1
|
Etminani-Esfahani N, Rahmati A. Effect of chain structures of monomer on hydroxyethyl cellulose-based superabsorbent properties and improvement of chickpeas plant growth of water deficit-stressed. Int J Biol Macromol 2024; 269:131906. [PMID: 38679266 DOI: 10.1016/j.ijbiomac.2024.131906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/09/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
The aim of this research was evaluation of the influence of distance between zwitterionic monomer ions on the performance of superabsorbents. For this purpose, two zwitterionic monomers 4-(3-aminopropyl) amino-4-oxo-2-butenoic acid (APOB) and 4-(6-aminohexyl) amino-4-oxo-2-butenoic acid (AHOB) were prepared and applied for synthesis of two new superabsorbents through graft copolymerization onto hydroxyethyl cellulose (HEC) in the presence of acrylic acid (AA). In synthesis of superabsorbents factors such as the highest water absorbency capacity, absorbency rate, gel strength, and environmental problems should be resolved or improved. The results demonstrated that the water absorbency capacity and rate parameters (τ) of HEC-g-p(AA-co-APOB) and HEC-g-p(AA-co-AHOB) in distilled water were 986.62, 664.38 g/g, and 98.04, 140.84 min, respectively. The biodegradability of HEC-g-p(AA-co-APOB) was approximately 4 times more than HEC-g-p(AA-co-AHOB). However, based on the rheological analyses (G'/G″) HEC-g-p(AA-co-AHOB) was stronger than the other. Additionally, studies of water retention on soil containing HEC-g-p(AA-co-AHOB) superabsorbent (soil with 0.25 wt% material) showed that the after 30 days has ≤5 % water while soil in the absence of superabsorbent after 10 days completely dried. Studies of the growth of plants in soil demonstrated in the presence of HEC-g-p(AA-co-AHOB) the average length of shoots was 36 cm while without superabsorbent were 25 cm.
Collapse
Affiliation(s)
| | - Abbas Rahmati
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran.
| |
Collapse
|
2
|
Kratochvílová R, Kráčalík M, Smilková M, Sedláček P, Pekař M, Bradt E, Smilek J, Závodská P, Klučáková M. Functional Hydrogels for Agricultural Application. Gels 2023; 9:590. [PMID: 37504469 PMCID: PMC10378905 DOI: 10.3390/gels9070590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023] Open
Abstract
Ten different hydrogels were prepared and analyzed from the point of view of their use in soil. FT-IR spectra, morphology, swelling ability, and rheological properties were determined for their characterization and appraisal of their stability. The aim was to characterize prepared materials containing different amounts of NPK as mineral fertilizer, lignohumate as a source of organic carbon, and its combination. This study of stability was focused on utility properties in their application in soil-repeated drying/re-swelling cycles and possible freezing in winter. Lignohumate supported the water absorbency, while the addition of NPK caused a negative effect. Pore sizes decreased with NPK addition. Lignohumate incorporated into polymers resulted in a much miscellaneous structure, rich in different pores and voids of with a wide range of sizes. NPK fertilizer supported the elastic character of prepared materials, while the addition of lignohumate shifted their rheological behavior to more liquid. Both dynamic moduli decreased in time. The most stable samples appeared to contain only one fertilizer constituent (NPK or lignohumate). Repeated re-swelling resulted in an increase in elastic character, which was connected with the gradual release of fertilizers. A similar effect was observed with samples that were frozen and defrosted, except samples containing a higher amount of NPK without lignohumate. A positive effect of acrylamide on superabsorbent properties was not confirmed.
