1
|
Lu H, Xu Z, Shao L, Li P, Xia Y. High infiltration of immune cells with lower immune activity mediated the heterogeneity of gastric adenocarcinoma and promoted metastasis. Heliyon 2024; 10:e37092. [PMID: 39319155 PMCID: PMC11419928 DOI: 10.1016/j.heliyon.2024.e37092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/21/2024] [Accepted: 08/27/2024] [Indexed: 09/26/2024] Open
Abstract
Background Gastric adenocarcinoma (GA) is a heterogeneous malignancy with high invasion and metastasis. We aimed to explore the metastatic characteristics of GA using single-cell RNA-sequencing (scRNA-seq) analysis. Methods The scRNA-seq dataset was downloaded from the GEO database and the "Seurat" package was used to perform the scRNA-seq analysis. The CellMarker2.0 database provided gene markers. Subsequently, differentially expressed genes (DEGs) were identified using the FindMarkers function and subjected to enrichment analysis with the "ClusterProlifer". "GseaVis" package was used for visualizing the gene levels. Finally, the SCENIC analysis was performed for identifying key regulons. The expression level and functionality of the key genes were verified by quantitative real-time PCR (qRT-PCR), wound healing and transwell assays. Results A total of 7697 cells were divided into 8 cell subsets, in which the Cytotoxic NK/T cells, Myeloid cells and Myofibroblasts had higher proportion in the metastatic tissues. Further screening of DEGs and enrichment analysis revealed that in the metastatic tissues, NK cells, monocytes and inflammatory fibroblasts with low immune levels contributed to GA metastasis. In addition, this study identified a series of key immune-related regulons that mediated the lower immune activity of immune cells. Further in vitro experiment verified that CXCL8 was a key factor mediating the proliferation and migration of GA cells. Conclusion The scRNA-seq analysis showed that high infiltration of immune cells with lower immune activity mediated heterogeneity to contribute to GA metastasis.
Collapse
Affiliation(s)
- Hongpeng Lu
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, China
| | - Zhihui Xu
- Department of Gastroenterology, Ninghai County Second Hospital, Ningbo, 315600, China
| | - Lihong Shao
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, China
| | - Peifei Li
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, China
| | - Yonghong Xia
- Department of Gastroenterology, Ninghai County Second Hospital, Ningbo, 315600, China
| |
Collapse
|
2
|
Wang X, Liu E, Hou C, Wang Y, Zhao Y, Guo J, Li M. Effects of natural products on angiogenesis in melanoma. Fitoterapia 2024; 177:106100. [PMID: 38972550 DOI: 10.1016/j.fitote.2024.106100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/09/2024]
Abstract
Melanoma is the most aggressive form of skin cancer and originates from genetic mutations in melanocytes. The disease is multifactorial, but its main cause is overexposure to UV radiation. Currently, available chemotherapy expresses little to no results, which may justify the extensive use of natural products to treat this cancer. In this study, we reviewed the inhibition of melanoma angiogenesis by natural products and its potential mechanisms using literature from PubMed, EMBASE, Web of Science, Ovid, ScienceDirect and China National Knowledge Infrastructure databases. According to summarizes 27 natural products including alkaloids, polyphenols, terpenoids, flavonoids, and steroids that effectively inhibit angiogenesis in melanoma. In addition to these there are 15 crude extracts that can be used as promising agents to inhibit angiogenesis, but their core components still deserve further investigation. There are current studies on melanoma angiogenesis involving oxidative stress, immune-inflammatory response, cell proliferation and migration and capillary formation. The above natural products can be involved in melanoma angiogenesis through core targets such as VE-cadherin, COX-2, iNOS, VEGF, bFGF, FGF2,MMP2,MMP9,IL-1β,IL-6 play a role in inhibiting melanoma angiogenesis. Effective excavation of natural products can not only clarify the mechanism of drug action and key targets, but also help to promote the preclinical research of natural products for melanoma treatment and further promote the development of new clinical drugs, which will bring the gospel to the vast number of patients who are deeply afflicted by melanoma.
Collapse
Affiliation(s)
- Xurui Wang
- Department of Chinese Medicine Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China,Chengdu, China; Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - E Liu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Changcheng Hou
- Jiangsu Province Hospital of Traditional Chinese Medicine Chongqing Hospital, Chongqing, China
| | - Yueyue Wang
- Jiangsu Province Hospital of Traditional Chinese Medicine Chongqing Hospital, Chongqing, China
| | - Yijia Zhao
- Department of Dermatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jing Guo
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Mingyue Li
- Special Needs Outpatient Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
3
|
Welsh A, Serala K, Prince S, Smith GS. Selective Targeting of Regulated Rhabdomyosarcoma Cells by Trinuclear Ruthenium(II)-Arene Complexes. J Med Chem 2024; 67:6673-6686. [PMID: 38569098 PMCID: PMC11056987 DOI: 10.1021/acs.jmedchem.4c00256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 04/05/2024]
Abstract
The use of benzimidazole-based trinuclear ruthenium(II)-arene complexes (1-3) to selectively target the rare cancer rhabdomyosarcoma is reported. Preliminary cytotoxic evaluations of the ruthenium complexes in an eight-cancer cell line panel revealed enhanced, selective cytotoxicity toward rhabdomyosarcoma cells (RMS). The trinuclear complex 1 was noted to show superior short- and long-term cytotoxicity in RMS cell lines and enhanced selectivity relative to cisplatin. Remarkably, 1 inhibits the migration of metastatic RMS cells and maintains superior activity in a 3D multicellular spheroid model in comparison to that of the clinically used cisplatin. Mechanistic insights reveal that 1 effectively induces genomic DNA damage, initiates autophagy, and prompts the intrinsic and extrinsic apoptotic pathways in RMS cells. To the best of our knowledge, 1 is the first trinuclear ruthenium(II) arene complex to selectively kill RMS cells in 2D and 3D cell cultures.
Collapse
Affiliation(s)
- Athi Welsh
- Department
of Chemistry, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| | - Karabo Serala
- Department
of Human Biology, Faculty of Health Science, University of Cape Town, Observatory, Cape Town 7935, South Africa
| | - Sharon Prince
- Department
of Human Biology, Faculty of Health Science, University of Cape Town, Observatory, Cape Town 7935, South Africa
| | - Gregory S. Smith
- Department
of Chemistry, University of Cape Town, Rondebosch, Cape Town 7700, South Africa
| |
Collapse
|
4
|
Mahdi AF, Nolan J, O’Connor RÍ, Lowery AJ, Allardyce JM, Kiely PA, McGourty K. Collagen-I influences the post-translational regulation, binding partners and role of Annexin A2 in breast cancer progression. Front Oncol 2023; 13:1270436. [PMID: 37941562 PMCID: PMC10628465 DOI: 10.3389/fonc.2023.1270436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023] Open
Abstract
Introduction The extracellular matrix (ECM) has been heavily implicated in the development and progression of cancer. We have previously shown that Annexin A2 is integral in the migration and invasion of breast cancer cells and in the clinical progression of ER-negative breast cancer, processes which are highly influenced by the surrounding tumor microenvironment and ECM. Methods We investigated how modulations of the ECM may affect the role of Annexin A2 in MDA-MB-231 breast cancer cells using western blotting, immunofluorescent confocal microscopy and immuno-precipitation mass spectrometry techniques. Results We have shown that the presence of collagen-I, the main constituent of the ECM, increases the post-translational phosphorylation of Annexin A2 and subsequently causes the translocation of Annexin A2 to the extracellular surface. In the presence of collagen-I, we identified fibronectin as a novel interactor of Annexin A2, using mass spectrometry analysis. We then demonstrated that reducing Annexin A2 expression decreases the degradation of fibronectin by cancer cells and this effect on fibronectin turnover is increased according to collagen-I abundance. Discussion Our results suggest that Annexin A2's role in promoting cancer progression is mediated by collagen-I and Annexin A2 maybe a therapeutic target in the bi-directional cross-talk between cancer cells and ECM remodeling that supports metastatic cancer progression.
Collapse
Affiliation(s)
- Amira F. Mahdi
- School of Medicine, University of Limerick, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| | - Joanne Nolan
- School of Medicine, University of Limerick, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| | - Ruth Í. O’Connor
- School of Medicine, University of Limerick, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| | - Aoife J. Lowery
- Lambe Institute for Translational Research, University of Galway, Galway, Ireland
| | - Joanna M. Allardyce
- Health Research Institute, University of Limerick, Limerick, Ireland
- School of Allied Health, University of Limerick, Limerick, Ireland
| | - Patrick A. Kiely
- School of Medicine, University of Limerick, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| | - Kieran McGourty
- Health Research Institute, University of Limerick, Limerick, Ireland
- Science Foundation Ireland Research Centre in Pharmaceuticals (SSPC), University of Limerick, Limerick, Ireland
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|
5
|
Movahhed M, pazhouhi M, Ghaleh HEG, Kondori BJ. Anti-metastatic effect of taraxasterol on prostate cancer cell lines. Res Pharm Sci 2023; 18:439-448. [PMID: 37614618 PMCID: PMC10443670 DOI: 10.4103/1735-5362.378090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/04/2023] [Accepted: 05/30/2023] [Indexed: 08/25/2023] Open
Abstract
Background and purpose Prostate cancer is the second cause of death among men. Nowadays, treating various cancers with medicinal plants is more common than other therapeutic agents due to their minor side effects. This study aimed to evaluate the effect of taraxasterol on the prostate cancer cell line. Experimental approach The prostate cancer cell line (PC3) was cultured in a nutrient medium. MTT method and trypan blue staining were used to evaluate the viability of cells in the presence of different concentrations of taraxasterol, and IC50 was calculated. Real-time PCR was used to measure the expression of MMP-9, MMP-2, uPA, uPAR, TIMP-2, and TIMP-1 genes. Gelatin zymography was used to determine MMP-9 and MMP-2 enzyme activity levels. Finally, the effect of taraxasterol on cell invasion, migration, and adhesion was investigated. Findings/Results Taraxasterol decreased the survival rate of PC3 cells at IC50 time-dependently (24, 48, and 72 h). Taraxasterol reduced the percentage of PC3 cell adhesion, invasion, and migration by 74, 56, and 76 percent, respectively. Real-time PCR results revealed that uPA, uPAR, MMP-9, and MMP-2 gene expressions decreased in the taraxasterol-treated groups, but TIMP-2 and TIMP-1 gene expressions increased significantly. Also, a significant decrease in the level of MMP-9 and MMP-2 enzymes was observed in the PC3 cell line treated with taraxasterol. Conclusion and implications The present study confirmed the therapeutic role of taraxasterol in preventing prostate cancer cell metastasis in the in-vitro study.
Collapse
Affiliation(s)
- Morteza Movahhed
- Department of Pathology, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mona pazhouhi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, I.R. Iran
| | | | - Bahman Jalali Kondori
- Department of Anatomical Sciences, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Two-phase model of compressive stress induced on a surrounding hyperelastic medium by an expanding tumour. J Math Biol 2022; 86:18. [PMID: 36538075 DOI: 10.1007/s00285-022-01851-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/24/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022]
Abstract
In vitro experiments in which tumour cells are seeded in a gelatinous medium, or hydrogel, show how mechanical interactions between tumour cells and the tissue in which they are embedded, together with local levels of an externally-supplied, diffusible nutrient (e.g., oxygen), affect the tumour's growth dynamics. In this article, we present a mathematical model that describes these in vitro experiments. We use the model to understand how tumour growth generates mechanical deformations in the hydrogel and how these deformations in turn influence the tumour's growth. The hydrogel is viewed as a nonlinear hyperelastic material and the tumour is modelled as a two-phase mixture, comprising a viscous tumour cell phase and an isotropic, inviscid interstitial fluid phase. Using a combination of numerical and analytical techniques, we show how the tumour's growth dynamics change as the mechanical properties of the hydrogel vary. When the hydrogel is soft, nutrient availability dominates the dynamics: the tumour evolves to a large equilibrium configuration where the proliferation rate of nutrient-rich cells on the tumour boundary balances the death rate of nutrient-starved cells in the central, necrotic core. As the hydrogel stiffness increases, mechanical resistance to growth increases and the tumour's equilibrium size decreases. Indeed, for small tumours embedded in stiff hydrogels, the inhibitory force experienced by the tumour cells may be so large that the tumour is eliminated. Analysis of the model identifies parameter regimes in which the presence of the hydrogel drives tumour elimination.
