1
|
Wu Y, Liu H, Sun Z, Liu J, Li K, Fan R, Dai F, Tang H, Hou Q, Li J, Tang X. The adhesion-GPCR ADGRF5 fuels breast cancer progression by suppressing the MMP8-mediated antitumorigenic effects. Cell Death Dis 2024; 15:455. [PMID: 38937435 PMCID: PMC11211477 DOI: 10.1038/s41419-024-06855-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
ADGRF5 (GPR116) has been identified as a facilitator of breast cancer cell migration and metastasis, yet the underlying mechanisms remain largely elusive. Our current study reveals that the absence of ADGRF5 in breast cancer cells impairs extracellular matrix (ECM)-associated cell motility and impedes in vivo tumor growth. This correlates with heightened expression of matrix metalloproteinase 8 (MMP8), a well-characterized antitumorigenic MMP, and a shift in the polarization of tumor-associated neutrophils (TANs) towards the antitumor N1 phenotype in the tumor microenvironment (TME). Mechanistically, ADGRF5 inhibits ERK1/2 activity by enhancing RhoA activation, leading to decreased phosphorylation of C/EBPβ at Thr235, hindering its nuclear translocation and subsequent activation. Crucially, two C/EBPβ binding motifs essential for MMP8 transcription are identified within its promoter region. Consequently, ADGRF5 silencing fosters MMP8 expression and CXCL8 secretion, attracting increased infiltration of TANs; simultaneously, MMP8 plays a role in decorin cleavage, which leads to trapped-inactivation of TGF-β in the TME, thereby polarizing TANs towards the antitumor N1 neutrophil phenotype and mitigating TGF-β-enhanced cell motility in breast cancer. Our findings reveal a novel connection between ADGRF5, an adhesion G protein-coupled receptor, and the orchestration of the TME, which dictates malignancy progression. Overall, the data underscore ADGRF5 as a promising therapeutic target for breast cancer intervention.
Collapse
Grants
- 82372645 National Natural Science Foundation of China (National Science Foundation of China)
- 81972602 National Natural Science Foundation of China (National Science Foundation of China)
- 82002716 National Natural Science Foundation of China (National Science Foundation of China)
- 82273497 National Natural Science Foundation of China (National Science Foundation of China)
- 81502331 National Natural Science Foundation of China (National Science Foundation of China)
- The Natural Science Foundation of Hunan Province (grant nos. 2023JJ20021), the Fundamental Research Funds for the Central Universities (521119200099, 541109030051).
- The Natural Science Foundation of Hunan Province (grant nos.2024JJ6490)
- Natural Science Foundation of Henan Province (222300420029), Program for Science and Technology Innovation Talents in Universities of Henan Province (23HASTIT042).
- The Project of Department of Education of Guangdong Province, (2019KTSCX146), the Shenzhen Science and Technology Program (JCYJ20190808164209301), the Shenzhen Scientific Research Foundation for Excellent Returned Scholars (000493), the Natural Science Foundation of Shenzhen University General Hospital (SUGH2020QD005), the Disciple gathering teaching project of Shenzhen University, the Shenzhen Key Laboratory Foundation (ZDSYS20200811143757022), the Teaching Reform Research Project of Shenzhen University (YXBJG202339), and the Shenzhen International Cooperation Research Project (GJHZ20220913143004008).
- The Wisdom Accumulation and Talent Cultivation Project of the Third Xiangya Hospital of Central South University (YX202105), Natural Science Foundation of Hunan Province (Grant Nos. 2021JJ31010).
Collapse
Affiliation(s)
- Yalan Wu
- Department of Histology and Embryology, School of Basic Medical Sciences, Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Huixia Liu
- Hunan Key Laboratory of Animal Models and Molecular Medicine, School of Biomedical Sciences, Hunan University, Changsha, 410082, China
| | - Zhe Sun
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jieling Liu
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Kai Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Ronghui Fan
- Hunan Key Laboratory of Animal Models and Molecular Medicine, School of Biomedical Sciences, Hunan University, Changsha, 410082, China
| | - Fujun Dai
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, 475004, Henan, China
| | - Hui Tang
- Department of Neurosurgery, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, 637003, Sichuan, China
| | - Qi Hou
- Department of Urology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
- International Cancer Center, Shenzhen Key Laboratory, Hematology Institution of Shenzhen University, Shenzhen, 518061, China
| | - JinSong Li
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Xiaolong Tang
- Hunan Key Laboratory of Animal Models and Molecular Medicine, School of Biomedical Sciences, Hunan University, Changsha, 410082, China.
| |
Collapse
|
2
|
Daraban Bocaneti F, Altamura G, Corteggio A, Tanase OI, Dascalu MA, Pasca SA, Hritcu O, Mares M, Borzacchiello G. Expression of collagenases (matrix metalloproteinase-1, -8, -13) and tissue inhibitor of metalloproteinase-3 (TIMP-3) in naturally occurring bovine cutaneous fibropapillomas. Front Vet Sci 2023; 9:1072672. [PMID: 36713871 PMCID: PMC9878699 DOI: 10.3389/fvets.2022.1072672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/28/2022] [Indexed: 01/13/2023] Open
Abstract
Bovine cutaneous fibropapillomas are among the most common skin tumors in cattle; their etiology is associated with infection by bovine papillomavirus (BPV) types-1/-2 which are considered oncogenic. Degradation of the extracellular matrix (ECM), especially collagenolysis, is a key event during a series of relevant physiological processes, including tissue remodeling and repair. Various types of proteins are implicated in the regulation of ECM degradation: among these, matrix metalloproteinases (MMPs), a group of zinc-dependent endoenzymes, and tissue inhibitors of matrix metalloproteinases (TIMPs) are known to play a major role. Previous studies reported that aberrant expression of collagenolytic MMPs (MMP-1/-8/-13) and unbalancing between MMPs and TIMPs represent a critical step in tumor growth and invasion; however, studies regarding this topic in bovine cutaneous fibropapillomas are lacking. The aim of this study was to investigate the expression of the collagenases MMP-1/-8/-13 and TIMP-3 in naturally occurring fibropapillomas harboring BPV-2 DNA and normal skin samples. Here, by immunohistochemistry and western blotting analysis, we demonstrated overexpression of MMP-8/-13 along with a down-regulation of MMP-1, associated with a decrease in TIMP-3 levels in tumor compared with normal skin samples. This is the first study describing MMP-1/-8/-13 and TIMP-3 expression in bovine cutaneous fibropapillomas and our results suggest that an impaired expression of collagenases along with an imbalance between MMPs/TIMPs may contribute to an increased collagenolytic activity, which in turn could be important in ECM changes and tumors development.
Collapse
Affiliation(s)
- Florentina Daraban Bocaneti
- Department of Public Health, Faculty of Veterinary Medicine, Iasi University of Life Sciences “Ion Ionescu de la Brad”, Iaşi, Romania,*Correspondence: Florentina Daraban Bocaneti ✉
| | - Gennaro Altamura
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Naples, Italy
| | - Annunziata Corteggio
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Naples, Italy
| | - Oana Irina Tanase
- Department of Public Health, Faculty of Veterinary Medicine, Iasi University of Life Sciences “Ion Ionescu de la Brad”, Iaşi, Romania
| | - Mihaela Anca Dascalu
- Department of Public Health, Faculty of Veterinary Medicine, Iasi University of Life Sciences “Ion Ionescu de la Brad”, Iaşi, Romania
| | - Sorin Aurelian Pasca
- Department of Pathology, Faculty of Veterinary Medicine, Iasi University of Life Sciences “Ion Ionescu de la Brad”, Iaşi, Romania
| | - Ozana Hritcu
- Department of Pathology, Faculty of Veterinary Medicine, Iasi University of Life Sciences “Ion Ionescu de la Brad”, Iaşi, Romania
| | - Mihai Mares
- Department of Public Health, Faculty of Veterinary Medicine, Iasi University of Life Sciences “Ion Ionescu de la Brad”, Iaşi, Romania
| | - Giuseppe Borzacchiello
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Naples, Italy
| |
Collapse
|
3
|
Kaasinen M, Hagström J, Mustonen H, Sorsa T, Sund M, Haglund C, Seppänen H. Matrix Metalloproteinase 8 Expression in a Tumour Predicts a Favourable Prognosis in Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2022; 23:3314. [PMID: 35328734 PMCID: PMC8951094 DOI: 10.3390/ijms23063314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a significant cause of cancer-related death globally, and, despite improvements in diagnostics and treatment, survival remains poor. Matrix metalloproteinases (MMPs) are enzymes involved in stroma remodelling in inflammation and cancer. MMP-8 plays a varied prognostic role in cancers of the gastrointestinal tract. We examined the prognostic value of MMP-8 immunoexpression in tumour tissue and the amount of MMP-8-positive polymorphonuclear cells (PMNs) in PDAC and their association with immune responses using C-reactive protein (CRP) as a marker of systemic inflammation. Tumour samples from 141 PDAC patients undergoing surgery in 2002−2011 at the Department of Surgery, Helsinki University Hospital were stained immunohistochemically, for which we evaluated MMP-8 expression in cancer cells and the amount of MMP-8-positive PMNs. We assessed survival using the Kaplan−Meier analysis while uni- and multivariable analyses relied on the Cox proportional hazards model. A negative MMP-8 stain and elevated CRP level predicted a poor prognosis (hazard ratio [HR] = 6.95; 95% confidence interval (CI) 2.69−17.93; p < 0.001) compared to a positive stain and low CRP level (<10 mg/L). The absence of PMNs together with an elevated CRP level also predicted an unfavourable outcome (HR = 3.17; 95% CI 1.60−6.30; p = 0.001). MMP-8 expression in the tumour served as an independent positive prognostic factor (HR = 0.33; 95% CI 0.16−0.68; p = 0.003). Tumour MMP-8 expression and a low CRP level may predict a favourable outcome in PDAC with similar results for MMP-8-positive PMNs and low CRP levels. Tumoural MMP-8 expression represents an independent positive prognostic factor in PDAC.
Collapse
Affiliation(s)
- Mirjami Kaasinen
- Department of Surgery, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland; (M.K.); (H.M.); (M.S.); (C.H.)
| | - Jaana Hagström
- Department of Pathology, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland;
- Department of Oral Pathology and Radiology, University of Turku, 20014 Turku, Finland
- Translational Cancer Medicine Research Programme, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Harri Mustonen
- Department of Surgery, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland; (M.K.); (H.M.); (M.S.); (C.H.)
- Translational Cancer Medicine Research Programme, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Timo Sorsa
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland;
- Section of Periodontology and Dental Prevention, Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, 17177 Solna, Sweden
| | - Malin Sund
- Department of Surgery, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland; (M.K.); (H.M.); (M.S.); (C.H.)
- Department of Surgery and Perioperative Sciences/Surgery, Umeå University, 90187 Umeå, Sweden
| | - Caj Haglund
- Department of Surgery, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland; (M.K.); (H.M.); (M.S.); (C.H.)
- Translational Cancer Medicine Research Programme, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Hanna Seppänen
- Department of Surgery, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland; (M.K.); (H.M.); (M.S.); (C.H.)
- Translational Cancer Medicine Research Programme, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| |
Collapse
|
4
|
Taherkhani A, Orangi A, Moradkhani S, Khamverdi Z. Molecular Docking Analysis of Flavonoid Compounds with Matrix Metalloproteinase- 8 for the Identification of Potential Effective Inhibitors. LETT DRUG DES DISCOV 2021. [DOI: 10.2174/1570180817999200831094703] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background:
Matrix metalloproteinase-8 (MMP-8) participates in the degradation of different
types of collagens in the extracellular matrix and basement membrane. Up-regulation of the
MMP-8 has been demonstrated in many disorders including cancer development, tooth caries, periodontal/
peri-implant soft and hard tissue degeneration, and acute/chronic inflammation. Therefore,
MMP-8 has become an encouraging target for therapeutic procedures for scientists. We carried out a
molecular docking approach to study the binding affinity of 29 flavonoids, as drug candidates, with
the MMP-8. Pharmacokinetic and toxicological properties of the compounds were also studied.
Moreover, it was attempted to identify the most important amino acids participating in ligand binding
based on the degree of each of the amino acids in the ligand-amino acid interaction network for
MMP-8.
Methods:
Three-dimensional structure of the protein was gained from the RCSB database (PDB ID: 4QKZ).