Collapse
Affiliation(s)
- Romana Kratochvílová
- Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, CZ-61200 Brno, Czech Republic
| | - Milan Kráčalík
- Institute of Polymer Science, Johannes Kepler University, Altenberger Strasse 69, 4040 Linz, Austria
| | - Marcela Smilková
- Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, CZ-61200 Brno, Czech Republic
| | - Petr Sedláček
- Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, CZ-61200 Brno, Czech Republic
| | - Miloslav Pekař
- Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, CZ-61200 Brno, Czech Republic
| | - Elke Bradt
- Institute of Polymer Science, Johannes Kepler University, Altenberger Strasse 69, 4040 Linz, Austria
| | - Jiří Smilek
- Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, CZ-61200 Brno, Czech Republic
| | - Petra Závodská
- Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, CZ-61200 Brno, Czech Republic
| | - Martina Klučáková
- Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, CZ-61200 Brno, Czech Republic
| |
Collapse
|
3
|
Manaila E, Demeter M, Calina IC, Craciun G. NaAlg-g-AA Hydrogels: Candidates in Sustainable Agriculture Applications. Gels 2023; 9:gels9040316. [PMID: 37102928 PMCID: PMC10138036 DOI: 10.3390/gels9040316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 04/28/2023] Open
Abstract
Nowadays, the degradation of agricultural soil due to various factors should be a major concern for everyone. In this study, a new sodium alginate-g-acrylic acid-based hydrogel was developed simultaneously by cross-linking and grafting with accelerated electrons to be used as soil remediation. The effect of irradiation dose and NaAlg contents on the gel fraction, network and structural parameters, sol-gel analysis, swelling power, and swelling kinetics of NaAlg-g-AA hydrogels have been investigated. It was demonstrated that NaAlg hydrogels show significative swelling power that is greatly dependent on their composition and irradiation dose; they keep the structure and are not degraded in different pH conditions and different water sources. Diffusion data revealed a non-Fickian transport mechanism (0.61-0.99) also specific to cross-linked hydrogels. The prepared hydrogels were proved as excellent candidates in sustainable agriculture applications.
Collapse
Affiliation(s)
- Elena Manaila
- Electron Accelerators Laboratory, National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor St., 077125 Magurele, Romania
| | - Maria Demeter
- Electron Accelerators Laboratory, National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor St., 077125 Magurele, Romania
| | - Ion Cosmin Calina
- Electron Accelerators Laboratory, National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor St., 077125 Magurele, Romania
| | - Gabriela Craciun
- Electron Accelerators Laboratory, National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor St., 077125 Magurele, Romania
| |
Collapse
|
4
|
Maleic acid as an important monomer in synthesis of stimuli-responsive poly(acrylic acid-co-acrylamide-co-maleic acid) superabsorbent polymer. Sci Rep 2023; 13:3511. [PMID: 36864105 PMCID: PMC9981600 DOI: 10.1038/s41598-023-30558-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
Poly(acrylic acid-co-acrylamide-co-maleic acid) (p(AA-co-AM-co-MA)) superabsorbent polymer was synthesized from acrylic acid (AA), acrylamide (AM), and maleic acid (MA) via free radical copolymerization. Results showed the presence of maleic acid in structure of superabsorbent has the key and superior role in creating a smart superabsorbent. The structure, morphology, and strength of the superabsorbent were characterized using FT-IR, TGA, SEM, and rheology analysis. The effect of different factors was investigated to determine the ability of water absorbency of the superabsorbent. According to optimized conditions, the water absorbency capacity of the superabsorbent in distilled water (DW) was 1348 g/g and in a solution containing 1.0 wt.% NaCl (SCS) was 106 g/g. The water retention ability of the superabsorbent was also investigated. The kinetic swelling of superabsorbent was identified by Fickian diffusion and Schott's pseudo-second-order model. Furthermore, the reusability of superabsorbent was studied in distilled water and saline solution. The ability of superabsorbent was investigated in simulated urea and glucose solutions, and very good results were obtained. The response ability of the superabsorbent was confirmed by swelling and shrinking behavior against changes of temperature, pH, and ionic strength.
Collapse
|
5
|
Ismaeilimoghadam S, Jonoobi M, Hamzeh Y, Danti S. Effect of Nanocellulose Types on Microporous Acrylic Acid/Sodium Alginate Super Absorbent Polymers. J Funct Biomater 2022; 13:jfb13040273. [PMID: 36547534 PMCID: PMC9784917 DOI: 10.3390/jfb13040273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to investigate the effect of different types of nanocellulose, i.e., cellulose nanocrystal (CNC), cellulose nanofiber (CNF) and bacterial nanocellulose (BNC), and also different drying methods (oven-drying and freeze-drying) on the properties of acrylic acid (AA)/sodium alginate (SA) super absorbent polymers (SAPs). In addition, the presence of ammonium per sulfate as an initiator and N-N methylene-bis-acrylamide as a cross-linker were considered. Synthesized SAPs were characterized by Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). The absorption and rheological properties (i.e., storage modulus and loss modulus) were also investigated. The results of FTIR spectroscopy demonstrated several types of interactions, such as hydrogen and esterification, between SA, AA and nanocellulose. SEM analysis revealed a microporous structure in the SAPs. All SAPs had a centrifuge retention capacity (CRC)/free swelling capacity (FSC) ≥ 69%. The absorption behavior showed that the oven-dried SAPs had superior (about 2×) CRC and FRC in different aqueous media compared to the freeze-dried counterparts. The freeze-dried SAPs showed increased rheological properties in comparison to the oven-dried ones, with SAPs containing BNC and CNC having the highest rheological properties, respectively. Overall, it can be concluded that oven-dried SAPs containing CNC had better absorption properties than the other ones tested in this study.