Collapse
|
7
|
Wang Q, Wang K, Tan X, Li Z, Wang H. Immunomodulatory role of metalloproteases in cancers: Current progress and future trends. Front Immunol 2022; 13:1064033. [PMID: 36591235 PMCID: PMC9800621 DOI: 10.3389/fimmu.2022.1064033] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Metalloproteinases (MPs) is a large family of proteinases with metal ions in their active centers. According to the different domains metalloproteinases can be divided into a variety of subtypes mainly including Matrix Metalloproteinases (MMPs), A Disintegrin and Metalloproteases (ADAMs) and ADAMs with Thrombospondin Motifs (ADAMTS). They have various functions such as protein hydrolysis, cell adhesion and remodeling of extracellular matrix. Metalloproteinases expressed in multiple types of cancers and participate in many pathological processes involving tumor genesis and development, invasion and metastasis by regulating signal transduction and tumor microenvironment. In this review, based on the current research progress, we summarized the structure of MPs, their expression and especially immunomodulatory role and mechanisms in cancers. Additionally, a relevant and timely update of recent advances and future directions were provided for the diagnosis and immunotherapy targeting MPs in cancers.
Collapse
Affiliation(s)
- Qi Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Kai Wang
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Xiaojing Tan
- Department of Oncology, Dongying People's Hospital, Dongying, China
| | - Zhenxiang Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China,*Correspondence: Zhenxiang Li, ; Haiyong Wang,
| | - Haiyong Wang
- Department of Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China,*Correspondence: Zhenxiang Li, ; Haiyong Wang,
| |
Collapse
|
8
|
Lee MG, Lee SG, Nam KS. Ginkgolide B Suppresses TPA-induced Metastatic Potential in MCF-7 Human Breast Cancer Cells by Inhibiting MAPK/AP-1 Signaling. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0246-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Gene Expression Analysis of Biphasic Pleural Mesothelioma: New Potential Diagnostic and Prognostic Markers. Diagnostics (Basel) 2022; 12:diagnostics12030674. [PMID: 35328227 PMCID: PMC8947498 DOI: 10.3390/diagnostics12030674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022] Open
Abstract
Biphasic is the second most common histotype of pleural mesothelioma (PM). It shares epithelioid and sarcomatoid features and is challenging to diagnose. The aim of this study was to identify biphasic PM markers to improve subtyping and prognosis definition. The expression levels of 117 cancer genes, evaluated using the nanoString system, were compared between the three major histotypes (epithelioid, sarcomatoid, and biphasic), and expression differences within biphasic PM were evaluated in relation to the percentage of epithelioid components. Biphasic PM overexpressed CTNNA1 and TIMP3 in comparison to sarcomatoid, and COL16A1 and SDC1 in comparison to epithelioid PM. CFB, MSLN, CLDN15, SERPINE1, and PAK4 were deregulated among all histotypes, leading to the hypothesis of a gradual expression from epithelioid to sarcomatoid PM. According to gene expression, biphasic PM samples were divided in two clusters with a significant difference in the epithelioid component. ADCY4, COL1A1, and COL4A2 were overexpressed in the biphasic group with a low percentage of epithelioid component. Survival analysis using TCGA data showed that high COL1A1 and COL4A2 expression levels correlate with poor survival in PM patients. Herein, we identified markers with the potential to improve diagnosis and prognostic stratification of biphasic PM, which is still an orphan tumor.
Collapse
|
10
|
Sonkar C, Sarkar S, Mukhopadhyay S. Ruthenium(ii)-arene complexes as anti-metastatic agents, and related techniques. RSC Med Chem 2022; 13:22-38. [PMID: 35224494 PMCID: PMC8792825 DOI: 10.1039/d1md00220a] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/15/2021] [Indexed: 09/18/2023] Open
Abstract
With the discovery of cisplatin, a vast area of applications of metallodrugs in cancer treatment was opened but due to the side effects caused by the cisplatin complexes, researchers began to look for alternatives with similar anticancer properties but fewer side effects. Ruthenium was found to be a promising candidate, considering its significant anticancer properties and low side effects. Several ruthenium complexes, viz. NAMI-A, KP1019, KP1339, and TLD1433, have entered clinical trials. Some other arene ruthenium complexes such as RM175 and RAPTA-C have also entered clinical trials but very few of them have shown anti-metastatic properties. Herein, we provide information and probable mechanistic pathways for ruthenium(ii)-arene complexes that have been studied, so far, for their anti-metastatic activities. Also, we discuss the techniques and their significance for determining the anti-metastatic effects of the complexes.
Collapse
Affiliation(s)
- Chanchal Sonkar
- Department of Biosciences and Biomedical Engineering, School of Engineering, Indian Institute of Technology Indore Khandwa Road, Simrol Indore 453552 MP India
| | - Sayantan Sarkar
- Department of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore Khandwa Road, Simrol Indore 453552 MP India
| | - Suman Mukhopadhyay
- Department of Biosciences and Biomedical Engineering, School of Engineering, Indian Institute of Technology Indore Khandwa Road, Simrol Indore 453552 MP India
- Department of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore Khandwa Road, Simrol Indore 453552 MP India
| |
Collapse
|
11
|
Endothelial ACKR3 drives atherosclerosis by promoting immune cell adhesion to vascular endothelium. Basic Res Cardiol 2022; 117:30. [PMID: 35674847 PMCID: PMC9177477 DOI: 10.1007/s00395-022-00937-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 01/31/2023]
Abstract
Atherosclerosis is the foundation of potentially fatal cardiovascular diseases and it is characterized by plaque formation in large arteries. Current treatments aimed at reducing atherosclerotic risk factors still allow room for a large residual risk; therefore, novel therapeutic candidates targeting inflammation are needed. The endothelium is the starting point of vascular inflammation underlying atherosclerosis and we could previously demonstrate that the chemokine axis CXCL12-CXCR4 plays an important role in disease development. However, the role of ACKR3, the alternative and higher affinity receptor for CXCL12 remained to be elucidated. We studied the role of arterial ACKR3 in atherosclerosis using western diet-fed Apoe-/- mice lacking Ackr3 in arterial endothelial as well as smooth muscle cells. We show for the first time that arterial endothelial deficiency of ACKR3 attenuates atherosclerosis as a result of diminished arterial adhesion as well as invasion of immune cells. ACKR3 silencing in inflamed human coronary artery endothelial cells decreased adhesion molecule expression, establishing an initial human validation of ACKR3's role in endothelial adhesion. Concomitantly, ACKR3 silencing downregulated key mediators in the MAPK pathway, such as ERK1/2, as well as the phosphorylation of the NF-kB p65 subunit. Endothelial cells in atherosclerotic lesions also revealed decreased phospho-NF-kB p65 expression in ACKR3-deficient mice. Lack of smooth muscle cell-specific as well as hematopoietic ACKR3 did not impact atherosclerosis in mice. Collectively, our findings indicate that arterial endothelial ACKR3 fuels atherosclerosis by mediating endothelium-immune cell adhesion, most likely through inflammatory MAPK and NF-kB pathways.
Collapse
|
12
|
Liu F, Liu T, Li H. Aloperine inhibits the progression of non-small-cell lung cancer through the PI3K/Akt signaling pathway. Cancer Cell Int 2021; 21:662. [PMID: 34895234 PMCID: PMC8666048 DOI: 10.1186/s12935-021-02361-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/24/2021] [Indexed: 12/24/2022] Open
Abstract
Background Lung cancer has become the leading cause of cancer-related death worldwide and non‐small‐cell lung cancer (NSCLC) accounts for approximately 85% of cases. Aloperine (ALO), an alkaloid active natural component from S. alopecuroide, has been found to exhibit anti-inflammatory, anti-tumor and anti-viral activity. However, Whether ALO exerts anti-tumor function on NSCLC remains poorly understood, and the underlying mechanisms remain unknown. Methods The CCK-8, colony formation, cell apoptosis with flow cytometry, wound healing and transwell cell invasion assays, were used to analyze the tumor progression of H1299 and A549 cells treated with ALO in vitro, and the xenograft model was constructed to assess the effect of ALO in vivo. The expression of protein was detected by Western blotting. Results ALO suppressed the cell proliferation, self-renewal, migration and invasion, induced apoptosis in A549 and H1299 cell. Furthermore, ALO significantly enhanced the level of cytochrome c in cytosol, and resulted in the dramatical increased levels of the cleaved caspase-3, caspased-9 and PARP. ALO also inhibited the expression of MMP-2 and MMP-9. Additionally, ALO also reduced p-AKT and p-mTOR to attenuate the PI3K/AKT signaling pathway. Conclusion This study unveils a rationale for ALO through PI3K/Akt signaling pathway affecting the cell progression such as cell growth, apoptosis and invasion, and ALO acts as a potential chemotherapeutic agent for NSCLC.
Collapse
Affiliation(s)
- Fujuan Liu
- Department of Pharmacy, Linyi Fourth People's Hospital, No. 121, Qianshi Ave., Linyi, 276005, Shandong, China
| | - Tao Liu
- Department of Pediatrics, Linyi Fourth People's Hospital, No. 121, Qianshi Ave., Linyi, 276005, Shandong, China
| | - Haiying Li
- Department of Ultrasound, Qilu Hospital of Shandong University, No. 107, Wenhuaxi Rd., Jinan, 250012, Shandong, China.
| |
Collapse
|
13
|
DNAzymes, Novel Therapeutic Agents in Cancer Therapy: A Review of Concepts to Applications. J Nucleic Acids 2021; 2021:9365081. [PMID: 34760318 PMCID: PMC8575636 DOI: 10.1155/2021/9365081] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/06/2021] [Indexed: 11/17/2022] Open
Abstract
The past few decades have witnessed a rapid evolution in cancer drug research which is aimed at developing active biological interventions to regulate cancer-specific molecular targets. Nucleic acid-based therapeutics, including ribozymes, antisense oligonucleotides, small interference RNA (siRNA), aptamer, and DNAzymes, have emerged as promising candidates regulating cancer-specific genes at either the transcriptional or posttranscriptional level. Gene-specific catalytic DNA molecules, or DNAzymes, have shown promise as a therapeutic intervention against cancer in various in vitro and in vivo models, expediting towards clinical applications. DNAzymes are single-stranded catalytic DNA that has not been observed in nature, and they are synthesized through in vitro selection processes from a large pool of random DNA libraries. The intrinsic properties of DNAzymes like small molecular weight, higher stability, excellent programmability, diversity, and low cost have brought them to the forefront of the nucleic acid-based therapeutic arsenal available for cancers. In recent years, considerable efforts have been undertaken to assess a variety of DNAzymes against different cancers. However, their therapeutic application is constrained by the low delivery efficiency, cellular uptake, and target detection within the tumour microenvironment. Thus, there is a pursuit to identify efficient delivery methods in vivo before the full potential of DNAzymes in cancer therapy is realized. In this light, a review of the recent advances in the use of DNAzymes against cancers in preclinical and clinical settings is valuable to understand its potential as effective cancer therapy. We have thus sought to firstly provide a brief overview of construction and recent improvements in the design of DNAzymes. Secondly, this review stipulates the efficacy, safety, and tolerability of DNAzymes developed against major hallmarks of cancers tested in preclinical and clinical settings. Lastly, the recent advances in DNAzyme delivery systems along with the challenges and prospects for the clinical application of DNAzymes as cancer therapy are also discussed.
