response to sucrose is associated with BMI and dorsal striatal signaling in humans. Obesity (Silver Spring) 2022; 30:1239-1247. [PMID: 35491674 DOI: 10.1002/oby.23432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 12/30/2022]
Abstract
OBJECTIVE This study examined associations between BMI and dietary sugar intake with sucrose-induced fibroblast growth factor 21 (FGF21) and whether circulating FGF21 is associated with brain signaling following sucrose ingestion in humans. METHODS A total of 68 adults (29 male; mean [SD), age 23.2 [3.8] years; BMI 27.1 [4.9] kg/m2 ) attended visits after a 12-hour fast. Plasma FGF21 was measured at baseline and at 15, 30, and 120 minutes after sucrose ingestion (75 g in 300 mL of water). Brain cerebral blood flow responses to sucrose were measured using arterial spin labeling magnetic resonance imaging. RESULTS Higher circulating FGF21 levels were associated with reduced blood flow in the striatum in response to sucrose (β = -7.63, p = 0.03). This association was greatest among persons with healthy weight (β = -15.70, p = 0.007) and was attenuated in people with overweight (β = -4.00, p = 0.63) and obesity (β = -12.45, p = 0.13). BMI was positively associated with FGF21 levels in response to sucrose (β = 0.53, p = 0.02). High versus low dietary sugar intake was associated with greater FGF21 responses to acute sucrose ingestion in individuals with healthy weight (β = 8.51, p = 0.04) but not in individuals with overweight or obesity (p > 0.05). CONCLUSIONS These correlative findings support evidence in animals showing that FGF21 acts on the brain to regulate sugar consumption through a negative feedback loop.
Collapse
Affiliation(s)
- Jasmin M Alves
- Division of Endocrinology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Alexandra G Yunker
- Division of Endocrinology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Shan Luo
- Division of Endocrinology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Department of Psychology, University of Southern California, Los Angeles, California, USA
| | - Kay Jann
- Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Brendan Angelo
- Division of Endocrinology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Alexis DeFendis
- Division of Endocrinology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Trevor A Pickering
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Alexandro Smith
- Division of Endocrinology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - John R Monterosso
- Department of Psychology, University of Southern California, Los Angeles, California, USA
| | - Kathleen A Page
- Division of Endocrinology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Diabetes and Obesity Research Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
8
|
Chee Y, Toh GL, Lim CJ, Goh LL, Dalan R. Sex Modifies the Association of Fibroblast Growth Factor 21 With Subclinical Carotid Atherosclerosis. Front Cardiovasc Med 2021; 8:627691. [PMID: 33996935 PMCID: PMC8116496 DOI: 10.3389/fcvm.2021.627691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/18/2021] [Indexed: 12/22/2022] Open
Abstract
Background and Aims: Fibroblast growth factor 21 (FGF21), an emerging metabolic hepatokine, is associated with atherosclerosis. An interaction with sex has been described in various populations. We aimed to study whether sex modulates the relationship between FGF21 and subclinical carotid atherosclerosis in a diabetes-enriched multiethnic population of Singapore. We explore differences in intermediary mechanisms, in terms of hypertension, lipids, and inflammation, between FGF21 and atherosclerosis. Methods: We recruited 425 individuals from a single diabetes center in Singapore, and demographics, anthropometry, metabolic profile, FGF21, and carotid ultrasonography were performed. Multivariable logistic regression models were used to study the association between subclinical atherosclerosis and FGF21 adjusting for age, ethnicity, body mass index (BMI), hemoglobin A1c (HbA1c), systolic and diastolic blood pressures, and low-density lipoprotein (LDL)-cholesterol separately for males and females as two groups after an interaction test. Results: An interaction test assessing interaction by sex on the relationship between subclinical atherosclerosis and FGF21 showed a significant interaction with sex (Pinteraction = 0.033). In the female subgroup, significant independent associations of standardized lnFGF21 with subclinical atherosclerosis were seen, with 1 SD increment in lnFGF21 being associated with 1.48-fold (95% CI: 1.03, 2.12; p = 0.036) increase in risk. In the male subgroup, the association of subclinical atherosclerosis with standardized lnFGF21 was not significant [odds ratio (OR) (95% CI): 0.90 (0.63, 1.28); p = 0.553]. We found sex interactions with pulse pressure being significantly associated in females only and triglycerides and C-reactive protein being associated with males only. Conclusion: FGF21 is positively associated with subclinical carotid atherosclerosis in women, but not in men. The sex–racial patterns in the mechanisms by which FGF21 causes subclinical atherosclerosis needs to be explored in larger population-based studies and mechanistically studied in greater detail.