Collapse
Affiliation(s)
- Saeed Ismaeilimoghadam
- Department of Wood and Paper Science and Technology, Faculty of Natural Resources, University of Tehran, Karaj 77871-31587, Iran
- Pisa Research Unit (UdR), Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy
| | - Mehdi Jonoobi
- Department of Wood and Paper Science and Technology, Faculty of Natural Resources, University of Tehran, Karaj 77871-31587, Iran
- Correspondence: (M.J.); (S.D.)
| | - Yahya Hamzeh
- Department of Wood and Paper Science and Technology, Faculty of Natural Resources, University of Tehran, Karaj 77871-31587, Iran
| | - Serena Danti
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy
- Correspondence: (M.J.); (S.D.)
| |
Collapse
|
6
|
Macroalgal-Derived Alginate Soil Amendments for Water Retention, Nutrient Release Rate Reduction, and Soil pH Control. Gels 2022; 8:gels8090548. [PMID: 36135260 PMCID: PMC9498892 DOI: 10.3390/gels8090548] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
There is a need to develop sustainably sourced products that can address the needs for improved water retention in soils, slow the release rate of fertilizers (to prevent leaching and downstream eutrophication), and control soil pH for use in agriculture. This article investigates the use of industrial kelp solid waste extracted alginate (IW) slurries to produce soil amendment beads, potentially improving soil water retention, acting as slow-release fertilizers (SRFs), and combined with limestone controls soil pH levels. Alginate extracted from the IW was determined to have a lower guluronic (G) to mannuronic (M) acid ratio than pure laboratory-grade (LG) alginate (0.36 vs. 0.53). Hydrogels produced from the IW alginate achieved significantly higher equilibrium swelling ratios (1 wt% IW = 1.80) than LG hydrogels with similar concentrations (1 wt% LG = 0.61). Hydrogel beads were impregnated with ammonium nitrate and potassium chloride to produce potential SRFs. The release rates of K+ and NO3− nutrients from the produced SRFs into deionised water were decreased by one order of magnitude compared to pure salts. The nutrient release rates of the IW-based SRFs were shown to be similar to SRFs produced from LG alginate. Hydrogel beads were impregnated with limestone, and it was determined that the alginate-based hydrogels could significantly decrease the nutrient release rate. Using industrial kelp solid waste extracted alginate slurries shows potential for soil amendments production. This report emphasises, for the first time, the use of a crude alginate product in soil amendment formation. Further, it demonstrates slower release rates and soil pH control.
Collapse
|
7
|
Arafa EG, Sabaa MW, Mohamed RR, Elzanaty AM, Abdel-Gawad OF. Preparation of biodegradable sodium alginate/carboxymethylchitosan hydrogels for the slow-release of urea fertilizer and their antimicrobial activity. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105243] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
8
|
Synthesis of cellulose-based superabsorbent hydrogel with high salt tolerance for soil conditioning. Int J Biol Macromol 2022; 209:1169-1178. [PMID: 35413317 DOI: 10.1016/j.ijbiomac.2022.04.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 11/24/2022]
Abstract
In this study, cellulose-based superabsorbent hydrogel was synthesized from sodium carboxymethyl cellulose (CMC-Na), acrylic acid (AA), and 2-acrylamido-2-methylpropanesulfonic acid (AMPS) to enhance its water absorbency and salt tolerance for soil-conditioning applications in areas suffering from drought and soil salinization. Superabsorbent hydrogels (SHs) were prepared by CMC-Na and AMPS successfully, using chemical graft technology. Structure, morphology, thermal stability, and water absorbency of SHs were deduced. The cellulose-based hydrogel showed a high salt tolerance that the maximum water absorbency reached 604 and 119% in distilled water and saline water, respectively. The swelling behavior in aqueous solvents indicated that the water absorption of hydrogels was improved with the increasing ratio of CMC-Na. All SHs exhibited adsorption of nitrogen with the maximum adsorption of ammonia nitrogen 30 mg·g-1 and the presence of hydrogels could slow down the loss of nutrients in the soil. This study provided a feasible strategy that AMPS was substituted by CMC-Na to synthesize SHs with strong water absorbency and high salt tolerance which could be efficiently applied in agriculture as a soil conditioner.