Collapse
|
14
|
Ščupáková K, Adelaja OT, Balluff B, Ayyappan V, Tressler CM, Jenkinson NM, Claes BS, Bowman AP, Cimino-Mathews AM, White MJ, Argani P, Heeren RM, Glunde K. Clinical importance of high-mannose, fucosylated and complex N-glycans in breast cancermetastasis. JCI Insight 2021; 6:146945. [PMID: 34752419 PMCID: PMC8783675 DOI: 10.1172/jci.insight.146945] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND. Although aberrant glycosylation is recognized as a hallmark of cancer, glycosylation in clinical breast cancer (BC) metastasis has not yet been studied. While preclinical studies show that the glycocalyx coating of cancer cells is involved in adhesion, migration, and metastasis, glycosylation changes from primary tumor (PT) to various metastatic sites remain unknown in patients. METHODS. We investigated N-glycosylation profiles in 17 metastatic BC patients from our rapid autopsy program. Primary breast tumor, lymph node metastases, multiple systemic metastases, and various normal tissue cores from each patient were arranged on unique single-patient tissue microarrays (TMAs). We performed mass spectrometry imaging (MSI) combined with extensive pathology annotation of these TMAs, and this process enabled spatially differentiated cell-based analysis of N-glycosylation patterns in metastatic BC. RESULTS. N-glycan abundance increased during metastatic progression independently of BC subtype and treatment regimen, with high-mannose glycans most frequently elevated in BC metastases, followed by fucosylated and complex glycans. Bone metastasis, however, displayed increased core-fucosylation and decreased high-mannose glycans. Consistently, N-glycosylated proteins and N-glycan biosynthesis genes were differentially expressed during metastatic BC progression, with reduced expression of mannose-trimming enzymes and with elevated EpCAM, N-glycan branching, and sialyation enzymes in BC metastases versus PT. CONCLUSION. We show in patients that N-glycosylation of breast cancer cells undergoing metastasis occurs in a metastatic site–specific manner, supporting the clinical importance of high-mannose, fucosylated, and complex N-glycans as future diagnostic markers and therapeutic targets in metastatic BC. FUNDING. NIH grants R01CA213428, R01CA213492, R01CA264901, T32CA193145, Dutch Province Limburg “LINK”, European Union ERA-NET TRANSCAN2-643638.
Collapse
Affiliation(s)
- Klára Ščupáková
- Maastricht MultiModal Molecular Imaging Institute, Maastricht University, Maastricht, Netherlands
| | - Oluwatobi T Adelaja
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Benjamin Balluff
- Maastricht MultiModal Molecular Imaging Institute, Maastricht University, Maastricht, Netherlands
| | - Vinay Ayyappan
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Caitlin M Tressler
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Nicole M Jenkinson
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Britt Sr Claes
- Maastricht MultiModal Molecular Imaging Institute, Maastricht University, Maastricht, Netherlands
| | - Andrew P Bowman
- Maastricht MultiModal Molecular Imaging Institute, Maastricht University, Maastricht, Netherlands
| | - Ashley M Cimino-Mathews
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Marissa J White
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Pedram Argani
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Ron Ma Heeren
- Maastricht MultiModal Molecular Imaging Institute, Maastricht University, Maastricht, Netherlands
| | - Kristine Glunde
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, United States of America
| |
Collapse
|
15
|
Targeting Drug Chemo-Resistance in Cancer Using Natural Products. Biomedicines 2021; 9:biomedicines9101353. [PMID: 34680470 PMCID: PMC8533186 DOI: 10.3390/biomedicines9101353] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer is one of the leading causes of death globally. The development of drug resistance is the main contributor to cancer-related mortality. Cancer cells exploit multiple mechanisms to reduce the therapeutic effects of anticancer drugs, thereby causing chemotherapy failure. Natural products are accessible, inexpensive, and less toxic sources of chemotherapeutic agents. Additionally, they have multiple mechanisms of action to inhibit various targets involved in the development of drug resistance. In this review, we have summarized the basic research and clinical applications of natural products as possible inhibitors for drug resistance in cancer. The molecular targets and the mechanisms of action of each natural product are also explained. Diverse drug resistance biomarkers were sensitive to natural products. P-glycoprotein and breast cancer resistance protein can be targeted by a large number of natural products. On the other hand, protein kinase C and topoisomerases were less sensitive to most of the studied natural products. The studies discussed in this review will provide a solid ground for scientists to explore the possible use of natural products in combination anticancer therapies to overcome drug resistance by targeting multiple drug resistance mechanisms.
Collapse
|
16
|
Anti-Cancer Effects of Cyclic Peptide ALOS4 in a Human Melanoma Mouse Model. Int J Mol Sci 2021; 22:ijms22179579. [PMID: 34502483 PMCID: PMC8430629 DOI: 10.3390/ijms22179579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022] Open
Abstract
We examined the effects of ALOS4, a cyclic peptide discovered previously by phage library selection against integrin αvβ3, on a human melanoma (A375) xenograft model to determine its abilities as a potential anti-cancer agent. We found that ALOS4 promoted healthy weight gain in A375-engrafted nude mice and reduced melanoma tumor mass and volume. Despite these positive changes, examination of the tumor tissue did not indicate any significant effects on proliferation, mitotic index, tissue vascularization, or reduction of αSMA or Ki-67 tumor markers. Modulation in overall expression of critical downstream αvβ3 integrin factors, such as FAK and Src, as well as reductions in gene expression of c-Fos and c-Jun transcription factors, indirectly confirmed our suspicions that ALOS4 is likely acting through an integrin-mediated pathway. Further, we found no overt formulation issues with ALOS4 regarding interaction with standard inert laboratory materials (polypropylene, borosilicate glass) or with pH and temperature stability under prolonged storage. Collectively, ALOS4 appears to be safe, chemically stable, and produces anti-cancer effects in a human xenograft model of melanoma. We believe these results suggest a role for ALOS4 in an integrin-mediated pathway in exerting its anti-cancer effects possibly through immune response modulation.
Collapse
|
17
|
Nikolaev AA, Babkina IV, Gershtein ES, Alferov AA, Delektorskaya VV, Mamedli ZZ, Kushlinskii NE. Prognostic significance of the TNM system criteria, levels of serum insulin-like growth factors and their transport proteins, VEGF and MMP-7 in colorectal cancer. Klin Lab Diagn 2021; 66:459-464. [PMID: 34388315 DOI: 10.51620/0869-2084-2021-66-8-459-464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The analysis of long-term results of treatment of 88 primary patients with colon adenocarcinoma at various stages of tumor process is presented, taking into account the TNM system criteria, and serum IGF-1, IGF-2, IGFBP-1, IGFBP-2, IGFBP-3, VEGF, and MMP-7 levels. The overall survival rate assessed by Kaplan-Meier method and Cox multivariate regression model was used as the criterion of prognosis. It was established that IGF-1, IGFBP-2 and VEGF serum levels along with the stage of colorectal cancer might be considered as statistically significant independent predictors of overall survival in patients.
Collapse
Affiliation(s)
- A A Nikolaev
- N.N. Blokhin National Medical Research Center of Oncology Ministry of Health of the Russian Federation.,A.I. Evdokimov Moscow State University of Medicine and Dentistry Ministry of Health of the Russian Federation
| | - I V Babkina
- N.N. Blokhin National Medical Research Center of Oncology Ministry of Health of the Russian Federation
| | - Elena Sergeevna Gershtein
- N.N. Blokhin National Medical Research Center of Oncology Ministry of Health of the Russian Federation.,A.I. Evdokimov Moscow State University of Medicine and Dentistry Ministry of Health of the Russian Federation
| | - A A Alferov
- N.N. Blokhin National Medical Research Center of Oncology Ministry of Health of the Russian Federation.,A.I. Evdokimov Moscow State University of Medicine and Dentistry Ministry of Health of the Russian Federation
| | - V V Delektorskaya
- N.N. Blokhin National Medical Research Center of Oncology Ministry of Health of the Russian Federation
| | - Z Z Mamedli
- N.N. Blokhin National Medical Research Center of Oncology Ministry of Health of the Russian Federation
| | - N E Kushlinskii
- N.N. Blokhin National Medical Research Center of Oncology Ministry of Health of the Russian Federation.,A.I. Evdokimov Moscow State University of Medicine and Dentistry Ministry of Health of the Russian Federation
| |
Collapse
|
18
|
The Effect of Electrochemotherapy on Breast Cancer Cell Lines. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2021. [DOI: 10.2478/sjecr-2019-0073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Despite advances in treatment, breast cancer remains one of the leading causes of death, and obviously new approaches to the treatment are needed. Due to minimal side effects, unlike more aggressive forms of therapy such as chemotherapy and radiotherapy, the application of irreversible electroporation-electrochemotherapy represents a new modality in the treatment of cancer. Electrochemotherapy uses an electric field (375 V cm -1) to allow increased absorption of chemotherapeutic drugs selectively in tumor cells. Accordingly, the total dose of these agents can be significantly reduced and numerous side effects can be avoided in this way. The Real Time Cell Analysis-RTCA-xCELLigence system was used to monitor the cytotoxic effects of the treatment. The results confirmed the justification of the use of paclitaxel in chemotherapy and showed cytotoxic effects of paclitaxel which were time and dose-dependent in both cell lines. When paclitaxel was administered in combination with an electric field, in both cell lines, the results showed a greater cytotoxic effect compared to the same treatment without electrochemotherapy. MCF-7 cells are more sensitive to electrochemotherapy treatment with paclitaxel compared to MDA-MB-231. Electrochemotherapy using paclitaxel in MCF-7 cells had a 6.4-fold higher cytotoxicity compared to the treatment only with paclitaxel. The results obtained support the current knowledge of the benefits of electrochemotherapy. It has been shown that electrochemotherapy can significantly increase the effects of paclitaxel in the tested cell lines. In this way, a very high concentration of chemotherapeutics in the targeted tissue was achieved, which represents localized chemotherapy.
Collapse
|
19
|
Wang D, Wang Y, Wu X, Kong X, Li J, Dong C. RNF20 Is Critical for Snail-Mediated E-Cadherin Repression in Human Breast Cancer. Front Oncol 2020; 10:613470. [PMID: 33364200 PMCID: PMC7753216 DOI: 10.3389/fonc.2020.613470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/09/2020] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND E-cadherin, a hallmark of epithelial-mesenchymal transition (EMT), is often repressed due to Snail-mediated epigenetic modification; however, the exact mechanism remains unclear. There is an urgent need to understand the determinants of tumor aggressiveness and identify potential therapeutic targets in breast cancer. EXPERIMENTAL DESIGN We studied the association of RNF20 with Snail and G9a by co-immunoprecipitation. We employed quantitative real-time PCR, ChIP, transwell assay, colony formation assay, and mammosphere assay to dissect the molecular events associated with the repression of E-cadherin in human breast cancer. We used a proteogenomic dataset that contains 105 breast tumor samples to determine the clinical relevance of RNF20 by Kaplan-Meier analyses. RESULTS In this study, we identified that Snail interacted with RNF20, an E3 ubiquitin-protein ligase responsible for monoubiquitination of H2BK120, and G9a, a methyltransferase for H3K9me2. RNF20 expression led to the inhibition of E-cadherin expression in the human breast cancer cells. Mechanically, we showed that RNF20 and H3K9m2 were enriched on the promoter of E-cadherin and knockdown of Snail reduced the enrichment of RNF20, showing a Snail-dependent manner. RNF20 expression enhanced breast cancer cell migration, invasion, tumorsphere and colony formation. Clinically, patients with high RNF20 expression had shorter overall survival. CONCLUSION RNF20 expression contributes to EMT induction and breast cancer progression through Snail-mediated epigenetic suppression of E-cadherin expression, suggesting the importance of RNF20 in breast cancer.
