1
|
Kesheh MM, Bayat M, Kobravi S, Lotfalizadeh MH, Heydari A, Memar MY, Baghi HB, Kermanshahi AZ, Ravaei F, Taghavi SP, Zarepour F, Nahand JS, Hashemian SMR, Mirzaei H. MicroRNAs and human viral diseases: A focus on the role of microRNA-29. Biochim Biophys Acta Mol Basis Dis 2024; 1871:167500. [PMID: 39260679 DOI: 10.1016/j.bbadis.2024.167500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/01/2024] [Accepted: 08/01/2024] [Indexed: 09/13/2024]
Abstract
The viral replication can impress through cellular miRNAs. Indeed, either the antiviral responses or the viral infection changes through cellular miRNAs resulting in affecting many regulatory signaling pathways. One of the microRNA families that is effective in human cancers, diseases, and viral infections is the miR-29 family. Members of miR-29 family are effective in different viral infections as their roles have appeared in regulation of immunity pathways either in innate immunity including interferon and inflammatory pathways or in adaptive immunity including activation of T-cells and antibodies production. Although miR-29a affects viral replication by suppressing antiviral responses, it can inhibit the expression of viral mRNAs via binding to their 3'UTR. In the present work, we discuss the evidence related to miR-29a and viral infection through host immunity regulation. We also review roles of other miR-29 family members by focusing on their role as biomarkers for diagnosing and targets for viral diseases management.
Collapse
Affiliation(s)
- Mina Mobini Kesheh
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mobina Bayat
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepehr Kobravi
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Tehran Azad University, Tehran, Iran
| | | | - Azhdar Heydari
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran; Department of Physiology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Atefeh Zamani Kermanshahi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Ravaei
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Pouya Taghavi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Zarepour
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Seyed Mohammad Reza Hashemian
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
2
|
Ssedyabane F, Obuku EA, Namisango E, Ngonzi J, Castro CM, Lee H, Randall TC, Ocan M, Apunyo R, Annet Kinengyere A, Kajabwangu R, Tahirah Kisawe A, Nambi Najjuma J, Tusubira D, Niyonzima N. The diagnostic accuracy of serum and plasma microRNAs in detection of cervical intraepithelial neoplasia and cervical cancer: A systematic review and meta-analysis. Gynecol Oncol Rep 2024; 54:101424. [PMID: 38939506 PMCID: PMC11208915 DOI: 10.1016/j.gore.2024.101424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/10/2024] [Accepted: 05/19/2024] [Indexed: 06/29/2024] Open
Abstract
Studies suggest a need for new diagnostic approaches for cervical cancer including microRNA technology. In this review, we assessed the diagnostic accuracy of microRNAs in detecting cervical cancer and Cervical Intraepithelial Neoplasia (CIN). We performed a systematic review following the Preferred Reporting Items for Systematic Review and Meta-Analysis guideline for protocols (PRISMA-P). We searched for all articles in online databases and grey literature from 01st January 2012 to 16th August 2022. We used the quality assessment of diagnostic accuracy studies tool (QUADAS-2) to assess the risk of bias of included studies and then conducted a Random Effects Meta-analysis. We identified 297 articles and eventually extracted data from 24 studies. Serum/plasma concentration miR-205, miR-21, miR-192, and miR-9 showed highest diagnostic accuracy (AUC of 0.750, 0.689, 0.980, and 0.900, respectively) for detecting CIN from healthy controls. MicroRNA panels (miR-21, miR-125b and miR-370) and (miR-9, miR-10a, miR-20a and miR-196a and miR-16-2) had AUC values of 0.897 and 0.886 respectively for detecting CIN from healthy controls. For detection of cervical cancer from healthy controls, the most promising microRNAs were miR-21, miR-205, miR-192 and miR-9 (AUC values of 0.723, 0.960, 1.00, and 0.99 respectively). We report higher diagnostic accuracy of upregulated microRNAs, especially miR-205, miR-9, miR-192, and miR-21. This highlights their potential as stand-alone screening or diagnostic tests, either with others, in a new algorithm, or together with other biomarkers for purposes of detecting cervical lesions. Future studies could standardize quantification methods, and also study microRNAs in higher prevalence populations like in sub-Saharan Africa and South Asia. Our review protocol was registered in PROSPERO (CRD42022313275).
Collapse
Affiliation(s)
- Frank Ssedyabane
- Department of Medical Laboratory Science, Faculty of Medicine, Mbarara University of Science of Science and Technology, P.O. Box 1410 Mbarara, Uganda
| | - Ekwaro A. Obuku
- Africa Centre for Systematic Reviews and Knowledge Translation, College of Health Sciences, Makerere University, P.O Box 7072, Upper Mulago Hill Road, Kampala, Uganda
- Clinical Epidemiology Unit, Department of Medicine, School of Medicine, College of Health Sciences, Makerere University, P.O. Box 7072 Kampala, Uganda
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, University of London, London, UK
| | - Eve Namisango
- Africa Centre for Systematic Reviews and Knowledge Translation, College of Health Sciences, Makerere University, P.O Box 7072, Upper Mulago Hill Road, Kampala, Uganda
| | - Joseph Ngonzi
- Department of Obstetrics and Gynecology, Mbarara University of Science of Science and Technology, P.O. Box 1410 Mbarara Uganda
| | - Cesar M. Castro
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Thomas C. Randall
- Department of Global Health and Social Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Moses Ocan
- Africa Centre for Systematic Reviews and Knowledge Translation, College of Health Sciences, Makerere University, P.O Box 7072, Upper Mulago Hill Road, Kampala, Uganda
- Department of Pharmacology & Therapeutics, Makerere University, P.O. Box 7072 Kampala, Uganda
| | - Robert Apunyo
- Africa Centre for Systematic Reviews and Knowledge Translation, College of Health Sciences, Makerere University, P.O Box 7072, Upper Mulago Hill Road, Kampala, Uganda
| | - Alison Annet Kinengyere
- Africa Centre for Systematic Reviews and Knowledge Translation, College of Health Sciences, Makerere University, P.O Box 7072, Upper Mulago Hill Road, Kampala, Uganda
- Sir Albert Cook Medical Library, College of Health Sciences, Makerere University P.O Box 7072, Upper Mulago Hill Road, Kampala, Uganda
| | - Rogers Kajabwangu
- Department of Obstetrics and Gynecology, Mbarara University of Science of Science and Technology, P.O. Box 1410 Mbarara Uganda
| | - Aziza Tahirah Kisawe
- Department of Medical Laboratory Science, Faculty of Medicine, Mbarara University of Science of Science and Technology, P.O. Box 1410 Mbarara, Uganda
| | - Josephine Nambi Najjuma
- Department of Nursing, Mbarara University of Science of Science and Technology, P.O. Box 1410 Mbarara Uganda
| | - Deusdedit Tusubira
- Department of Biochemistry, Mbarara University of Science of Science and Technology, P.O. Box 1410 Mbarara Uganda
| | - Nixon Niyonzima
- Research and Training Directorate, Uganda Cancer Institute, P. O. Box 3935 Kampala, Uganda
| |
Collapse
|
3
|
Shi R, Yu R, Lian F, Zheng Y, Feng S, Li C, Zheng X. Targeting HSP47 for cancer treatment. Anticancer Drugs 2024; 35:623-637. [PMID: 38718070 DOI: 10.1097/cad.0000000000001612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Heat shock protein 47 (HSP47) serves as an endoplasmic reticulum residing collagen-specific chaperone and plays an important role in collagen biosynthesis and structural assembly. HSP47 is encoded by the SERPINH1 gene, which is located on chromosome 11q13.5, one of the most frequently amplified regions in human cancers. The expression of HSP47 is regulated by multiple cellular factors, including cytokines, transcription factors, microRNAs, and circular RNAs. HSP47 is frequently upregulated in a variety of cancers and plays an important role in tumor progression. HSP47 promotes tumor stemness, angiogenesis, growth, epithelial-mesenchymal transition, and metastatic capacity. HSP47 also regulates the efficacy of tumor therapies, such as chemotherapy, radiotherapy, and immunotherapy. Inhibition of HSP47 expression has antitumor effects, suggesting that targeting HSP47 is a feasible strategy for cancer treatment. In this review, we highlight the function and expression of regulatory mechanisms of HSP47 in cancer progression and point out the potential development of therapeutic strategies in targeting HSP47 in the future.
Collapse
Affiliation(s)
- Run Shi
- School of Medicine, Pingdingshan University, Pingdingshan, China
| | | | | | | | | | | | | |
Collapse
|
4
|
Millan-Catalan O, Pérez-Yépez EA, Martínez-Gutiérrez AD, Rodríguez-Morales M, López-Urrutia E, Coronel-Martínez J, Cantú de León D, Jacobo-Herrera N, Peralta-Zaragoza O, López-Camarillo C, Rodríguez-Dorantes M, Pérez-Plasencia C. A microRNA Profile Regulates Inflammation-Related Signaling Pathways in Young Women with Locally Advanced Cervical Cancer. Cells 2024; 13:896. [PMID: 38891028 PMCID: PMC11172105 DOI: 10.3390/cells13110896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024] Open
Abstract
Cervical cancer (CC) remains among the most frequent cancers worldwide despite advances in screening and the development of vaccines against human papillomavirus (HPV), involved in virtually all cases of CC. In mid-income countries, a substantial proportion of the cases are diagnosed in advanced stages, and around 40% of them are diagnosed in women under 49 years, just below the global median age. This suggests that members of this age group share common risk factors, such as chronic inflammation. In this work, we studied samples from 46 patients below 45 years old, searching for a miRNA profile regulating cancer pathways. We found 615 differentially expressed miRNAs between tumor samples and healthy tissues. Through bioinformatic analysis, we found that several of them targeted elements of the JAK/STAT pathway and other inflammation-related pathways. We validated the interactions of miR-30a and miR-34c with JAK1 and STAT3, respectively, through dual-luciferase and expression assays in cervical carcinoma-derived cell lines. Finally, through knockdown experiments, we observed that these miRNAs decreased viability and promoted proliferation in HeLa cells. This work contributes to understanding the mechanisms through which HPV regulates inflammation, in addition to its canonical oncogenic function, and brings attention to the JAK/STAT signaling pathway as a possible diagnostic marker for CC patients younger than 45 years. To our knowledge to date, there has been no previous description of a panel of miRNAs or even ncRNAs in young women with locally advanced cervical cancer.
Collapse
Affiliation(s)
- Oliver Millan-Catalan
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Tlalpan, Mexico City 14080, Mexico; (O.M.-C.); (E.A.P.-Y.); (A.D.M.-G.)
- Posgrado en Ciencias Biológicas, Unidad de Posgrados, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Coyoacán, Mexico City 04510, Mexico
| | - Eloy Andrés Pérez-Yépez
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Tlalpan, Mexico City 14080, Mexico; (O.M.-C.); (E.A.P.-Y.); (A.D.M.-G.)
| | - Antonio Daniel Martínez-Gutiérrez
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Tlalpan, Mexico City 14080, Mexico; (O.M.-C.); (E.A.P.-Y.); (A.D.M.-G.)
| | - Miguel Rodríguez-Morales
- Laboratorio de Genómica, FES-Iztacala, Universidad Nacional Autónoma de México (UNAM), Iztacala, Tlalnepantla 54090, Mexico; (M.R.-M.); (E.L.-U.)
| | - Eduardo López-Urrutia
- Laboratorio de Genómica, FES-Iztacala, Universidad Nacional Autónoma de México (UNAM), Iztacala, Tlalnepantla 54090, Mexico; (M.R.-M.); (E.L.-U.)
| | - Jaime Coronel-Martínez
- Unidad de Investigaciones Biomédicas en Cáncer, Instituto Nacional de Cancerología, Tlalpan, Mexico City 14080, Mexico; (J.C.-M.); (D.C.d.L.)
| | - David Cantú de León
- Unidad de Investigaciones Biomédicas en Cáncer, Instituto Nacional de Cancerología, Tlalpan, Mexico City 14080, Mexico; (J.C.-M.); (D.C.d.L.)
| | - Nadia Jacobo-Herrera
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City 14080, Mexico
| | - Oscar Peralta-Zaragoza
- Dirección de Infecciones Crónicas y Cáncer, Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos 62100, Mexico;
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico City 03100, Mexico;
| | | | - Carlos Pérez-Plasencia
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Tlalpan, Mexico City 14080, Mexico; (O.M.-C.); (E.A.P.-Y.); (A.D.M.-G.)
- Laboratorio de Genómica, FES-Iztacala, Universidad Nacional Autónoma de México (UNAM), Iztacala, Tlalnepantla 54090, Mexico; (M.R.-M.); (E.L.-U.)
| |
Collapse
|
5
|
Liang M, Sheng L, Ke Y, Wu Z. The research progress on radiation resistance of cervical cancer. Front Oncol 2024; 14:1380448. [PMID: 38651153 PMCID: PMC11033433 DOI: 10.3389/fonc.2024.1380448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
Cervical carcinoma is the most prevalent gynecology malignant tumor and ranks as the fourth most common cancer worldwide, thus posing a significant threat to the lives and health of women. Advanced and early-stage cervical carcinoma patients with high-risk factors require adjuvant treatment following surgery, with radiotherapy being the primary approach. However, the tolerance of cervical cancer to radiotherapy has become a major obstacle in its treatment. Recent studies have demonstrated that radiation resistance in cervical cancer is closely associated with DNA damage repair pathways, the tumor microenvironment, tumor stem cells, hypoxia, cell cycle arrest, and epigenetic mechanisms, among other factors. The development of tumor radiation resistance involves complex interactions between multiple genes, pathways, and mechanisms, wherein each factor interacts through one or more signaling pathways. This paper provides an overview of research progress on an understanding of the mechanism underlying radiation resistance in cervical cancer.