AutoDock version 4.0 and Cytoscape 3.7.2 were used for molecular docking and network analysis,
respectively. Notably, the inhibitor of the protein in the crystalline structure of the 4QKZ was considered
as a control test. Pharmacokinetic and toxicological features of compounds were predicted
using bioinformatics web tools. Post-docking analyses were performed using BIOVIA Discovery
Studio Visualizer version 19.1.0.18287.
Results and Discussions:
According to results, 24 of the studied compounds were considered to be
top potential inhibitors for MMP-8 based on their salient estimated free energy of binding and inhibition
constant as compared with the control test: Apigenin-7-glucoside, nicotiflorin, luteolin,
glabridin, taxifolin, apigenin, licochalcone A, quercetin, isorhamnetin, myricetin, herbacetin,
kaemferol, epicatechin, chrysin, amentoflavone, rutin, orientin, epiafzelechin, quercetin-3-
rhamnoside, formononetin, isoliquiritigenin, vitexin, catechine, and isoquercitrin. Moreover, His-
197 was found to be the most important amino acid involved in the ligand binding for the enzyme.
Conclusion:
The results of the current study could be used in the prevention and therapeutic procedures
of a number of disorders such as cancer progression and invasion, oral diseases, and
acute/chronic inflammation. Although, in vitro and in vivo tests are inevitable in the future.
Collapse
Affiliation(s)
- Amir Taherkhani
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Athena Orangi
- Dental Research Center, Department of Restorative Dentistry, Dental School, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shirin Moradkhani
- Department of Pharmacognosy, School of Pharmacy, Medicinal Plants and Natural Product Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zahra Khamverdi
- Dental Research Center, Department of Restorative Dentistry, Dental School, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
5
|
Rawat K, Syeda S, Shrivastava A. Neutrophil-derived granule cargoes: paving the way for tumor growth and progression. Cancer Metastasis Rev 2021; 40:221-244. [PMID: 33438104 PMCID: PMC7802614 DOI: 10.1007/s10555-020-09951-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/22/2020] [Indexed: 01/31/2023]
Abstract
Neutrophils are the key cells of our innate immune system mediating host defense via a range of effector functions including phagocytosis, degranulation, and NETosis. For this, they employ an arsenal of anti-microbial cargoes packed in their readily mobilizable granule subsets. Notably, the release of granule content is tightly regulated; however, under certain circumstances, their unregulated release can aggravate tissue damage and could be detrimental to the host. Several constituents of neutrophil granules have also been associated with various inflammatory diseases including cancer. In cancer setting, their excessive release may modulate tissue microenvironment which ultimately leads the way for tumor initiation, growth and metastasis. Neutrophils actively infiltrate within tumor tissues, wherein they show diverse phenotypic and functional heterogeneity. While most studies are focused at understanding the phenotypic heterogeneity of neutrophils, their functional heterogeneity, much of which is likely orchestrated by their granule cargoes, is beginning to emerge. Therefore, a better understanding of neutrophil granules and their cargoes will not only shed light on their diverse role in cancer but will also reveal them as novel therapeutic targets. This review provides an overview on existing knowledge of neutrophil granules and detailed insight into the pathological relevance of their cargoes in cancer. In addition, we also discuss the therapeutic approach for targeting neutrophils or their microenvironment in disease setting that will pave the way forward for future research.
Collapse
Affiliation(s)
- Kavita Rawat
- grid.8195.50000 0001 2109 4999Department of Zoology, University of Delhi, Delhi, 110007 India
| | - Saima Syeda
- grid.8195.50000 0001 2109 4999Department of Zoology, University of Delhi, Delhi, 110007 India
| | - Anju Shrivastava
- grid.8195.50000 0001 2109 4999Department of Zoology, University of Delhi, Delhi, 110007 India
| |
Collapse
|
6
|
The Role of MMP8 in Cancer: A Systematic Review. Int J Mol Sci 2019; 20:ijms20184506. [PMID: 31514474 PMCID: PMC6770849 DOI: 10.3390/ijms20184506] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/06/2019] [Accepted: 09/08/2019] [Indexed: 12/24/2022] Open
Abstract
Matrix metalloproteinases (MMPs) have traditionally been considered as tumor promoting enzymes as they degrade extracellular matrix components, thus increasing the invasion of cancer cells. It has become evident, however, that MMPs can also cleave and alter the function of various non-matrix bioactive molecules, leading to both tumor promoting and suppressive effects. We applied systematic review guidelines to study MMP8 in cancer including the use of MMP8 as a prognostic factor or as a target/anti-target in cancer treatment, and its molecular mechanisms. A total of 171 articles met the inclusion criteria. The collective evidence reveals that in breast, skin and oral tongue cancer, MMP8 inhibits cancer cell invasion and proliferation, and protects patients from metastasis via cleavage of non-structural substrates. Conversely, in liver and gastric cancers, high levels of MMP8 worsen the prognosis. Expression and genetic alterations of MMP8 can be used as a prognostic factor by examination of the tumor and serum/plasma. We conclude, that MMP8 has differing effects on cancers depending on their tissue of origin. The use of MMP8 as a prognostic factor alone, or with other factors, seems to have potential. The molecular mechanisms of MMP8 in cancer further emphasize its role as an important regulator of bioactive molecules.
Collapse
|
7
|
Carpén T, Sorsa T, Jouhi L, Tervahartiala T, Haglund C, Syrjänen S, Tarkkanen J, Mohamed H, Mäkitie A, Hagström J, Mattila PS. High levels of tissue inhibitor of metalloproteinase-1 (TIMP-1) in the serum are associated with poor prognosis in HPV-negative squamous cell oropharyngeal cancer. Cancer Immunol Immunother 2019; 68:1263-1272. [PMID: 31240326 PMCID: PMC6682571 DOI: 10.1007/s00262-019-02362-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 06/17/2019] [Indexed: 01/19/2023]
Abstract
Background An emerging subset of oropharyngeal squamous cell carcinomas (OPSCC) is caused by HPV. HPV-positive OPSCC has a better prognosis than HPV-negative OPSCC, but other prognostic markers for these two different diseases are scarce. Our aim was to evaluate serum levels and tumor expression of matrix metalloproteinase-8 (MMP-8) and tissue inhibitor of metalloproteinase-1 (TIMP-1) and to assess their prognostic role in HPV-positive and HPV-negative OPSCC. Materials and methods A total of 90 consecutive OPSCC patients diagnosed and treated with curative intent at the Helsinki University Hospital between 2012 and 2016 were included. Serum samples were prospectively collected. An immunofluorometric assay and an enzyme-linked immunosorbent assay were used to determine MMP-8 and TIMP-1 serum concentrations, respectively. HPV status of the tumors was determined using a combination of HPV-DNA genotyping and p16-INK4a immunohistochemistry. The endpoints were overall survival (OS) and disease-free survival (DFS). Results High TIMP-1 serum levels were strongly and independently associated with poorer OS (adjusted HR 14.7, 95% CI 1.8–117.4, p = 0.011) and DFS (adjusted HR 8.7, 95% CI 1.3–57.1, p = 0.024) among HPV-negative patients; this association was not observed in HPV-positive OPSCC. Although TIMP-1 was immunoexpressed in the majority of the tumor tissue samples, the level of immunoexpression was not associated with prognosis, nor did MMP-8 serum levels. Conclusion Our results indicate that serum TIMP-1 levels may serve as an independent prognostic marker for HPV-negative OPSCC patients.
Collapse
Affiliation(s)
- Timo Carpén
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Helsinki and HUS Helsinki University Hospital, P.O.Box 263, 00029 HUS, Helsinki, Finland. .,Department of Pathology, University of Helsinki and HUS Helsinki University Hospital, P.O.Box 21, 00014 HUS, Helsinki, Finland.
| | - Timo Sorsa
- Department of Oral and Maxillofacial Diseases, University of Helsinki and HUS Helsinki University Hospital, P.O.Box 41, 00014 HUS, Helsinki, Finland.,Department of Oral Diseases, Karolinska Institutet, Huddinge, Sweden
| | - Lauri Jouhi
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Helsinki and HUS Helsinki University Hospital, P.O.Box 263, 00029 HUS, Helsinki, Finland
| | - Taina Tervahartiala
- Department of Oral and Maxillofacial Diseases, University of Helsinki and HUS Helsinki University Hospital, P.O.Box 41, 00014 HUS, Helsinki, Finland
| | - Caj Haglund
- Department of Surgery, University of Helsinki and HUS Helsinki University Hospital, P.O.Box 440, 00029 HUS, Helsinki, Finland.,Research Programs Unit, Translational Cancer Biology, University of Helsinki, P.O.Box 63, 00014, Helsinki, Finland
| | - Stina Syrjänen
- Department of Oral Pathology and Oral Radiology, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland.,Department of Pathology, Turku University Hospital, Kiinamyllynkatu 10, 20520, Turku, Finland
| | - Jussi Tarkkanen
- Department of Pathology, University of Helsinki and HUS Helsinki University Hospital, P.O.Box 21, 00014 HUS, Helsinki, Finland
| | - Hesham Mohamed
- Department of Pathology, University of Helsinki and HUS Helsinki University Hospital, P.O.Box 21, 00014 HUS, Helsinki, Finland
| | - Antti Mäkitie
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Helsinki and HUS Helsinki University Hospital, P.O.Box 263, 00029 HUS, Helsinki, Finland.,Division of Ear, Nose and Throat Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet and Karolinska Hospital, 171 76, Stockholm, Sweden.,Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jaana Hagström
- Department of Pathology, University of Helsinki and HUS Helsinki University Hospital, P.O.Box 21, 00014 HUS, Helsinki, Finland.,Research Programs Unit, Translational Cancer Biology, University of Helsinki, P.O.Box 63, 00014, Helsinki, Finland
| | - Petri S Mattila
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Helsinki and HUS Helsinki University Hospital, P.O.Box 263, 00029 HUS, Helsinki, Finland
| |
Collapse
|
8
|
Treponema denticola chymotrypsin-like proteinase may contribute to orodigestive carcinogenesis through immunomodulation. Br J Cancer 2017; 118:428-434. [PMID: 29149107 PMCID: PMC5808028 DOI: 10.1038/bjc.2017.409] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/16/2017] [Accepted: 10/18/2017] [Indexed: 12/22/2022] Open
Abstract
Background: Periodontal pathogens have been linked to oral and gastrointestinal (orodigestive) carcinogenesis. However, the exact mechanisms remain unknown. Treponema denticola (Td) is associated with severe periodontitis, a chronic inflammatory disease leading to tooth loss. The anaerobic spirochete Td is an invasive bacteria due to its major virulence factor chymotrypsin-like proteinase. Here we aimed to investigate the presence of Td chymotrypsin-like proteinase (Td-CTLP) in major orodigestive tumours and to elucidate potential mechanisms for Td to contribute to carcinogenesis. Methods: The presence of Td-CTLP within orodigestive tumour tissues was examined using immunohistochemistry. Oral, tonsillar, and oesophageal squamous cell carcinomas, alongside gastric, pancreatic, and colon adenocarcinomas were stained with a Td-CTLP-specific antibody. Gingival tissue from periodontitis patients served as positive controls. SDS–PAGE and immunoblot were used to analyse the immumodulatory activity of Td-CTLP in vitro. Results: Td-CTLP was present in majority of orodigestive tumour samples. Td-CTLP was found to convert pro MMP-8 and -9 into their active forms. In addition, Td-CTLP was able to degrade the proteinase inhibitors TIMP-1, TIMP-2, and α-1-antichymotrypsin, as well as complement C1q. Conclusions: Because of its presence within tumours and regulatory activity on proteins critical for the regulation of tumour microenvironment and inflammation, the Td-CTLP may contribute to orodigestive carcinogenesis.