Collapse
Affiliation(s)
- Danping Wang
- Department of Pathology and Pathophysiology, and Department of Surgical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yifan Wang
- Department of Pathology and Pathophysiology, and Department of Surgical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute of Integrative Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Xuebiao Wu
- Department of Pathophysiology, Zunyi Medical University, Zunyi, China
| | - Xiangxing Kong
- Department of Pathology and Pathophysiology, and Department of Surgical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Li
- Department of Pathology and Pathophysiology, and Department of Surgical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chenfang Dong
- Department of Pathology and Pathophysiology, and Department of Surgical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
- Department of Pathophysiology, Zunyi Medical University, Zunyi, China
| |
Collapse
|
20
|
Sevillano N, Bohn MF, Zimanyi M, Chen Y, Petzold C, Gupta S, Ralston CY, Craik CS. Structure of an affinity-matured inhibitory recombinant fab against urokinase plasminogen activator reveals basis of potency and specificity. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1869:140562. [PMID: 33221341 DOI: 10.1016/j.bbapap.2020.140562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 10/16/2020] [Accepted: 11/03/2020] [Indexed: 10/23/2022]
Abstract
Affinity maturation of U33, a recombinant Fab inhibitor of uPA, was used to improve the affinity and the inhibitory effect compared to the parental Fab. Arginine scanning of the six CDR loops of U33 was done to identify initial binding determinants since uPA prefers arginine in its primary substrate binding pocket. Two CDR loops were selected to create an engineered affinity maturation library of U33 that was diversified around ArgL91 (CDR L3) and ArgH52 (CDR H2). Biopanning of the randomized U33 library under stringent conditions resulted in eight Fabs with improved binding properties. One of the most potent inhibitors, AB2, exhibited a 13-fold decrease in IC50 when compared to U33 largely due to a decrease in its off rate. To identify contributions of interfacial residues that might undergo structural rearrangement upon interface formation we used X-ray footprinting and mass spectrometry (XFMS). Four residues showed a pronounced decrease in solvent accessibility, and their clustering suggests that AB2 targets the active site and also engages residues in an adjacent pocket unique to human uPA. The 2.9 Å resolution crystal structure of AB2-bound to uPA shows a binding mode in which the CDR L1 loop inserts into the active site cleft and acts as a determinant of inhibition. The selectivity determinant of this binding mode is unlike previously identified inhibitory Fabs against uPA related serine proteases, MTSP-1, HGFA and FXIa. CDRs H2 and L3 loops aid in interface formation and provide critical salt-bridges to remodel loops surrounding the active site of uPA providing specificity and further evidence that antibodies can be potent and selective inhibitors of proteolytic enzymes.
Collapse
Affiliation(s)
- N Sevillano
- Department of Pharmaceutical Chemistry, University of California San Francisco, CA 94158, United States of America
| | - M F Bohn
- Department of Pharmaceutical Chemistry, University of California San Francisco, CA 94158, United States of America
| | - M Zimanyi
- Department of Pharmaceutical Chemistry, University of California San Francisco, CA 94158, United States of America
| | - Y Chen
- Molecular Biophysics and Integrated Bioimaging, Environmental Genomics and Systems Biology, and Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - C Petzold
- Molecular Biophysics and Integrated Bioimaging, Environmental Genomics and Systems Biology, and Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - S Gupta
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - C Y Ralston
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - C S Craik
- Department of Pharmaceutical Chemistry, University of California San Francisco, CA 94158, United States of America.
| |
Collapse
|
21
|
Shunmuga Priya V, Pradiba D, Aarthy M, Singh SK, Achary A, Vasanthi M. In-silico strategies for identification of potent inhibitor for MMP-1 to prevent metastasis of breast cancer. J Biomol Struct Dyn 2020; 39:7274-7293. [PMID: 32873178 DOI: 10.1080/07391102.2020.1810776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Matrix Metalloproteinase-1 (MMP-1) has been often upregulated in advanced breast cancers, known to participate in ECM degradation, migration, invasion, thus leading to metastasis. Due to these effects, the condition is often reported to inversely correlate with survival in advanced breast cancers. In the present study, in-silico method was adopted based on selective non zinc binding inhibitors of MMP-1. ADME properties were predicted for PASS filtered compounds and docking calculations were performed using Glide XP and IFD protocols of Schrodinger program. We identified six ligands as potent inhibitors and validated by observing structures and the interactions of MMP-1. The identified hits were validated using molecular dynamics simulation studies. Electronic structure analysis was performed for two top hit compounds myricetin and quercetin using density function theory (DFT) at B3LYP/6-31**G level to understand their molecular reactivity. Finally, one compound myricetin has emerged as the structurally stable compound with -7.801 kcal/mol and reasonable pose inside the binding site. Molecular dynamics results indicated that myricetin forms a stable interaction with the key amino acid residues such as Glu209, Glu219, Tyr240 and Pro238. In addition, it did not form any binding with the catalytic zinc at its active site. The interaction pattern of myricetin at its substrate binding site exhibited to be potent MMP-1 inhibitor. DFT study also showed that it has more potent inhibitory effect and solubility. These factors altogether show that myricetin could be considered as the best among the compounds evaluated in inhibiting MMP-1 thereby preventing metastasis of breast cancer. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Velu Shunmuga Priya
- Centre for Research, Department of Biotechnology, Kamaraj college of engineering & Technology, K.Vellakulam, Near Virudhunagar, Madurai District, Virudhunagar, Tamil Nadu, India
| | - Dhinakararajan Pradiba
- Centre for Research, Department of Biotechnology, Kamaraj college of engineering & Technology, K.Vellakulam, Near Virudhunagar, Madurai District, Virudhunagar, Tamil Nadu, India
| | - Murali Aarthy
- Computer Aided Drug Designing and Molecular Modelling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Sanjeev Kumar Singh
- Computer Aided Drug Designing and Molecular Modelling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Anant Achary
- Centre for Research, Department of Biotechnology, Kamaraj college of engineering & Technology, K.Vellakulam, Near Virudhunagar, Madurai District, Virudhunagar, Tamil Nadu, India
| | - Mani Vasanthi
- Centre for Research, Department of Biotechnology, Kamaraj college of engineering & Technology, K.Vellakulam, Near Virudhunagar, Madurai District, Virudhunagar, Tamil Nadu, India
| |
Collapse
|
22
|
Wu Y, Dong G, Sheng C. Targeting necroptosis in anticancer therapy: mechanisms and modulators. Acta Pharm Sin B 2020; 10:1601-1618. [PMID: 33088682 PMCID: PMC7563021 DOI: 10.1016/j.apsb.2020.01.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/19/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023] Open
Abstract
Necroptosis, a genetically programmed form of necrotic cell death, serves as an important pathway in human diseases. As a critical cell-killing mechanism, necroptosis is associated with cancer progression, metastasis, and immunosurveillance. Targeting necroptosis pathway by small molecule modulators is emerging as an effective approach in cancer therapy, which has the advantage to bypass the apoptosis-resistance and maintain antitumor immunity. Therefore, a better understanding of the mechanism of necroptosis and necroptosis modulators is necessary to develop novel strategies for cancer therapy. This review will summarize recent progress of the mechanisms and detecting methods of necroptosis. In particular, the relationship between necroptosis and cancer therapy and medicinal chemistry of necroptosis modulators will be focused on.
Collapse
|
23
|
Treeck O, Skrzypczak M, Schüler-Toprak S, Weber F, Ortmann O. Long non-coding RNA CCAT1 is overexpressed in endometrial cancer and regulates growth and transcriptome of endometrial adenocarcinoma cells. Int J Biochem Cell Biol 2020; 122:105740. [PMID: 32173521 DOI: 10.1016/j.biocel.2020.105740] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 02/18/2020] [Accepted: 03/09/2020] [Indexed: 01/24/2023]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) play important roles in regulation of gene expression and are involved in pathogenesis of different diseases including cancer. Recent studies suggested the lncRNA Colon cancer associated transcript-1 (CCAT1) to act as putative oncogene. In this study, to elucidate the role of this lncRNA in endometrial cancer, we examined its expression in normal endometrium and type 1 endometrial cancer and knocked down its expression in endometrial cancer cell lines followed by transcriptome and pathway analyses. METHODS CCAT1 expression was examined in 100 tissue samples of normal endometrium and type 1 endometrial cancer tissues by means of RT-qPCR. Knockdown of CCAT1 expression in HEC-1B and RL95/2 endometrial cancer cells was performed by siRNA transfection. Affymetrix GeneChip arrays were used to elucidate the effect of both lncRNAs on the transcriptome of these cell lines. RESULTS Median CCAT1 expression was found to be 9.3-fold higher in endometrial cancer when compared to normal endometrium (p < 0.05). In contrast to premenopausal endometrium and G1, G2 and G3 graded endometrial cancer, CCAT1 expression was nearly absent in postmenopausal tissue. Knockdown of CCAT1 by transient siRNA transfection significantly reduced proliferation of HEC-1B cancer cells in vitro by 35.5 % 6 days after transfection and notably reduced their colony formation ability. Affymetrix microarray and Ingenuity pathway analyses revealed a set of up- or down-regulated genes in transfected ERα-negative HEC-1B cells forming a network controlled by the key regulators TNF and TP53, including genes known to be involved in growth control, providing putative molecular mechanisms underlying the observed growth inhibition of HEC-1B cells. In contrast, CCAT1 knockdown in ERα-positive RL95/2 cells did not significantly affect proliferation, but resulted in down-regulation of a network of ERα target genes. CONCLUSIONS Given that the lncRNA CCAT1 was found to be overexpressed in endometrial cancer, affected the growth of HEC-1B cells and the expression of growth regulatory genes, our data suggest CCAT1 to exert oncogenic functions in endometrial cancer and encourage further studies to examine to what extent this lncRNA might be a potential therapy target in this cancer entity.
Collapse
Affiliation(s)
- Oliver Treeck
- Department of Obstetrics and Gynecology, University Medical Center Regensburg, Landshuter Str. 65, 93053, Regensburg, Germany.
| | - Maciej Skrzypczak
- Second Department of Gynecology, Medical University of Lublin, Jaczewskiego 8, PL 20-090, Lublin, Poland.
| | - Susanne Schüler-Toprak
- Department of Obstetrics and Gynecology, University Medical Center Regensburg, Landshuter Str. 65, 93053, Regensburg, Germany.
| | - Florian Weber
- Department of Pathology, University Medical Center Regensburg, Franz-Josef Strauß Allee 11, 93053, Regensburg, Germany.
| | - Olaf Ortmann
- Department of Obstetrics and Gynecology, University Medical Center Regensburg, Landshuter Str. 65, 93053, Regensburg, Germany.
| |
Collapse
|
24
|
Lee MG, Lee KS, Nam KS. Anti‑metastatic effects of arctigenin are regulated by MAPK/AP‑1 signaling in 4T‑1 mouse breast cancer cells. Mol Med Rep 2020; 21:1374-1382. [PMID: 32016480 DOI: 10.3892/mmr.2020.10937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/29/2019] [Indexed: 11/06/2022] Open
Abstract
Arctigenin is a natural lignan that is found in burdock with anti‑viral, ‑oxidative, ‑inflammatory and anti‑tumor activities. In the current study, the effect of arctigenin on metastatic potential was examined in 4T‑1 mouse triple‑negative breast cancer cells. The results indicated that arctigenin inhibited cell motility and invasiveness, which was determined using wound healing and transwell invasion assays. Arctigenin suppressed matrix metalloprotease‑9 (MMP‑9) activity via gelatin zymography, and protein expression of cyclooxygenase‑2 (COX‑2) and MMP‑3. Furthermore, arctigenin attenuated the mRNA expression of metastatic factors, including MMP‑9, MMP‑3 and COX‑2. Based on these results, the effect of arctigenin on the mitogen‑activated protein kinase (MAPK)/activating protein‑1 (AP‑1) signaling pathway was assessed in an attempt to identify the regulatory mechanism responsible for its anti‑metastatic effects. Arctigenin was demonstrated to inhibit the phosphorylation of extracellular signal‑regulated protein kinase (ERK) and c‑Jun N‑terminal kinase (JNK), and the nuclear translocations of the AP‑1 subunits, c‑Jun and c‑Fos. In summary, the present study demonstrated that in 4T‑1 mouse triple‑negative breast cancer cells the anti‑metastatic effect of arctigenin is mediated by the inhibition of MMP‑9 activity and by the inhibition of the metastasis‑enhancing factors MMP‑9, MMP‑3 and COX‑2, due to the suppression of the MAPK/AP‑1 signaling pathway. The results of the current study demonstrated that arctigenin exhibits a potential for preventing cell migration and invasion in triple negative breast cancer.
Collapse
Affiliation(s)
- Min-Gu Lee
- Department of Pharmacology and Intractable Disease Research Center, School of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Kyu-Shik Lee
- Department of Pharmacology and Intractable Disease Research Center, School of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Kyung-Soo Nam
- Department of Pharmacology and Intractable Disease Research Center, School of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| |
Collapse
|
25
|
Morais PA, Maia FF, Solis-Calero C, Caetano EWS, Freire VN, Carvalho HF. The urokinase plasminogen activator binding to its receptor: a quantum biochemistry description within an in/homogeneous dielectric function framework with application to uPA–uPAR peptide inhibitors. Phys Chem Chem Phys 2020; 22:3570-3583. [DOI: 10.1039/c9cp06530j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
DFT calculations using the MFCC fragment-based model considering a spatial-dependent dielectric function based on the Poisson–Boltzmann approximation were performed to describe the uPA–uPAR interactions.