Collapse
Affiliation(s)
| | | | | | | | - Rinkoo Dalan
- Tan Tock Seng Hospital, Singapore, Singapore.,Department of Metabolic Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
9
|
Novelle MG, Bravo SB, Deshons M, Iglesias C, García-Vence M, Annells R, da Silva Lima N, Nogueiras R, Fernández-Rojo MA, Diéguez C, Romero-Picó A. Impact of liver-specific GLUT8 silencing on fructose-induced inflammation and omega oxidation. iScience 2021; 24:102071. [PMID: 33554072 PMCID: PMC7856473 DOI: 10.1016/j.isci.2021.102071] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/14/2020] [Accepted: 01/13/2021] [Indexed: 12/18/2022] Open
Abstract
Excessive consumption of high-fructose diets is associated with insulin resistance, obesity, and non-alcoholic fatty liver disease (NAFLD). However, fructose differentially affects hepatic regulation of lipogenesis in males and females. Hence, additional studies are necessary in order to find strategies taking gender disparities in fructose-induced liver damage into consideration. Although the eighth member of facilitated glucose transporters (GLUT8) has been linked to fructose-induced macrosteatosis in female mice, its contribution to the inflammatory state of NAFLD remains to be elucidated. Combining pharmacological, biochemical, and proteomic approaches, we evaluated the preventive effect of targeted liver GLUT8 silencing on liver injury in a mice female fructose-induced non-alcoholic steatohepatitis female mouse model. Liver GLUT8-knockdown attenuated fructose-induced ER stress, recovered liver inflammation, and dramatically reduced fatty acid content, in part, via the omega oxidation. Therefore, this study links GLUT8 with liver inflammatory response and suggests GLUT8 as a potential target for the prevention of NAFLD.
Collapse
Affiliation(s)
- Marta G Novelle
- Functional Obeosomics and Molecular Metabolism laboratories, Centro singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), Universidad de Santiago de Compostela, CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Av. Barcelona s/n 15782, A Coruña, Santiago de Compostela, Spain.,Hepatic Regenerative Medicine Laboratory, Madrid Institute for Advanced Studies (IMDEA) in Food, CEI UAM+CSIC, Madrid, E28049, Spain
| | - Susana Belén Bravo
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Maxime Deshons
- Laboratoire de Toxicologie, Faculté de Pharmacie, Université Clermont Auvergne, 63000, Clermont-Ferrand, France
| | - Cristina Iglesias
- Functional Obeosomics and Molecular Metabolism laboratories, Centro singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), Universidad de Santiago de Compostela, CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Av. Barcelona s/n 15782, A Coruña, Santiago de Compostela, Spain
| | - María García-Vence
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Rebecca Annells
- Department of Physiology, Anatomy and Genetics, University of Oxford, OX1 3PT, Oxford, UK
| | - Natália da Silva Lima
- Functional Obeosomics and Molecular Metabolism laboratories, Centro singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), Universidad de Santiago de Compostela, CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Av. Barcelona s/n 15782, A Coruña, Santiago de Compostela, Spain
| | - Rubén Nogueiras
- Functional Obeosomics and Molecular Metabolism laboratories, Centro singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), Universidad de Santiago de Compostela, CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Av. Barcelona s/n 15782, A Coruña, Santiago de Compostela, Spain
| | - Manuel Alejandro Fernández-Rojo
- Hepatic Regenerative Medicine Laboratory, Madrid Institute for Advanced Studies (IMDEA) in Food, CEI UAM+CSIC, Madrid, E28049, Spain.,School of Medicine, The University of Queensland, Herston, 4006, Brisbane, Australia
| | - Carlos Diéguez
- Functional Obeosomics and Molecular Metabolism laboratories, Centro singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), Universidad de Santiago de Compostela, CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Av. Barcelona s/n 15782, A Coruña, Santiago de Compostela, Spain
| | - Amparo Romero-Picó
- Functional Obeosomics and Molecular Metabolism laboratories, Centro singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), Universidad de Santiago de Compostela, CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Av. Barcelona s/n 15782, A Coruña, Santiago de Compostela, Spain
| |
Collapse
|