Collapse
|
9
|
Åström P, Juurikka K, Hadler-Olsen ES, Svineng G, Cervigne NK, Coletta RD, Risteli J, Kauppila JH, Skarp S, Kuttner S, Oteiza A, Sutinen M, Salo T. The interplay of matrix metalloproteinase-8, transforming growth factor-β1 and vascular endothelial growth factor-C cooperatively contributes to the aggressiveness of oral tongue squamous cell carcinoma. Br J Cancer 2017; 117:1007-1016. [PMID: 28772283 PMCID: PMC5625665 DOI: 10.1038/bjc.2017.249] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 02/06/2023] Open
Abstract
Background: Matrix metalloproteinase-8 (MMP-8) has oncosuppressive properties in various cancers. We attempted to assess MMP-8 function in oral tongue squamous cell carcinoma (OTSCC). Methods: MMP-8 overexpressing OTSCC cells were used to study the effect of MMP-8 on proliferation, apoptosis, migration, invasion and gene and protein expression. Moreover, MMP-8 functions were assessed in the orthotopic mouse tongue cancer model and by immunohistochemistry in patient samples. Results: MMP-8 reduced the invasion and migration of OTSCC cells and decreased the expression of MMP-1, cathepsin-K and vascular endothelial growth factor-C (VEGF-C). VEGF-C was induced by transforming growth factor-β1 (TGF-β1) in control cells, but not in MMP-8 overexpressing cells. In human OTSCC samples, low MMP-8 in combination with high VEGF-C was an independent predictor of poor cancer-specific survival. TGF-β1 treatment also restored the migration of MMP-8 overexpressing cells to the level of control cells. In mouse tongue cancer, MMP-8 did not inhibit metastasis, possibly because it was eliminated in the peripheral carcinoma cells. Conclusions: The suppressive effects of MMP-8 in OTSCC may be mediated through interference of TGF-β1 and VEGF-C function and altered proteinase expression. Together, low MMP-8 and high VEGF-C expression have strong independent prognostic value in OTSCC.
Collapse
Affiliation(s)
- Pirjo Åström
- Cancer and Translational Medicine Research Unit, University of Oulu, PO Box 5281, Oulu 90014, Finland.,Medical Research Center Oulu, Oulu 90220, Finland.,Oulu University Hospital, Oulu 90220, Finland
| | - Krista Juurikka
- Cancer and Translational Medicine Research Unit, University of Oulu, PO Box 5281, Oulu 90014, Finland.,Medical Research Center Oulu, Oulu 90220, Finland
| | - Elin S Hadler-Olsen
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Tromsø 9037, Norway
| | - Gunbjørg Svineng
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Tromsø 9037, Norway
| | - Nilva K Cervigne
- Department of Morphology and Basic Pathology, Faculty of Medicine of Jundiai (FMJ), Jundiai, São Paulo, Brazil.,Department of Oral Diagnosis, School of Dentistry, State University of Campinas, Av. Limeira 901, CEP 13414-018, Piracicaba-SP, Brazil
| | - Ricardo D Coletta
- Department of Oral Diagnosis, School of Dentistry, State University of Campinas, Av. Limeira 901, CEP 13414-018, Piracicaba-SP, Brazil
| | - Juha Risteli
- Cancer and Translational Medicine Research Unit, University of Oulu, PO Box 5281, Oulu 90014, Finland.,Medical Research Center Oulu, Oulu 90220, Finland.,Oulu University Hospital, Oulu 90220, Finland.,Department of Clinical Chemistry, University of Oulu, Oulu PO Box 5000, 90014, Finland.,Northern Finland Laboratory Centre NordLab, Oulu University Hospital, Oulu 90220, Finland
| | - Joonas H Kauppila
- Cancer and Translational Medicine Research Unit, University of Oulu, PO Box 5281, Oulu 90014, Finland.,Medical Research Center Oulu, Oulu 90220, Finland.,Oulu University Hospital, Oulu 90220, Finland.,Upper Gastrointestinal Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm SE-171 76, Sweden
| | - Sini Skarp
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu 90014, Finland.,Biocenter Oulu, University of Oulu, Oulu 90014, Finland.,Center for Life Course Health Research, Faculty of Medicine, PO Box 5000, University of Oulu, Oulu 90014, Finland
| | - Samuel Kuttner
- Medical Imaging Research Group, Department of Clinical Medicine, Faculty of Health Sciences, University of Tromsø - the Arctic University of Norway, 9037 Tromsø, Norway.,Department of Radiology and Nuclear Medicine, University Hospital of North Norway, Tromsø 9038, Norway
| | - Ana Oteiza
- Medical Imaging Research Group, Department of Clinical Medicine, Faculty of Health Sciences, University of Tromsø - the Arctic University of Norway, 9037 Tromsø, Norway.,Department of Radiology and Nuclear Medicine, University Hospital of North Norway, Tromsø 9038, Norway
| | - Meeri Sutinen
- Cancer and Translational Medicine Research Unit, University of Oulu, PO Box 5281, Oulu 90014, Finland.,Medical Research Center Oulu, Oulu 90220, Finland.,Oulu University Hospital, Oulu 90220, Finland
| | - Tuula Salo
- Cancer and Translational Medicine Research Unit, University of Oulu, PO Box 5281, Oulu 90014, Finland.,Medical Research Center Oulu, Oulu 90220, Finland.,Oulu University Hospital, Oulu 90220, Finland.,Helsinki University Central Hospital, Helsinki, Finland.,Department of Oral Pathology, Institute of Dentistry, Biomedicum, PO Box 63, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
10
|
Sarper M, Allen MD, Gomm J, Haywood L, Decock J, Thirkettle S, Ustaoglu A, Sarker SJ, Marshall J, Edwards DR, Jones JL. Loss of MMP-8 in ductal carcinoma in situ (DCIS)-associated myoepithelial cells contributes to tumour promotion through altered adhesive and proteolytic function. Breast Cancer Res 2017; 19:33. [PMID: 28330493 PMCID: PMC5363009 DOI: 10.1186/s13058-017-0822-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 03/02/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Normal myoepithelial cells (MECs) play an important tumour-suppressor role in the breast but display an altered phenotype in ductal carcinoma in situ (DCIS), gaining tumour-promoter functions. Matrix metalloproteinase-8 (MMP-8) is expressed by normal MECs but is lost in DCIS. This study investigated the function of MMP-8 in MECs and the impact of its loss in DCIS. METHODS Primary normal and DCIS-associated MECs, and normal (N-1089) and DCIS-modified myoepithelial (β6-1089) cell lines, were used to assess MMP-8 expression and function. β6-1089 lacking MMP-8 were transfected with MMP-8 WT and catalytically inactive MMP-8 EA, and MMP-8 in N-1089 MEC was knocked down with siRNA. The effect on adhesion and migration to extracellular matrix (ECM), localisation of α6β4 integrin to hemidesmosomes (HD), TGF-β signalling and gelatinase activity was measured. The effect of altering MEC MMP-8 expression on tumour cell invasion was investigated in 2D and 3D organotypic models. RESULTS Assessment of primary cells and MEC lines confirmed expression of MMP-8 in normal MEC and its loss in DCIS-MEC. Over-expression of MMP-8 WT but not MMP-8 EA in β6-1089 cells increased adhesion to ECM proteins and reduced migration. Conversely, knock-down of MMP-8 in N-1089 reduced adhesion and increased migration. Expression of MMP-8 WT in β6-1089 led to greater localisation of α6β4 to HD and reduced retraction fibre formation, this being reversed by MMP-8 knock-down in N-1089. Over-expression of MMP-8 WT reduced TGF-β signalling and gelatinolytic activity. MMP-8 knock-down enhanced TGF-β signalling and gelatinolytic activity, which was reversed by blocking MMP-9 by knock-down or an inhibitor. MMP-8 WT but not MMP-8 EA over-expression in β6-1089 reduced breast cancer cell invasion in 2D and 3D invasion assays, while MMP-8 knock-down in N-1089 enhanced cancer cell invasion. Staining of breast cancer cases for MMP-8 revealed a statistically significant loss of MMP-8 expression in DCIS with invasion versus pure DCIS (p = 0.001). CONCLUSIONS These data indicate MMP-8 is a vital component of the myoepithelial tumour-suppressor function. It restores MEC interaction with the matrix, opposes TGF-β signalling and MMP-9 proteolysis, which contributes to inhibition of tumour cell invasion. Assessment of MMP-8 expression may help to determine risk of DCIS progression.
Collapse
Affiliation(s)
- Muge Sarper
- Translational Cancer Discovery Team, CRUK Cancer Therapeutics Unit, Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK
| | - Michael D Allen
- Centre for Tumour Biology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| | - Jenny Gomm
- Centre for Tumour Biology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Linda Haywood
- Centre for Tumour Biology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Julie Decock
- Cancer Research Centre, Qatar Biomedical Research Institute, Qatar Foundation, Doha, Qatar
| | - Sally Thirkettle
- Centre for Tumour Biology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Ahsen Ustaoglu
- Centre for Tumour Biology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Shah-Jalal Sarker
- Centre for Experimental Cancer Medicine, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - John Marshall
- Centre for Tumour Biology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Dylan R Edwards
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - J Louise Jones
- Centre for Tumour Biology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
11
|
Gupta N, Gupta ND, Gupta A, Goyal L, Garg S. The influence of type 2 diabetes mellitus on salivary matrix metalloproteinase-8 levels and periodontal parameters: A study in an Indian population. Eur J Dent 2015; 9:319-323. [PMID: 26430357 PMCID: PMC4569980 DOI: 10.4103/1305-7456.163222] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVE Although many studies reported more severe periodontal disease and the existing proinflammatory conditions in patients with diabetes but only few have examined the effect of type 2 diabetes mellitus (DM) on salivary matrix metalloproteinase-8 (MMP-8) level and other periodontal parameters. This study aims to evaluate the effect of type 2 DM on salivary MMP-8 levels and periodontal parameters, which might be useful in monitoring periodontal disease in diabetes. MATERIALS AND METHODS A total of 90 subjects were selected for the study and were divided into three groups: Group I included 30 healthy subjects; Group II included 30 subjects without type 2 DM but with chronic periodontitis, and Group III included 30 subjects with type 2 DM and chronic periodontitis. Periodontal parameters such as plaque index (PI), gingival index (GI), pocket probing depth (PPD), and clinical attachment level (CAL) were taken. The salivary MMP-8 level was estimated by Quantikine Human total MMP-8 immunoassay kit using ELISA method. RESULTS The mean value of the salivary MMP-8 of Group III was highest followed by Group II and Group I, the least. The other periodontal parameters PI, GI, PPD, CAL, was comparatively highest for Group III. CONCLUSION This study suggests that diabetes is associated with an increased prevalence, extent, and severity of periodontitis. Furthermore, the increased levels of MMP-8 indicate the influence of diabetes on their salivary concentration.
Collapse
Affiliation(s)
- Namita Gupta
- Department of Periodontics and Community Dentistry, Dr. Z. A. Dental College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Narinder Dev Gupta
- Department of Periodontics and Community Dentistry, Dr. Z. A. Dental College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Akash Gupta
- Department of Biochemistry, Subharti Medical College, Meerut, Uttar Pradesh, India
| | - Lata Goyal
- Department of Periodontics and Community Dentistry, Dr. Z. A. Dental College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Sagar Garg
- Department of Periodontics, Tamil Nadu Government Medical College, Chennai, Tamil Nadu, India
| |
Collapse
|
12
|
Vihinen P, Tervahartiala T, Sorsa T, Hansson J, Bastholt L, Aamdal S, Stierner U, Pyrhönen S, Syrjänen K, Lundin J, Hernberg M. Benefit of adjuvant interferon alfa-2b (IFN-α) therapy in melanoma patients with high serum MMP-8 levels. Cancer Immunol Immunother 2015; 64:173-80. [PMID: 25319807 PMCID: PMC11029364 DOI: 10.1007/s00262-014-1620-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 10/03/2014] [Indexed: 11/25/2022]
Abstract
Matrix metalloproteinases (MMPs) are important enzymes in tissue turnover and various inflammatory processes. In this study, it was evaluated whether serum MMP-8 can predict the response to adjuvant interferon alfa-2b (IFN-α) therapy in patients with operated high-risk cutaneous melanoma. Pre-treatment sera from 460 patients with stage IIB-IIIC melanoma were analyzed for MMP-8. The patients were randomized after surgery to adjuvant IFN-α for 12 or 24 months (n = 313) or observation only (n = 147). The median serum MMP-8 level was used to classify the patients into a low MMP-8 (n = 232) and a high MMP-8 (n = 228) group. In the high MMP-8 subgroup, IFN-α therapy significantly improved relapse-free survival (RFS). RFS was 36.8 months in patients with high MMP-8 levels receiving IFN-α therapy, whereas RFS for those with high MMP-8 levels with observation only was 10.6 months (P = 0.027). Median overall survival for patients with high MMP-8 and observation only was 36.7 versus 71.7 months in those receiving IFN-α (P = 0.13). In a multivariate model, IFN-α therapy was a significant predictor of favorable RFS (HR 0.74; 95 % CI 0.55-0.99; P = 0.048), after adjustment for pre-treatment MMP-8 (HR 1.17; 95 % CI 0.88-1.55; P = 0.28), gender (HR 1.16; 95 % CI 0.86-1.56; P = 0.32), age (HR 1.00; 95 % CI 1.00-1.02; P = 0.12), ulceration (HR 1.09; 95 % CI 0.81-1.46; P = 0.58), and the presence of node metastases (HR 1.36; 95 % CI 1.17-1.58; P < 0.0001). In conclusion, patients with high serum MMP-8 levels may benefit from adjuvant IFN-α therapy, but this observation should be further investigated.