Collapse
Affiliation(s)
- Pablo A. Morais
- Instituto Federal de Educação
- Ciência e Tecnologia do Ceará
- Campus Horizonte
- Horizonte
- Brazil
| | - Francisco Franciné Maia
- Departamento de Ciências Naturais
- Matemática e Estatística
- Universidade Federal Rural do Semi-Árido
- Mossoró
- Brazil
| | - Christian Solis-Calero
- Departamento de Biologia Estrutural e Funcional
- Instituto de Biologia
- Universidade Estadual de Campinas
- Campinas
- Brazil
| | | | | | - Hernandes F. Carvalho
- Departamento de Biologia Estrutural e Funcional
- Instituto de Biologia
- Universidade Estadual de Campinas
- Campinas
- Brazil
| |
Collapse
|
26
|
Ahmat Amin MKB, Shimizu A, Ogita H. The Pivotal Roles of the Epithelial Membrane Protein Family in Cancer Invasiveness and Metastasis. Cancers (Basel) 2019; 11:E1620. [PMID: 31652725 PMCID: PMC6893843 DOI: 10.3390/cancers11111620] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/08/2019] [Accepted: 10/21/2019] [Indexed: 12/16/2022] Open
Abstract
The members of the family of epithelial membrane proteins (EMPs), EMP1, EMP2, and EMP3, possess four putative transmembrane domain structures and are composed of approximately 160 amino acid residues. EMPs are encoded by the growth arrest-specific 3 (GAS3)/peripheral myelin protein 22 kDa (PMP22) gene family. The GAS3/PMP22 family members play roles in cell migration, growth, and differentiation. Evidence indicates an association of these molecules with cancer progression and metastasis. Each EMP has pro- and anti-metastatic functions that are likely involved in the complex mechanisms of cancer progression. We have recently demonstrated that the upregulation of EMP1 expression facilitates cancer cell migration and invasion through the activation of a small GTPase, Rac1. The inoculation of prostate cancer cells overexpressing EMP1 into nude mice leads to metastasis to the lymph nodes and lungs, indicating that EMP1 contributes to metastasis. Pro-metastatic properties of EMP2 and EMP3 have also been proposed. Thus, targeting EMPs may provide new insights into their clinical utility. Here, we highlight the important aspects of EMPs in cancer biology, particularly invasiveness and metastasis, and describe recent therapeutic approaches.
Collapse
Affiliation(s)
- Mohammad Khusni B Ahmat Amin
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu 520-2192, Japan.
- Translational Research Unit, Department of International Collaborative Research, Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu 520-2192, Japan.
| | - Akio Shimizu
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu 520-2192, Japan.
| | - Hisakazu Ogita
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu 520-2192, Japan.
| |
Collapse
|
27
|
Kazemi SM, Sabatier JM. Venoms of Iranian Scorpions (Arachnida, Scorpiones) and Their Potential for Drug Discovery. Molecules 2019; 24:molecules24142670. [PMID: 31340554 PMCID: PMC6680535 DOI: 10.3390/molecules24142670] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 07/16/2019] [Accepted: 07/20/2019] [Indexed: 12/19/2022] Open
Abstract
Scorpions, a characteristic group of arthropods, are among the earliest diverging arachnids, dating back almost 440 million years. One of the many interesting aspects of scorpions is that they have venom arsenals for capturing prey and defending against predators, which may play a critical role in their evolutionary success. Unfortunately, however, scorpion envenomation represents a serious health problem in several countries, including Iran. Iran is acknowledged as an area with a high richness of scorpion species and families. The diversity of the scorpion fauna in Iran is the subject of this review, in which we report a total of 78 species and subspecies in 19 genera and four families. We also list some of the toxins or genes studied from five species, including Androctonus crassicauda, Hottentotta zagrosensis, Mesobuthus phillipsi, Odontobuthus doriae, and Hemiscorpius lepturus, in the Buthidae and Hemiscorpiidae families. Lastly, we review the diverse functions of typical toxins from the Iranian scorpion species, including their medical applications.
Collapse
Affiliation(s)
- Seyed Mahdi Kazemi
- Zagros Herpetological Institute, No 12, Somayyeh 14 Avenue, 3715688415 Qom, Iran.
| | - Jean-Marc Sabatier
- Institute of NeuroPhysiopathology, UMR 7051, Faculté de Médecine Secteur Nord, 51, Boulevard Pierre Dramard-CS80011, 13344-Marseille Cedex 15, France
| |
Collapse
|
28
|
The anti-invasive activity of Robinia pseudoacacia L. and Amorpha fruticosa L. on breast cancer MDA-MB-231 cell line. Biologia (Bratisl) 2019. [DOI: 10.2478/s11756-019-00257-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Holle A, Govindan Kutty Devi N, Clar K, Fan A, Saif T, Kemkemer R, Spatz JP. Cancer Cells Invade Confined Microchannels via a Self-Directed Mesenchymal-to-Amoeboid Transition. NANO LETTERS 2019; 19:2280-2290. [PMID: 30775927 PMCID: PMC6463244 DOI: 10.1021/acs.nanolett.8b04720] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/11/2019] [Indexed: 05/30/2023]
Abstract
Cancer cell invasion through physical barriers in the extracellular matrix (ECM) requires a complex synergy of traction force against the ECM, mechanosensitive feedback, and subsequent cytoskeletal rearrangement. PDMS microchannels were used to investigate the transition from mesenchymal to amoeboid invasion in cancer cells. Migration was faster in narrow 3 μm-wide channels than in wider 10 μm channels, even in the absence of cell-binding ECM proteins. Cells permeating narrow channels exhibited blebbing and had smooth leading edge profiles, suggesting an ECM-induced transition from mesenchymal invasion to amoeboid invasion. Live cell labeling revealed a mechanosensing period in which the cell attempts mesenchymal-based migration, reorganizes its cytoskeleton, and proceeds using an amoeboid phenotype. Rho/ROCK (amoeboid) and Rac (mesenchymal) pathway inhibition revealed that amoeboid invasion through confined environments relies on both pathways in a time- and ECM-dependent manner. This demonstrates that cancer cells can dynamically modify their invasion programming to navigate physically confining matrix conditions.
Collapse
Affiliation(s)
- Andrew
W. Holle
- Department
of Cellular Biophysics, Max Planck Institute
for Medical Research, Heidelberg 69120, Germany
- Department
of Biophysical Chemistry, University of
Heidelberg, Heidelberg 69117, Germany
| | | | - Kim Clar
- Department
of Cellular Biophysics, Max Planck Institute
for Medical Research, Heidelberg 69120, Germany
- Department
of Applied Chemistry, Reutlingen University, Reutlingen 72762, Germany
| | - Anthony Fan
- Department
of Mechanical Science and Engineering, University
of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Taher Saif
- Department
of Mechanical Science and Engineering, University
of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Ralf Kemkemer
- Department
of Cellular Biophysics, Max Planck Institute
for Medical Research, Heidelberg 69120, Germany
- Department
of Applied Chemistry, Reutlingen University, Reutlingen 72762, Germany
| | - Joachim P. Spatz
- Department
of Cellular Biophysics, Max Planck Institute
for Medical Research, Heidelberg 69120, Germany
- Department
of Biophysical Chemistry, University of
Heidelberg, Heidelberg 69117, Germany
| |
Collapse
|
30
|
Guo ML, Sun MX, Lan JZ, Yan LS, Zhang JJ, Hu XX, Xu S, Mao DH, Yang HS, Liu YW, Chen TX. Proteomic analysis of the effects of cell culture density on the metastasis of breast cancer cells. Cell Biochem Funct 2019; 37:72-83. [PMID: 30773657 DOI: 10.1002/cbf.3377] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 11/14/2018] [Accepted: 12/10/2018] [Indexed: 12/11/2022]
Abstract
Cancer cell progression and proliferation increase cell density, resulting in changes to the tumour site, including the microenvironment. What is not known is if increased cell density influences the aggressiveness of cancer cells, especially their proliferation, migration, and invasion capabilities. In this study, we found that dense cell culture enhances the aggressiveness of the metastatic cancer cell lines, 4T1 and ZR-75-30, by increasing their proliferation, migration, and invasion capabilities. However, a less metastatic cell line, MCF-7, did not show an increase in aggressiveness, following dense cell culture conditions. We conducted a differential proteomic analysis on 4T1 cells cultured under dense or sparse conditions and identified an increase in expression for proteins involved in migration, including focal adhesion, cytoskeletal reorganization, and transendothelial migration. In contrast, 4T1 cells grown under sparse conditions had higher expression levels for proteins involved in metabolism, including lipid and phospholipid binding, lipid and cholesterol transporter activity, and protein binding. These results suggest that the high-density tumour microenvironment can cause a change in cellular behaviour, leading towards more aggressive cancers. SIGNIFICANCE OF THE STUDY: Metastasis of cancer cells is an obstacle to the clinical treatment of cancer. We found that dense cultures made metastatic cancer cells more potent in terms of proliferation, migration, and invasion. The proteomic and bioinformatic analyses provided some valuable clues for further intensive studies about the effects of cell density on cancer cell aggressiveness, which were associated with events such as pre-mRNA splicing and RNA transport, focal adhesion and cytoskeleton reorganization, ribosome biogenesis, and transendothelial migration, or associated with proteins, such as JAM-1 and S100A11. This investigation gives us new perspectives to investigate the metastasis mechanisms related to the microenvironment of tumour sites.
Collapse
Affiliation(s)
- Man-Lan Guo
- Key Laboratory of Tissue Engineering and Stem Cell of Guizhou Province, Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, China.,The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mi-Xin Sun
- Key Laboratory of Tissue Engineering and Stem Cell of Guizhou Province, Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Jin-Zhi Lan
- Key Laboratory of Tissue Engineering and Stem Cell of Guizhou Province, Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Li-Sha Yan
- Key Laboratory of Tissue Engineering and Stem Cell of Guizhou Province, Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Jing-Juan Zhang
- Human Functional Laboratory, School of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Xiao-Xia Hu
- Key Laboratory of Tissue Engineering and Stem Cell of Guizhou Province, Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Shu Xu
- Department of Pathology, School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Da-Hua Mao
- Department of Breast Surgery, Wudang Affiliated Hospital, School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Hai-Song Yang
- Department of Breast Surgery, Wudang Affiliated Hospital, School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Ya-Wei Liu
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Teng-Xiang Chen
- Key Laboratory of Tissue Engineering and Stem Cell of Guizhou Province, Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, China
| |
Collapse
|
31
|
Kugaevskaya EV, Gureeva TA, Timoshenko OS, Solovyeva NI. Urokinase-Type Plasminogen Activator System in Norm and in Life-Threatening Processes (Review). ACTA ACUST UNITED AC 2018. [DOI: 10.15360/1813-9779-2018-6-61-79] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The multifunctional urokinase-type plasminogen activator system (uPA-system) includes serine proteinase — uPA or urokinase, its receptor (uPAR) and two inhibitors (PAI-1 and PAI-2). The review discusses the structural features and involvement of the system components in the development of life-threatening processes including carcinogenesis, inflammation, neurogenesis and fibrinolysis, in regulation of which the destruction of extracellular matrix (ECM), cell mobility and signaling inside and outside the cell play a decisive role. uPA triggers the processes by activating the plasminogen and its convertion into plasmin involved in the activation of matrix metalloproteinases (MMPs) in addition to the regulation of fibrinolysis. MMPs can hydrolyze all the major ECM components and therefore play a key role in invasion, metastasis, and cell mobility. MMPs activates a cassette of biologically active regulatory molecules and release them from ECM. uPAR, PAI-1 and PAI-2 are responsible for regulation of the uPA activity. In addition, being a signaling receptor, uPAR along with MMPs lead to the stimulation of a number of signaling pathways that are associated with the regulation of proliferation, apoptosis, adhesion, growth and migration of cells contributing to tumor progression, inflammation, chemotaxis, and angiogenesis. Effective participation of the uPA system components in ECM destruction and regulation of intracellular and extracellular signaling pathways demonstrates that the system significantly contributes to the regulation of various physiological and pathological processes.