Collapse
|
9
|
Swelling characterization of ionic responsive superabsorbent resin containing carboxylate sodium groups. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2021.105144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Gao L, Luo H, Wang Q, Hu G, Xiong Y. Synergistic Effect of Hydrogen Bonds and Chemical Bonds to Construct a Starch-Based Water-Absorbing/Retaining Hydrogel Composite Reinforced with Cellulose and Poly(ethylene glycol). ACS OMEGA 2021; 6:35039-35049. [PMID: 34963985 PMCID: PMC8697600 DOI: 10.1021/acsomega.1c05614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
The hydrogel prepared by graft copolymerization of starch (ST) and acrylamide (AM) is a commonly used absorbent material; however, due to their irregular network structure and a limited number of hydrophilic groups, starch-based hydrogels have poor water absorption and water retention. To overcome this, here, we provide a new preparation method for starch-based hydrogels. Using cerium ammonium nitrate (CAN) as an initiator, the starch-acrylamide-cellulose (CMC)/poly(ethylene glycol) (S-A-M/PEG) superabsorbent hydrogel was prepared by graft copolymerization. The starch-acrylamide-cellulose/poly(ethylene glycol) hydrogel network is constructed through the synergistic effect of hydrogen bonds and chemical bonds. The experimental results showed that the starch-acrylamide-cellulose/poly(ethylene glycol) superabsorbent hydrogel has a complete network structure that does not easily collapse due to its superior mechanical properties. The water swelling rate reached 80.24 times, and it reached 50.61% water retention after 16 days. This hydrogel has excellent water-absorbing and water-retaining properties, biocompatibility, and degradability, making it useful for further studies in medical, agricultural, and other fields.
Collapse
Affiliation(s)
- Longfei Gao
- Department of Polymer Materials
and Engineering, Guizhou University, Guiyang 550025, P. R. China
| | - Huiyuan Luo
- Department of Polymer Materials
and Engineering, Guizhou University, Guiyang 550025, P. R. China
| | - Qian Wang
- Department of Polymer Materials
and Engineering, Guizhou University, Guiyang 550025, P. R. China
| | - Guirong Hu
- Department of Polymer Materials
and Engineering, Guizhou University, Guiyang 550025, P. R. China
| | - Yuzhu Xiong
- Department of Polymer Materials
and Engineering, Guizhou University, Guiyang 550025, P. R. China
| |
Collapse
|
11
|
Construction of Porous Starch-Based Hydrogel via Regulating the Ratio of Amylopectin/Amylose for Enhanced Water-Retention. Molecules 2021; 26:molecules26133999. [PMID: 34209127 PMCID: PMC8272078 DOI: 10.3390/molecules26133999] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 11/26/2022] Open
Abstract
The performance of hydrogels prepared with traditional natural starch as raw materials is considerable; the fixed ratio of amylose/amylopectin significantly limits the improvement of hydrogel structure and performance. In this paper, starch hydrogels were prepared by physical blending and chemical grafting, with the aid of ultrasonic heating. The effects of different amylose/amylopectin ratios on the microstructure and water retention properties of starch hydrogels were studied. The results show that an increase in amylopectin content is beneficial to improve the grafting ratio of acrylamide (AM). The interaction between the AM grafted on amylopectin and amylose molecules through hydrogen bonding increases the pores of the gel network and thins the pore walls. When the amylopectin content was 70%, the water absorption (swelling 45.25 times) and water retention performance (16 days water retention rate 44.17%) were optimal. This study provides new insights into the preparation of starch-based hydrogels with excellent physical and chemical properties.