Collapse
Affiliation(s)
- Pia Vihinen
- Department of Oncology and Radiotherapy, Turku University Hospital, POB 52, 20521, Turku, Finland,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ahmed Haji Omar A, Haglund C, Virolainen S, Häyry V, Atula T, Kontio R, Salo T, Sorsa T, Hagström J. MMP-7, MMP-8, and MMP-9 in oral and cutaneous squamous cell carcinomas. Oral Surg Oral Med Oral Pathol Oral Radiol 2015; 119:459-67. [PMID: 25697929 DOI: 10.1016/j.oooo.2014.12.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 12/10/2014] [Accepted: 12/19/2014] [Indexed: 01/06/2023]
Abstract
OBJECTIVES Oral squamous cell carcinoma (OSCC) and cutaneous squamous cell carcinoma (CSCC) are epithelial neoplasms, of which OSCC has a worse prognosis. Matrix metalloproteinases (MMPs) are involved in the initiation, invasion, metastasis, and defense of cancer. This study aimed to compare differences in MMP expression in these cancers. STUDY DESIGN Sixty-one patients with early-stage (T1-T2 N0 M0) cancers, of which 36 were OSCC and 25 CSCC, were enrolled into this study. Immunohistochemical staining was performed with MMP-7, MMP-8, and MMP-9 antibodies. RESULTS MMP-7 expression was stronger in OSCC than in CSCC, mainly in the invasive front. MMP-8 was absent and MMP-9 was mildly expressed in OSCC and CSCC cells. However, MMP-8 and MMP-9 were positive in peritumoral inflammatory cells in both cancers. In addition, MMP-7, MMP-8, and MMP-9 were not associated with the overall survival of patients with OSCC and CSCC patients. CONCLUSIONS The increased expression of MMP-7 in the invasive front may partly explain the aggressiveness of OSCC.
Collapse
Affiliation(s)
| | - Caj Haglund
- Department of Surgery, Helsinki University Central Hospital, Helsinki, Finland; Research Programs Unit, Translational Cancer Biology, University of Helsinki, Helsinki, Finland
| | - Susanna Virolainen
- Department of Pathology, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Valtteri Häyry
- Department of Otorhinolaryngology - Head and Neck Surgery, Helsinki University Central Hospital, Helsinki, Finland
| | - Timo Atula
- Department of Otorhinolaryngology - Head and Neck Surgery, Helsinki University Central Hospital, Helsinki, Finland
| | - Risto Kontio
- Department of Oral and Maxillofacial Diseases, Helsinki University Central Hospital, Helsinki, Finland
| | - Tuula Salo
- Institute of Dentistry, University of Helsinki, Helsinki, Finland; Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Timo Sorsa
- Institute of Dentistry, University of Helsinki, Helsinki, Finland; Division of Periodontology, Department of Dental Medicine, Karolinska Institute, Huddinge, Sweden
| | - Jaana Hagström
- Department of Pathology, Haartman Institute, University of Helsinki, Helsinki, Finland; Department of Oral Pathology, Institute of Dentistry, University of Helsinki, Helsinki, Finland
| |
Collapse
|
14
|
Magalhaes MAO, Glogauer JE, Glogauer M. Neutrophils and oral squamous cell carcinoma: lessons learned and future directions. J Leukoc Biol 2014; 96:695-702. [DOI: 10.1189/jlb.4ru0614-294r] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
15
|
Pereira FV, Ferreira-Guimarães CA, Paschoalin T, Scutti JAB, Melo FM, Silva LS, Melo ACL, Silva P, Tiago M, Matsuo AL, Juliano L, Juliano MA, Carmona AK, Travassos LR, Rodrigues EG. A natural bacterial-derived product, the metalloprotease arazyme, inhibits metastatic murine melanoma by inducing MMP-8 cross-reactive antibodies. PLoS One 2014; 9:e96141. [PMID: 24788523 PMCID: PMC4005744 DOI: 10.1371/journal.pone.0096141] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 04/04/2014] [Indexed: 11/23/2022] Open
Abstract
The increased incidence, high rates of mortality and few effective means of treatment of malignant melanoma, stimulate the search for new anti-tumor agents and therapeutic targets to control this deadly metastatic disease. In the present work the antitumor effect of arazyme, a natural bacterial-derived metalloprotease secreted by Serratia proteomaculans, was investigated. Arazyme significantly reduced the number of pulmonary metastatic nodules after intravenous inoculation of B16F10 melanoma cells in syngeneic mice. In vitro, the enzyme showed a dose-dependent cytostatic effect in human and murine tumor cells, and this effect was associated to the proteolytic activity of arazyme, reducing the CD44 expression at the cell surface, and also reducing in vitro adhesion and in vitro/in vivo invasion of these cells. Arazyme treatment or immunization induced the production of protease-specific IgG that cross-reacted with melanoma MMP-8. In vitro, this antibody was cytotoxic to tumor cells, an effect increased by complement. In vivo, arazyme-specific IgG inhibited melanoma lung metastasis. We suggest that the antitumor activity of arazyme in a preclinical model may be due to a direct cytostatic activity of the protease in combination with the elicited anti-protease antibody, which cross-reacts with MMP-8 produced by tumor cells. Our results show that the bacterial metalloprotease arazyme is a promising novel antitumor chemotherapeutic agent.
Collapse
Affiliation(s)
- Felipe V. Pereira
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Carla A. Ferreira-Guimarães
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | | | - Jorge A. B. Scutti
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Filipe M. Melo
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Luis S. Silva
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Amanda C. L. Melo
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Priscila Silva
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Manoela Tiago
- School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Alisson L. Matsuo
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Luiz Juliano
- Department of Biophysics, EPM-UNIFESP, São Paulo, Brazil
| | | | | | - Luiz R. Travassos
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Elaine G. Rodrigues
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- * E-mail:
| |
Collapse
|
16
|
Li L, Li H. Role of microRNA-mediated MMP regulation in the treatment and diagnosis of malignant tumors. Cancer Biol Ther 2013; 14:796-805. [PMID: 23917402 DOI: 10.4161/cbt.25936] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Matrix metalloproteinases (MMPs) play important roles in tumor cell proliferation and apoptosis and contribute to tumor growth, angiogenesis, migration, and invasion primarily via extracellular matrix (ECM) degradation and/or the activation of pre-pro-growth factors. Recently, there has been considerable interest in the posttranscriptional regulation of MMPs via microRNAs (miRs). In this review, we highlight the complicated interactive network comprised of different MMPs and their regulating microRNAs, as well as the ways in which these interactions influence cancer development, including tumor angiogenesis, growth, invasion, and metastasis. Based on the conclusive roles that microRNAs play in the regulation of MMPs during cancer progression, we discuss the potential use of microRNA-mediated MMP regulation in the diagnosis and treatment of tumors from the clinical perspective. In particular, microRNA-mediated MMP regulation may lead to the development of promising new MMP inhibitors that target MMPs more selectively, and this approach may also target multiple molecules in a network, leading to the efficient regulation of distinct biological processes relevant to malignant tumors. A thorough understanding of the mechanisms underlying microRNA-mediated MMP regulation during tumor progression will help to provide new insights into the diagnosis and treatment of malignant tumors.
Collapse
Affiliation(s)
- Liqin Li
- Huzhou Key Laboratory of Molecular Medicine; Huzhou Central Hospital; Huzhou, China
| | - Heng Li
- The First Affiliated Hospital of Huzhou Teachers College; The First People's Hospital of Huzhou; Huzhou, China
| |
Collapse
|
17
|
Abstract
Matrix metalloproteinases, a group of over 26 zinc-dependent enzymes, share a similar structure to each other and functionally are capable of degrading almost every component of the extracellular matrix. They are essential to normal development during embryogenesis and extracellular matrix remodeling and, given this, understandably enough have been implicated in multiple pathologic processes that encompass the inflammatory and neoplastic spectrum of disease. This review attempts to define roles of matrix metalloproteinases of relevance in normal skin and to elucidate their roles in inflammatory dermatoses and benign and malignant neoplasms.
Collapse
|
18
|
Godoy-Santos A, Ortiz RT, Junior RM, Fernandes TD, Santos MCLG. MMP-8 polymorphism is genetic marker to tendinopathy primary posterior tibial tendon. Scand J Med Sci Sports 2012; 24:220-3. [DOI: 10.1111/j.1600-0838.2012.01469.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2012] [Indexed: 02/01/2023]
Affiliation(s)
- A. Godoy-Santos
- Department of Orthopedics and Traumatology; University of São Paulo; São Paulo SP Brazil
| | - R. T. Ortiz
- Department of Orthopedics and Traumatology; University of São Paulo; São Paulo SP Brazil
| | - R. Mattar Junior
- Department of Orthopedics and Traumatology; University of São Paulo; São Paulo SP Brazil
| | - T. D. Fernandes
- Department of Orthopedics and Traumatology; University of São Paulo; São Paulo SP Brazil
| | - M. C. L. G. Santos
- Department of Cell Biology; University Federal of Paraná; Curitiba PR Brazil
| |
Collapse
|
19
|
Costa-Junior FR, Alvim-Pereira CC, Alvim-Pereira F, Trevilatto PC, de Souza AP, Santos MCLG. Influence of MMP-8 promoter polymorphism in early osseointegrated implant failure. Clin Oral Investig 2012; 17:311-6. [PMID: 22382449 DOI: 10.1007/s00784-012-0699-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 02/17/2012] [Indexed: 10/28/2022]
Abstract
OBJECTIVE Dental implants consist in the treatment of choice to replace tooth loss. The knowledge that implant loss tends to cluster in subsets of individuals may indicate that host immuneinflammatory response is influenced by genetic factors. In fact, genetic polymorphisms influence the osseointegration process. The objective of this study was investigate the possible relationship between C-799T polymorphism in matrix metalloproteinase 8 (MMP-8) gene and early implant failure in nonsmoker patients. METHODS AND MATERIALS Subjects were divided into two groups: control group (100 patients with one or more healthy implants) and test group (80 patients that had suffered one or more early implant failures). Genomic DNA from oral mucosa was amplified by PCR and analyzed by restriction endonucleases. The significance of the differences in observed frequencies of polymorphisms was assessed by Chi-square. RESULTS Statistical analysis shows that in the MMP-8 gene, the T allele in 76.25% in the test group and the T/T genotype, 63.75% in the same group, may predispose to early loss of implants osseointegrated. CONCLUSION These results suggest that polymorphism in the promoter region of MMP-8 gene is associated with early implant failure. This polymorphism can be a genetic marker to risk of implant loss. CLINICAL RELEVANCE The determination of this genetic pattern in osseointegration would enable the identification of individuals at higher risk to loss implant. Thus, genetic markers will be identified, contributing to an appropriate preoperative selection and preparation of strategies for prevention and therapy individualized to modulate the genetic markers and increase the success rate of treatments.
Collapse
Affiliation(s)
- F R Costa-Junior
- Centro Politécnico, Setor de Ciências Biológicas, Departamento de Biologia Celular, University Federal of Paraná, Jardim das Américas, Curitiba, Paraná, Brazil, 81531-990
| | | | | | | | | | | |
Collapse
|
20
|
Human matrix metalloproteinases: an ubiquitarian class of enzymes involved in several pathological processes. Mol Aspects Med 2011; 33:119-208. [PMID: 22100792 DOI: 10.1016/j.mam.2011.10.015] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 10/29/2011] [Indexed: 02/07/2023]
Abstract
Human matrix metalloproteinases (MMPs) belong to the M10 family of the MA clan of endopeptidases. They are ubiquitarian enzymes, structurally characterized by an active site where a Zn(2+) atom, coordinated by three histidines, plays the catalytic role, assisted by a glutamic acid as a general base. Various MMPs display different domain composition, which is very important for macromolecular substrates recognition. Substrate specificity is very different among MMPs, being often associated to their cellular compartmentalization and/or cellular type where they are expressed. An extensive review of the different MMPs structural and functional features is integrated with their pathological role in several types of diseases, spanning from cancer to cardiovascular diseases and to neurodegeneration. It emerges a very complex and crucial role played by these enzymes in many physiological and pathological processes.