Collapse
Affiliation(s)
| | | | - Yumin Ke
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Zhuna Wu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
6
|
Endale HT, Mariye YF, Negash HK, Hassen FS, Asrat WB, Mengstie TA, Tesfaye W. MiRNA in cervical cancer: Diagnosis to therapy: Systematic review. Heliyon 2024; 10:e24398. [PMID: 38317930 PMCID: PMC10839805 DOI: 10.1016/j.heliyon.2024.e24398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Cancers are one of the most public health problems worldwide. Among them, cervical cancer (CC) is the fourth most prevalent cancer with 604 000 new cases and 342 000 deaths. Mostly, it is associated with Human papillomavirus (HPV). It has been caused by the aggregation of genetic and epigenetic modifications in cervical epithelial cells. Although genetic mutations are given great attention for the carcinogenesis of CC, epigenetic changes have emerged as a hotspot area for CC biomarkers research with great implications for early diagnosis, prognosis, and treatment response prediction of the disease. Recently, there are several studies focused on miRNAs as biomarkers of cervical cancer. However, the precise function of miRNAs in the development of cervical cancer is not still completely understood, particularly when it comes to unconventional sampling materials like cervical mucus and plasma serum. Hence, this review article will give a summary of the miRNAs profiles that emerge at different stages of cervical cancer progression and their downstream effects on target genes and associated signaling pathways. Finally, these results may provide insight into the use of miRNAs as biomarkers for the prediction or diagnosis of cervical cancer or the development of miRNA-based therapeutics against cervical cancer.
Collapse
Affiliation(s)
- Hiwot Tezera Endale
- Department of Biochemistry, School of Medicine, College of Medicine & Health Sciences, University of Gondar, Ethiopia
| | - Yitbarek Fantahun Mariye
- Department of Obstetrics & Gynecology, School of Medicine, College of Medicine & Health Sciences, Addis Ababa University, Ethiopia
| | - Habtu Kifle Negash
- Department of Human Anatomy, School of Medicine, College of Medicine & Health Sciences, University of Gondar, Ethiopia
| | - Fethiya Seid Hassen
- Department of Biochemistry, School of Medicine, College of Medicine & Health Sciences, University of Gondar, Ethiopia
| | - Wastina Bitewlign Asrat
- Department of Biochemistry, School of Medicine, College of Medicine & Health Sciences, University of Gondar, Ethiopia
| | - Tiget Ayelgn Mengstie
- Department of Biochemistry, School of Medicine, College of Medicine & Health Sciences, University of Gondar, Ethiopia
| | - Winta Tesfaye
- Department of Human Physiology, School of Medicine, College of Medicine & Health Sciences, University of Gondar, Ethiopia
| |
Collapse
|
7
|
Zhao H, Feng L, Cheng R, Wu M, Bai X, Fan L, Liu Y. miR-29c-3p acts as a tumor promoter by regulating β-catenin signaling through suppressing DNMT3A, TET1 and HBP1 in ovarian carcinoma. Cell Signal 2024; 113:110936. [PMID: 37925048 DOI: 10.1016/j.cellsig.2023.110936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/05/2023] [Accepted: 10/19/2023] [Indexed: 11/06/2023]
Abstract
Ovarian Carcinoma (OvCa) is characterized by rapid and sustained growth, activated invasion and metastasis. Studies have shown that microRNAs recruit and alter the expression of key regulators to modulate carcinogenesis. Here, we find that miR-29c-3p is increased in benign OvCa and malignant OvCa compared to normal ovary. Univariate and multivariate analyses report that miR-29c-3p overexpression is associated with poor prognosis in OvCa. Furthermore, we investigate that expression of miR-29c-3p is inversely correlated to DNA methyltransferase (DNMT) 3 A and Ten-Eleven-Translocation enzyme TET1. The high-throughput mRNA sequencing, bioinformatics analysis and pharmacological studies confirm that aberrant miR-29c-3p modulates tumorigenesis in OvCa cells, including epithelial-mesenchymal transition (EMT), proliferation, migration, and invasion. This modulation occurs through the regulation of β-catenin signaling by directly targeting 3'UTR of DNMT3A, TET1 and the HMG box transcription factor HBP1 and suppressing their expression. The further 3D spheres assay clearly shows the regulatory effects of miR-29c-3p on OvCa tumorigenesis. Additionally, the receiver operating characteristic (ROC) curve analysis of miR-29c-3p and the clinical detection/diagnostic biomarker CA125 suggests that miR-29c-3p may be conducive for clinical diagnosis or co-diagnosis of OvCa. These findings support miR-29c-3p functions as a tumor promoter by targeting its functional targets, providing new potential biomarker (s) for precision medicine strategies in OvCa.
Collapse
Affiliation(s)
- Haile Zhao
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, State Key Laboratory of Reproductive Regulation & Breeding of Grassland livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia 010020, PR China
| | - Lijuan Feng
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, State Key Laboratory of Reproductive Regulation & Breeding of Grassland livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia 010020, PR China
| | - Rui Cheng
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, State Key Laboratory of Reproductive Regulation & Breeding of Grassland livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia 010020, PR China
| | - Man Wu
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, State Key Laboratory of Reproductive Regulation & Breeding of Grassland livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia 010020, PR China
| | - Xiaozhou Bai
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, State Key Laboratory of Reproductive Regulation & Breeding of Grassland livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia 010020, PR China
| | - Lifei Fan
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, State Key Laboratory of Reproductive Regulation & Breeding of Grassland livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia 010020, PR China.
| | - Yaping Liu
- Department of Gynecology and Obstetrics, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, PR China.
| |
Collapse
|
8
|
Ssedyabane F, Niyonzima N, Ngonzi J, Tusubira D, Ocan M, Akena D, Namisango E, Apunyo R, Kinengyere AA, Obuku EA. The diagnostic accuracy of serum microRNAs in detection of cervical cancer: a systematic review protocol. Diagn Progn Res 2023; 7:4. [PMID: 36721194 PMCID: PMC9887905 DOI: 10.1186/s41512-023-00142-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/20/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Cervical cancer remains a public health problem worldwide, especially in sub-Saharan Africa. There are challenges in timely screening and diagnosis for early detection and intervention. Therefore, studies on cervical cancer and cervical intraepithelial neoplasia suggest the need for new diagnostic approaches including microRNA technology. Plasma/serum levels of microRNAs are elevated or reduced compared to the normal state and their diagnostic accuracy for detection of cervical neoplasms has not been rigorously assessed more so in low-resource settings such as Uganda. The aim of this systematic review was therefore to assess the diagnostic accuracy of serum microRNAs in detecting cervical cancer. METHODS We will perform a systematic review following the Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P) statement. We will search for all articles in MEDLINE/PubMed, Web of Science, Embase, and CINAHL, as well as grey literature from 2012 to 2022. Our outcomes will be sensitivity, specificity, negative predictive values, positive predictive values or area under the curve (Nagamitsu et al, Mol Clin Oncol 5:189-94, 2016) for each microRNA or microRNA panel. We will use the quality assessment of diagnostic accuracy studies (Whiting et al, Ann Intern Med 155:529-36, 2011) tool to assess the risk of bias of included studies. Our results will be reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis for Diagnostic Test Accuracy studies (PRISMA-DTA). We will summarise studies in a flow chart and then describe them using a structured narrative synthesis. If possible, we shall use the Lehmann model bivariate approach for the meta analysis USE OF THE REVIEW RESULTS: This systematic review will provide information on the relevance of microRNAs in cervical cancer. This information will help policy makers, planners and researchers in determining which particular microRNAs could be employed to screen or diagnose cancer of the cervix. SYSTEMATIC REVIEW REGISTRATION This protocol has been registered in PROSPERO under registration number CRD42022313275.
Collapse
Affiliation(s)
- Frank Ssedyabane
- grid.33440.300000 0001 0232 6272Department of Medical Laboratory Science, Mbarara University of Science of Science and Technology, P.O. Box 1410, Mbarara, Uganda
| | - Nixon Niyonzima
- grid.512320.70000 0004 6015 3252The Uganda Cancer Institute, P. O. Box 3935, Kampala, Uganda
| | - Joseph Ngonzi
- grid.33440.300000 0001 0232 6272Department of Obstetrics and Gynaecology, Faculty of Medicine, Mbarara University of Science of Science and Technology, P.O. Box 1410, Mbarara, Uganda
| | - Deusdedit Tusubira
- grid.33440.300000 0001 0232 6272Department of Biochemistry, Mbarara University of Science of Science and Technology, P.O. Box 1410, Mbarara, Uganda
| | - Moses Ocan
- grid.11194.3c0000 0004 0620 0548Africa Centre for Knowledge Translation and Systematic Reviews, College of Health Sciences, Makerere University, P.O. Box 7072, Kampala, Uganda
- grid.11194.3c0000 0004 0620 0548Department of Pharmacology & Therapeutics, College of Health Sciences, Makerere University, P.O. Box 7072, Kampala, Uganda
| | - Dickens Akena
- grid.11194.3c0000 0004 0620 0548Africa Centre for Knowledge Translation and Systematic Reviews, College of Health Sciences, Makerere University, P.O. Box 7072, Kampala, Uganda
- grid.11194.3c0000 0004 0620 0548Department of Psychiatry, College of Health Sciences, Makerere University, P.O. Box 7072, Kampala, Uganda
| | - Eve Namisango
- grid.11194.3c0000 0004 0620 0548Africa Centre for Knowledge Translation and Systematic Reviews, College of Health Sciences, Makerere University, P.O. Box 7072, Kampala, Uganda
| | - Robert Apunyo
- grid.11194.3c0000 0004 0620 0548Africa Centre for Knowledge Translation and Systematic Reviews, College of Health Sciences, Makerere University, P.O. Box 7072, Kampala, Uganda
| | - Alison Annet Kinengyere
- grid.11194.3c0000 0004 0620 0548Africa Centre for Knowledge Translation and Systematic Reviews, College of Health Sciences, Makerere University, P.O. Box 7072, Kampala, Uganda
- grid.11194.3c0000 0004 0620 0548Sir Albert Cook Medical Library, Makerere University, College of Health Sciences, P.O Box 7072, Upper Mulago Hill Road, Kampala, Uganda
| | - Ekwaro A. Obuku
- grid.11194.3c0000 0004 0620 0548Africa Centre for Knowledge Translation and Systematic Reviews, College of Health Sciences, Makerere University, P.O. Box 7072, Kampala, Uganda
- grid.11194.3c0000 0004 0620 0548Clinical Epidemiology Unit, Department of Medicine, School of Medicine, College of Health Sciences, Makerere University, P.O. Box 7072, Kampala, Uganda
| |
Collapse
|
9
|
Yaghobi R, Afshari A, Roozbeh J. Host and viral
RNA
dysregulation during
BK
polyomavirus
infection in kidney transplant recipients. WIRES RNA 2022:e1769. [DOI: 10.1002/wrna.1769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022]
Affiliation(s)
- Ramin Yaghobi
- Shiraz Transplant Research Center Shiraz University of Medical Sciences Shiraz Iran
| | - Afsoon Afshari
- Shiraz Nephro‐Urology Research Center Shiraz University of Medical Sciences Shiraz Iran
| | - Jamshid Roozbeh
- Shiraz Nephro‐Urology Research Center Shiraz University of Medical Sciences Shiraz Iran
| |
Collapse
|
10
|
Choi PW, Liu TL, Wong CW, Liu SK, Lum YL, Ming WK. The Dysregulation of MicroRNAs in the Development of Cervical Pre-Cancer—An Update. Int J Mol Sci 2022; 23:ijms23137126. [PMID: 35806128 PMCID: PMC9266862 DOI: 10.3390/ijms23137126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 02/01/2023] Open
Abstract
Globally in 2020, an estimated ~600,000 women were diagnosed with and 340,000 women died from cervical cancer. Compared to 2012, the number of cases increased by 7.5% and the number of deaths increased by 17%. MiRNAs are involved in multiple processes in the pathogenesis of cervical cancer. Dysregulation of miRNAs in the pre-stage of cervical cancer is the focus of this review. Here we summarize the dysregulated miRNAs in clinical samples from cervical pre-cancer patients and relate them to the early transformation process owing to human papillomavirus (HPV) infection in the cervical cells. When HPV infects the normal cervical cells, the DNA damage response is initiated with the involvement of HPV’s E1 and E2 proteins. Later, cell proliferation and cell death are affected by the E6 and E7 proteins. We find that the expressions of miRNAs in cervical pre-cancerous tissue revealed by different studies seldom agreed with each other. The discrepancy in sample types, samples’ HPV status, expression measurement, and methods for analysis contributed to the non-aligned results across studies. However, several miRNAs (miR-34a, miR-9, miR-21, miR-145, and miR-375) were found to be dysregulated across multiple studies. In addition, there are hints that the DNA damage response and cell growth response induced by HPV during the early transformation of the cervical cells are related to these miRNAs. Currently, no review articles analyse the relationship between the dysregulated miRNAs in cervical pre-cancerous tissue and their possible roles in the early processes involving HPV’s protein encoded by the early genes and DNA damage response during normal cell transformation. Our review provides insight on spotting miRNAs involved in the early pathogenic processes and pointing out their potential as biomarker targets of cervical pre-cancer.