Collapse
|
12
|
Etminani-Isfahani N, Mohammadbagheri Z, Rahmati A. 4-(6-Aminohexyl) amino-4-oxo-2-butenoic acid as a novel hydrophilic monomer for synthesis of cellulose-based superabsorbents with high water absorption capacity. Carbohydr Polym 2020; 250:116959. [DOI: 10.1016/j.carbpol.2020.116959] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 01/17/2023]
|
13
|
Nazir R, Parida D, Guex AG, Rentsch D, Zarei A, Gooneie A, Salmeia KA, Yar KM, Alihosseini F, Sadeghpour A, Gaan S. Structurally Tunable pH-responsive Phosphine Oxide Based Gels by Facile Synthesis Strategy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:7639-7649. [PMID: 31972075 DOI: 10.1021/acsami.9b22808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Design and synthesis of nanostructured responsive gels have attracted increasing attention, particularly in the biomedical domain. Polymer chain configurations and nanodomain sizes within the network can be used to steer their functions as drug carriers. Here, a catalyst-free facile one-step synthesis strategy is reported for the design of pH-responsive gels and controlled structures in nanoscale. Transparent and impurity free gels were directly synthesized from trivinylphosphine oxide (TVPO) and cyclic secondary diamine monomers via Michael addition polymerization under mild conditions. NMR analysis confirmed the consumption of all TVPO and the absence of side products, thereby eliminating post purification steps. The small-angle X-ray scattering (SAXS) elucidates the nanoscale structural features in gels, that is, it demonstrates the presence of collapsed nanodomains within gel networks and it was possible to tune the size of these domains by varying the amine monomers and the nature of the solvent. The fabricated gels demonstrate structure tunability via solvent-polymer interactions and pH specific drug release behavior. Three different anionic dyes (acid blue 80, acid blue 90, and fluorescein) of varying size and chemistry were incorporated into the hydrogel as model drugs and their release behavior was studied. Compared to acidic pH, a higher and faster release of acid blue 80 and fluorescein was observed at pH 10, possibly because of their increased solubility in alkaline pH. In addition, their release in phosphate buffered saline (PBS) and simulated body fluid (SBF) matrix was positively influenced by the ionic interaction with positively charged metal ions. In the case of hydrogel containing acid blue 90 a very low drug release (<1%) was observed, which is due to the reaction of its accessible free amino group with the vinyl groups of the TVPO. In vitro evaluation of the prepared hydrogel using human dermal fibroblasts indicates no cytotoxic effects, warranting further research for biomedical applications. Our strategy of such gel synthesis lays the basis for the design of other gel-based functional materials.
Collapse
Affiliation(s)
- Rashid Nazir
- Laboratory of Advanced Fibers , Empa, Swiss Federal Laboratories for Materials Science and Technology , Lerchenfeldstrasse 5 , CH-9014 St. Gallen , Switzerland
| | - Dambarudhar Parida
- Laboratory of Advanced Fibers , Empa, Swiss Federal Laboratories for Materials Science and Technology , Lerchenfeldstrasse 5 , CH-9014 St. Gallen , Switzerland
| | - Anne Géraldine Guex
- Laboratory for Biointerfaces and Laboratory for Biomimetic Membranes and Textiles , Empa, Swiss Federal Laboratories for Materials Science and Technology , Lerchenfeldstrasse 5 , CH-9014 St. Gallen , Switzerland
| | - Daniel Rentsch
- Laboratory for Functional Polymers , Empa, Swiss Federal Laboratories for Materials Science and Technology , Überlandstrasse 129 , 8600 Dübendorf , Switzerland
| | - Afsaneh Zarei
- Department of Textile Engineering , Isfahan University of Technology , Isfahan , 84156-83111 , Iran
| | - Ali Gooneie
- Laboratory of Advanced Fibers , Empa, Swiss Federal Laboratories for Materials Science and Technology , Lerchenfeldstrasse 5 , CH-9014 St. Gallen , Switzerland
| | - Khalifah A Salmeia
- Laboratory of Advanced Fibers , Empa, Swiss Federal Laboratories for Materials Science and Technology , Lerchenfeldstrasse 5 , CH-9014 St. Gallen , Switzerland
| | - Kevin M Yar
- Laboratory of Advanced Fibers , Empa, Swiss Federal Laboratories for Materials Science and Technology , Lerchenfeldstrasse 5 , CH-9014 St. Gallen , Switzerland