Collapse
|
32
|
Zhou Q, Zhang Z, Song L, Huang C, Cheng Q, Bi S, Hu X, Yu R. Cordyceps militaris fraction inhibits the invasion and metastasis of lung cancer cells through the protein kinase B/glycogen synthase kinase 3β/β-catenin signaling pathway. Oncol Lett 2018; 16:6930-6939. [PMID: 30546425 PMCID: PMC6256291 DOI: 10.3892/ol.2018.9518] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 03/20/2018] [Indexed: 12/21/2022] Open
Abstract
Cordyceps militaris is widely used as a traditional Chinese medicine health supplement, and is also used in the development of anticancer agents. In our previous studies, it was revealed that C. militaris fraction (CMF) possessed an antitumor effect against K562 cells in vitro, induced apoptosis and caused cell cycle arrest in the S phase. The published results also demonstrated that CMF-induced apoptosis was involved in mitochondrial dysfunction. The aim of the present study was to investigate the anti-invasion and anti-metastasis effects of CMF in NCI-H1299 and Lewis lung cancer (LLC) cell lines, which have high metastatic potential. MTT and clone formation assays were initially used to investigate the inhibitory effect of CMF on the viability of NCI-H1299 and LLC cells. The results of cell adhesion, wound healing, migration and Matrigel invasion assays in vitro indicated that NCI-H1299 cells (treated with 1, 3, 10 or 30 µg/ml CMF) and LLC cells (treated with 0.1, 0.3, 1 or 3 µg/ml CMF) demonstrated a concentration-dependent reduction in cell migration and invasion compared with the control. In vivo experiments demonstrated that the oral administration of CMF (65, 130 or 260 mg/kg) decreased the tumor growth and decreased the lung and liver metastasis in an LLC xenograft model, compared with untreated mice. Furthermore, western blot analysis was used to investigate the mechanism of the effect of CMF on the migration of NCI-H1299 cells and metastasis in the xenograft model. The results revealed that CMF may promote glycogen synthase kinase 3β (GSK-3β)-mediated degradation of β-catenin inhibited the phosphorylation of upstream protein kinase B (Akt), which resulted in the attenuation of the expression of matrix metalloproteinase (MMP)-2 and MMP-9. These results suggested that CMF may possess potential for the treatment of lung cancer metastasis via the Akt/GSK-3β/β-catenin pathway.
Collapse
Affiliation(s)
- Qinqin Zhou
- Department of Pharmacology, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Zhang Zhang
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Liyan Song
- Department of Pharmacology, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Chunhua Huang
- Department of Pharmacology, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Qi Cheng
- Department of Pharmacology, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Sixue Bi
- Department of Pharmacology, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Xianjing Hu
- Department of Pharmacology, College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Rongmin Yu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|
33
|
SERPA MS, MAFRA RP, QUEIROZ SIML, SILVA LPD, SOUZA LBD, PINTO LP. Expression of urokinase-type plasminogen activator and its receptor in squamous cell carcinoma of the oral tongue. Braz Oral Res 2018; 32:e93. [DOI: 10.1590/1807-3107bor-2018.vol32.0093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 07/25/2018] [Indexed: 01/31/2023] Open
|
34
|
Wang X, Chen Q, Zhang X, Ren X, Zhang X, Meng L, Liang H, Sha X, Fang X. Matrix metalloproteinase 2/9-triggered-release micelles for inhaled drug delivery to treat lung cancer: preparation and in vitro/in vivo studies. Int J Nanomedicine 2018; 13:4641-4659. [PMID: 30147314 PMCID: PMC6095127 DOI: 10.2147/ijn.s166584] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Improvement in drug accumulation in the lungs through inhalation administration and high expression of MMP2 and MMP9 in lung tumors have both been widely reported. Methods MMP2/9-triggered-release micelles were constructed and in vitro and in vivo studies of inhalation administration against lung tumor carried out. Pluronic P123 (P123) was modified with GPLGIAGQ-NH2 (GQ8) peptide to obtain P123-GQ8 (PG). MMP2/9-triggered-release micelles were constructed using PG and succinylated gelatin (SG) and loading paclitaxel (Ptx). To study biodistribution of micelles, DiR encapsulated in micelles was dosed to rats via intravenous injection or inhalation before ex vivo imaging for detecting DiR quantity in lungs. And B16F10 lung cancer-bearing nude mice were chosen as animal models to evaluate in vivo efficacy of MMP2/9-triggered-release micelles. Results Ptx-release efficiency from PG-SG-Ptx micelles was MMP2/9-concentration-dependent. For A549 cells, PG-SG-Ptx cytotoxicity was significantly greater (P<0.001) compared to P123-Ptx. Aerosol inhalation was chosen as the method of administration. In biodistribution experiment, DiR quantity in lungs was 5.8%±0.4% of that in major organs, while the ratio was 38.8%±0.5% for inhalation. For B16F10 lung cancer-bearing nude mice, the efficacy of inhalation of PG-SG-Ptx was significantly higher (P<0.001) than Taxol inhalation and injected PG-SG-Ptx. Inhaled PG-SG-Ptx also significantly inhibited the expression of Pgp in lung cancer. Conclusion Inhalation of MMP2/9-triggered-release micelles increased tumor sensitivity to chemotherapeutics and reduced the toxicity of chemotherapy to healthy lung cells, which has great potential in lung cancer therapy.
Collapse
Affiliation(s)
- Xiaofei Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education of China, School of Pharmacy, Fudan University, Shanghai, People's Republic of China, ; .,Shanghai Omni Pharmaceuticall Co., Ltd., Shanghai, People's Republic of China
| | - Qinyue Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education of China, School of Pharmacy, Fudan University, Shanghai, People's Republic of China, ;
| | - Xiaoyan Zhang
- Key Laboratory of Smart Drug Delivery, Ministry of Education of China, School of Pharmacy, Fudan University, Shanghai, People's Republic of China, ;
| | - Xiaoqing Ren
- Key Laboratory of Smart Drug Delivery, Ministry of Education of China, School of Pharmacy, Fudan University, Shanghai, People's Republic of China, ;
| | - Xiulei Zhang
- Key Laboratory of Smart Drug Delivery, Ministry of Education of China, School of Pharmacy, Fudan University, Shanghai, People's Republic of China, ;
| | - Lin Meng
- Key Laboratory of Smart Drug Delivery, Ministry of Education of China, School of Pharmacy, Fudan University, Shanghai, People's Republic of China, ;
| | - Huihui Liang
- Key Laboratory of Smart Drug Delivery, Ministry of Education of China, School of Pharmacy, Fudan University, Shanghai, People's Republic of China, ;
| | - Xianyi Sha
- Key Laboratory of Smart Drug Delivery, Ministry of Education of China, School of Pharmacy, Fudan University, Shanghai, People's Republic of China, ;
| | - Xiaoling Fang
- Key Laboratory of Smart Drug Delivery, Ministry of Education of China, School of Pharmacy, Fudan University, Shanghai, People's Republic of China, ;
| |
Collapse
|
35
|
Liu YX, Liu WJ, Zhang HR, Zhang ZW. Delivery of bevacizumab by intracranial injection: assessment in glioma model. Onco Targets Ther 2018; 11:2673-2683. [PMID: 29780259 PMCID: PMC5951223 DOI: 10.2147/ott.s159913] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Many reports have indicated that the intravenous administration of bevacizumab produces a number of systemic side effects. Therefore, we investigated the therapeutic effects of intratumoral bevacizumab administration using a glioma animal model. Methods The glioma cell lines U251 and U87 that carried luciferase were implanted into the brains of mice to develop glioma models. Glioma-bearing mice were treated with bevacizumab intravenously or intratumorally by Alzet micro-osmotic pumps, and the survival time of mice was monitored. Tumor volumes and location were observed by fluorescence imaging and histological analysis. Levels of microvessel marker, cancer stem cell marker as well as angiogenesis-, invasion-, and inflammation-related factors in tumors were examined by immunohistochemical staining. Results Mice treated with intratumoral low-dose bevacizumab had smaller tumor volumes, longer survival time, lower microvessel density, and fewer cancer stem cells as compared with untreated and intravenously treated mice. Furthermore, expression levels of inflammation-related factors increased signifiwhereas that of angiogenesis- and invasion-related factors decreased in intratumorally treated animals, compared with intravenously treated mice. Conclusion These results implied bevacizumab delivery by intratumoral injection via Alzet micro-osmotic pumps may be a more effective and safer protocol for treating gliomas.
Collapse
Affiliation(s)
- Yu-Xiao Liu
- Department of Neurosurgery, First Affiliated Hospital of Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Wen-Jia Liu
- Beijing Institute of Biotechnology, Beijing, People's Republic of China
| | - Hui-Ru Zhang
- Department of Neurosurgery, First Affiliated Hospital of Chinese PLA General Hospital, Beijing, People's Republic of China.,College of Biological Engineering, HeNan University of Technology, Beijing, People's Republic of China
| | - Zhi-Wen Zhang
- Department of Neurosurgery, First Affiliated Hospital of Chinese PLA General Hospital, Beijing, People's Republic of China
| |
Collapse
|
36
|
Toh YC, Raja A, Yu H, van Noort D. A 3D Microfluidic Model to Recapitulate Cancer Cell Migration and Invasion. Bioengineering (Basel) 2018; 5:E29. [PMID: 29642502 PMCID: PMC6027283 DOI: 10.3390/bioengineering5020029] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 02/08/2023] Open
Abstract
We have developed a microfluidic-based culture chip to simulate cancer cell migration and invasion across the basement membrane. In this microfluidic chip, a 3D microenvironment is engineered to culture metastatic breast cancer cells (MX1) in a 3D tumor model. A chemo-attractant was incorporated to stimulate motility across the membrane. We validated the usefulness of the chip by tracking the motilities of the cancer cells in the system, showing them to be migrating or invading (akin to metastasis). It is shown that our system can monitor cell migration in real time, as compare to Boyden chambers, for example. Thus, the chip will be of interest to the drug-screening community as it can potentially be used to monitor the behavior of cancer cell motility, and, therefore, metastasis, in the presence of anti-cancer drugs.
Collapse
Affiliation(s)
- Yi-Chin Toh
- Department of Biomedical Engineering, 4 Engineering Drive, National University of Singapore, Singapore 117853, Singapore.
- Institute of Bioengineering and Nanotechnology, A*STAR, The Nanos, #04-01, 31 Biopolis Way, Singapore 138669, Singapore.
| | - Anju Raja
- Institute of Bioengineering and Nanotechnology, A*STAR, The Nanos, #04-01, 31 Biopolis Way, Singapore 138669, Singapore.
- Integrated Health Information Systems (IHiS), 6 Serangoon North Avenue 5, Singapore 554910, Singapore.
| | - Hanry Yu
- Institute of Bioengineering and Nanotechnology, A*STAR, The Nanos, #04-01, 31 Biopolis Way, Singapore 138669, Singapore.
- Department of Physiology, Yong Loo Lin School of Medicine, MD9-04-11, 2 Medical Drive, Singapore 117597, Singapore.
- Mechanobiology Institute, National University of Singapore, T-Lab, #05-01, 5A Engineering Drive 1, Singapore 117411, Singapore.
- Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #10-01 CREATE Tower, Singapore 138602, Singapore.
- NUS Graduate Programme in Bioengineering, NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117597, Singapore.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
- Gastroenterology Department, Southern Medical University, Guangzhou 510515, China.
| | - Danny van Noort
- Division of Biotechnology, IFM, Linköping University, Linköping 58183, Sweden.