Collapse
|
21
|
Chou YH, Ho YP, Lin YC, Hu KF, Yang YH, Ho KY, Wu YM, Hsi E, Tsai CC. MMP-8 -799 C>T genetic polymorphism is associated with the susceptibility to chronic and aggressive periodontitis in Taiwanese. J Clin Periodontol 2011; 38:1078-84. [DOI: 10.1111/j.1600-051x.2011.01798.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2011] [Indexed: 12/20/2022]
Affiliation(s)
- Yu-Hsiang Chou
- Division of Periodontics; Department of Dentistry; Kaohsiung Medical University Hospital; Kaohsiung; Taiwan
| | | | - Ying-Chu Lin
- School of Dentistry; College of Dental Medicine; Kaohsiung Medical University; Kaohsiung; Taiwan
| | - Kai-Fang Hu
- Division of Periodontics; Department of Dentistry; Kaohsiung Medical University Hospital; Kaohsiung; Taiwan
| | | | | | | | - Edward Hsi
- Department of Medical Research; Kaohsiung Medical University; Kaohsiung; Taiwan
| | | |
Collapse
|
22
|
Dejonckheere E, Vandenbroucke RE, Libert C. Matrix metalloproteinase8 has a central role in inflammatory disorders and cancer progression. Cytokine Growth Factor Rev 2011; 22:73-81. [PMID: 21388856 DOI: 10.1016/j.cytogfr.2011.02.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The predominant role of matrix metalloproteinase 8 in extracellular matrix turnover, modulation of inflammatory responses and other physiological processes is well documented. Several recent studies highlight the involvement of MMP8 in a wide range of pathologies. This review will shed light on the putative role of MMP8 as a drug target or disease marker in some inflammatory disorders and in cancer progression.
Collapse
|
23
|
Godoy-Santos AL, Trevisan R, Fernandes TD, Santos MCLGD. Association of MMP-8 polymorphisms with tendinopathy of the primary posterior tibial tendon: a pilot study. Clinics (Sao Paulo) 2011; 66:1641-3. [PMID: 22179173 PMCID: PMC3164418 DOI: 10.1590/s1807-59322011000900023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Alexandre Leme Godoy-Santos
- Instituto de Ortopedia e Traumatologia – Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Brazil.
| | | | | | | |
Collapse
|
24
|
Ultrasound-guided intratumoral administration of collagenase-2 improved liposome drug accumulation in solid tumor xenografts. Cancer Chemother Pharmacol 2010; 67:173-82. [PMID: 20306263 DOI: 10.1007/s00280-010-1305-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2009] [Accepted: 03/05/2010] [Indexed: 10/19/2022]
Abstract
PURPOSE To investigate the effect of intratumoral administration of collagenase-2 on liposomal drug accumulation and diffusion in solid tumor xenografts. METHODS Correlation between tumor interstitial fluid pressure (IFP) and tumor physiological properties (size and vessel fraction by B-mode and Doppler ultrasound, respectively) was determined. IFP response to intravenous or intratumoral collagenase-2 (0.1%) treatment was compared with intratumoral deactivated collagenase-2. To evaluate drug accumulation and diffusion, technetium-99 m-((99m)Tc)-liposomal doxorubicin (Doxil) was intravenously injected after collagenase-2 (0.1 and 0.5%, respectively) treatment, and planar scintigraphic images acquired and percentage of the injected dose per gram tissue calculated. Subsequently, tumors were subjected to autoradiography and histopathology. RESULTS IFP in two-week-old head and neck squamous cell carcinoma xenografts was 18 ± 3.7 mmHg and not correlated to the tumor size but had reverse correlation with the vessel fraction (r = -0.91, P < 0.01). Intravenous and intratumoral collagenase-2 use reduced IFP by a maximum of 35-40%. Compared to the control, the low IFP level achieved through intratumoral route remained for a long period (24 vs. 2 h, P < 0.05). SPECT images and autoradiography showed significantly higher (99m)Tc-Doxil accumulation in tumors with intratumoral collagenase-2 treatment, confirmed by %ID/g in tumors (P < 0.05), and pathological findings showed extensive distribution of Doxil in tumors. CONCLUSIONS Intratumoral injection of collagenase-2 could effectively reduce IFP in HNSCC xenografts for a longer period than using intravenous approach, which allowed for more efficient accumulation and homogeneous diffusion of the Doxil within the tumor interstitium.
Collapse
|
25
|
Kuivanen T, Jeskanen L, Kyllönen L, Isaka K, Saarialho-Kere U. Matrix metalloproteinase-26 is present more frequently in squamous cell carcinomas of immunosuppressed compared with immunocompetent patients. J Cutan Pathol 2009; 36:929-36. [PMID: 19674198 DOI: 10.1111/j.1600-0560.2009.01188.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Skin cancers are the most frequent malignancies in organ transplant recipients (OTRs). Squamous cell carcinomas (SCCs) occur 65-250 times more frequently in OTRs and tend to be aggressive in behavior. Because matrix metalloproteinases (MMPs) have a central role in tumorigenesis and invasion, we investigated the epithelial and stromal MMP and tissue inhibitor of MMP (TIMP) expression profile in SCCs of immunosuppressed (IS) compared with immunocompetent (IC) patients to determine if differences could explain the more aggressive behavior of SCCs in OTRs. METHODS Matched pairs from 20 SCCs of IS and IC patients were studied using immunohistochemistry for MMP-1, MMP-7, MMP-8, MMP-9, MMP-13 and MMP-26 and TIMP-1 and TIMP-3. RESULTS Among all MMPs studied, only staining for MMP-26 was significantly more intense in cancer cells of the post-transplant group compared with the IC group (p = 0.01), whereas MMP-9 expression was more abundant in stromal macrophages surrounding SCCs of IC patients (p = 0.02). MMP-26 expression in cancer cells (p = 0.04) and that of MMP-9 in neutrophils (p = 0.005) were more abundant in SCCs of patients using cyclosporine. CONCLUSIONS We conclude that MMP-26 and MMP-9 may contribute to the more aggressive behavior of SCCs in OTRs.
Collapse
Affiliation(s)
- Tiina Kuivanen
- Department of Dermatology, Helsinki University Central Hospital and Biomedicum, University of Helsinki, Helsinki, Finland
| | | | | | | | | |
Collapse
|
26
|
Korpi JT, Åström P, Lehtonen N, Tjäderhane L, Kallio-Pulkkinen S, Siponen M, Sorsa T, Pirilä E, Salo T. Healing of extraction sockets in collagenase-2 (matrix metalloproteinase-8)-deficient mice. Eur J Oral Sci 2009; 117:248-54. [DOI: 10.1111/j.1600-0722.2009.00620.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
27
|
Suojanen J, Sorsa T, Salo T. Tranexamic acid can inhibit tongue squamous cell carcinoma invasionin vitro. Oral Dis 2009; 15:170-5. [DOI: 10.1111/j.1601-0825.2008.01507.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Local and systemic responses in matrix metalloproteinase 8-deficient mice during Porphyromonas gingivalis-induced periodontitis. Infect Immun 2008; 77:850-9. [PMID: 19029300 DOI: 10.1128/iai.00873-08] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Periodontitis is a bacterium-induced chronic inflammation that destroys tissues that attach teeth to jaw bone. Pathologically excessive matrix metalloproteinase 8 (MMP-8) is among the key players in periodontal destruction by initiating type I collagen degradation. We studied MMP-8 in Porphyromonas gingivalis-induced periodontitis by using MMP-8-deficient (MMP8(-/-)) and wild-type (WT) mice. Alveolar bone loss, inflammatory mediator expression, serum immunoglobulin, and lipoprotein responses were investigated to clarify the role of MMP-8 in periodontitis and systemic inflammatory responses. P. gingivalis infection induced accelerated site-specific alveolar bone loss in both MMP8(-/-) and WT mice relative to uninfected mice. The most extensive bone degradation took place in the P. gingivalis-infected MMP8(-/-) group. Surprisingly, MMP-8 significantly attenuated (P < 0.05) P. gingivalis-induced site-specific alveolar bone loss. Increased alveolar bone loss in P. gingivalis-infected MMP8(-/-) and WT mice was associated with increase in gingival neutrophil elastase production. Serum lipoprotein analysis demonstrated changes in the distribution of high-density lipoprotein (HDL) and very-low-density lipoprotein (VLDL) particles; unlike the WT mice, the MMP8(-/-) mice underwent a shift toward a smaller HDL/VLDL particle sizes. P. gingivalis infection increased the HDL/VLDL particle size in the MMP8(-/-) mice, which is an indicator of lipoprotein responses during systemic inflammation. Serum total lipopolysaccharide activity and the immunoglobulin G-class antibody level in response to P. gingivalis were significantly elevated in both infected mice groups. Thus, MMP-8 appears to act in a protective manner inhibiting the development of bacterium-induced periodontal tissue destruction, possibly through the processing anti-inflammatory cytokines and chemokines. Bacterium-induced periodontitis, especially in MMP8(-/-) mice, is associated with systemic inflammatory and lipoprotein changes that are likely involved in early atherosclerosis.
Collapse
|
29
|
Serum matrix metalloproteinase-8 is associated with ulceration and vascular invasion of malignant melanoma. Melanoma Res 2008; 18:268-73. [DOI: 10.1097/cmr.0b013e3283090031] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Gutiérrez-Fernández A, Fueyo A, Folgueras AR, Garabaya C, Pennington CJ, Pilgrim S, Edwards DR, Holliday DL, Jones JL, Span PN, Sweep FCGJ, Puente XS, López-Otín C. Matrix metalloproteinase-8 functions as a metastasis suppressor through modulation of tumor cell adhesion and invasion. Cancer Res 2008; 68:2755-63. [PMID: 18413742 DOI: 10.1158/0008-5472.can-07-5154] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Collagenase-2 (matrix metalloproteinase-8, MMP-8) is an MMP mainly produced by neutrophils and associated with many inflammatory conditions. We have previously described that MMP-8 plays a protective role in cancer through its ability to regulate the inflammatory response induced by carcinogens. Moreover, it has been reported that experimental manipulation of the expression levels of this enzyme alters the metastatic behavior of human breast cancer cells. In this work, we have used mutant mice deficient in MMP-8 and syngenic melanoma and lung carcinoma tumor cells lines overexpressing this enzyme to further explore the putative antimetastatic potential of MMP-8. We report herein that MMP-8 prevents metastasis formation through the modulation of tumor cell adhesion and invasion. Thus, tumor cells overexpressing MMP-8 have an increased adhesion to extracellular matrix proteins, whereas their invasive ability through Matrigel is substantially reduced when compared with control cells. Analysis of MMP-8 in breast cancer patients revealed that the expression of this metalloproteinase by breast tumors correlates with a lower incidence of lymph node metastasis and confers good prognosis to these patients. On this basis, we propose that MMP-8 is a tumor protective factor, which also has the ability to reduce the metastatic potential of malignant cells in both mice and human.