| | - Farzaneh Alihosseini
- Department of Textile Engineering , Isfahan University of Technology , Isfahan , 84156-83111 , Iran
| | - Amin Sadeghpour
- Center for X-Ray Analytics , Empa, Swiss Federal Laboratories for Materials Science and Technology , Lerchenfeldstrasse 5 , CH-9014 St. Gallen , Switzerland
| | - Sabyasachi Gaan
- Laboratory of Advanced Fibers , Empa, Swiss Federal Laboratories for Materials Science and Technology , Lerchenfeldstrasse 5 , CH-9014 St. Gallen , Switzerland
| |
Collapse
|
14
|
Synthesis, characterization, and morphology study of coco peat-grafted-poly(acrylic acid)/NPK slow release fertilizer hydrogel. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1952-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Ahmed Khan T, Zakaria MET, Kim H, Ghazali S, Jamari SS. Carbonaceous microsphere‐based superabsorbent polymer as filler for coating of NPK fertilizer: Fabrication, properties, swelling, and nitrogen release characteristics. J Appl Polym Sci 2019. [DOI: 10.1002/app.48396] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Tanveer Ahmed Khan
- Lab. of Adhesion & Bio‐Composites, Program in Environmental Materials ScienceResearch Institute of Agriculture and Life Sciences, Seoul National University Seoul 08826 Republic of Korea
| | - Munirah Ezzah Tuan Zakaria
- Faculty of Chemical and Natural Resource EngineeringUniversity Malaysia Pahang 26300 Kuantan Pahang Malaysia
| | - Hyun‐Joong Kim
- Lab. of Adhesion & Bio‐Composites, Program in Environmental Materials ScienceResearch Institute of Agriculture and Life Sciences, Seoul National University Seoul 08826 Republic of Korea
| | - Suriati Ghazali
- Faculty of Chemical and Natural Resource EngineeringUniversity Malaysia Pahang 26300 Kuantan Pahang Malaysia
| | - Saidatul Shima Jamari
- Faculty of Chemical and Natural Resource EngineeringUniversity Malaysia Pahang 26300 Kuantan Pahang Malaysia
| |
Collapse
|
16
|
Abstract
Slow release fertilizer hydrogels combine fertilizer and hydrogel into one system.
Collapse
Affiliation(s)
- Ros Azlinawati Ramli
- Material Technology Program
- Faculty of Industrial Sciences and Technology
- Universiti Malaysia Pahang (UMP)
- Kuantan
- Malaysia
| |
Collapse
|
17
|
Cheng D, Liu Y, Yang G, Zhang A. Water- and Fertilizer-Integrated Hydrogel Derived from the Polymerization of Acrylic Acid and Urea as a Slow-Release N Fertilizer and Water Retention in Agriculture. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:5762-5769. [PMID: 29782162 DOI: 10.1021/acs.jafc.8b00872] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
To reduce the preparation cost of superabsorbent and improve the N release rate at the same time, a novel low-cost superabsorbent (SA) with the function of N slow release was prepared by chemical synthesis with neutralized acrylic acid (AA), urea, potassium persulfate (KPS), and N, N'-methylenebis(acrylamide) (MBA). The order of influence factors on the water absorbency property was determined by an orthogonal L18(3)7 experiment. On the basis of the optimization results of the orthogonal experiment, the effects of a single factor on the water absorption were investigated, and the highest water absorbency (909 g/g) was achieved for the conditions of 1.0 mol urea/mol AA ratio, 100% of AA neutralized, K+, 1.5% KPS to AA mass fraction, 0.02% MBA to AA mass fraction, 45 °C reaction temperature, and 4.0 h reaction time. The optimal sample was characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). Swelling behaviors of the superabsorbent were investigated in distilled water and various soil and salt solutions. The water-release kinetics of SA in different negative pressures and soils were systematically investigated. Additionally, the maize seed germination in various types of soil with different amounts of SA was proposed, and the N could release 3.71% after being incubated in distilled water for 40 days. After 192 h, the relative water content of SA-treated sandy loam, loam, and paddy soil were 42, 56, and 45%, respectively. All of the results in this work showed that SA had good water retention and slow N-release properties, which are expected to have potential applications in sustainable modern agriculture.