Collapse
Affiliation(s)
- Pui-Wah Choi
- Department of Research and Development, WomenX Biotech Limited, Hong Kong Science and Technology Park, Tai Po, Hong Kong; (P.-W.C.); (C.W.W.); (S.K.L.); (Y.-L.L.)
| | - Tin Lun Liu
- International School, Jinan University, Guangzhou 510632, China;
| | - Chun Wai Wong
- Department of Research and Development, WomenX Biotech Limited, Hong Kong Science and Technology Park, Tai Po, Hong Kong; (P.-W.C.); (C.W.W.); (S.K.L.); (Y.-L.L.)
| | - Sze Kei Liu
- Department of Research and Development, WomenX Biotech Limited, Hong Kong Science and Technology Park, Tai Po, Hong Kong; (P.-W.C.); (C.W.W.); (S.K.L.); (Y.-L.L.)
| | - Yick-Liang Lum
- Department of Research and Development, WomenX Biotech Limited, Hong Kong Science and Technology Park, Tai Po, Hong Kong; (P.-W.C.); (C.W.W.); (S.K.L.); (Y.-L.L.)
| | - Wai-Kit Ming
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong
- Correspondence: ; Tel.: +852-3442-6956
| |
Collapse
|
11
|
MicroRNA-29a Manifests Multifaceted Features to Intensify Radiosensitivity, Escalate Apoptosis, and Revoke Cell Migration for Palliating Radioresistance-Enhanced Cervical Cancer Progression. Int J Mol Sci 2022; 23:ijms23105524. [PMID: 35628336 PMCID: PMC9141925 DOI: 10.3390/ijms23105524] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/03/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022] Open
Abstract
Radioresistance remains a major clinical challenge in cervical cancer therapy and results in tumor relapse and metastasis. Nevertheless, the detailed mechanisms are still largely enigmatic. This study was conducted to elucidate the prospective impacts of microRNA-29a (miR-29a) on the modulation of radioresistance-associated cervical cancer progression. Herein, we established two pairs of parental wild-type (WT) and radioresistant (RR) cervical cancer cells (CaSki and C33A), and we found that constant suppressed miR-29a, but not miR-29b/c, was exhibited in RR-clones that underwent a dose of 6-Gy radiation treatment. Remarkably, radioresistant clones displayed low radiosensitivity, and the reduced apoptosis rate resulted in augmented surviving fractions, measured by the clonogenic survival curve assay and the Annexin V/Propidium Iodide apoptosis assay, respectively. Overexpression of miR-29a effectively intensified the radiosensitivity and triggered the cell apoptosis in RR-clones. In contrast, suppressed miR-29a modestly abridged the radiosensitivity and abolished the cell apoptosis in WT-clones. Hence, ectopically introduced miR-29a into RR-clones notably attenuated the wound-healing rate and cell migration, whereas reduced miR-29a aggravated cell mobilities of WT-clones estimated via the in vitro wound-healing assay and time-lapse recording assay. Notably, we further established the in vivo short-term lung locomotion metastasis model in BALB/c nude mice, and we found that increased lung localization was shown after tail-vein injection of RR-CaSki cells compared to those of WT-CaSki cells. Amplified miR-29a significantly eliminated the radioresistance-enhanced lung locomotion. Our data provide evidence suggesting that miR-29a is a promising microRNA signature in radioresistance of cervical cancer cells and displays multifaceted innovative roles involved in anti-radioresistance, escalated apoptosis, and anti-cell migration/metastasis. Amalgamation of a nucleoid-based strategy (miR-29a) together with conventional radiotherapy may be an innovative and eminent strategy to intensify the radiosensitivity and further protect against the subsequent radioresistance and the potential metastasis in cervical cancer treatment.
Collapse
|
12
|
Ying TH, Lin CL, Chen PN, Wu PJ, Liu CJ, Hsieh YH. Angelol-A exerts anti-metastatic and anti-angiogenic effects on human cervical carcinoma cells by modulating the phosphorylated-ERK/miR-29a-3p that targets the MMP2/VEGFA axis. Life Sci 2022; 296:120317. [PMID: 35026214 DOI: 10.1016/j.lfs.2022.120317] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 01/15/2023]
Abstract
AIMS Angelol-A (Ang-A), a kind of coumarins, is isolated from the roots of Angelica pubescens f. biserrata. However, AA exerts antitumor effects and molecular mechanism on cervical cancer cells is unknown. MAIN METHODS Cell viability was determined using the MTT assay, and the cell cycle phase was assessed by PI staining with flow cytometry. Ang-A-treated cells with/without Antago-miR-29a-3p (miR-29a-3p inhibitor) or U0126 (MEK inhibitor) were assessed for the expression of miR-29a-3p, in vitro migration/invasion, and angiogenesis using qRT-PCR, a chemotaxis assay, and tube formation assay, respectively. The expression of mitogen-activated protein kinases/MMP2/MMP9/VEGFA was determined by western blot analysis with applicable antibodies. KEY FINDINGS Ang-A significantly inhibited MMP2 and VEGFA expression, cell migration, and invasive motility in human cervical cancer cells. Conditioned medium inhibited tube formation in HUVECs. Ang-A principally inhibited invasive motility and angiogenesis by upregulating the expression of miR-29a-3p that targets the VEGFA-3' UTR. The role of miR-29a-3p was confirmed using Antago-miR-29a-3p, which reversed the Ang-A-inhibited expression of MMP2 and VEGFA, invasive motility, and angiogenesis in human cervical cancer cells. The ERK pathway was implicated in mediating the metastatic and angiogenic action of Ang-A. Combined treatment with Ang-A treated and U0126 exerted a synergistic inhibitory effect on the expression of MMP2 and VEGFA and the metastatic and angiogenic properties of human cervical cancer cells. SIGNIFICANCE These findings are the first to indicate that in human cervical cancer cells, Ang-A exerts anti-metastatic and anti-angiogenic effects via targeting the miR-29a-3p/MMP2/VEGFA axis, mediated through the ERK pathway.
Collapse
Affiliation(s)
- Tsung-Ho Ying
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan; Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chia-Liang Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Surgery, MacKay Memorial Hospital and Mackay Medical College, New Taipei City, Taiwan
| | - Pei-Ni Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Pei-Ju Wu
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan; Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chung-Jung Liu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Regenetative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Yi-Hsien Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
13
|
Kansal V, Agarwal A, Harbour A, Farooqi H, Singh VK, Prasad R. Regular Intake of Green Tea Polyphenols Suppresses the Development of Nonmelanoma Skin Cancer through miR-29-Mediated Epigenetic Modifications. J Clin Med 2022; 11:jcm11020398. [PMID: 35054091 PMCID: PMC8777720 DOI: 10.3390/jcm11020398] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/26/2021] [Accepted: 01/10/2022] [Indexed: 12/11/2022] Open
Abstract
Previously, we and others have shown that the regular intake of green tea polyphenols (GTPs) reduces ultraviolet B (UVB) radiation-induced skin cancer by targeting multiple signaling pathways, including DNA damage, DNA repair, immunosuppression, and inflammation. Here, we determine the effect of GTPs on UVB-induced epigenetic changes, emphasizing DNA hypermethylation in UV-exposed skin and tumors and their association with miR-29, a key regulator of DNA methyltransferases (DNMTs). Skin cancer was induced in SKH-1 hairless mice following repeated exposures of UVB radiation (180 mJ/cm2, three times/week, 24 weeks) with or without GTPs supplementation (0.2%) in drinking water. Regular intake of GTPs inhibited tumor growth by hindering the cascade of DNA hypermethylation events. GTPs supplementation significantly blocked UVB-induced DNA hypermethylation in the skin (up to 35%; p < 0.0001) and in tumors (up to 50%; p < 0.0001). Experimental results showed that the levels of DNA hypermethylation were higher in GTPs-treated mice than in the control group. The expressions of miR-29a, miR-29b, and miR-29c were markedly decreased in UV-induced skin tumors, and GTPs administration blocked UVB-induced miR-29s depletion. Furthermore, these observations were verified using the in vitro approach in human skin cancer cells (A431) followed by treatment with GTPs or mimics of miR-29c. Increased levels of miR-29 were observed in GTPs-treated A431 cells, resulting in increased TET activity and decreased DNA hypermethylation. In conclusion, UVB-mediated miR-29 depletion promotes DNA hypermethylation and leads to enhanced tumor growth by silencing tumor suppressors. Regular intake of GTPs rescued UVB-induced miR-29 depletion and prevented tumor growth by maintaining reduced DNA hypermethylation and activating tumor suppressors. Our observations suggest that miR-based strategies and regular consumption of GTPs could minimize the risk of UVB-induced skin cancers and contribute to better management of NMSCs.
Collapse
Affiliation(s)
- Vikash Kansal
- Department of Otolaryngology, Emory University, Atlanta, GA 30322, USA;
| | - Anshu Agarwal
- Department of Zoology, Agra College, Agra 282001, India;
- Department of Biotechnology, Hamdard University, New Delhi 110048, India
| | - Angela Harbour
- College of Medicine, Florida State University, Tallahassee, FL 32304, USA;
| | - Humaira Farooqi
- Department of Biotechnology, Hamdard University, New Delhi 110048, India
- Correspondence: (H.F.); (V.K.S.); (R.P.)
| | - Vijay Kumar Singh
- Department of Zoology, Agra College, Agra 282001, India;
- Correspondence: (H.F.); (V.K.S.); (R.P.)
| | - Ram Prasad
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Correspondence: (H.F.); (V.K.S.); (R.P.)
| |
Collapse
|
14
|
microRNA Profile Associated with Positive Lymph Node Metastasis in Early-Stage Cervical Cancer. Curr Oncol 2022; 29:243-254. [PMID: 35049697 PMCID: PMC8774324 DOI: 10.3390/curroncol29010023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/17/2021] [Accepted: 11/29/2021] [Indexed: 11/17/2022] Open
Abstract
Lymph node metastasis (LNM) is an important prognostic factor in cervical cancer (CC). In early stages, the risk of LNM is approximately 3.7 to 21.7%, and the 5-year overall survival decreases from 80% to 53% when metastatic disease is identified in the lymph nodes. Few reports have analyzed the relationship between miRNA expression and the presence of LNM. The aim of this study was to identify a subset of miRNAs related to LNM in early-stage CC patients. Formalin-fixed paraffin-embedded tissue blocks were collected from patients with early-stage CC treated by radical hysterectomy with lymphadenectomy. We analyzed samples from two groups of patients—one group with LNM and the other without LNM. Global miRNA expression was identified by microarray analysis, and cluster analysis was used to determine a subset of miRNAs associated with LNM. Microarray expression profiling identified a subset of 36 differentially expressed miRNAs in the two groups (fold change (FC) ≥ 1.5 and p < 0.01). We validated the expression of seven miRNAs; miR-487b, miR-29b-2-5p, and miR-195 were underexpressed, and miR-92b-5p, miR-483-5p, miR-4534, and miR-548ac were overexpressed according to the microarray experiments. This signature exhibited prognostic value for identifying early-stage CC patients with LNM. These findings may help detect LNM that cannot be observed in imaging studies.
Collapse
|
15
|
Shao C, Wang R, Kong D, Gao Q, Xu C. Identification of potential core genes in gastric cancer using bioinformatics analysis. J Gastrointest Oncol 2021; 12:2109-2122. [PMID: 34790378 DOI: 10.21037/jgo-21-628] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/21/2021] [Indexed: 12/23/2022] Open
Abstract
Background Gastric cancer is the third leading cause of cancer-related mortality in China. Most patients with gastric cancer have no obvious early symptoms; thus, many of them are in the middle and late stages of gastric cancer at first diagnosis and miss the best treatment opportunity. Molecular targeted therapy is particularly important in changing this status quo. Methods Three microarray datasets (GSE29272, GSE33651, and GSE54129) were selected from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were screened using GEO2R. The Database for Annotation, Visualization and Integrated Discovery (DAVID) was used to analyze the functional features of these DEGs and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. The protein-protein interaction (PPI) of these DEGs was visualized by Cytoscape software. The expressions of hub genes were evaluated based on Gene Expression Profiling Interactive Analysis (GEPIA). Moreover, we used the online Kaplan-Meier plotter survival analysis tool to evaluate the prognostic values of hub genes. The Target Scan database was used to predict microRNAs that could regulate the target gene, collagen type IV alpha 1 chain (COL4A1). The OncomiR database was used to analyze the expression levels of three microRNAs, as well as the relationships with tumor stage, grade, and prognosis. Results We identified 78 DEGs, including 53 upregulated genes and 25 downregulated genes. The DEGs were mainly enriched in extracellular matrix organization, extracellular structure organization, and response to wounding. Moreover, three KEGG pathways were markedly enriched, including focal adhesion, complement and coagulation cascades, and extracellular matrix (ECM)-receptor interaction. Among these 78 genes, we selected 10 hub genes. The overexpression levels of these hub genes were closely related to poor prognosis and the development of gastric cancer (except for COL3A1, LOX, and CXCL8). Moreover, we found that microRNA-29a-3p, miR-29b-3p, and miR-29c-3p were the potential microRNAs that could regulate the target gene, COL4A1. Conclusions Our results showed that FN1, COL1A1, TIMP1, COL1A2, SPARC, COL4A1, and SERPINE1 could contribute to the development of novel molecular targets and biomarker-driven treatments for gastric cancer.