Collapse
Affiliation(s)
- Ana Gutiérrez-Fernández
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, Oviedo, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Decock J, Hendrickx W, Vanleeuw U, Van Belle V, Van Huffel S, Christiaens MR, Ye S, Paridaens R. Plasma MMP1 and MMP8 expression in breast cancer: protective role of MMP8 against lymph node metastasis. BMC Cancer 2008; 8:77. [PMID: 18366705 PMCID: PMC2278147 DOI: 10.1186/1471-2407-8-77] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Accepted: 03/20/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Elevated levels of matrix metalloproteinases have been found to associate with poor prognosis in various carcinomas. This study aimed at evaluating plasma levels of MMP1, MMP8 and MMP13 as diagnostic and prognostic markers of breast cancer. METHODS A total of 208 breast cancer patients, of which 21 with inflammatory breast cancer, and 42 healthy controls were included. Plasma MMP1, MMP8 and MMP13 levels were measured using ELISA and correlated with clinicopathological characteristics. RESULTS Median plasma MMP1 levels were higher in controls than in breast cancer patients (3.45 vs. 2.01 ng/ml), while no difference was found for MMP8 (10.74 vs. 10.49 ng/ml). ROC analysis for MMP1 revealed an AUC of 0.67, sensitivity of 80% and specificity of 24% at a cut-off value of 4.24 ng/ml. Plasma MMP13 expression could not be detected. No correlation was found between MMP1 and MMP8 levels. We found a trend of lower MMP1 levels with increasing tumour size (p = 0.07); and higher MMP8 levels with premenopausal status (p = 0.06) and NPI (p = 0.04). The median plasma MMP1 (p = 0.02) and MMP8 (p = 0.007) levels in the non-inflammatory breast cancer patients were almost twice as high as those found in the inflammatory breast cancer patients. Intriguingly, plasma MMP8 levels were positively associated with lymph node involvement but showed a negative correlation with the risk of distant metastasis. Both controls and lymph node negative patients (pN0) had lower MMP8 levels than patients with moderate lymph node involvement (pN1, pN2) (p = 0.001); and showed a trend for higher MMP8 levels compared to patients with extensive lymph node involvement (pN3) and a strong predisposition to distant metastasis (p = 0.11). Based on the hypothesis that blood and tissue protein levels are in reverse association, these results suggest that MMP8 in the tumour may have a protective effect against lymph node metastasis. CONCLUSION In summary, we observed differences in MMP1 and MMP8 plasma levels between healthy controls and breast cancer patients as well as between breast cancer patients. Interestingly, our results suggest that MMP8 may affect the metastatic behaviour of breast cancer cells through protection against lymph node metastasis, underlining the importance of anti-target identification in drug development.
Collapse
Affiliation(s)
- Julie Decock
- Laboratory for Experimental Oncology (LEO), K,U,Leuven, Campus University Hospital Gasthuisberg, O&N1 bus 815, Herestraat 49, 3000 Leuven, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Korpi JT, Kervinen V, Mäklin H, Väänänen A, Lahtinen M, Läärä E, Ristimäki A, Thomas G, Ylipalosaari M, Aström P, Lopez-Otin C, Sorsa T, Kantola S, Pirilä E, Salo T. Collagenase-2 (matrix metalloproteinase-8) plays a protective role in tongue cancer. Br J Cancer 2008; 98:766-75. [PMID: 18253113 PMCID: PMC2259187 DOI: 10.1038/sj.bjc.6604239] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Squamous cell carcinoma (SCC) of the tongue is the most common cancer in the oral cavity and has a high mortality rate. A total of 90 mobile tongue SCC samples were analysed for Bryne's malignancy scores, microvascular density, and thickness of the SCC sections. In addition, the staining pattern of cyclooxygenase-2, αvβ6 integrin, the laminin-5 γ2-chain, and matrix metalloproteinases (MMPs) -2, -7, -8, -9, -20, and -28 were analysed. The expression of MMP-8 (collagenase-2) was positively associated with improved survival of the patients and the tendency was particularly prominent in females. No sufficient evidence for a correlation with the clinical outcome was found for any other immunohistological marker. To test the protective role of MMP-8 in tongue carcinogenesis, MMP-8 knockout mice were used. MMP-8 deficient female mice developed tongue SCCs at a significantly higher incidence than wild-type mice exposed to carcinogen 4-Nitroquinoline-N-oxide. Consistently, oestrogen-induced MMP-8 expression in cultured HSC-3 tongue carcinoma cells, and MMP-8 cleaved oestrogen receptor (ER) α and β. According to these data, we propose that, contrary to the role of most proteases produced by human carcinomas, MMP-8 has a protective, probably oestrogen-related role in the growth of mobile tongue SCCs.
Collapse
Affiliation(s)
- J T Korpi
- Department of Oral and Maxillofacial Surgery, Institute of Dentistry, University of Oulu and Oulu University Hospital, Oulu, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kuula H, Salo T, Pirilä E, Hagström J, Luomanen M, Gutierrez-Fernandez A, Romanos GE, Sorsa T. Human beta-defensin-1 and -2 and matrix metalloproteinase-25 and -26 expression in chronic and aggressive periodontitis and in peri-implantitis. Arch Oral Biol 2007; 53:175-86. [PMID: 17996844 DOI: 10.1016/j.archoralbio.2007.09.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Revised: 08/09/2007] [Accepted: 09/20/2007] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Aberrant matrix metalloproteinase (MMP) and human beta-defensin (HBD) functions have been found in inflammatory diseases. The objectives of this study were to investigate the immunolocalisation, mRNA expression and molecular forms of MMP-25, MMP-26, HBD-1 and HBD-2 in chronic and aggressive periodontitis and in peri-implantitis. The expression of MMP-25 by cultured human plasmacytoma cells and macrophages, and the effects of MMP-26 and Porphyromonas gingivalis trypsin-like proteinase on HBD-1 and -2 were also studied. DESIGN Immunohistochemistry, immunofluorescent analysis, reverse transcriptase polymerase chain reaction and immunoblotting were used to assess localisation, mRNA expression and molecular forms of MMP-25, MMP-26, HBD-1 and HBD-2. HBD degradation by MMP-26 and P. gingivalis proteinase was studied by sodium dodecyl sulphate-polyacrylamide gel electrophoresis. RESULTS MMP-25 was present in plasma cells and polymorphonuclear leucocytes, and MMP-26 was present in oral and sulcular basement membrane zones. HBD-1 was distributed perivasculary in gingival connective tissue and in oral and sulcular epithelium, and HBD-2 was found to a lesser extent in the perivascular space. Low MMP-25, MMP-26, HBD-1 and HBD-2 mRNA expression was found. Immunoblot revealed 29-57-kDa MMP-25 in myeloma cell lysates, but not in macrophages, and partly activated MMP-25 and -26 in diseased gingival crevicular fluid and peri-implant sulcular fluid. P. gingivalis trypsin-like proteinase degraded HBD-1 and -2. CONCLUSIONS Both MMP-25 and -26 were expressed more strongly in extensively inflamed gingiva compared with healthy gingiva. The expression of HBD-1 was stronger than that of HBD-2 in periodontitis and peri-implantitis. De-novo expression of MMP-25 and -26 is associated with periodontal and peri-implant inflammation. Furthermore, P. gingivalis trypsin-like proteinase, but not MMP-26, can degrade HBD-1 and -2, which could lead to a weakened innate immune response.
Collapse
Affiliation(s)
- Heidi Kuula
- Biomedicum Helsinki, Institute of Dentistry, University of Helsinki, PO Box 63, FIN-00014 Helsinki, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Decock J, Long JR, Laxton RC, Shu XO, Hodgkinson C, Hendrickx W, Pearce EG, Gao YT, Pereira AC, Paridaens R, Zheng W, Ye S. Association of Matrix Metalloproteinase-8 Gene Variation with Breast Cancer Prognosis. Cancer Res 2007; 67:10214-21. [DOI: 10.1158/0008-5472.can-07-1683] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Abstract
Collagen types I, II, and III are the most abundant extracellular matrix (ECM) proteins. Collagenase is a member of the matrix metalloproteinase (MMP) family of enzymes, and is the principal enzyme involved with collagen degradation. Cellular-ECM interactions are vitally important to tissue structure and function. In this review, we summarize recent work that highlights the role of collagenase in ECM remodeling and repair, and further report that alterations of collagenase expression, function, and/or regulation are found in many diverse disease states, including aortic aneurysms, tumor invasiveness and their metastases, and hernias. Collagenase is intimately involved in many surgical diseases, and represents a potential target for therapy.
Collapse
Affiliation(s)
- Timothy R Donahue
- Division of General Surgery, David Geffen School of Medicine at UCLA, Box 956904, 72-160 CHS, Los Angeles, CA 90095-6904, USA
| | | | | |
Collapse
|
36
|
Pirilä E, Korpi JT, Korkiamäki T, Jahkola T, Gutierrez-Fernandez A, Lopez-Otin C, Saarialho-Kere U, Salo T, Sorsa T. Collagenase-2 (MMP-8) and matrilysin-2 (MMP-26) expression in human wounds of different etiologies. Wound Repair Regen 2007; 15:47-57. [PMID: 17244319 DOI: 10.1111/j.1524-475x.2006.00184.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Wound healing involves highly controlled events including reepithelialization, neoangiogenesis, and reformation of the stromal compartment. Matrix metalloproteinases (MMPs) are a family of neutral zinc-dependent endopeptidases known to be essential for the wound-healing process. MMP-8 (collagenase-2) is a neutrophil-derived highly effective type I collagenase, recently indicated to be important for acute wound healing. MMP-26 is a more recent and less well-studied member of the MMP family. Our aim was to study the expression of MMP-8 and MMP-26 in human cutaneous wound repair and chronic wounds using histological methods and cell culture. MMP-8 expression was associated with epithelial cells, neutrophils, and other inflammatory cells in chronic human wounds. MMP-26 was prominently expressed in the extracellular compartment of most chronic wounds in close vicinity to the basement membrane area. MMP-26 was also expressed in acute day 1 wounds with declining expression thereafter. In vitro wound experiments showed that both MMP-8 and MMP-26 were expressed by migrating human mucosal keratinocytes. Inhibiting MMP-26 resulted in aberrant keratinocyte migration and proliferation. We conclude that MMP-8 and MMP-26 are differentially expressed in acute and chronic wounds.
Collapse
Affiliation(s)
- Emma Pirilä
- Institute of Dentistry, University of Oulu, Oulu, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Liu SY, Liu YC, Huang WT, Huang GC, Chen TC, Lin MH. Up-regulation of matrix metalloproteinase-8 by betel quid extract and arecoline and its role in 2D motility. Oral Oncol 2007; 43:1026-33. [PMID: 17306610 DOI: 10.1016/j.oraloncology.2006.11.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Revised: 11/23/2006] [Accepted: 11/23/2006] [Indexed: 11/24/2022]
Abstract
Betel quid (BQ) and matrix metalloproteinase-8 (MMP-8) play roles in oral diseases. Here, we analyzed the regulation of MMP-8 by BQ and its effect on cell migration. We found that BQ extract (BQE) increased the secretion of an 85kDa caseinolytic proteinase, specifically precipitated by an anti-MMP-8 antibody, in the culture medium of OECM-1, an oral squamous cell carcinoma (OSCC) cell line. BQE also stimulated MMP-8 secretion in an esophageal carcinoma cell line, CE81T/VGH, in a dose-dependent manner, and MMP-8 protein was maximally expressed at 24h after BQE treatment in OECM-1. The BQE-induced MMP-8 expression was dose-dependently inhibited by PD98059. Arecoline, the major alkaloid of areca nut, was tested to dose-dependently up-regulate MMP-8 protein level. Moreover, both arecoline- (4.7-fold) and BQE-selected (5.5-fold) CE81T/VGH cells expressed higher MMP-8 protein level and exhibited enhanced two-dimensional (2D) motility (p=0.009 in both cells) than parental cells. The enhanced motility of arecoline- (p=0.006) and BQE-selected (p=0.002) cells was both specifically blocked by an anti-MMP-8 antibody. We conclude that BQ may accelerate tumor migration by stimulating MMP-8 expression through MEK pathway in at least some carcinomas of the upper aerodigestive tract. Furthermore, arecoline may be one of the positive MMP-8 regulators among BQ ingredients.