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea.
| |
Collapse
|
37
|
Furlan F, Eden G, Archinti M, Arnaudova R, Andreotti G, Citro V, Cubellis MV, Motta A, Degryse B. D2A-Ala peptide derived from the urokinase receptor exerts anti-tumoural effects in vitro and in vivo. Peptides 2018; 101:17-24. [PMID: 29273518 DOI: 10.1016/j.peptides.2017.12.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 12/10/2017] [Accepted: 12/18/2017] [Indexed: 11/28/2022]
Abstract
D2A-Ala is a synthetic peptide that has been created by introducing mutations in the original D2A sequence, 130IQEGEEGRPKDDR142 of human urokinase receptor (uPAR). In vitro, D2A-Ala peptide displays strong anti-tumoural properties inhibiting EGF-induced chemotaxis, invasion and proliferation of a human fibrosarcoma cell line, HT 1080, and a human colorectal adenocarcinoma cell line, HT 29. D2A-Ala exerts its effects by preventing EGF receptor (EGFR) phosphorylation. To test D2A-Ala in vivo, this peptide was PEGylated generating polyethyleneglycol (PEG)-D2A-Ala peptide. PEGylation did not alter the inhibitory properties of D2A-Ala. Human tumour xenografts in the immunodeficient nude mice using HT 1080 and HT 29 cell lines showed that PEG-D2A-Ala significantly prevents tumour growth decreasing size, weight and density of tumours. The most efficient doses of the peptide were 5 and 10 mg/kg, thereby relevant for possible development of the peptide into a drug against cancer in particular tumours expressing EGFR.
Collapse
Affiliation(s)
- Federico Furlan
- Dept. of Molecular Biology and Functional Genomics, DIBIT, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy
| | - Gabriele Eden
- IFOM, FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Marco Archinti
- Dept. of Molecular Biology and Functional Genomics, DIBIT, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy
| | - Ralitsa Arnaudova
- Dept. of Molecular Biology and Functional Genomics, DIBIT, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy
| | - Giuseppina Andreotti
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli (Naples), Italy
| | - Valentina Citro
- Dipartimento di Biologia, Università Federico II, Naples, Italy
| | | | - Andrea Motta
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli (Naples), Italy
| | - Bernard Degryse
- Dept. of Molecular Biology and Functional Genomics, DIBIT, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milan, Italy.
| |
Collapse
|
38
|
uPA/uPAR and SERPINE1 in head and neck cancer: role in tumor resistance, metastasis, prognosis and therapy. Oncotarget 2018; 7:57351-57366. [PMID: 27385000 PMCID: PMC5302994 DOI: 10.18632/oncotarget.10344] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 06/13/2016] [Indexed: 12/25/2022] Open
Abstract
There is strong evidence supporting the role of the plasminogen activator system in head and neck squamous cell carcinoma (HNSCC), particularly of its uPA (urokinase plasminogen activator) / uPAR (urokinase plasminogen activator receptor) and SERPINE1 components. Overexpression of uPA/uPAR and SERPINE1 enhances tumor cell migration and invasion and plays a key role in metastasis development, conferring poor prognosis. The apparent paradox of uPA/uPAR and its inhibitor SERPINE1 producing similar effects is solved by the identification of SERPINE1 activated signaling pathways independent of uPA inhibition. Both uPA/uPAR and SERPINE1 are directly linked to the induction of epithelial-to-mesenchymal transition, the acquisition of stem cell properties and resistance to antitumor agents. The aim of this review is to provide insight on the deregulation of these proteins in all these processes. We also summarize their potential value as prognostic biomarkers or potential drug targets in HNSCC patients. Concomitant overexpression of uPA/uPAR and SERPINE1 is associated with a higher risk of metastasis and could be used to identify patients that would benefit from an adjuvant treatment. In the future, the specific inhibitors of uPA/uPAR and SERPINE1, which are still under development, could be used to design new therapeutic strategies in HNSCCs.
Collapse
|
39
|
Sulforaphane inhibits human bladder cancer cell invasion by reversing epithelial-to-mesenchymal transition via directly targeting microRNA-200c/ZEB1 axis. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.12.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
40
|
Prognostic implications of the co-detection of the urokinase plasminogen activator system and osteopontin in patients with non-small-cell lung cancer undergoing radiotherapy and correlation with gross tumor volume. Strahlenther Onkol 2018; 194:539-551. [PMID: 29340706 DOI: 10.1007/s00066-017-1255-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 12/19/2017] [Indexed: 01/09/2023]
Abstract
BACKGROUND The urokinase plasminogen activator system (uPA, uPAR, PAI‑1) is upregulated in cancer and high plasma levels are associated with poor prognosis. Their interaction with hypoxia-related osteopontin (OPN) which is also overexpressed in malignant tumors suggests potential clinical relevance. However, the prognostic role of the uPA system in the radiotherapy (RT) of non-small-cell lung cancer (NSCLC), particularly in combination with OPN, has not been investigated so far. METHODS uPA, uPAR, PAI‑1 and OPN plasma levels of 81 patients with locally advanced or metastasized NSCLC were prospectively analyzed by ELISA before RT and were correlated to clinical patient/tumor data and prognosis after RT. RESULTS uPAR plasma levels were higher in M1; uPA and PAI‑1 levels were higher in M0 NSCLC patients. uPAR correlated with uPA (p < 0.001) which also correlated with PAI‑1 (p < 0.001). The prognostic impact of OPN plasma levels in the RT of NSCLC was previously reported by our group. PAI‑I plasma levels significantly impacted overall (OS) and progression-free survival (PFS). Low PAI‑1 levels were associated with a significantly reduced OS and PFS with a nearly 2‑fold increased risk of death (p = 0.029) and tumor progression (p = 0.029). In multivariate analysis, PAI‑1 levels remained an independent prognostic factor for OS and PFS with a 3‑fold increased risk of death (p = 0.001). If PAI‑1 plasma levels were combined with OPN or tumor volume, we found an additive prognostic impact on OS and PFS with a 2.5- to 3‑fold increased risk of death (p = 0.01). CONCLUSION Our results suggest that PAI-1 but not uPA and uPAR might add prognostic information in patients with advanced NSCLC undergoing RT. High pretreatment PAI-1 plasma levels were found predominantly in M0-stage patients and indicate a favorable prognosis as opposed to OPN where high plasma levels are associated with poor survival and metastasis. In combination, PAI-1 and OPN levels successfully predicted outcome and additively correlated with prognosis. These findings support the notion of an antidromic prognostic impact of OPN and PAI-1 plasma levels in the RT of advanced NSCLC.
Collapse
|
41
|
Jaiswal RK, Varshney AK, Yadava PK. Diversity and functional evolution of the plasminogen activator system. Biomed Pharmacother 2018; 98:886-898. [PMID: 29571259 DOI: 10.1016/j.biopha.2018.01.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/29/2017] [Accepted: 01/03/2018] [Indexed: 01/08/2023] Open
Abstract
The urokinase plasminogen activator system is a family of serine proteases which consists of uPA (urokinase plasminogen activator), uPAR (urokinase type plasminogen activator receptor) and PAI-1 (plasminogen activator inhibitor 1). In addition to their significant roles in activation, these proteases act as key regulators of the tumor microenvironment and are involved in the metastatic process in many cancers. High levels of uPA system proteases in many human cancer predicts poor patient prognosis and strongly indicated a key role of uPA system in cancer metastasis. Individual components of uPA system are found to be differentially expressed in cancer cells compared to normal cells and therefore are potential therapeutic targets. In this review, we present the molecular and cellular mechanisms underlying the role of uPA system in cancer progression. Epithelial to mesenchymal transitions (EMT) is the main cause of the cancer cell metastasis. We have also attempted to relate the role of uPA signaling in EMT of cancer cells.
Collapse
Affiliation(s)
- Rishi Kumar Jaiswal
- Applied Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Akhil Kumar Varshney
- Applied Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Pramod Kumar Yadava
- Applied Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
42
|
Chen S, Jin Z, Dai L, Wu H, Wang J, Wang L, Zhou Z, Yang L, Gao W. Aloperine induces apoptosis and inhibits invasion in MG-63 and U2OS human osteosarcoma cells. Biomed Pharmacother 2018; 97:45-52. [DOI: 10.1016/j.biopha.2017.09.066] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/06/2017] [Accepted: 09/13/2017] [Indexed: 12/20/2022] Open
|
43
|
Xu P, Andreasen PA, Huang M. Structural Principles in the Development of Cyclic Peptidic Enzyme Inhibitors. Int J Biol Sci 2017; 13:1222-1233. [PMID: 29104489 PMCID: PMC5666521 DOI: 10.7150/ijbs.21597] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/28/2017] [Indexed: 01/23/2023] Open
Abstract
This review summarizes our studies in the development of small cyclic peptides for specifically modulating enzyme activity. Serine proteases share highly similar active sites but perform diverse physiological and pathological functions. From a phage-display peptide library, we isolated two mono-cyclic peptides, upain-1 (CSWRGLENHRMC) and mupain-1 (CPAYSRYLDC), which inhibit the activity of human and murine urokinase-type plasminogen activators (huPA and muPA) with Ki values in the micromolar or sub-micromolar range, respectively. The following affinity maturations significantly enhanced the potencies of the two peptides, 10-fold and >250-fold for upain-1 and mupain-1, respectively. The most potent muPA inhibitor has a potency (Ki = 2 nM) and specificity comparable to mono-clonal antibodies. Furthermore, we also found an unusual feature of mupain-1 that its inhibitory potency can be enhanced by increasing the flexibility, which challenges the traditional viewpoint that higher rigidity leading to higher affinity. Moreover, by changing a few key residues, we converted mupain-1 from a uPA inhibitor to inhibitors of other serine proteases, including plasma kallikrein (PK) and coagulation factor XIa (fXIa). PK and fXIa inhibitors showed Ki values in the low nanomolar range and high specificity. Our studies demonstrate the versatility of small cyclic peptides to engineer inhibitory potency against serine proteases and to provide a new strategy for generating peptide inhibitors of serine proteases.
Collapse
Affiliation(s)
- Peng Xu
- State Key Laboratory of Structural Chemistry and Danish-Chinese Centre for Proteases and Cancer, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
| | - Peter A Andreasen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, 8000, Denmark
| | - Mingdong Huang
- State Key Laboratory of Structural Chemistry and Danish-Chinese Centre for Proteases and Cancer, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China.,College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, P.R. China
| |
Collapse
|
44
|
HMGA1 regulates the Plasminogen activation system in the secretome of breast cancer cells. Sci Rep 2017; 7:11768. [PMID: 28924209 PMCID: PMC5603555 DOI: 10.1038/s41598-017-11409-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/31/2017] [Indexed: 01/19/2023] Open
Abstract
Cancer cells secrete proteins that modify the extracellular environment acting as autocrine and paracrine stimulatory factors and have a relevant role in cancer progression. The HMGA1 oncofetal protein has a prominent role in controlling the expression of an articulated set of genes involved in various aspect of cancer cell transformation. However, little is known about its role in influencing the secretome of cancer cells. Performing an iTRAQ LC–MS/MS screening for the identification of secreted proteins, in an inducible model of HMGA1 silencing in breast cancer cells, we found that HMGA1 has a profound impact on cancer cell secretome. We demonstrated that the pool of HMGA1–linked secreted proteins has pro–migratory and pro-invasive stimulatory roles. From an inspection of the HMGA1–dependent secreted factors it turned out that HMGA1 influences the presence in the extra cellular milieu of key components of the Plasminogen activation system (PLAU, SERPINE1, and PLAUR) that has a prominent role in promoting metastasis, and that HMGA1 has a direct role in regulating the transcription of two of them, i.e. PLAU and SERPINE1. The ability of HMGA1 to regulate the plasminogen activator system may constitute an important mechanism by which HMGA1 promotes cancer progression.
Collapse
|
45
|
Liang Y, Clay NE, Sullivan KM, Leong J, Ozcelikkale A, Rich MH, Lee MK, Lai MH, Jeon H, Han B, Tong YW, Kong H. Enzyme-Induced Matrix Softening Regulates Hepatocarcinoma Cancer Cell Phenotypes. Macromol Biosci 2017; 17:10.1002/mabi.201700117. [PMID: 28683186 PMCID: PMC5784765 DOI: 10.1002/mabi.201700117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/07/2017] [Indexed: 12/20/2022]
Abstract
The progression of cancer is often accompanied by changes in the mechanical properties of an extracellular matrix. However, limited efforts have been made to reproduce these biological events in vitro. To this end, this study demonstrates that matrix remodeling caused by matrix metalloproteinase (MMP)-1 regulates phenotypic activities and modulates radiosensitivity of cancer cells exclusively in a 3D matrix. In this study, hepatocarcinoma cells are cultured in a collagen-based gel tailored to present an elastic modulus of ≈4.0 kPa. The subsequent exposure of the gel to MMP-1 decreases the elastic modulus from 4.0 to 0.5 kPa. In response to MMP-1, liver cancer cells undergo active proliferation, downregulation of E-cadherin, and the loss of detoxification capacity. The resulting spheroids are more sensitive to radiation than the spheroids cultured in the stiffer gel not exposed to MMP-1. Overall, this study serves to better understand and control the effects of MMP-induced matrix remodeling.