Collapse
Affiliation(s)
- Changjiang Shao
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Gastroenterology, The Second People's Hospital of Lianyungang City, Lianyungang, China
| | - Rong Wang
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Dandan Kong
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qian Gao
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chunfang Xu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
16
|
Wu Q, Wang L, Zhao X, Tian Q, Wang F, Sima N, Qiu L, Lu W, Xie X, Wang X, Cheng X. The Value of MicroRNA-375 Detection for Triaging Primary Human Papillomavirus Positive Women: A Cross-Sectional Study in a General Population. Front Oncol 2021; 11:771053. [PMID: 34778090 PMCID: PMC8581639 DOI: 10.3389/fonc.2021.771053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/07/2021] [Indexed: 01/04/2023] Open
Abstract
PURPOSE This study aims to validate the value of microRNA (miRNA) detection for triaging human papillomavirus (HPV)-positive women in the general population. PATIENTS AND METHODS miR-375 detection in cervical exfoliated cells has been demonstrated to have the superior value to cytology in triaging primary HPV-positive women in the hospital population. In this study, residual samples of cervical exfoliated cells from 10,951 women in a general population were used to detect miRNA. The performance efficiency of miRNA detection in identifying high-grade cervical intraepithelial neoplasia (CIN) was evaluated. Pearson chi-square test and McNemar pairing test were used to compare miRNA detection and cytology. RESULTS In valid 9,972 women aged 25-65, miR-375 expression showed a downward trend along with an increase in cervical lesion severity. The expression level of miR-375 ≤1.0 × 10-3 was identified as positive. In the HPV-positive and 12 HPV genotypes other than 16/18 (HR12)-positive women, miR-375 detection showed equivalent sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) to that of cytology (≥ASC-US) and higher or similar sensitivity and NPV but lower specificity and PPV than that of cytology (≥ASC-H) in identifying CIN3+ and CIN2+. In HPV 16-positive women, miR-375 positivity had higher sensitivity and NPV but lower specificity and PPV than that of cytology (≥ASC-H and HSIL) in identifying CIN3+ and CIN2+. The immediate CIN3+ risk of miR-375 positivity was 19.8% (61/308) in HPV-positive, 10.8% (22/204) in HR12-positive, and 43.5% (37/85) in HPV16-positive women, respectively. CONCLUSION The detection of miR-375 in cervical exfoliated cells may be an optional method for triaging primary HPV-positive women in population-based cervical cancer screening.
Collapse
Affiliation(s)
- Qiongyan Wu
- Department of Women Health, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lingfang Wang
- Key Laboratory of Women’s Reproductive Health of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiumin Zhao
- Department of Gynecologic Oncology, Taizhou First People’s Hospital, Taizhou, China
| | - Qifang Tian
- Department of Gynecologic Oncology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fenfen Wang
- Department of Gynecologic Oncology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ni Sima
- Department of Gynecologic Oncology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Liqian Qiu
- Department of Women Health, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weiguo Lu
- Department of Gynecologic Oncology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xing Xie
- Department of Gynecologic Oncology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xinyu Wang
- Department of Gynecologic Oncology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaodong Cheng
- Department of Gynecologic Oncology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
17
|
Martí C, Marimón L, Glickman A, Henere C, Saco A, Rakislova N, Torné A, Ordi J, del Pino M. Usefulness of E7 mRNA in HPV16-Positive Women to Predict the Risk of Progression to HSIL/CIN2. Diagnostics (Basel) 2021; 11:diagnostics11091634. [PMID: 34573975 PMCID: PMC8468571 DOI: 10.3390/diagnostics11091634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/26/2021] [Accepted: 09/04/2021] [Indexed: 11/16/2022] Open
Abstract
Objective: To evaluate whether E7 mRNA can predict the risk of progression in women with HPV16 infection. Design: A prospective observational study. Setting: A tertiary university hospital. Population: A cohort of 139 women referred to colposcopy for an abnormal screening result fulfilling the following inclusion criteria: (1) a positive test result confirming HPV16 infection; (2) a biopsy sample with a histological diagnosis of an absence of lesion or low-grade SIL/CIN grade1 (LSIL/CIN1); (3) no previous HPV vaccination; (4) no pregnancy; and (5) no previous cervical treatments; and (6) no immunosuppression. Methods: At the first visit, all women underwent a cervical sample for liquid-based cytology, HPV testing and genotyping, and HPV16 E7 mRNA analysis and a colposcopy with at least one colposcopy-guided biopsy. Follow-up visits were scheduled every six months. In each control, a liquid-based Pap smear, HPV testing, as well as a colposcopy examination with biopsy if necessary were performed. Main outcome measures: Histological diagnosis of HSIL/CIN2+ at any time during follow-up. Results: E7 mRNA expression was positive in 55/127 (43.3%) women included in the study and seven (12.7%) progressed to HSIL/CIN2+. In contrast, only 1/72 (1.4%) women with no HPV16 E7 mRNA expression progressed (p = 0.027). HPV16 E7 mRNA expression was associated with a 10-fold increased risk of progression (HR 10.0; 95% CI 1.2–81.4). Conclusions: HPV16 E7 mRNA could be useful for risk stratification of women with HPV16 infection in whom a HSIL/CIN2+ has been ruled out. Funding: Instituto de Salud Carlos III (ICSIII)-Fondo de Investigación Sanitaria and ERDF ‘One Way to Europe’ (PI17/00772).
Collapse
Affiliation(s)
- Cristina Martí
- Institute Clinic of Gynaecology, Obstetrics, and Neonatology, Hospital Clínic, University of Barcelona, 08036 Barcelona, Spain; (C.M.); (A.G.); (C.H.); (A.T.)
| | - Lorena Marimón
- Institut de Salut Global de Barcelona (ISGlobal), Hospital Clínic, University of Barcelona, 08036 Barcelona, Spain; (L.M.); (N.R.); (J.O.)
| | - Ariel Glickman
- Institute Clinic of Gynaecology, Obstetrics, and Neonatology, Hospital Clínic, University of Barcelona, 08036 Barcelona, Spain; (C.M.); (A.G.); (C.H.); (A.T.)
| | - Carla Henere
- Institute Clinic of Gynaecology, Obstetrics, and Neonatology, Hospital Clínic, University of Barcelona, 08036 Barcelona, Spain; (C.M.); (A.G.); (C.H.); (A.T.)
| | - Adela Saco
- Department of Pathology, Hospital Clínic, University of Barcelona, 08036 Barcelona, Spain;
| | - Natalia Rakislova
- Institut de Salut Global de Barcelona (ISGlobal), Hospital Clínic, University of Barcelona, 08036 Barcelona, Spain; (L.M.); (N.R.); (J.O.)
- Department of Pathology, Hospital Clínic, University of Barcelona, 08036 Barcelona, Spain;
| | - Aureli Torné
- Institute Clinic of Gynaecology, Obstetrics, and Neonatology, Hospital Clínic, University of Barcelona, 08036 Barcelona, Spain; (C.M.); (A.G.); (C.H.); (A.T.)
- Institut D’investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, University of Barcelona, 08036 Barcelona, Spain
| | - Jaume Ordi
- Institut de Salut Global de Barcelona (ISGlobal), Hospital Clínic, University of Barcelona, 08036 Barcelona, Spain; (L.M.); (N.R.); (J.O.)
- Department of Pathology, Hospital Clínic, University of Barcelona, 08036 Barcelona, Spain;
| | - Marta del Pino
- Institute Clinic of Gynaecology, Obstetrics, and Neonatology, Hospital Clínic, University of Barcelona, 08036 Barcelona, Spain; (C.M.); (A.G.); (C.H.); (A.T.)
- Institut D’investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, University of Barcelona, 08036 Barcelona, Spain
- Correspondence: ; Tel.: +34-6379-30791
| |
Collapse
|
18
|
Mitra T, Elangovan S. Cervical cancer development, chemoresistance, and therapy: a snapshot of involvement of microRNA. Mol Cell Biochem 2021; 476:4363-4385. [PMID: 34453645 DOI: 10.1007/s11010-021-04249-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/17/2021] [Indexed: 12/24/2022]
Abstract
Cervical cancer (CC) is one of the leading causes of death in women due to cancer and a major concern in the developing world. Persistent human papilloma virus (HPV) infection is the major causative agent for CC. Besides HPV infection, genetic and epigenetic factors including microRNA (miRNA) also contribute to the malignant transformation. Earlier studies have revealed that miRNAs participate in cell proliferation, invasion and metastasis, angiogenesis, and chemoresistance processes by binding and inversely regulating the target oncogenes or tumor suppressor genes. Based on functions and mechanistic insights, miRNAs have been identified as cellular modulators that have an enormous role in diagnosis, prognosis, and cancer therapy. Signatures of miRNA could be used as diagnostic markers which are necessary for early diagnosis and management of CC. The therapeutic potential of miRNAs has been shown in CC; however, more comprehensive clinical trials are required for the clinical translation of miRNA-based diagnostics and therapeutics. Understanding the molecular mechanism of miRNAs and their target genes has been useful to develop miRNA-based therapeutic strategies for CC and overcome chemoresistance. In this review, we summarize the role of miRNAs in the development, progression, and metastasis of CC as well as chemoresistance. Further, we discuss the diagnostic and therapeutic potential of miRNAs to overcome chemoresistance and treatment of CC.
Collapse
Affiliation(s)
- Tandrima Mitra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed To Be University, Bhubaneswar, Odisha, 751024, India
| | - Selvakumar Elangovan
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed To Be University, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
19
|
Wu H, Jiang W, Ji G, Xu R, Zhou G, Yu H. Exploring microRNA target genes and identifying hub genes in bladder cancer based on bioinformatic analysis. BMC Urol 2021; 21:90. [PMID: 34112125 PMCID: PMC8194198 DOI: 10.1186/s12894-021-00857-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/04/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Bladder cancer (BC) is the second most frequent malignancy of the urinary system. The aim of this study was to identify key microRNAs (miRNAs) and hub genes associated with BC as well as analyse their targeted relationships. METHODS According to the microRNA dataset GSE112264 and gene microarray dataset GSE52519, differentially expressed microRNAs (DEMs) and differentially expressed genes (DEGs) were obtained using the R limma software package. The FunRich software database was used to predict the miRNA-targeted genes. The overlapping common genes (OCGs) between miRNA-targeted genes and DEGs were screened to construct the PPI network. Then, gene ontology (GO) analysis was performed through the "cluster Profiler" and "org.Hs.eg.db" R packages. The differential expression analysis and hierarchical clustering of these hub genes were analysed through the GEPIA and UCSC Cancer Genomics Browser databases, respectively. KEGG pathway enrichment analyses of hub genes were performed through gene set enrichment analysis (GSEA). RESULTS A total of 12 DEMs and 10 hub genes were identified. Differential expression analysis of the hub genes using the GEPIA database was consistent with the results for the UCSC Cancer Genomics Browser database. The results indicated that these hub genes were oncogenes, but VCL, TPM2, and TPM1 were tumour suppressor genes. The GSEA also showed that hub genes were most enriched in those pathways that were closely associated with tumour proliferation and apoptosis. CONCLUSIONS In this study, we built a miRNA-mRNA regulatory targeted network, which explores an understanding of the pathogenesis of cancer development and provides key evidence for novel targeted treatments for BC.
Collapse
Affiliation(s)
- Hongjian Wu
- Department of Urology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, 317000, Zhejiang, People's Republic of China
| | - Wubing Jiang
- Department of Urology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, 317000, Zhejiang, People's Republic of China
| | - Guanghua Ji
- Department of Urology, Taizhou Municipal Hospital, Taizhou, 317000, Zhejiang, People's Republic of China
| | - Rong Xu
- Department of Urology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, 317000, Zhejiang, People's Republic of China
| | - Gaobo Zhou
- Department of Urology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, 317000, Zhejiang, People's Republic of China
| | - Hongyuan Yu
- Department of Urology, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Taizhou, 317000, Zhejiang, People's Republic of China.
| |
Collapse
|
20
|
Karimi F, Mollaei H. Potential of miRNAs in cervical cancer chemoresistance. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Oncogenic HPV promotes the expression of the long noncoding RNA lnc-FANCI-2 through E7 and YY1. Proc Natl Acad Sci U S A 2021; 118:2014195118. [PMID: 33436409 DOI: 10.1073/pnas.2014195118] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) play diverse roles in biological processes, but their expression profiles and functions in cervical carcinogenesis remain unknown. By RNA-sequencing (RNA-seq) analyses of 18 clinical specimens and selective validation by RT-qPCR analyses of 72 clinical samples, we provide evidence that, relative to normal cervical tissues, 194 lncRNAs are differentially regulated in high-risk (HR)-HPV infection along with cervical lesion progression. One such lncRNA, lnc-FANCI-2, is extensively characterized because it is expressed from a genomic locus adjacent to the FANCI gene encoding an important DNA repair factor. Both genes are up-regulated in HPV lesions and in in vitro model systems of HR-HPV18 infection. We observe a moderate reciprocal regulation of lnc-FANCI-2 and FANCI in cervical cancer CaSki cells. In these cells, lnc-FANCI-2 is transcribed from two alternative promoters, alternatively spliced, and polyadenylated at one of two alternative poly(A) sites. About 10 copies of lnc-FANCI-2 per cell are detected preferentially in the cytoplasm. Mechanistically, HR-HPVs, but not low-risk (LR)-HPV oncogenes induce lnc-FANCI-2 in primary and immortalized human keratinocytes. The induction is mediated primarily by E7, and to a lesser extent by E6, mostly independent of p53/E6AP and pRb/E2F. We show that YY1 interacts with an E7 CR3 core motif and transactivates the promoter of lnc-FANCI-2 by binding to two critical YY1-binding motifs. Moreover, HPV18 increases YY1 expression by reducing miR-29a, which targets the 3' untranslated region of YY1 mRNA. These data have provided insights into the mechanisms of how HR-HPV infections contribute to cervical carcinogenesis.