Collapse
Affiliation(s)
- Shyun-Yeu Liu
- Oral and Maxillofacial Surgery Section, Chi Mei Medical Center, Tainan, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
38
|
Kuivanen TT, Jeskanen L, Kyllönen L, Impola U, Saarialho-Kere UK. Transformation-specific matrix metalloproteinases, MMP-7 and MMP-13, are present in epithelial cells of keratoacanthomas. Mod Pathol 2006; 19:1203-12. [PMID: 16699496 DOI: 10.1038/modpathol.3800633] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Keratoacanthomas are rapidly growing hyperproliferative skin tumors that may clinically or histologically be difficult to distinguish from well-differentiated squamous cell cancers (SCCs). UV light, trauma, and immune suppression represent their etiological factors. As matrix metalloproteinases (MMPs) are implicated at all stages of tumorigenesis, we investigated the expression profile of several cancer-related MMPs to find markers that would differentiate keratoacanthomas from SCCs and shed light to the pathobiology of keratoacanthoma. Samples from 31 keratoacanthomas and 15 grade I SCCs were studied using immunohistochemistry for MMP-2, -7, -8, -9, -10, -13, and -19 and p16 and laminin-5gamma2 chain. In situ hybridization for MMP-7, -10, and -13 was performed in a subset of tumors. Keratinocytes with atypia, presence of neovascularization, and composition of the inflammatory infiltrate were graded from hematoxylin-eosin stainings. MMP-7 was present in the epithelium of 4/31 keratoacanthomas and 9/15 SCCs, MMP-8 in 3/30 keratoacanthomas and 0/15 SCCs, but MMP-13 in 16/31 keratoacanthomas and 10/15 SCCs, and MMP-10 in 28/31 keratoacanthomas and all cancers. MMP-9 was detected in the epithelium in 5/31 keratoacanthomas and 8/15 SCCs, whereas MMP-2 was only present in fibroblasts in both tumors. MMP-19 was upregulated in proliferating epithelium of keratoacanthomas as was p16. Cytoplasmic laminin-5gamma2 was particularly abundant in keratinocytes at the pushing border of MMP-13-positive keratoacanthomas. We conclude that although some MMPs (MMP-10 and -13) are abundantly expressed in keratoacanthomas, the presence of MMP-7 and -9 in their epithelial pushing border is rare and should raise suspicion of SCC. Further, the loss of MMP-19 and p16 could aid in making the differential diagnosis between well-differentiated SCC and keratoacanthoma. Frequent expression of the transformation-specific MMP-13 in keratoacanthomas suggests that they are not benign tumors but incomplete SCCs.
Collapse
Affiliation(s)
- Tiina T Kuivanen
- Department of Dermatology, Helsinki University Central Hospital and Biomedicum Helsinki, Helsinki, Finland
| | | | | | | | | |
Collapse
|
39
|
Thomas GR, Nadiminti H, Regalado J. Molecular predictors of clinical outcome in patients with head and neck squamous cell carcinoma. Int J Exp Pathol 2006; 86:347-63. [PMID: 16309541 PMCID: PMC2517451 DOI: 10.1111/j.0959-9673.2005.00447.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) involves the upper aerodigestive tract and can destroy the structure and function of organs involved in voice, speech, taste, smell and hearing, as well as vital structures necessary for survival. HNSCC has long been a treatment challenge because of the high rate of recurrences and of advanced disease at the time of diagnosis. Molecular identification of tissue biomarkers in diagnostic biopsy specimens may not only identify patients at risk for developing HNSCC but may also select patients that may benefit from more aggressive treatment modalities. Several biomarkers studied to date such as the proteins p53, cyclin D1, p16, Cox-2 enzyme, epidermal growth factor and vascular endothelial growth factor receptors, matrix metalloproteinases and the Fhit marker for genomic instability could be manipulated for the therapeutic benefit of these patients. This review presents the most updated information on molecular biomarkers with the greatest prognostic potential in HNSCC and discusses some factors that contribute to the controversy concerning their prognostic importance.
Collapse
Affiliation(s)
- Giovana R Thomas
- Department of Otolaryngology-Head and Neck Surgery, University of Miami School of Medicine, Miami, FL 33136, USA.
| | | | | |
Collapse
|
40
|
Sorsa T, Tjäderhane L, Konttinen YT, Lauhio A, Salo T, Lee HM, Golub LM, Brown DL, Mäntylä P. Matrix metalloproteinases: contribution to pathogenesis, diagnosis and treatment of periodontal inflammation. Ann Med 2006; 38:306-21. [PMID: 16938801 DOI: 10.1080/07853890600800103] [Citation(s) in RCA: 471] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Matrix metalloproteinases (MMPs) form a family of enzymes that mediate multiple functions both in the tissue destruction and immune responses related to periodontal inflammation. The expression and activity of MMPs in non-inflamed periodontium is low but is drastically enhanced to pathologically elevated levels due to the dental plaque and infection-induced periodontal inflammation. Soft and hard tissue destruction during periodontitis and peri-implantitis are thought to reflect a cascade of events involving bacterial virulence factors/enzymes, pro-inflammatory cytokines, reactive oxygen species and MMPs. However, recent studies suggest that MMPs can also exert anti-inflammatory effects in defence of the host by processing anti-inflammatory cytokines and chemokines, as well as by regulating apoptotic and immune responses. MMP-inhibitor (MMPI)-drugs, such as doxycycline, can be used as adjunctive medication to augment both the scaling and root planing-treatment of periodontitis locally and to reduce inflammation systematically. Furthermore, MMPs present in oral fluids (gingival crevicular fluid (GCF), peri-implant sulcular fluid (PISF), mouth-rinses and saliva) can be utilized to develop new non-invasive, chair/bed-side, point-of-care diagnostics for periodontitis and dental peri-implantitis.
Collapse
Affiliation(s)
- Timo Sorsa
- Department of Oral and Maxillofacial Diseases, Helsinki University Central Hospital (HUCH), Institute of Dentistry, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Three mammalian collagenases (MMP-1, MMP-8, and MMP-13) belong to family of matrix metalloproteinases and are the principal secreted endopeptidases capable of cleaving collagenous extracellular matrix. In addition to fibrillar collagens, collagenases can cleave several other matrix and non-matrix proteins including growth factors, and this way regulate cell growth and survival. Collagenases are important proteolytic tools for extracellular matrix remodeling during organ development and tissue regeneration, but they also apparently play important roles in many pathological situations and tumor progression and metastasis. Because of their potentially destructive characteristics the expression and activity of collagenases are strictly controlled. Synthesis of collagenases is regulated by extracellular signals via cellular signal transduction pathways at transcriptional and post-transcriptional level. Collagenases are synthesized as inactive pro-forms, and once activated, their activity is inhibited by specific tissue inhibitors of metalloproteinases, TIMPs, as well as by non-specific proteinase inhibitors. In this review we discuss the current view on the role of collagenases in tumor growth, invasion, and metastasis, as a basis for their feasibility in diagnosis and prognostication, as well as therapeutic targets in cancer patients.
Collapse
Affiliation(s)
- Risto Ala-aho
- Department of Medical Biochemistry and Molecular Biology, and MediCity Research Laboratory, University of Turku, Turku, Finland
| | | |
Collapse
|
42
|
Impola U, Jeskanen L, Ravanti L, Syrjänen S, Baldursson B, Kähäri VM, Saarialho-Kere U. Expression of matrix metalloproteinase (MMP)-7 and MMP-13 and loss of MMP-19 and p16 are associated with malignant progression in chronic wounds. Br J Dermatol 2005; 152:720-6. [PMID: 15840104 DOI: 10.1111/j.1365-2133.2005.06447.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND The risk of squamous cell carcinoma (SCC) is significantly increased in chronic leg ulcers. Very little is known about the molecular pathogenesis of these tumours, which are often undiagnosed for a long time. As matrix metalloproteinases (MMPs) are implicated at all stages of tumorigenesis, we investigated whether the pattern of epithelial MMP expression can predict development of SCC from pseudoepitheliomatous hyperplasia of chronic wounds. METHODS Samples from nine patients with SCCs that had arisen in chronic wounds and 31 with venous leg ulcers were studied using immunohistochemistry for MMP-7, MMP-8, MMP-9, MMP-13, MMP-19 and the tumour suppressor p16. In situ hybridization was performed for MMP-1, MMP-3, MMP-7, MMP-12 and MMP-13. RESULTS MMP-7 was expressed by malignantly transformed epithelium, while it was absent from chronic wounds. MMP-9 was detected in the epithelium in both SCCs and chronic wounds. Epithelial MMP-13 expression was strong in SCC, but was absent in chronic wounds. MMP-12 was expressed in the epithelium in two SCCs, while macrophages were positive in chronic wounds. MMP-19 was induced in proliferating epithelium of wounds, but was absent from invasive areas of SCC. p16 was expressed by keratinocytes in half of the chronic wounds and at superficial margins of SCCs, while invasive areas were negative. CONCLUSIONS Our results suggest that epithelial expression of MMP-7, MMP-12 and MMP-13, but not that of MMP-1, MMP-3, MMP-8, MMP-9 and MMP-10, in chronic wounds provides a diagnostic clue for distinguishing SCCs from nonmalignant wounds. The loss of MMP-19 and p16 from the epithelium could aid in making the differential diagnosis between well-differentiated SCCs and nonmalignant chronic wounds.
Collapse
Affiliation(s)
- U Impola
- Department of Dermatology, Helsinki University Central Hospital and Biomedicum Helsinki Meilahdentie 2, 00250 Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
43
|
Burton JL, Madsen SA, Chang LC, Weber PSD, Buckham KR, van Dorp R, Hickey MC, Earley B. Gene expression signatures in neutrophils exposed to glucocorticoids: A new paradigm to help explain “neutrophil dysfunction” in parturient dairy cows. Vet Immunol Immunopathol 2005; 105:197-219. [PMID: 15808301 DOI: 10.1016/j.vetimm.2005.02.012] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Neutrophils are the first line of immunity against most pathogens that infect cattle. These normally short-lived white blood cells develop from myeloid-lineage cells in bone marrow. Upon maturation, bone marrow neutrophils are released into the circulation where they marginate on inflamed blood vessel endothelial cells and migrate through them into the area of infection. Once migrated, neutrophils do not reenter the circulation, but rather, perform their bactericidal functions and die by apoptosis in the tissue. The cytokine and hormonal milieu of the blood and extracellular tissue fluid can influence neutrophil development and immunity-related activities, but the molecular basis of these phenotypic changes and physiological benefits or drawbacks of them are poorly understood. In the current paper, we review new gene expression information that resulted from two of our functional genomics studies designed to evaluate effects of glucocorticoid hormones on bovine neutrophils. This work provides one model to describe complex changes that occur in neutrophils as the cells respond to glucocorticoids, which might act to alter the cells' functional priorities and tip the delicate balance between health and disease during stress, including at parturition. A bovine immunobiology microarray and real time RT-PCR were used to study blood neutrophils collected during the natural surge of endogenous glucocorticoid (cortisol) in parturient dairy cows and bone marrow neutrophils collected from glucocorticoid (dexamethasone)-treated dairy steers. The gene expression signatures we observed led us to perform additional phenotyping of the neutrophils and correlation analyses, which together painted a picture suggesting that glucocorticoids have key roles in modulating neutrophil development, life span, and tissue defense functions during parturition and hormone therapy. Based on these observations, we postulate that glucocorticoids orchestrate adaptive changes in the entire neutrophil system that support increased cell numbers and longevity in blood and heightened remodeling activity in tissues, while at the same time decreasing some important antimicrobial defense activities of the cells. Thus, our functional genomics studies have enabled us to elucidate multiple consequences of neutrophil exposure to glucocorticoids, highlighting a probable role for this interaction in the induction of parturition and partly explaining why some parturient dairy cows may experience heightened incidence and severity of inflammatory diseases like mastitis.
Collapse
Affiliation(s)
- Jeanne L Burton
- Immunogenetics Laboratory, Department of Animal Science, Michigan State University, 1205E Anthony Hall, East Lansing, MI 48824, USA.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Akgül B, García-Escudero R, Ghali L, Pfister HJ, Fuchs PG, Navsaria H, Storey A. The E7 protein of cutaneous human papillomavirus type 8 causes invasion of human keratinocytes into the dermis in organotypic cultures of skin. Cancer Res 2005; 65:2216-23. [PMID: 15781634 DOI: 10.1158/0008-5472.can-04-1952] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Human papillomaviruses (HPV) have been implicated in the development of nonmelanoma skin cancer (NMSC). The molecular mechanisms by which these viruses contribute towards NMSC are poorly understood. We have used an in vitro skin-equivalent model generated by transducing primary adult human epidermal keratinocytes with retroviruses expressing HPV genes to investigate the mechanisms of viral transformation. In this model, keratinocytes expressing HPV genes are seeded onto a mesenchyme composed of deepidermalized human dermis that had been repopulated with primary dermal fibroblasts. Expression of the HPV8 E7 gene caused both an enhancement of terminal differentiation and hyperproliferation, but most strikingly, the acquisition of the ability to migrate and invade through the underlying dermis. The basement membrane integrity was disrupted in a time-dependent manner in areas of invading keratinocytes, as evidenced by immunostaining of its protein components collagen types VII, IV, and laminin 5. This was accompanied by the overexpression of extracellular matrix metalloproteinases MMP-1, MMP-8, and MT-1-MMP. These results suggest that the cutaneous HPV type 8 that is frequently found in NMSC of epidermodysplasia verruciformis patients may actively promote an invasive keratinocyte phenotype. These findings also highlight the importance of epithelial-extracellular matrix-mesenchymal interactions that are required to support cell invasion.