Collapse
Affiliation(s)
- Youyun Liang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117576 Singapore
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, U.S.A
| | - Nicholas Edwin Clay
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, U.S.A
| | - Kathryn M. Sullivan
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, U.S.A
| | - Jiayu Leong
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, U.S.A
| | - Altug Ozcelikkale
- School of Mechanical Engineering, Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, U.S.A
| | - Max H. Rich
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, U.S.A
| | - Min Kyung Lee
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, U.S.A
| | - Mei-Hsiu Lai
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, U.S.A
| | - Hojeong Jeon
- Center for Biomaterials, Biomedical Research Institute, Korean Institute of Science and Technology, Seoul, South Korea
| | - Bumsoo Han
- School of Mechanical Engineering, Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, U.S.A
| | - Yen Wah Tong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117576 Singapore
| | - Hyunjoon Kong
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, U.S.A
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, U.S.A
| |
Collapse
|
46
|
Taus LJ, Flores RE, Seyfried TN. Quantification of metastatic load in a syngeneic murine model of metastasis. Cancer Lett 2017; 405:56-62. [PMID: 28729049 DOI: 10.1016/j.canlet.2017.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 07/06/2017] [Accepted: 07/07/2017] [Indexed: 01/09/2023]
Abstract
Bioluminescence imaging (BLI) is an established method for evaluating metastatic load in preclinical cancer models; however, BLI can produce observational error due to differences in substrate concentration and signal depth. In our syngeneic murine model of metastasis (VM-M3), we used a quantitative polymerase chain reaction (qPCR) method of DNA quantification to bypass these limitations. Liver, spleen, and brain from VM/Dk (VM) mice bearing VM-M3 tumor cells were first imaged ex vivo with BLI. qPCR quantification of tumor cell DNA was then performed on DNA extracted from these organs. Linear regression indicated that qPCR data predicted BLI data in solid tissue. Furthermore, the tumor cell detection limit was lower for qPCR analysis than for BLI analysis. In order to validate qPCR for use in detecting blood metastases, qPCR quantification was performed on whole blood collected from mice whose global organ metastatic load (summation of liver, spleen, kidneys, lungs, and brain) was quantified through BLI. Linear regression indicated that qPCR data in blood predicted BLI data in solid tissue. The results demonstrate that qPCR is an accurate and sensitive method of metastatic quantification in syngeneic murine models.
Collapse
Affiliation(s)
- Luke J Taus
- Biology Department, Boston College, 140 Commonwealth Ave., Chestnut Hill, MA 02467, USA
| | - Roberto E Flores
- Biology Department, Boston College, 140 Commonwealth Ave., Chestnut Hill, MA 02467, USA
| | - Thomas N Seyfried
- Biology Department, Boston College, 140 Commonwealth Ave., Chestnut Hill, MA 02467, USA.
| |
Collapse
|
47
|
Mahmood MQ, Ward C, Muller HK, Sohal SS, Walters EH. Epithelial mesenchymal transition (EMT) and non-small cell lung cancer (NSCLC): a mutual association with airway disease. Med Oncol 2017; 34:45. [PMID: 28197929 DOI: 10.1007/s12032-017-0900-y] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 02/03/2017] [Indexed: 12/19/2022]
Abstract
NSCLC is a leading cause of morbidity and mortality worldwide. It includes adeno- and squamous cell carcinoma. In the background, COPD and smoking play a vital role in development of NSCLC. Local progression and metastasis of NSCLC has been associated with various mechanisms, but in particular by a process called epithelial mesenchymal transition (EMT), which is implicated in COPD pathogenesis. In this study, we have investigated whether expression of EGFR (activation marker) and S100A4, vimentin and N-cadherin (as EMT) is different both in central and leading edge of NSCLC and to what extent related to EMT activity of both small and large airways, stage and differentiation of NSCLC. We have investigated EMT biomarkers (S100A4, vimentin, and N-cadherin), an epithelial activation marker (EGFR) and a vascularity marker (Type-IV collagen) in surgically resected tissue from patients with NSCLC (adeno- and squamous cell carcinoma), and compared them with expression in the corresponding non-tumorous airways. EGFR, S100A4, vimentin, N-cadherin expression was higher in tumor cells located at the peripheral leading edge of NSCLC when compared with centrally located tumor cells of same subjects (P < 0.01). Type-IV collagen-expressing blood vessels were also more at the leading edge in comparison with central parts of NSCLC. EGFR and S100A4 expression was related to differentiation status (P < 0.05) and TNM stage (P < 0.05) of NSCLC. Moreover, EMT markers in the leading edge were significantly related to airway EMT activity, while peripheral edge vascularity of squamous cell carcinoma only was significantly related to large airway Rbm vascularity (P < 0.05). EGFR- and EMT-related protein expression was markedly high in the peripheral leading edge of NSCLCs and related to tumor characteristics associated with poor prognosis. The relationships between EMT-related tumor biomarker expression and those in the airway epithelium and Rbm provide a background for utility of airway changes in clinical settings.
Collapse
Affiliation(s)
- Malik Quasir Mahmood
- NHMRC Centre for Research Excellence in Chronic Respiratory Disease and Lung Ageing, School of Medicine, University of Tasmania, MS1, 17 Liverpool Street, Private Bag 23, Hobart, TAS, 7000, Australia
| | - Chris Ward
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
| | - Hans Konrad Muller
- NHMRC Centre for Research Excellence in Chronic Respiratory Disease and Lung Ageing, School of Medicine, University of Tasmania, MS1, 17 Liverpool Street, Private Bag 23, Hobart, TAS, 7000, Australia
| | - Sukhwinder Singh Sohal
- NHMRC Centre for Research Excellence in Chronic Respiratory Disease and Lung Ageing, School of Medicine, University of Tasmania, MS1, 17 Liverpool Street, Private Bag 23, Hobart, TAS, 7000, Australia.,Faculty of Health, School of Health Sciences, University of Tasmania, Launceston, TAS, 7248, Australia
| | - Eugene Haydn Walters
- NHMRC Centre for Research Excellence in Chronic Respiratory Disease and Lung Ageing, School of Medicine, University of Tasmania, MS1, 17 Liverpool Street, Private Bag 23, Hobart, TAS, 7000, Australia.
| |
Collapse
|
48
|
Identification of Caveolin-1 as an Invasion-Associated Gene in Liver Cancer Cells Using Dendron-Coated DNA Microarrays. Appl Biochem Biotechnol 2017; 182:1276-1289. [DOI: 10.1007/s12010-017-2398-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 01/02/2017] [Indexed: 01/11/2023]
|
49
|
Qin Y, Zhang Q, Lee S, Zhong WL, Liu YR, Liu HJ, Zhao D, Chen S, Xiao T, Meng J, Jing XS, Wang J, Sun B, Dai TT, Yang C, Sun T, Zhou HG. Doxycycline reverses epithelial-to-mesenchymal transition and suppresses the proliferation and metastasis of lung cancer cells. Oncotarget 2016; 6:40667-79. [PMID: 26512779 PMCID: PMC4747360 DOI: 10.18632/oncotarget.5842] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 09/24/2015] [Indexed: 12/20/2022] Open
Abstract
The gelatinase inhibitor doxycycline is the prototypical antitumor antibiotic. We investigated the effects of doxycycline on the migration, invasion, and metastasis of human lung cancer cell lines and in a mouse model. We also measured the effect of doxycycline on the transcription of epithelial-mesenchymal transition (EMT) markers, and used immunohistochemistry to determine whether EMT reversal was associated with doxycycline inhibition. Doxycycline dose-dependently inhibited proliferation, migration, and invasion of NCI-H446 human small cell lung cancer cells. It also suppressed tumor growth from NCI-H446 and A549 lung cancer cell xenografts without altering body weight, inhibited Lewis lung carcinoma cell migration, and prolonged survival. The activities of the transcription factors Twist1/2, SNAI1/2, AP1, NF-κB, and Stat3 were suppressed by doxycycline, which reversed EMT and inhibited signal transduction, thereby suppressing tumor growth and metastasis. Our data demonstrate functional targeting of transcription factors by doxycycline to reverse EMT and suppress tumor proliferation and metastasis. Thus, doxycycline selectively targets malignant tumors and reduces its metastatic potential with less cytotoxicity in lung cancer patients.
Collapse
Affiliation(s)
- Yuan Qin
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Qiang Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Shan Lee
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Wei-Long Zhong
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Yan-Rong Liu
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Hui-Juan Liu
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Dong Zhao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Shuang Chen
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Ting Xiao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Jing Meng
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Xue-Shuang Jing
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Jing Wang
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Bo Sun
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Ting-Ting Dai
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Tao Sun
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Hong-Gang Zhou
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| |
Collapse
|
50
|
Ghorai A, Sarma A, Chowdhury P, Ghosh U. PARP-1 depletion in combination with carbon ion exposure significantly reduces MMPs activity and overall increases TIMPs expression in cultured HeLa cells. Radiat Oncol 2016; 11:126. [PMID: 27659937 PMCID: PMC5034624 DOI: 10.1186/s13014-016-0703-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 09/13/2016] [Indexed: 12/11/2022] Open
Abstract
Background Hadron therapy is an innovative technique where cancer cells are precisely killed leaving surrounding healthy cells least affected by high linear energy transfer (LET) radiation like carbon ion beam. Anti-metastatic effect of carbon ion exposure attracts investigators into the field of hadron biology, although details remain poor. Poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors are well-known radiosensitizer and several PARP-1 inhibitors are in clinical trial. Our previous studies showed that PARP-1 depletion makes the cells more radiosensitive towards carbon ion than gamma. The purpose of the present study was to investigate combining effects of PARP-1 inhibition with carbon ion exposure to control metastatic properties in HeLa cells. Methods Activities of matrix metalloproteinases-2, 9 (MMP-2, MMP-9) were measured using the gelatin zymography after 85 MeV carbon ion exposure or gamma irradiation (0- 4 Gy) to compare metastatic potential between PARP-1 knock down (HsiI) and control cells (H-vector - HeLa transfected with vector without shRNA construct). Expression of MMP-2, MMP-9, tissue inhibitor of MMPs such as TIMP-1, TIMP-2 and TIMP-3 were checked by immunofluorescence and western blot. Cell death by trypan blue, apoptosis and autophagy induction were studied after carbon ion exposure in each cell-type. The data was analyzed using one way ANOVA and 2-tailed paired-samples T-test. Results PARP-1 silencing significantly reduced MMP-2 and MMP-9 activities and carbon ion exposure further diminished their activities to less than 3 % of control H-vector. On the contrary, gamma radiation enhanced both MMP-2 and MMP-9 activities in H-vector but not in HsiI cells. The expression of MMP-2 and MMP-9 in H-vector and HsiI showed different pattern after carbon ion exposure. All three TIMPs were increased in HsiI, whereas only TIMP-1 was up-regulated in H-vector after irradiation. Notably, the expressions of all TIMPs were significantly higher in HsiI than H-vector at 4 Gy. Apoptosis was the predominant mode of cell death and no autophagic death was observed. Conclusions Our study demonstrates for the first time that PARP-1 inhibition in combination with carbon ion synergistically decreases MMPs activity along with overall increase of TIMPs. These data open up the possibilities of improvement of carbon ion therapy with PARP-1 inhibition to control highly metastatic cancers. Electronic supplementary material The online version of this article (doi:10.1186/s13014-016-0703-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Atanu Ghorai
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, 741235, India.,Present address: Department of Biological Sciences, Tata Institute of Fundamental Research (TIFR), Homi Bhabha Road, Colaba, Mumbai, 400005, India
| | - Asitikantha Sarma
- Inter-University Accelerator Center (IUAC), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Priyanka Chowdhury
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, 741235, India
| | - Utpal Ghosh
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, 741235, India.
| |
Collapse
|