Collapse
|
22
|
Barik S, Mitra S, Suryavanshi M, Dewan A, Kaur I, Kumar D, Mishra M, Vishwakarma G. To study the role of pre-treatment microRNA (micro ribonucleic acid) expression as a predictor of response to chemoradiation in locally advanced carcinoma cervix. Cancer Rep (Hoboken) 2021; 4:e1348. [PMID: 33660436 PMCID: PMC8388174 DOI: 10.1002/cnr2.1348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/14/2020] [Accepted: 01/19/2021] [Indexed: 02/04/2023] Open
Abstract
Background Concurrent chemoradiotherapy followed by brachytherapy is the standard of care in locally advanced carcinoma cervix. There is no prognostic factor at present to predict the outcome of disease in locally advanced carcinoma cervix. Aim Differential expression of microRNAs can be used as biomarkers to predict clinical response in locally advanced carcinoma cervix patients. Methods Thirty‐two patients of locally advanced carcinoma cervix with International Federation of Gynecology and Obstetrics Stage IB‐IVA were enrolled from 2017 to 2018. Expression of microRNA‐9 5p, ‐31 3p, ‐100 5p, ‐125a 5p, ‐125b‐5p, and –200a 5p in formalin‐fixed paraffin embedded (FFPE) biopsied tissue were analyzed by real time quantitative reverse transcriptase polymerase chain reaction (RT qPCR). Pretreatment evaluation was done with clinical examination and MRI pelvis. All patients received concurrent chemoradiotherapy followed by brachytherapy. Patients were evaluated for the clinical response after 3 months of treatment, with clinical examination and MRI pelvis scan using RECIST 1.1 criteria. Patients with no residual disease were classified as Complete responders (CR) and with residual or progressive disease were classified as Nonresponders (NR). Results were statistically analyzed using Mann Whiney U test to examine significant difference between the expression of microRNA between complete responders (CR) and nonresponders (NR). Results microRNA‐100 5p was upregulated in complete responders (CR) which showed a trend towards statistical significance (p value = 0.05). Conclusion microRNA‐100 5p can serve as a potential molecular biomarker in predicting clinical response to chemoradiation in locally advanced Carcinoma cervix. Its role should be further investigated in a larger study population.
Collapse
Affiliation(s)
- Soumitra Barik
- Department of Radiation Oncology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Swarupa Mitra
- Department of Radiation Oncology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Moushumi Suryavanshi
- Department of Molecular Biology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Abhinav Dewan
- Department of Radiation Oncology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Inderjeet Kaur
- Department of Radiation Oncology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Dushyant Kumar
- Department of Molecular Biology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Maninder Mishra
- Department of Radiation Oncology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Gayatri Vishwakarma
- Department of Biostatistics, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| |
Collapse
|
23
|
Wang A, Xu Q, Sha R, Bao T, Xi X, Guo G. MicroRNA-29a inhibits cell proliferation and arrests cell cycle by modulating p16 methylation in cervical cancer. Oncol Lett 2021; 21:272. [PMID: 33717269 PMCID: PMC7885157 DOI: 10.3892/ol.2021.12533] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
Cervical cancer is the second most common gynecological malignancy. Accumulating evidence has suggested that microRNAs (miRNAs) are involved in the occurrence and development of cervical cancer. The present study aimed to investigate the function and underlying molecular mechanism of microRNA (miRNA/miR)-29a in cervical cancer. Reverse transcription-quantitative PCR and methylation-specific PCR were used to examine the expression of miR-29a and methylated status of p16 promoter, respectively. Cell Counting Kit-8 analysis and flow cytometry were performed to evaluate cell viability and cycle, respectively. Dual-luciferase reporter assay was performed to verify the interaction between miR-29a and its targets. Western blot analysis was performed to detect the protein levels of DNA methyltransferases (DNMT)3A and DNMT3B. The results demonstrated that miR-29a expression was downregulated in cervical cancer tissues and cells, and negatively correlated with p16 promoter hypermethylation. Furthermore, cell experiments confirmed that miR-29a suppressed cell proliferation and induced cell cycle arrest in HeLa and C-33A cells. Mechanically, miR-29a restored normal methylation pattern of the p16 gene by sponging DNMT3A and DNMT3B. Taken together, the results of the present study demonstrated the epigenetic regulation of tumor suppressor p16 by miR-29a as a unique mechanism, thus providing a rationale for the development of miRNA-based strategies in the treatment of cervical cancer.
Collapse
Affiliation(s)
- Anjin Wang
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Qiying Xu
- Department of Gynecology, Affiliated Hospital of Qinghai University, Xining, Qinghai 810100, P.R. China
| | - Rengaowa Sha
- Department of Gynecology, Affiliated Hospital of Qinghai University, Xining, Qinghai 810100, P.R. China
| | - Tonghui Bao
- Department of Gynecology, Affiliated Hospital of Qinghai University, Xining, Qinghai 810100, P.R. China
| | - Xiaoli Xi
- Department of Medicine, Qinghai University, Xining, Qinghai 810016, P.R. China
| | - Guilan Guo
- Department of Gynecology, Affiliated Hospital of Qinghai University, Xining, Qinghai 810100, P.R. China
| |
Collapse
|
24
|
Morales-Martinez M, Vega MI. Participation of different miRNAs in the regulation of YY1: Their role in pathogenesis, chemoresistance, and therapeutic implication in hematologic malignancies. YY1 IN THE CONTROL OF THE PATHOGENESIS AND DRUG RESISTANCE OF CANCER 2021:171-198. [DOI: 10.1016/b978-0-12-821909-6.00010-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
25
|
Pisarska J, Baldy-Chudzik K. MicroRNA-Based Fingerprinting of Cervical Lesions and Cancer. J Clin Med 2020; 9:jcm9113668. [PMID: 33203149 PMCID: PMC7698009 DOI: 10.3390/jcm9113668] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
The regulatory functions of microRNA (miRNA) are involved in all processes contributing to carcinogenesis and response to viral infections. Cervical cancer in most cases is caused by the persistence of high-risk human papillomavirus (HR-HPV) infection. While oncogenic human papillomaviruses induce aberrant expression of many cellular miRNAs, this dysregulation could be harnessed as a marker in early diagnosis of HR-HPV infection, cervical squamous intraepithelial lesions, and cancer. In recent years, growing data indicate that miRNAs show specific patterns at various stages of cervical pathology. The aim of this review is to systematize current reports on miRNA capacity that can be utilized in personalized diagnostics of cervical precancerous and cancerous lesions. The analysis of the resources available in online databases (National Center for Biotechnology Information—NCBI, PubMed, ScienceDirect, Scopus) was performed. To date, no standardized diagnostic algorithm using the miRNA pattern in cervical pathology has been defined. However, the high sensitivity and specificity of the reported assays gives hope for the development of non-invasive diagnostic tests that take into account the heterogeneity of tumor-related changes. Due to this variability resulting in difficult to predict clinical outcomes, precise molecular tools are needed to improve the diagnostic and therapeutic process.
Collapse
|
26
|
Potential role of microRNAs in the treatment and diagnosis of cervical cancer. Cancer Genet 2020; 248-249:25-30. [DOI: 10.1016/j.cancergen.2020.09.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 08/01/2020] [Accepted: 09/20/2020] [Indexed: 12/23/2022]
|
27
|
MiR-29a inhibits cell proliferation and migration by targeting the CDC42/PAK1 signaling pathway in cervical cancer. Anticancer Drugs 2020; 30:579-587. [PMID: 30724771 DOI: 10.1097/cad.0000000000000743] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cervical cancer is the second most common gynecological malignancy worldwide and the tumorigenesis mechanisms of cervical cancer are still unclear. This study aimed to reveal the role of miR-29a in cervical cancer. The expression level of miR-29a and CDC42 was measured using qRT-PCR. Cell proliferation, apoptosis, migration, and invasion were detected using colony formation, flow cytometry analysis, wound-healing assay, and Transwell assay, respectively. Luciferase reporter assay was used to determine the binding of miR-29a with CDC42. CDC42/p21-activated kinase 1 (PAK1) pathway-related proteins were measured by western blotting. MiR-29a was downregulated and CDC42 was upregulated in cervical cancer cells. Luciferase reporter assay showed that miR-29a negatively regulated the expression of CDC42 by directly targeting 3'-UTR of CDC42. Cell proliferation, migration, and invasion were markedly inhibited, whereas cell apoptosis was significantly increased in Hela and CaSki cells transfected with miR-29a mimics. These effects were partly recovered by CDC42 overexpression. Protein levels of PAK1, p-PAK1, p-LIMK, and p-cofilin were significantly downregulated by miR-29a mimics, which was reversed by CDC42 overexpression and was increased by the miR-29a inhibitor. MiR-29a inhibited cell proliferation, migration, and invasion, as well as promoted cell apoptosis through repressing the PAK1/LIMK signaling pathway by targeting CDC42 in cervical cancer.
Collapse
|
28
|
Wang H. Anti-NMDA Receptor Encephalitis, Vaccination and Virus. Curr Pharm Des 2020; 25:4579-4588. [PMID: 31820697 DOI: 10.2174/1381612825666191210155059] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022]
Abstract
Anti-N-methyl-d-aspartate (Anti-NMDA) receptor encephalitis is an acute autoimmune disorder. The symptoms range from psychiatric symptoms, movement disorders, cognitive impairment, and autonomic dysfunction. Previous studies revealed that vaccination might induce this disease. A few cases were reported to be related to H1N1 vaccine, tetanus/diphtheria/pertussis and polio vaccine, and Japanese encephalitis vaccine. Although vaccination is a useful strategy to prevent infectious diseases, in a low risk, it may trigger serious neurological symptoms. In addition to anti-NMDA receptor encephalitis, other neurological diseases were reported to be associated with a number of vaccines. In this paper, the anti-NMDA receptor encephalitis cases related to a number of vaccines and other neurological symptoms that might be induced by these vaccines were reviewed. In addition, anti-NMDA receptor encephalitis cases that were induced by virus infection were also reviewed.
Collapse
Affiliation(s)
- Hsiuying Wang
- Institute of Statistics, National Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
29
|
Micro-Transcriptome Analysis Reveals Immune-Related MicroRNA Regulatory Networks of Paralichthys olivaceus Induced by Vibrio anguillarum Infection. Int J Mol Sci 2020; 21:ijms21124252. [PMID: 32549342 PMCID: PMC7352997 DOI: 10.3390/ijms21124252] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/07/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding regulatory RNAs that play a vital part in the host immune response to pathogen infection. Japanese flounder (Paralichthys olivaceus) is an important aquaculture fish species that has suffered from bacterial diseases, including that caused by Vibrio anguillarum infection. In a previous study, we examined the messenger RNA (mRNA) expression profiles of flounder during V. anguillarum infection and identified 26 hub genes in the flounder immune response. In this study, we performed the micro-transcriptome analysis of flounder spleen in response to V. anguillarum infection at 3 different time points. Approximately 277 million reads were obtained, from which 1218 miRNAs were identified, including 740 known miRNAs and 478 novel miRNAs. Among the miRNAs, 206 were differentially expressed miRNAs (DEmiRs), and 104 of the 206 DEmiRs are novel miRNAs identified for the first time. Most of the DEmiRs were strongly time-dependent. A total of 1355 putative target genes of the DEmiRs (named DETGs) were identified based on integrated analysis of miRNA-mRNA expressions. The DETGs were enriched in multiple functional categories associated with immunity. Thirteen key DEmiRs and 66 immune DETGs formed an intricate regulatory network constituting 106 pairs of miRNAs and DETGs that span five immune pathways. Furthermore, seven of the previously identified hub genes were found to be targeted by 73 DEmiRs, and together they formed interlinking regulatory networks. These results indicate that V. anguillarum infection induces complicated miRNA response with extensive influences on immune gene expression in Japanese flounder.
Collapse
|
30
|
Qian S, Wang W, Li M. Transcriptional factor Yin Yang 1 facilitates the stemness of ovarian cancer via suppressing miR-99a activity through enhancing its deacetylation level. Biomed Pharmacother 2020; 126:110085. [PMID: 32199224 DOI: 10.1016/j.biopha.2020.110085] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 02/08/2023] Open
Abstract
The promoting effects of transcriptional factor Yin Yang 1 (YY1) have been confirmed in various tumors, however, its roles in ovarian cancer (OC) progression are still unclear. Here, Kaplan-Meier Plotter analysis was used to determine the correlation between YY1 expression and the survival of OC patients. It was found that YY1 expression was negatively correlated with the overall survival, progression-free survival and post-progression survival of OC patients. Functional experiments indicated that overexpression of YY1 facilitated the stemness of OC cells, while YY1 knockdown reduced it. MiRNAs-based RNA-sequencing analysis showed that miR-99a was the mostly upregulated miRNA in RNA extracted from OC cells with YY1 knockdown. Mechanistic studies revealed that YY1 recruited (Histone deacetylase) HDAC5 to the promoter of miR-99a, and subsequently enhanced miR-99a deacetylation level and decreased miR-99a level. Additionally, overexpression of miR-99a or knockdown of HDAC5 attenuated the promoting effects of YY1 on the stemness of OC cells. This work firstly indicated a novel YY1/miR-99a axis, which promotes the stemness of OC cells.