Collapse
Affiliation(s)
- Baki Akgül
- Institute of Virology, University of Cologne, Cologne, Germany
| | | | | | | | | | | | | |
Collapse
|
45
|
Jordan RCK, Macabeo-Ong M, Shiboski CH, Dekker N, Ginzinger DG, Wong DTW, Schmidt BL. Overexpression of matrix metalloproteinase-1 and -9 mRNA is associated with progression of oral dysplasia to cancer. Clin Cancer Res 2005; 10:6460-5. [PMID: 15475433 DOI: 10.1158/1078-0432.ccr-04-0656] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Although an important risk factor for oral cancer is the presence of epithelial dysplasia, many lesions will not progress to malignancy. Matrix metalloproteinases (MMPs) are zinc-dependent proteinases capable of digesting various structural components of the extracellular matrix. Because MMPs are frequently overexpressed in oral squamous cell carcinoma (SCC), we hypothesized that they are also overexpressed in oral dysplasias; we also hypothesized that those dysplasias that progress to oral cancer express higher levels of MMPs than those lesions that do not progress. EXPERIMENTAL DESIGN In this retrospective study, we examined changes in MMP-1, -2, and -9 mRNA expression using quantitative TaqMan reverse transcription-polymerase chain reaction in 34 routinely processed oral dysplasias and 15 SCCs obtained from 34 patients. After several years of close follow-up, 19 dysplasias progressed to oral SCC and 15 did not. RESULTS Overall, MMP-1 mRNA was overexpressed (>2-fold) in 24 of 34 (71%) dysplasias and 13 of 15 (87%) oral SCCs. MMP-2 overexpression was seen in 11 of 34 (32%) dysplasias and 7 of 15 (47%) cancers; for MMP-9, overexpression was identified in 29 of 34 (85%) dysplasias and 15 of 15 (100%) cancers. MMP-1 and -9 levels were significantly higher in the SCCs compared with all oral dysplasias (P = 0.004 and P = 0.01, respectively). MMP-1 and -9 mRNA levels were significantly higher in the oral dysplasias that progressed to oral cancer compared with those that did not (P = 0.04 and P = 0.002, respectively). CONCLUSIONS Levels of MMP-1 and -9 mRNA may be markers of malignant transformation of oral dysplasia to oral cancer.
Collapse
Affiliation(s)
- Richard C K Jordan
- Department of Stomatology, University of California San Francisco Comprehensive Cancer Center, San Francisco, California 94143-0424, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Matrix metalloproteinases (MMPs) are a group of enzymes that in concert are responsible for the degradation of most extracellular matrix proteins during organogenesis, growth and normal tissue turnover. The expression and activity of MMPs in adult tissues is normally quite low, but increases significantly in various pathological conditions that may lead into unwanted tissue destruction, such as inflammatory diseases, tumour growth and metastasis. MMPs have a marked role also in tissue destructive oral diseases. The role of collagenases, especially MMP-8, in periodontitis and peri-implantitis is the best-known example of the unwanted tissue destruction related to increased presence and activity of MMPs at the site of disease, but evidence has been brought forward to indicate that MMPs may be involved also in other oral diseases, such as dental caries and oral cancer. This brief review describes some of the history, the current status and the future aspects of the work mainly of our research groups looking at the presence and activity of various MMPs in different oral diseases, as well as some of the MMP-related aspects that may facilitate the development of new means of diagnosis and treatment of oral diseases.
Collapse
Affiliation(s)
- T Sorsa
- Institute of Dentistry, University of Helsinki, Helsinki, Finland.
| | | | | |
Collapse
|
47
|
Mignogna MD, Fedele S, Lo Russo L, Lo Muzio L, Bucci E. Immune activation and chronic inflammation as the cause of malignancy in oral lichen planus: is there any evidence ? Oral Oncol 2004; 40:120-30. [PMID: 14693234 DOI: 10.1016/j.oraloncology.2003.08.001] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The association of chronic inflammation with a variety of epithelial malignancies has been recognised for centuries. Well established examples include, among many others, oesophageal adenocarcinoma associated with chronic oesophagitis and bowel cancer associated with chronic inflammatory bowel diseases. By now no data, other than clinical observation, have been available in understanding the pathogenesis of these inflammation-related tumours. However, recent molecular studies on the relationship between solid malignancies and the surrounding stroma have given new insights. There is now enough evidence to accept that the chronic inflammatory process per se is able to provide a cytokine-based microenvironment which is able to influence cell survival, growth, proliferation, differentiation and movement, hence contributing to cancer initiation, progression, invasion and metastasis. Here it is discussed whether also oral lichen planus (OLP), being a chronic inflammatory autoimmune disease which has been clinically associated with development of oral squamous cell carcinoma, might be categorised among these disorders. With this aim, we critically reviewed and detailed the presence, in OLP subepithelial infiltrate, of inflammatory cells and cytokine networks that might act to promote squamous tumorigenesis.
Collapse
Affiliation(s)
- Michele D Mignogna
- Section of Oral Medicine, Department of Odontostomatological and Maxillofacial Sciences, University Federico II, Naples, Italy.
| | | | | | | | | |
Collapse
|
48
|
Montel V, Kleeman J, Agarwal D, Spinella D, Kawai K, Tarin D. Altered metastatic behavior of human breast cancer cells after experimental manipulation of matrix metalloproteinase 8 gene expression. Cancer Res 2004; 64:1687-94. [PMID: 14996728 DOI: 10.1158/0008-5472.can-03-2047] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previous work in our laboratory led to the cloning, from the same parent tumor cell line (MDA-MB-435), of two human breast cancer cell lines (M-4A4 and NM-2C5) with opposite metastatic phenotypes. Additional investigations revealed that the nonmetastatic cell line NM-2C5 overexpressed the neutrophil collagenase, matrix metalloproteinase (MMP)-8, relative to its partner. Because other studies have implicated the MMP family in promoting tumor metastasis, we investigated the apparently paradoxical expression of MMP-8 in these cell lines. By genetic engineering, we inverted its relative levels of expression in the two partners and studied the effects on the behavior of the tumors that they generated in athymic mice. Knock-down of expression in NM-2C5 cells by transduction with a sequence encoding a specific ribozyme and overexpression of MMP-8 in M-4A4 cells by retroviral transduction both strikingly changed metastatic performance in opposite directions, indicating that this gene plays a role in the regulation of tumor metastasis.
Collapse
Affiliation(s)
- Valerie Montel
- Department of Pathology, University of California, San Diego Cancer Center, La Jolla, California 92093, USA
| | | | | | | | | | | |
Collapse
|
49
|
Stadlmann S, Pollheimer J, Moser PL, Raggi A, Amberger A, Margreiter R, Offner FA, Mikuz G, Dirnhofer S, Moch H. Cytokine-regulated expression of collagenase-2 (MMP-8) is involved in the progression of ovarian cancer. Eur J Cancer 2004; 39:2499-505. [PMID: 14602136 DOI: 10.1016/j.ejca.2003.08.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Matrix metalloproteinases (MMPs) have been implicated in ovarian cancer progression. Among them, MMP-8 that degrades type I collagen may play a crucial role. The aim of our study was to determine MMP-8 expression and regulation in ovarian cancer and its association with other MMPs and tissue inhibitors of metalloproteinases (TIMPs). Tissue microarrays (TMAs) containing tissue cylinders from 302 patients were used for immunohistochemical studies. In addition, MMP-8 expression in vitro was analysed by a specific immunoassay and PCR-analysis. MMP-7 (81%), MMP-8 (95%), MT3-MMP (100%), TIMP-2 (100%), and TIMP-3 (96%) were expressed in all the OVCAs, but the staining intensities varied. MMP-3 (6%), MMP-9 (57%) and TIMP-1 (43%) expressions were more rarely detected. Only MMP-8 expression levels correlated with tumour grade (P<0.01), tumour stage (P<0.01), and a poor prognosis (P<0.05). MMP-8 protein and gene expression in vitro was found to be significantly upregulated by interleukin-1beta (IL-1beta, P<0.01). The data indicate that MMP-8 overexpression in OVCAs is regulated by IL-1beta and that pro-inflammatory cytokines may promote the invasive potential of ovarian cancer.
Collapse
Affiliation(s)
- S Stadlmann
- Institute of Pathology, University of Innsbruck, Muellerstrasse 44, 6020 Innsbruck, Austria.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Kivelä-Rajamäki M, Maisi P, Srinivas R, Tervahartiala T, Teronen O, Husa V, Salo T, Sorsa T. Levels and molecular forms of MMP-7 (matrilysin-1) and MMP-8 (collagenase-2) in diseased human peri-implant sulcular fluid. J Periodontal Res 2003; 38:583-90. [PMID: 14632921 DOI: 10.1034/j.1600-0765.2003.00688.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVES Matrix metalloproteinases (MMPs) play crucial role in various tissue destructive inflammatory processes by degrading almost all peri-cellular and basement membrane components. MMP-8 (collagenase-2) is the major MMP in periodontitis. MMP-7 (matrilysin-1), in addition to its ability to degrade matrix and basement membrane components, activates other latent pro-MMPs and defensins, host cell-derived antimicrobial cryptidins. The aim of the present study was to characterize the relationship, levels and molecular forms of MMP-8 and MMP-7 in diseased peri-implant sulcular fluid (PISF). MATERIALS AND METHODS Seventy-two human dental implant fluid samples were collected with filter paper strips from peri-implant sulci from healthy and untreated diseased implant sites. Gingival index (GI) and/or bone resorption (BR) were also recorded. Western immunoblot method with polyclonal anti-human-MMP-8 and monoclonal anti-human-MMP-7 antibodies was used, and immunoreactivities were quantified with computer scanning program. The effects of MMP inhibitors (doxycycline, chemically modified tetracycline-3, clodronate, CTT-peptide and marimastat) were studied on the activity of recombinant human matrilysin-1 (MMP-7) using beta-casein degradation assay. RESULTS The levels of active forms of MMP-8 and MMP-7 were significantly elevated in diseased PISF in relation to healthy PISF. Furthermore, MMP-8 and MMP-7 levels correlated significantly to each other and GI. MMP-8 was present not only as bands corresponding to 75-kDa polymorphonuclear leukocyte (PMN) -type pro- and 65-kDa active forms, but also as 55-kDa non-PMN-type pro- and 45-kDa active forms. Immunoreactivities > 80 kDa most likely represented dimeric and/or inhibitor-bound MMP-8 complexes and the low molecular weight (< 30 kDa) species were apparently degraded fragments. In diseased PISF, 19-21-kDa active MMP-7 and 28-30-kDa pro-MMP-7 species were detected, and the active 19-21-kDa forms of MMP-7 predominated in diseased PISF. Doxycycline (50 micro m and 250 micro m), chemically modified non-antimicrobial tetracycline (CMT-3) (50 micro m and 100 micro m), clodronate (a bisphosphonate, 20 micro m and 500 micro m) and the cyclic CTT (CTTHWGFTLC)-peptide (125 micro m and 250 micro m), all known broad-spectrum or selective MMP-inhibitors, did not inhibit the activity of human recombinant MMP-7; only marimastat (1 micro m and 5 micro m) inhibited MMP-7. DISCUSSION Increased immunoreactivities of the active MMP-8 and MMP-7 species in PISF from diseased peri-implantitis lesions eventually reflect the stage and course of peri-implantitis; MMP-7 may potentially act as MMP-8 and defensin activator in diseased PISF. CONCLUSION The elevated levels of MMP-8 and matrilysin-1/MMP-7 were identified in active forms in diseased PISF, but MMP-7 was less prominent. MMP inhibitors, potential future tissue protective drugs, seemingly do not interfere with the defensive antibacterial action of MMP-7.
Collapse
Affiliation(s)
- Marjo Kivelä-Rajamäki
- Department of Oral and Maxillofacial Diseases, Helsinki University Central Hospital, Institute of Dentistry, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | | | |
Collapse
|