Collapse
Affiliation(s)
- Dongdong Cheng
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment , Shandong Agricultural University , Tai'an , Shandong 271018 , China
- State Key Laboratory of Nutrition Resources Integrated Utilization , Shandong Kingenta Ecological Engineering Company, Ltd. , Linyi , Shandong 276700 , China
| | - Yan Liu
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment , Shandong Agricultural University , Tai'an , Shandong 271018 , China
| | - Guiting Yang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment , Shandong Agricultural University , Tai'an , Shandong 271018 , China
| | - Aiping Zhang
- Institute of Agricultural Environment and Sustainable Development , Chinese Academy of Agricultural Sciences , Beijing 100081 , China
| |
Collapse
|
18
|
Fan X, Zhao P, Zhang Q, Zhang T, Zhu K, Zhou C. A Polymer Plugging Gel for the Fractured Strata and Its Application. MATERIALS 2018; 11:ma11050856. [PMID: 29883407 PMCID: PMC5978233 DOI: 10.3390/ma11050856] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/08/2018] [Accepted: 05/15/2018] [Indexed: 11/16/2022]
Abstract
Well leakage of fractured strata is a tricky problem while drilling. This unwieldy problem is usually caused by the poor formation of the cementing degree, the staggered-mesh of the fracture, and the low bearing capacity of the formation, which can also lead to a narrow and even unsafe window of drilling fluid density. For fractured strata, the normal plugging material has the disadvantages of unsuitable size and low strength, resulting in unsuccessful first time plugging and an increase in cost. Therefore, we developed a polymer plugging gel for the fractured strata, named XNGJ-3. XNGJ-3 is mainly made of an acrylamide monomer and is accompanied by the reactive monomers of carboxyl and hydroxyl as ingredients. XNGJ-3 has a low viscosity before gelling. At 80 °C it becomes gelled, and the gelling time was controlled within the required time of the practical application. These conditions are beneficial for making the plugging material enter the crossing fracture smoothly and occlude the fracture. XNGJ-3 also has a good deformability and can avoid being damaged during the process of fracture closure. The well leakage simulated experiment revealed that the bearing capacity of this material can reach 21 MPa and the inverse bearing capacity can reach 20 MPa. These strengths are more than twice that of common polymer plugging gels. Finally, three leaked wells in the fractured strata of the Sichuan Basin were used to verify the plugging effect of XNGJ-3. Compared with other common plugging materials, XNGJ-3 has the advantages of having a higher success rate of first time plugging, a lower economic cost, a shorter work time, and so forth, which indicate that this plugging material has a good engineering application value in dealing with well leakage of fractured strata.
Collapse
Affiliation(s)
- Xiangyu Fan
- College of Petroleum Engineering, Southwest Petroleum University, Chengdu 610500, China.
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China.
| | - Pengfei Zhao
- College of Petroleum Engineering, Southwest Petroleum University, Chengdu 610500, China.
| | - Qiangui Zhang
- College of Petroleum Engineering, Southwest Petroleum University, Chengdu 610500, China.
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China.
- Department of Civil, Geological and Mining Engineering, École Polytechnique de Montréal, Montreal, QC H3T 1J4, Canada.
| | - Ting Zhang
- College of Petroleum Engineering, Southwest Petroleum University, Chengdu 610500, China.
| | - Kui Zhu
- Sinopec Nanjing Chemical Research Co., Ltd., Nanjing 210000, China.
| | - Chenghua Zhou
- Drilling Engineering Research Institute of Sinopec Southwest Petroleum Engineering Co., Ltd., Deyang 618000, China.