Collapse
Affiliation(s)
- Sumin Qian
- The Second Department of Gynecology, Cangzhou Central Hospital, 16 Xinhua West Road, Cangzhou, 061000, China.
| | - Wei Wang
- The Second Department of Gynecology, Cangzhou Central Hospital, 16 Xinhua West Road, Cangzhou, 061000, China
| | - Meng Li
- The Fifth Department of Neurology, The Brain Hospital of Cangzhou Central Hospital, 16 Xinhua West Road, Cangzhou, 061000, China
| |
Collapse
|
31
|
Bhattacharya M, Sharma AR, Sharma G, Patra BC, Lee SS, Chakraborty C. Interaction between miRNAs and signaling cascades of Wnt pathway in chronic lymphocytic leukemia. J Cell Biochem 2020; 121:4654-4666. [PMID: 32100920 DOI: 10.1002/jcb.29683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 01/30/2020] [Indexed: 12/11/2022]
Abstract
Chronic lymphocytic leukemia (CLL), a severe problem all over the world and represents around 25% of all total leukemia cases, is generating the need for novel targets against CLL. Wnt signaling cascade regulates cell proliferation, differentiation, and cell death processes. Thus, any alteration of the Wnt signaling pathway protein cascade might develop into various types of cancers, either by upregulation or downregulation of the Wnt signaling pathway protein components. In addition, it is reported that activation of the Wnt signaling pathway is associated with the transcriptional activation of microRNAs (miRNAs) by binding to its promoter region, suggesting feedback regulation. Considering the protein regulatory functions of various miRNAs, they can be approached therapeutically as modulatory targets for protein components of the Wnt signaling pathway. In this article, we have discussed the potential role of miRNAs in the regulation of Wnt signaling pathway proteins related to the pathogenesis of CLL via crosstalk between miRNAs and Wnt signaling pathway proteins. This might provide a clear insight into the Wnt protein regulatory function of various miRNAs and provide a better understanding of developing advanced and promising therapeutic approaches against CLL.
Collapse
Affiliation(s)
- Manojit Bhattacharya
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University Hospital-College of Medicine, Chuncheon-si, Gangwon-do, Republic of Korea.,Department of Zoology, Vidyasagar University, Midnapore, West Bengal, India
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University Hospital-College of Medicine, Chuncheon-si, Gangwon-do, Republic of Korea
| | - Garima Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University Hospital-College of Medicine, Chuncheon-si, Gangwon-do, Republic of Korea
| | | | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University Hospital-College of Medicine, Chuncheon-si, Gangwon-do, Republic of Korea
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, India
| |
Collapse
|
32
|
Yang Q, Wu F, Mi Y, Wang F, Cai K, Yang X, Zhang R, Liu L, Zhang Y, Wang Y, Wang X, Xu M, Gui Y, Li Q. Aberrant expression of miR-29b-3p influences heart development and cardiomyocyte proliferation by targeting NOTCH2. Cell Prolif 2020; 53:e12764. [PMID: 32077168 PMCID: PMC7106969 DOI: 10.1111/cpr.12764] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 12/24/2019] [Accepted: 12/30/2019] [Indexed: 12/13/2022] Open
Abstract
Objectives microRNA‐29 (miR‐29) family have shown different expression patterns in cardiovascular diseases. Our study aims to explore the effect and mechanism of miR‐29 family on cardiac development. Materials and methods A total of 13 patients with congenital heart disease (CHD) and 7 controls were included in our study. Tissues were obtained from the right ventricular outflow tract (RVOT) after surgical resection or autopsy. The next‐generation sequencing was applied to screen the microRNA expression profiles of CHD. Quantitative RT‐PCR and Western blot were employed to measure genes expression. Tg Cmlc2: GFP reporter zebrafish embryos were injected with microRNA (miRNA) to explore its role in cardiac development in vivo. Dual‐luciferase reporter assay was designed to validate the target gene of miRNAs. CCK‐8 and EdU incorporation assays were performed to evaluate cardiomyocyte proliferation. Results Our study showed miR‐29b‐3p expression was significantly increased in the RVOT of the CHD patients. Injection of miR‐29b‐3p into zebrafish embryos induced higher mortality and malformation rates, developmental delay, cardiac malformation and dysfunction. miR‐29b‐3p inhibited cardiomyocyte proliferation, and its inhibitor promoted cardiomyocyte proliferation in vitro and in vivo. Furthermore, we identified that miR‐29b‐3p influenced cardiomyocyte proliferation by targeting NOTCH2, which was down‐regulated in the RVOT of the CHD patients. Conclusion This study reveals that miR‐29b‐3p functions as a novel regulator of cardiac development and inhibits cardiomyocyte proliferation via NOTCH2, which provides novel insights into the aetiology and potential treatment of CHD.
Collapse
Affiliation(s)
- Qian Yang
- Translational Medical Center for Development and Disease, Institute of Pediatrics, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, Shanghai, China.,Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China
| | - Fang Wu
- Translational Medical Center for Development and Disease, Institute of Pediatrics, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, Shanghai, China.,Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China
| | - Yaping Mi
- Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China
| | - Feng Wang
- Translational Medical Center for Development and Disease, Institute of Pediatrics, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, Shanghai, China.,Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China
| | - Ke Cai
- Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China
| | - Xiaoshan Yang
- Department of Bioscience, Bengbu Medical College, Bengbu, China
| | - Ranran Zhang
- Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China
| | - Lian Liu
- Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China
| | - Yawen Zhang
- Translational Medical Center for Development and Disease, Institute of Pediatrics, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, Shanghai, China.,Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China
| | - Youhua Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu Wang
- Cancer Metabolism Laboratory, Cancer Institute, Fudan University, Shanghai, China
| | - Mingqing Xu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Yonghao Gui
- Translational Medical Center for Development and Disease, Institute of Pediatrics, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, Shanghai, China.,Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China
| | - Qiang Li
- Translational Medical Center for Development and Disease, Institute of Pediatrics, Shanghai Key Laboratory of Birth Defect, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
33
|
Ding J, Zhang L, Chen S, Cao H, Xu C, Wang X. lncRNA CCAT2 Enhanced Resistance of Glioma Cells Against Chemodrugs by Disturbing the Normal Function of miR-424. Onco Targets Ther 2020; 13:1431-1445. [PMID: 32110042 PMCID: PMC7034969 DOI: 10.2147/ott.s227831] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/28/2019] [Indexed: 12/14/2022] Open
Abstract
Background Aggressive metastasis of tumor cells assumed a constructive role in strengthening chemoresistance of tumors, so this investigation was intended to elucidate if lncRNA CCAT2 sponging downstream miR-424 regulated chemotolerance of glioma cells by boosting metastasis of glioma cells. Methods One hundred and twenty-eight pairs of glioma tissues and corresponding adjacent tissues were resected from glioma patients during their operation, and we also purchased a series of glioma cell lines, including U251, U87, A172 and SHG44. Furthermore, pcDNA3.1-CCAT2, si-CCAT2, miR-424 mimic and miR-424 inhibitor were transfected into SHG44 and U251 cell lines, so as to evaluate impacts of CCAT2 and miR-424 on chemosensitivity of the glioma cells. Besides, proliferation, invasion and metastasis of the cells were determined through the implementation of colony formation assay, transwell assay and scratch assay. Results Glioma tissues and cells were monitored with higher CCAT2 expression and lower miR-424 expression than adjacent normal tissues and NHA cell line (P<0.05). Among the glioma cell lines, the SHG44 cell line showed the strongest resistance against teniposide, temozolomide and cisplatin (P<0.05), whereas the U251 cell line was more sensitive to teniposide, temozolomide, vincristine and cisplatin than any other cell line (P<0.05). Besides, pcDNA3.1-CCAT2 and miR-424 inhibitor could enhance tolerance of glioma cell lines against drugs (P<0.05). Moreover, in-vitro transfection of si-CCAT2 and miR-424 mimic could significantly retard proliferation, invasion and migration of SHG44 and U251 cells (P<0.05), and CCAT2 was found to negatively regulate miR-424 expression by sponging it (P<0.05). In addition, CHK1 was deemed as the molecule targeted by upstream miR-424, and its overexpression can changeover the effects of miR-424 mimic on proliferation and metastasis of SHG44 and U251 cells. Conclusion lncRNA CCAT2/miR-424/Chk1 axis might serve as a promising target for improving chemotherapeutic efficacies in glioma treatment.
Collapse
Affiliation(s)
- Jun Ding
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, People's Republic of China
| | - Lin Zhang
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, People's Republic of China
| | - Shiwen Chen
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, People's Republic of China
| | - Heli Cao
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, People's Republic of China
| | - Chen Xu
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, People's Republic of China
| | - Xuyang Wang
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, People's Republic of China
| |
Collapse
|
34
|
Jamal A, Shahid I, Naveed Shahid M, Saleh Alshmemri M, Saeed Bahwerth F. Human Papillomavirus, MicroRNA and their Role in Cervical Cancer Progression, Diagnosis and Treatment Response: A Comprehensive Review. Pak J Biol Sci 2020; 23:977-988. [PMID: 32700847 DOI: 10.3923/pjbs.2020.977.988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Human Papillomavirus (HPV) is sexually transmitted and linked with vaginal, vulvar and cervix cancers in females, penile cancer in male, while anal and oropharyngeal cancer in both genders. Cervical cancer is ranked as third most identified cancer among females globally and is the fourth leading reason of cancer related mortality. The main aim of current study is to highlight the key role of miRNA in cervical cancer development, progression and their therapeutic responses. Current study entailed more than 50 PubMed cited articles related to miRNA role in cervical cancer. Studies have elucidated the role of miRNAs regulation in gene expression at post-transcriptional and translational level by targeting significant genes and therefore involved in cervical cancer. miRNAs control several cellular pathways involved in development of pre-malignant to metastatic stage and proliferation to malignancy. Current review elucidated and elaborated the key role of miRNA their application, treatment and therapeutic responses in cervical cancer.
Collapse
|
35
|
Bharadwaj M, Hussain S, Tripathi R, Singh N, Mehrotra R. The clinico-molecular approaches for detection of human papillomavirus. Anim Biotechnol 2020. [DOI: 10.1016/b978-0-12-811710-1.00006-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
36
|
Sammarco ML, Tamburro M, Pulliero A, Izzotti A, Ripabelli G. Human Papillomavirus Infections, Cervical Cancer and MicroRNAs: An Overview and Implications for Public Health. Microrna 2020; 9:174-186. [PMID: 31738147 PMCID: PMC7366004 DOI: 10.2174/2211536608666191026115045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/21/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022]
Abstract
Human Papillomavirus (HPV) is among the most common sexually transmitted infections in both females and males across the world that generally do not cause symptoms and are characterized by high rates of clearance. Persistent infections due at least to twelve well-recognized High-Risk (HR) or oncogenic genotypes, although less frequent, can occur, leading to diseases and malignancies, principally cervical cancer. Three vaccination strategies are currently available for preventing certain HR HPVs-associated diseases, infections due to HPV6 and HPV11 low-risk types, as well as for providing cross-protection against non-vaccine genotypes. Nevertheless, the limited vaccine coverage hampers reducing the burden of HPV-related diseases globally. For HR HPV types, especially HPV16 and HPV18, the E6 and E7 oncoproteins are needed for cancer development. As for other tumors, even in cervical cancer, non-coding microRNAs (miRNAs) are involved in posttranscriptional regulation, resulting in aberrant expression profiles. In this study, we provide a summary of the epidemiological background for HPV occurrence and available immunization programs. In addition, we present an overview of the most relevant evidence of miRNAs deregulation in cervical cancer, underlining that targeting these biomolecules could lead to wide translational perspectives, allowing better diagnosis, prognosis and therapeutics, and with valuable applications in the field of prevention. The literature on this topic is rapidly growing, but advanced investigations are required to achieve more consistent findings on the up-regulated and down-regulated miRNAs in cervical carcinogenesis. Because the expression of miRNAs is heterogeneously reported, it may be valuable to assess factors and risks related to individual susceptibility.
Collapse
Affiliation(s)
| | | | | | | | - Giancarlo Ripabelli
- Address correspondence to this author at the Department of Medicine and Health Sciences “Vincenzo Tiberio”, University of Molise, Campobasso, Italy; Tel: +39 0874 404961/743; Fax: +39 0874 404778; E-mail:
| |
Collapse
|
37
|
Babion I, Jaspers A, van Splunter AP, van der Hoorn IA, Wilting SM, Steenbergen RD. miR-9-5p Exerts a Dual Role in Cervical Cancer and Targets Transcription Factor TWIST1. Cells 2019; 9:E65. [PMID: 31888045 PMCID: PMC7017350 DOI: 10.3390/cells9010065] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/19/2019] [Accepted: 12/24/2019] [Indexed: 12/19/2022] Open
Abstract
Squamous cell carcinoma (SCC) and adenocarcinoma (AC) represent the major cervical cancer histotypes. Both histotypes are caused by infection with high-risk HPV (hrHPV) and are associated with deregulated microRNA expression. Histotype-dependent expression has been observed for miR-9-5p, showing increased expression in SCC and low expression in AC. Here, we studied the regulation and functionality of miR-9-5p in cervical SCCs and ACs using cervical tissue samples and hrHPV-containing cell lines. Expression and methylation analysis of cervical tissues revealed that low levels of miR-9-5p in ACs are linked to methylation of its precursor genes, particularly miR-9-1. Stratification of tissue samples and hrHPV-containing cell lines suggested that miR-9-5p depends on both histotype and hrHPV type, with higher expression in SCCs and HPV16-positive cells. MiR-9-5p promoted cell viability and anchorage independence in cervical cancer cell lines SiHa (SCC, HPV16) and CaSki (metastasized SCC, HPV16), while it played a tumor suppressive role in HeLa (AC, HPV18). TWIST1, a transcription factor involved in epithelial-to-mesenchymal transition (EMT), was established as a novel miR-9-5p target. Our results show that miR-9-5p plays a dual role in cervical cancer in a histotype- and hrHPV type-dependent manner. MiR-9-5p mediated silencing of TWIST1 suggests two distinct mechanisms towards EMT in cervical cancer.
