1
|
Toboni MD, Dinkins K, Wu S, Mattox T, Oberley MJ, Thaker PH, Herzog TJ, Powell MA, Jones N. Not all uterine carcinosarcomas are created equal: Survival outcomes according to molecular characterization of uterine carcinosarcoma. Gynecol Oncol 2025; 193:89-97. [PMID: 39837013 DOI: 10.1016/j.ygyno.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/10/2024] [Accepted: 12/19/2024] [Indexed: 01/23/2025]
Abstract
OBJECTIVES To assess if ProMisE classifier molecular subtypes are associated with differing survival outcomes in uterine carcinosarcoma (UCS) and compare these outcomes to endometrioid endometrial cancer (EEC) tumors. METHODS There were 2235 UCS and 6469 EEC tumors using next-generation sequencing of DNA, whole exome sequencing, and RNA. Microsatellite instability (MSI) was tested by IHC and NGS. Real-world overall survival (OS) was obtained from Caris Life Sciences database and paired with insurance claims data. Hazard ratios (HR) were calculated using the Cox proportional hazards model, and p-values were calculated using the log-rank test. RESULTS Of the 2235 UCS samples, 2.7 % (n = 48) were POLE mutant (MT), 7.4 % (n = 132) MSI-H, 78.2 % (n = 1402), TP53 MT, and 11.7 % (n = 210), TP53 wild type (WT). In UCS POLE MT tumors, median OS (74.8 mos; 95 % CI: 30.5-not reached [NR]; p < 0.01) was significantly longer than all other subtypes. There was no difference in median post-chemo OS between POLE MT UCS and POLE MT EEC (p = 0.75) or MSI-H UCS and MSI-H EEC (p = 0.14). TP53 MT UCS and TP53 WT UCS tumors had worse median OS compared their respective ECC subtypes (27.9 vs 35.3 mos; HR: 1.3 95 % CI (1.1-1.5); p = 0.01, 29.4 vs 70.7 mos; HR: 2.0 95 % CI (1.5-2.7); p < 0.01). HER2 negative UCS had worse post-chemo OS compared to HER2 negative EEC (32.9 vs 77 mos; HR 1.60 95 % CI (1.092-2.348); p = 0.02). CONCLUSION TP53 MT is the most common molecular UCS sub-type. Overall, UCS has tiered survival according to molecular classification, which mirrors EEC survival patterns. Despite UCS being considered a more aggressive histology, POLE MT and MSI-H outcomes when comparing UCS and EEC were not statistically different.
Collapse
Affiliation(s)
| | | | - Sharon Wu
- Caris Life Sciences, Phoenix, AZ, USA
| | | | | | - Premal H Thaker
- Washington University School of Medicine/Siteman Cancer Center, St. Louis, MO, USA
| | | | - Matthew A Powell
- Washington University School of Medicine/Siteman Cancer Center, St. Louis, MO, USA
| | | |
Collapse
|
2
|
Niebora J, Woźniak S, Domagała D, Data K, Farzaneh M, Zehtabi M, Dari MAG, Pour FK, Bryja A, Kulus M, Mozdziak P, Dzięgiel P, Kempisty B. The role of ncRNAs and exosomes in the development and progression of endometrial cancer. Front Oncol 2024; 14:1418005. [PMID: 39188680 PMCID: PMC11345653 DOI: 10.3389/fonc.2024.1418005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/26/2024] [Indexed: 08/28/2024] Open
Abstract
Endometrial cancer (EC) is one of the most common gynecologic cancers. In recent years, research has focused on the genetic characteristics of the tumors to detail their prognosis and tailor therapy. In the case of EC, genetic mutations have been shown to underlie their formation. It is very important to know the mechanisms of EC formation related to mutations induced by estrogen, among other things. Noncoding RNAs (ncRNAs), composed of nucleotide transcripts with very low protein-coding capacity, are proving to be important. Their expression patterns in many malignancies can inhibit tumor formation and progression. They also regulate protein coding at the epigenetic, transcriptional, and posttranscriptional levels. MicroRNAs (miRNAs), several varieties of which are associated with normal endometrium as well as its tumor, also play a particularly important role in gene expression. MiRNAs and long noncoding RNAs (lncRNAs) affect many pathways in EC tissues and play important roles in cancer development, invasion, and metastasis, as well as resistance to anticancer drugs through mechanisms such as suppression of apoptosis and progression of cancer stem cells. It is also worth noting that miRNAs are highly precise, sensitive, and robust, making them potential markers for diagnosing gynecologic cancers and their progression. Unfortunately, as the incidence of EC increases, treatment becomes challenging and