| |
Collapse
|
19
|
Olad A, Zebhi H, Salari D, Mirmohseni A, Reyhani Tabar A. Slow-release NPK fertilizer encapsulated by carboxymethyl cellulose-based nanocomposite with the function of water retention in soil. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 90:333-340. [PMID: 29853099 DOI: 10.1016/j.msec.2018.04.083] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 04/06/2018] [Accepted: 04/27/2018] [Indexed: 01/31/2023]
Abstract
In this study, new slow release fertilizer encapsulated by superabsorbent nanocomposite was prepared by in-situ graft polymerization of sulfonated-carboxymethyl cellulose (SCMC) with acrylic acid (AA) in the presence of polyvinylpyrrolidone (PVP), silica nanoparticles and nitrogen (N), phosphorous (P), and potassium (K) (NPK) fertilizer compound. The prepared materials were characterized by FT-IR, XRD and scanning electron microscopy (SEM) techniques. The incorporation of NPK fertilizer into hydrogel nanocomposite network was verified by results of these analyses. Also, the swelling behavior in various pH and saline solutions as well as water retention capability of the prepared hydrogel nanocomposite was evaluated. The fertilizer release behavior of the NPK loaded hydrogel nanocomposite was in good agreement with the standard of Committee of European Normalization (CEN), indicating its excellent slow release property. These good characteristics revealed that the hydrogel nanocomposite fertilizer formulation can be practically used in agricultural and horticultural applications.
Collapse
Affiliation(s)
- Ali Olad
- Polymer Composite Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | - Hamid Zebhi
- Polymer Composite Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Dariush Salari
- Polymer Composite Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Abdolreza Mirmohseni
- Polymer Composite Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Adel Reyhani Tabar
- Department of Soil Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| |
Collapse
|
20
|
Li X, Li Q, Xu X, Su Y, Yue Q, Gao B. Characterization, swelling and slow-release properties of a new controlled release fertilizer based on wheat straw cellulose hydrogel. J Taiwan Inst Chem Eng 2016. [DOI: 10.1016/j.jtice.2015.10.027] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Zhang Y, Gao P, Zhao L, Chen Y. Preparation and swelling properties of a starch-g-poly(acrylic acid)/organo-mordenite hydrogel composite. Front Chem Sci Eng 2015. [DOI: 10.1007/s11705-015-1546-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
22
|
Mohammadi-Khoo S, Moghadam PN, Fareghi AR, Movagharnezhad N. Synthesis of a cellulose-based hydrogel network: Characterization and study of urea fertilizer slow release. J Appl Polym Sci 2015. [DOI: 10.1002/app.42935] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Shahin Mohammadi-Khoo
- Faculty of Chemistry, Department of Organic Chemistry; University of Urmia; Urmia, Iran
| | | | - Amir Reza Fareghi
- Faculty of Chemistry, Department of Organic Chemistry; University of Urmia; Urmia, Iran
| | - Nasim Movagharnezhad
- Faculty of Chemistry, Department of Organic Chemistry; University of Urmia; Urmia, Iran
| |
Collapse
|
23
|
Hydrogel/clinoptilolite nanocomposite-coated fertilizer: swelling, water-retention and slow-release fertilizer properties. Polym Bull (Berl) 2015. [DOI: 10.1007/s00289-015-1428-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Superabsorbent polymer nanocomposites with surfactant- or acid-modified Ca-montmorillonite: synthesis and water absorbency. JOURNAL OF POLYMER RESEARCH 2015. [DOI: 10.1007/s10965-015-0675-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
25
|
Rashidzadeh A, Olad A. Slow-released NPK fertilizer encapsulated by NaAlg-g-poly(AA-co-AAm)/MMT superabsorbent nanocomposite. Carbohydr Polym 2014; 114:269-278. [DOI: 10.1016/j.carbpol.2014.08.010] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/07/2014] [Accepted: 08/01/2014] [Indexed: 11/30/2022]
|
26
|
Parvathy PC, Jyothi AN. Rheological and thermal properties of saponified cassava starch-g-poly(acrylamide) superabsorbent polymers varying in grafting parameters and absorbency. J Appl Polym Sci 2014. [DOI: 10.1002/app.40368] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Prabha C. Parvathy
- Division of Crop Utilization; Central Tuber Crops Research Institute, Sreekariyam; Thiruvananthapuram Kerala India
| | - Alummoottil. N. Jyothi
- Division of Crop Utilization; Central Tuber Crops Research Institute, Sreekariyam; Thiruvananthapuram Kerala India
| |
Collapse
|
27
|
Rashidzadeh A, Olad A, Salari D, Reyhanitabar A. On the preparation and swelling properties of hydrogel nanocomposite based on Sodium alginate-g-Poly (acrylic acid-co-acrylamide)/Clinoptilolite and its application as slow release fertilizer. JOURNAL OF POLYMER RESEARCH 2014. [DOI: 10.1007/s10965-013-0344-9] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|