Collapse
Affiliation(s)
- Iris Babion
- Cancer Center Amsterdam, Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Annelieke Jaspers
- Cancer Center Amsterdam, Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Annina P. van Splunter
- Cancer Center Amsterdam, Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Iris A.E. van der Hoorn
- Cancer Center Amsterdam, Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Saskia M. Wilting
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Renske D.M. Steenbergen
- Cancer Center Amsterdam, Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
38
|
Ma J, Zhang F, Sun P. miR-140-3p impedes the proliferation of human cervical cancer cells by targeting RRM2 to induce cell-cycle arrest and early apoptosis. Bioorg Med Chem 2019; 28:115283. [PMID: 31902649 DOI: 10.1016/j.bmc.2019.115283] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 12/09/2019] [Accepted: 12/18/2019] [Indexed: 12/19/2022]
Abstract
Cervical cancer is a critically malignant tumor with the second mortality of females worldwide. MicroRNAs (miRNAs) are short but regulatory non-coding RNAs playing a pivotal role in many biological processes including tumorigenesis. However, the exact role of miR-140-3p in cervical cancer remains to be elucidated. Here we identified that miR-140-3p was significantly reduced in cervical cancer tissues by comprehensive analysis of TCGA data, hinting that higher expression level of miR-140-3p predicted a good clinical prognosis. Quantitative real-time PCR (RT-qPCR) assay was performed to confirm the negative correlation between miR-140-3p expression level and human cervical cancer tissues as well as various cervical cancer cell lines. To clarify the certain role of miR-140-3p, forced expression by microRNA mimics was applied in Caski and C33A cells, showing that miR-140-3p overexpression significantly impeded the proliferation of cervical cancer cells by cell count kit (CCK-8) assay. Western blot analysis of cell cycle-related proteins Cyclin A, Cyclin B1 and Cyclin D1 have further confirmed the cell cycle arrest was induced by the ectopic expression of miR-140-3p. Annexin-V based FACS analysis also found the simultaneous appearance of early apoptotic cell population in miR-140-3p overexpression cells. The protein level of BCL-2 was attenuated in accompany with elevated Bax and Cleaved caspase-3 protein, indicating miR-140-3p overexpression induced early apoptosis. Mechanistically, we demonstrated that miR-140-3p could target the 3'UTR of RRM2 which has been proved to be highly involved in the onset of cancer. Furthermore, upregulation of miR-140-3p and RRM2 failed to inhibit the proliferation of human cervical cancer cells, revealing that RRM2 served as the target downstream gene of miR-140-3p abolishing its ability as a tumor suppressor. Overall, we figured out the new role of miR-140-3p in cervical cancer and concluded that miR-140-3p was a candidate of cancer control in preclinical.
Collapse
Affiliation(s)
- Jiajia Ma
- Department of Obstetrics and Gynaecology, XiJing Hospital, Air Force Military Medical University, China
| | - Fan Zhang
- Department of Gynaecology and Obstetrics, Beijing Chuiyangliu Hospital, ChuiYangLiu Hospital Affiliated to Tsinghua University, China
| | - Ping Sun
- Department of Gynaecology, Shaanxi Provincial Tumor Hospital, China.
| |
Collapse
|
39
|
From squamous intraepithelial lesions to cervical cancer: Circulating microRNAs as potential biomarkers in cervical carcinogenesis. Biochim Biophys Acta Rev Cancer 2019; 1872:188306. [DOI: 10.1016/j.bbcan.2019.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 08/01/2019] [Indexed: 02/06/2023]
|
40
|
Zhao W, Cheng L, Quek C, Bellingham SA, Hill AF. Novel miR-29b target regulation patterns are revealed in two different cell lines. Sci Rep 2019; 9:17449. [PMID: 31767948 PMCID: PMC6877611 DOI: 10.1038/s41598-019-53868-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 11/06/2019] [Indexed: 12/26/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs that regulate gene or protein expression by targeting mRNAs and triggering either translational repression or mRNA degradation. Distinct expression levels of miRNAs, including miR-29b, have been detected in various biological fluids and tissues from a large variety of disease models. However, how miRNAs "react" and function in different cellular environments is still largely unknown. In this study, the regulation patterns of miR-29b between human and mouse cell lines were compared for the first time. CRISPR/Cas9 gene editing was used to stably knockdown miR-29b in human cancer HeLa cells and mouse fibroblast NIH/3T3 cells with minimum off-targets. Genome editing revealed mir-29b-1, other than mir-29b-2, to be the main source of generating mature miR-29b. The editing of miR-29b decreased expression levels of its family members miR-29a/c via changing the tertiary structures of surrounding nucleotides. Comparing transcriptome profiles of human and mouse cell lines, miR-29b displayed common regulation pathways involving distinct downstream targets in macromolecular complex assembly, cell cycle regulation, and Wnt and PI3K-Akt signalling pathways; miR-29b also demonstrated specific functions reflecting cell characteristics, including fibrosis and neuronal regulations in NIH/3T3 cells and tumorigenesis and cellular senescence in HeLa cells.
Collapse
Affiliation(s)
- Wenting Zhao
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Lesley Cheng
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Camelia Quek
- Department of Biochemistry and Molecular Biology, Bio21 Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Shayne A Bellingham
- Department of Biochemistry and Molecular Biology, Bio21 Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Andrew F Hill
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
41
|
Pulati N, Zhang Z, Gulimilamu A, Qi X, Yang J. HPV16+‐miRNAs in cervical cancer and the anti‐tumor role played by miR‐5701. J Gene Med 2019; 21:e3126. [PMID: 31498525 DOI: 10.1002/jgm.3126] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/15/2019] [Accepted: 08/30/2019] [Indexed: 12/19/2022] Open
Affiliation(s)
- Nuerbieke Pulati
- Department of Radiation OncologyPeople's Hospital of Xinjiang Uygur Autonomous Region Urumqi Xinjiang China
| | - Zegao Zhang
- Department of Radiation OncologyPeople's Hospital of Xinjiang Uygur Autonomous Region Urumqi Xinjiang China
| | - Aireti Gulimilamu
- Department of Radiation OncologyPeople's Hospital of Xinjiang Uygur Autonomous Region Urumqi Xinjiang China
| | - Xiaoli Qi
- Department of Radiation OncologyPeople's Hospital of Xinjiang Uygur Autonomous Region Urumqi Xinjiang China
| | - Jie Yang
- Department of Radiation OncologyPeople's Hospital of Xinjiang Uygur Autonomous Region Urumqi Xinjiang China
| |
Collapse
|
42
|
Alizadeh M, Safarzadeh A, Beyranvand F, Ahmadpour F, Hajiasgharzadeh K, Baghbanzadeh A, Baradaran B. The potential role of miR‐29 in health and cancer diagnosis, prognosis, and therapy. J Cell Physiol 2019; 234:19280-19297. [DOI: 10.1002/jcp.28607] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Mohsen Alizadeh
- Immunology Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Ali Safarzadeh
- Immunology Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Fatemeh Beyranvand
- Department of Pharmacology and Toxicology, Faculty of Pharmacy Lorestan University of Medical Sciences Khorramabad Iran
| | - Fatemeh Ahmadpour
- Department of Biochemistry, Faculty of Medicine Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran
| | | | - Amir Baghbanzadeh
- Immunology Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Behzad Baradaran
- Immunology Research Center Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
43
|
Li T, Zhou W, Li Y, Gan Y, Peng Y, Xiao Q, Ouyang C, Wu A, Zhang S, Liu J, Fan L, Han D, Wei Y, Shu G, Yin G. MiR-4524b-5p/WTX/β-catenin axis functions as a regulator of metastasis in cervical cancer. PLoS One 2019; 14:e0214822. [PMID: 30939162 PMCID: PMC6445517 DOI: 10.1371/journal.pone.0214822] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/20/2019] [Indexed: 12/12/2022] Open
Abstract
Cervical cancer is the second most deadly gynecological tumor worldwide. MicroRNAs (miRNAs) play very important roles in tumor oncogenesis and progression. The mechanism of post-transcription regulation of WTX gene is still unknown. A series of differential miRNAs were discovered by microarray analysis comparing three pairs of primary cervical cancer specimens and their relapsed tumors from three patients. Quantitative reverse transcriptase PCR (qRT-PCR), Western Blot (WB) and Immunohistochemistry (IHC) was used to detect the expression of miR-4524b-5p and WTX in cervical cell lines and tissues. The biological function of miR-4524b-5p and WTX was investigated through knockdown and overexpression with inhibitor/siRNA and mimic/plasmid in vitro and in vivo. In this study, we found that miR-4524b-5p is highly expressed in relapsed cervical cancer specimens. Combined in vitro and in vivo experiments, showed that miR-4524b-5p could regulate the migration and invasion ability of cervical cancer. Furthermore, we also found that miR-4524b-5p could regulate the migration and invasion of cervical cancer by targeting WTX and that WTX could regulate the expression of β-catenin. Taken together, our data identified a miR-4524b-5p/WTX/β-catenin regulatory axis for cervical cancer, and miR-4524b-5p may be a potential target for cervical cancer therapy.
Collapse
Affiliation(s)
- Tong Li
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Wenjuan Zhou
- Xiangya School of Nursing, Central South University, Changsha, China
| | - Yimin Li
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Yaqi Gan
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Yulong Peng
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Qing Xiao
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Chunli Ouyang
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Anqi Wu
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Sai Zhang
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Jiaqi Liu
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Lili Fan
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Duo Han
- Department of General Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yu Wei
- School of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Guang Shu
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Gang Yin
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China
| |
Collapse
|
44
|
Yi Y, Liu Y, Wu W, Wu K, Zhang W. Reconstruction and analysis of circRNA‑miRNA‑mRNA network in the pathology of cervical cancer. Oncol Rep 2019; 41:2209-2225. [PMID: 30816541 PMCID: PMC6412533 DOI: 10.3892/or.2019.7028] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 02/15/2019] [Indexed: 12/14/2022] Open
Abstract
The present study was performed with the aim of understanding the mechanisms of pathogenesis and providing novel biomarkers for cervical cancer by constructing a regulatory circular (circ)RNA‑micro (mi)RNA‑mRNA network. Using an adjusted P-value of <0.05 and an absolute log value of fold-change >1, 16 and 156 miRNAs from GSE30656 and The Cancer Genome Atlas (TCGA), 5,321 mRNAs from GSE63514, 4,076 mRNAs from cervical squamous cell carcinoma and endocervical adenocarcinoma (from TCGA) and 75 circRNAs from GSE102686 were obtained. Using RNAhybrid, Venn and UpSetR plot, 12 circRNA‑miRNA pairs and 266 miRNA‑mRNA pairs were obtained. Once these pairs were combined, a circRNA‑miRNA‑mRNA network with 11 circRNA nodes, 4 miRNA nodes, 153 mRNA nodes and 203 edges was constructed. By constructing the protein‑protein interaction network using Molecular Complex Detection scores >5 and >5 nodes, 7 hubgenes (RRM2, CEP55, CHEK1, KIF23, RACGAP1, ATAD2 and KIF11) were identified. By mapping the 7 hubgenes into the preliminary circRNA‑miRNA‑mRNA network, a circRNA‑miRNA‑hubgenes network consisting of 5 circRNAs (hsa_circRNA_000596, hsa_circRNA_104315, hsa_circRNA_400068, hsa_circRNA_101958 and hsa_circRNA_103519), 2 mRNAs (hsa‑miR‑15b and hsa‑miR‑106b) and 7 mRNAs (RRM2, CEP55, CHEK1, KIF23, RACGAP1, ATAD2 and KIF11) was constructed. There were 22 circRNA‑miRNA‑mRNA regulatory axes identified in the subnetwork. By analyzing the overall survival for the 7 hubgenes using the Gene Expression Profiling Interactive Analysis tool, higher expression of RRM2 was demonstrated to be associated with a significantly poorer overall survival. PharmGkb analysis identified single nucleotide polymorphisms (SNPs) of rs5030743 and rs1130609 of RRM2, which can be treated with cladribine and cytarabine. RRM2 was also indicated to be involved in the gemcitabine pathway. The 5 circRNAs (hsa_circRNA_000596, hsa_circRNA_104315, hsa_circRNA_400068, hsa_circRNA_101958 and hsa_circRNA_103519) may function as competing endogenous RNAs and serve critical roles in cervical cancer. In addition, cytarabine may produce similar effects to gemcitabine and may be an optional chemotherapeutic drug for treating cervical cancer by targeting rs5030743 and rs1130609 or other similar SNPs. However, the specific mechanism of action should be confirmed by further study.
Collapse
Affiliation(s)
- Yuexiong Yi
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yanyan Liu
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Wanrong Wu
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Kejia Wu
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Wei Zhang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
45
|
Nahand JS, Taghizadeh-Boroujeni S, Karimzadeh M, Borran S, Pourhanifeh MH, Moghoofei M, Bokharaei-Salim F, Karampoor S, Jafari A, Asemi Z, Tbibzadeh A, Namdar A, Mirzaei H. microRNAs: New prognostic, diagnostic, and therapeutic biomarkers in cervical cancer. J Cell Physiol 2019; 234:17064-17099. [PMID: 30891784 DOI: 10.1002/jcp.28457] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 12/11/2022]
Abstract
Cervical cancer is as a kind of cancer beginning from the cervix. Given that cervical cancer could be observed in women who infected with papillomavirus, regular oral contraceptives, and multiple pregnancies. Early detection of cervical cancer is one of the most important aspects of the therapy of this malignancy. Despite several efforts, finding and developing new biomarkers for cervical cancer diagnosis are required. Among various prognostic, diagnostic, and therapeutic biomarkers, miRNA have been emerged as powerful biomarkers for detection, treatment, and monitoring of response to therapy in cervical cancer. Here, we summarized various miRNAs as an employable platform for prognostic, diagnostic, and therapeutic biomarkers in the treatment of cervical cancer.