is limited to invasive tools. The prospect of using microRNAs as potential candidates for diagnostic and therapeutic use in EC seems promising. Exosomes are extracellular vesicles that are released from many types of cells, including cancer cells. They contain proteins, DNA, and various types of RNA, such as miRNAs. The noncoding RNA components of exosomes vary widely, depending on the physiology of the tumor tissue and the cells from which they originate. Exosomes contain both DNA and RNA and have communication functions between cells. Exosomal miRNAs mediate communication between EC cells, tumor-associated fibroblasts (CAFs), and tumor-associated macrophages (TAMs) and play a key role in tumor cell proliferation and tumor microenvironment formation. Oncogenes carried by tumor exosomes induce malignant transformation of target cells. During the synthesis of exosomes, various factors, such as genetic and proteomic data are upregulated. Thus, they are considered an interesting therapeutic target for the diagnosis and prognosis of endometrial cancer by analyzing biomarkers contained in exosomes. Expression of miRNAs, particularly miR-15a-5p, was elevated in exosomes derived from the plasma of EC patients. This may suggest the important utility of this biomarker in the diagnosis of EC. In recent years, researchers have become interested in the topic of prognostic markers for EC, as there are still too few identified markers to support the limited treatment of endometrial cancer. Further research into the effects of ncRNAs and exosomes on EC may allow for cancer treatment breakthroughs.
Collapse
Affiliation(s)
- Julia Niebora
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Sławomir Woźniak
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Dominika Domagała
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Krzysztof Data
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Clinical Research Development Unit, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mojtaba Zehtabi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahrokh Abouali Gale Dari
- Department of Obstetrics and Gynecology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fatemeh Khojasteh Pour
- Department of Obstetrics and Gynecology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Artur Bryja
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Paul Mozdziak
- Physiology Graduate Program, North Carolina State University, Raleigh, NC, United States
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Bartosz Kempisty
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, Poland
- Physiology Graduate Program, North Carolina State University, Raleigh, NC, United States
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, Brno, Czechia
| |
Collapse
|
3
|
Ribeiro-Santos P, Martins Vieira C, Viana Veloso GG, Vieira Giannecchini G, Parenza Arenhardt M, Müller Gomes L, Zanuncio P, Silva Brandão F, Nogueira-Rodrigues A. Tailoring Endometrial Cancer Treatment Based on Molecular Pathology: Current Status and Possible Impacts on Systemic and Local Treatment. Int J Mol Sci 2024; 25:7742. [PMID: 39062983 PMCID: PMC11276773 DOI: 10.3390/ijms25147742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Endometrial cancer (EC) is a heterogeneous disease with a rising incidence worldwide. The understanding of its molecular pathways has evolved substantially since The Cancer Genome Atlas (TCGA) stratified endometrial cancer into four subgroups regarding molecular features: POLE ultra-mutated, microsatellite instability (MSI) hypermutated, copy-number high with TP53 mutations, and copy-number low with microsatellite stability, also known as nonspecific molecular subtype (NSMP). More recently, the International Federation of Gynecology and Obstetrics (FIGO) updated their staging classification to include information about POLE mutation and p53 status, as the prognosis differs according to these characteristics. Other biomarkers are being identified and their prognostic and predictive role in response to therapies are being evaluated. However, the incorporation of molecular aspects into treatment decision-making is challenging. This review explores the available data and future directions on tailoring treatment based on molecular subtypes, alongside the challenges associated with their testing.