Collapse
Affiliation(s)
- Javid Sadri Nahand
- Department of Virology, Student Research Committee, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sima Taghizadeh-Boroujeni
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Brujen, Iran
| | - Mohammad Karimzadeh
- Department of Virology, Student Research Committee, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sarina Borran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farah Bokharaei-Salim
- Department of Virology, Student Research Committee, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sajad Karampoor
- Department of Virology, Student Research Committee, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Jafari
- Department of Medical Nanotechnology, Faculty of Advanced Technology in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Tbibzadeh
- Department of Virology, Student Research Committee, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Afshin Namdar
- Department of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
46
|
Lin J, Ma L, Zhang D, Gao J, Jin Y, Han Z, Lin D. Tumour biomarkers-Tracing the molecular function and clinical implication. Cell Prolif 2019; 52:e12589. [PMID: 30873683 PMCID: PMC6536410 DOI: 10.1111/cpr.12589] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/19/2018] [Accepted: 01/10/2019] [Indexed: 12/19/2022] Open
Abstract
In recent years, with the increase in cancer mortality caused by metastasis, and with the development of individualized and precise medical treatment, early diagnosis with precision becomes the key to decrease the death rate. Since detecting tumour biomarkers in body fluids is the most non‐invasive way to identify the status of tumour development, it has been widely investigated for the usage in clinic. These biomarkers include different expression or mutation in microRNAs (miRNAs), circulating tumour DNAs (ctDNAs), proteins, exosomes and circulating tumour cells (CTCs). In the present article, we summarized and discussed some updated research on these biomarkers. We overviewed their biological functions and evaluated their multiple roles in human and small animal clinical treatment, including diagnosis of cancers, classification of cancers, prognostic and predictive values for therapy response, monitors for therapy efficacy, and anti‐cancer therapeutics. Biomarkers including different expression or mutation in miRNAs, ctDNAs, proteins, exosomes and CTCs provide more choice for early diagnosis of tumour detection at early stage before metastasis. Combination detection of these tumour biomarkers may provide higher accuracy at the lowest molecule combination number for tumour early detection. Moreover, tumour biomarkers can provide valuable suggestions for clinical anti‐cancer treatment and execute monitoring of treatment efficiency.
Collapse
Affiliation(s)
- Jiahao Lin
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lie Ma
- Department of Respiratory Disease, The Navy General Hospital of PLA, Beijing, China
| | - Di Zhang
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jiafeng Gao
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yipeng Jin
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhihai Han
- Department of Respiratory Disease, The Navy General Hospital of PLA, Beijing, China
| | - Degui Lin
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
47
|
Du H, Chen Y. Competing endogenous RNA networks in cervical cancer: function, mechanism and perspective. J Drug Target 2019; 27:709-723. [PMID: 30052083 DOI: 10.1080/1061186x.2018.1505894] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In the past several years, competing endogenous RNAs (ceRNAs) have emerged as a potential class of post-transcriptional regulators that alter gene expression through a microRNA (miRNA)-mediated mechanism. An increasing number of studies have found that ceRNAs play important roles in tumorigenesis. Cervical cancer is one of the most common cancers in female malignancies. Despite advances in our understanding of this neoplasm, patients with advanced cervical cancer still have poor prognosis. There is an urgent need to provide a new insight on the mechanism of cervical cancer development and may be acted as new anticancer therapeutic strategies. Here, we review the ceRNA studies and coherent researches in cervical cancer, especially in long non-coding RNA (lncRNA) and miRNAs in order to broaden horizons into mechanisms, selection biomarkers for diagnosis as well as predicting prognosis, and targeting treatment for cervical cancer in the future.
Collapse
Affiliation(s)
- Hui Du
- a Department of Obstetrics and Gynecology , The Second Hospital of Hebei Medical University , Shijiazhuang , China
| | - Ying Chen
- b Department of Gynecologic Oncology , Tianjin Medical University Cancer Institute and Hospital , Tianjin , China.,c Key Laboratory of Cancer Prevention and Therapy , Tianjin , China.,d National Clinical Research Centre of Cancer , Tianjin , China
| |
Collapse
|
48
|
Albuquerque A, Fernandes M, Stirrup O, Teixeira AL, Santos J, Rodrigues M, Rios E, Macedo G, Medeiros R. Expression of microRNAs 16, 20a, 150 and 155 in anal squamous intraepithelial lesions from high-risk groups. Sci Rep 2019; 9:1523. [PMID: 30728437 PMCID: PMC6365520 DOI: 10.1038/s41598-018-38378-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 12/27/2018] [Indexed: 12/17/2022] Open
Abstract
Anal squamous intraepithelial lesions (ASIL) or anal intraepithelial neoplasia (AIN) are precancerous lesions. microRNAs (miRNAs) have been implicated in cervical carcinogenesis, but have never been assessed in anal precancerous lesions. Our aim was to evaluate the expression of miR-16, miR-20a, miR-150 and miR-155 in several grades of ASIL obtained from high-risk patients, submitted to anal cancer screening from July 2016 to January 2017. Lesions were classified according to the Lower Anogenital Squamous Terminology (LAST) in low-grade (LSIL) and high-grade squamous intraepithelial lesions (HSIL), and the AIN classification in AIN1, AIN2 and AIN3. A hundred and five biopsies were obtained from 60 patients. Ten samples were negative (9.5%), 63 were LSIL (60%) and 32 were HSIL (30.5%) according to the LAST. Twenty seven (26%) were negative for dysplasia, 46 were classified as AIN1 (44%), 14 as AIN2 (13%) and 18 as AIN3 (17%) according to the AIN classification. There was no statistically significant difference in the fold expression of miR-16, miR-20a, miR-150 and miR-155, according to either classification. Although non- significant, there was an increasing trend in the miR-155 fold expression from negative samples to HSIL, with the highest fold expression increase in both LSIL and HSIL compared to the other miRNAs.
Collapse
Affiliation(s)
- Andreia Albuquerque
- Faculty of Medicine of the University of Porto, Porto, Portugal. .,Gastroenterology Department, Centro Hospitalar São João, Porto, Portugal.
| | - Mara Fernandes
- Molecular Oncology and Viral Pathology Group, Portuguese Oncology Institute of Porto Research Center (CI-IPOP), Portuguese Oncology Institute, Porto, Portugal
| | - Oliver Stirrup
- Centre for Clinical Research in Infection and Sexual Heath, Institute for Global Health, University College London, London, UK
| | - Ana Luísa Teixeira
- Molecular Oncology and Viral Pathology Group, Portuguese Oncology Institute of Porto Research Center (CI-IPOP), Portuguese Oncology Institute, Porto, Portugal
| | - Joana Santos
- Molecular Oncology and Viral Pathology Group, Portuguese Oncology Institute of Porto Research Center (CI-IPOP), Portuguese Oncology Institute, Porto, Portugal
| | - Marta Rodrigues
- Department of Pathology, Centro Hospitalar São João, Porto, Portugal
| | - Elisabete Rios
- Faculty of Medicine of the University of Porto, Porto, Portugal.,Department of Pathology, Centro Hospitalar São João, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) and i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
| | - Guilherme Macedo
- Faculty of Medicine of the University of Porto, Porto, Portugal.,Gastroenterology Department, Centro Hospitalar São João, Porto, Portugal
| | - Rui Medeiros
- Faculty of Medicine of the University of Porto, Porto, Portugal.,Molecular Oncology and Viral Pathology Group, Portuguese Oncology Institute of Porto Research Center (CI-IPOP), Portuguese Oncology Institute, Porto, Portugal.,Research Department, Portuguese League Against Cancer, Porto, Portugal.,CEBIMED, Faculty of Health Sciences, Fernando Pessoa University, Porto, Portugal
| |
Collapse
|
49
|
Ye J, Cheng XD, Cheng B, Cheng YF, Chen XJ, Lu WG. MiRNA detection in cervical exfoliated cells for missed high-grade lesions in women with LSIL/CIN1 diagnosis after colposcopy-guided biopsy. BMC Cancer 2019; 19:112. [PMID: 30700264 PMCID: PMC6354336 DOI: 10.1186/s12885-019-5311-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 01/21/2019] [Indexed: 12/12/2022] Open
Abstract
Background Low-grade squamous intraepithelial lesion/cervical intraepithelial neoplasia grade 1 (LSIL/CIN1) preceded by colposcopy guided biopsy is recommended conservative follow-up, although some of these lesions are actually high-grade lesions, which are missed on an initial colposcopy. Therefore, in this work, we evaluate the potential role of miRNA detection in cervical exfoliated cells in a clinic-based population for predicting missed high-grade lesions in women diagnosed with LSIL/CIN1 after colposcopy-guided biopsy. Methods A total number of 177 women with a diagnosis of LSIL/CIN1 obtained by colposcopy-guided biopsy were grouped into two categories according to the histology of the conization specimens: consistent LSIL/CIN1 group (surgical pathology consistent with colposcopic diagnosis) and missed high-grade lesion group (surgical pathology found high-grade lesion). The expression of eight miRNAs, such as miRNA195, miRNA424, miRNA375, miRNA218, miRNA34a, miRNA29a, miRNA16–2, and miRNA20a was detected by real time-quantitative polymerase chain reaction (RT-qPCR) in cervical exfoliated cells of the 177 patients. Pearson Chi-Square was used to compare the performance efficiency of patients’ characteristics. Nonparametric Man-Whitney U test was used to assess differences in miRNA expression. The receiver operating characteristic (ROC) curve was used to assess the performance of miRNA evaluation in detecting missed high-grade lesions. Results Among the 177 women with biopsy-confirmed CIN1, 15.3% (27/177) had CIN2+ in the conization specimen (missed high-grade lesion group) and 84.7% (150/177) had CIN1-(consistent LSIL/CIN1 group). The relative expression of miRNA-195 and miRNA-29a in the missed high-grade lesion group was significantly lower than that in the consistent LSIL/CIN1 group. The relative expression of miRNA16–2 and miRNA20a in the missed high-grade lesion group was significantly higher than that in the consistent LSIL/CIN1 group. No significant difference was observed between these two groups regarding the other four miRNAs. Of these significant miRNAs, miRNA29a detection achieved the highest Youden index (0.733), sensitivity (92.6%), positive predictive value (46.2%), negative predictive value (98.3%) and higher specificity (80.7%) when identifying missed high-grade lesions. Conclusions Detection of miRNA might provide a new triage for identifying a group at higher risk of missed high-grade lesions in women with colposcopy diagnosis of LSIL/CIN1. Electronic supplementary material The online version of this article (10.1186/s12885-019-5311-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jing Ye
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, Zhejiang, China
| | - Xiao-Dong Cheng
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, Zhejiang, China
| | - Bei Cheng
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, Zhejiang, China
| | - Yi-Fan Cheng
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, Zhejiang, China
| | - Xiao-Jing Chen
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, Zhejiang, China
| | - Wei-Guo Lu
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
50
|
Gupta MK, Vadde R. Identification and characterization of differentially expressed genes in Type 2 Diabetes using in silico approach. Comput Biol Chem 2019; 79:24-35. [PMID: 30708140 DOI: 10.1016/j.compbiolchem.2019.01.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 12/26/2018] [Accepted: 01/23/2019] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus is clinically characterized by hyperglycemia. Though many studies have been done to understand the mechanism of Type 2 Diabetes (T2D), however, the complete network of diabetes and its associated disorders through polygenic involvement is still under debate. The present study designed to re-analyze publicly available T2D related microarray raw datasets present in GEO database and T2D genes information present in GWAS catalog for screening out differentially expressed genes (DEGs) and identify key hub genes associated with T2D. T2D related microarray data downloaded from Gene Expression Omnibus (GEO) database and re-analysis performed with in house R packages scripts for background correction, normalization and identification of DEGs in T2D. Also retrieved T2D related DEGs information from GWAS catalog. Both DEGs lists were grouped after removal of overlapping genes. These screened DEGs were utilized further for identification and characterization of key hub genes in T2D and its associated diseases using STRING, WebGestalt and Panther databases. Computational analysis reveal that out of 99 identified key hub gene candidates from 348 DEGs, only four genes (CCL2, ELMO1, VEGFA and TCF7L2) along with FOS playing key role in causing T2D and its associated disorders, like nephropathy, neuropathy, rheumatoid arthritis and cancer via p53 or Wnt signaling pathways. MIR-29, and MAZ_Q6 are identified potential target microRNA and TF along with probable drugs alprostadil, collagenase and dinoprostone for the key hub gene candidates. The results suggest that identified key DEGs may play promising roles in prevention of diabetes.
Collapse
Affiliation(s)
- Manoj Kumar Gupta
- Department of Biotechnology & Bioinformatics, Yogi Vemana University, Kadapa 516003, Andhra Pradesh, India.
| | - Ramakrishna Vadde
- Department of Biotechnology & Bioinformatics, Yogi Vemana University, Kadapa 516003, Andhra Pradesh, India.
| |
Collapse
|