Collapse
Affiliation(s)
- Pedro Ribeiro-Santos
- Oncoclínicas&Co—Medica Scientia Innovation Research (MEDSIR), São Paulo 04542-390, Brazil
- Brazilian Group of Gynecologic Oncology (EVA), Rio de Janeiro 35500-025, Brazil
| | - Carolina Martins Vieira
- Oncoclínicas&Co—Medica Scientia Innovation Research (MEDSIR), São Paulo 04542-390, Brazil
- Brazilian Group of Gynecologic Oncology (EVA), Rio de Janeiro 35500-025, Brazil
| | - Gilson Gabriel Viana Veloso
- Oncoclínicas&Co—Medica Scientia Innovation Research (MEDSIR), São Paulo 04542-390, Brazil
- Department of Oncology, Santa Casa de Belo Horizonte, Belo Horizonte 30150-221, Brazil
| | - Giovanna Vieira Giannecchini
- Oncoclínicas&Co—Medica Scientia Innovation Research (MEDSIR), São Paulo 04542-390, Brazil
- Brazilian Group of Gynecologic Oncology (EVA), Rio de Janeiro 35500-025, Brazil
| | - Martina Parenza Arenhardt
- Oncoclínicas&Co—Medica Scientia Innovation Research (MEDSIR), São Paulo 04542-390, Brazil
- Brazilian Group of Gynecologic Oncology (EVA), Rio de Janeiro 35500-025, Brazil
| | - Larissa Müller Gomes
- Oncoclínicas&Co—Medica Scientia Innovation Research (MEDSIR), São Paulo 04542-390, Brazil
- Brazilian Group of Gynecologic Oncology (EVA), Rio de Janeiro 35500-025, Brazil
| | - Pedro Zanuncio
- Oncoclínicas&Co—Medica Scientia Innovation Research (MEDSIR), São Paulo 04542-390, Brazil
- Department of Radiotherapy, Hospital Beneficência Portuguesa de São Paulo, São Paulo 01323-001, Brazil
| | - Flávio Silva Brandão
- Oncoclínicas&Co—Medica Scientia Innovation Research (MEDSIR), São Paulo 04542-390, Brazil
- Department of Oncology, Santa Casa de Belo Horizonte, Belo Horizonte 30150-221, Brazil
| | - Angélica Nogueira-Rodrigues
- Oncoclínicas&Co—Medica Scientia Innovation Research (MEDSIR), São Paulo 04542-390, Brazil
- Brazilian Group of Gynecologic Oncology (EVA), Rio de Janeiro 35500-025, Brazil
- Department of Medicine, Federal University of Minas Gerais—UFMG, Belo Horizonte 30130-100, Brazil
- DOM Oncologia, Belo Horizonte 30190-111, Brazil
| |
Collapse
|
4
|
Kuhn E, Gambini D, Runza L, Ferrero S, Scarfone G, Bulfamante G, Ayhan A. Unsolved Issues in the Integrated Histo-Molecular Classification of Endometrial Carcinoma and Therapeutic Implications. Cancers (Basel) 2024; 16:2458. [PMID: 39001520 PMCID: PMC11240465 DOI: 10.3390/cancers16132458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Endometrial carcinoma (EC) is the most frequent gynecological cancer, with an increasing incidence and mortality in recent times. The last decade has represented a true revolution with the development of the integrated histo-molecular classification of EC, which allows for the stratification of patients with morphologically indistinguishable disease into groups with different prognoses. Particularly, the POLE-mutated subgroup exhibits outstanding survival. Nevertheless, the indiscriminate application of molecular classification appears premature. Its prognostic significance has been proven mainly in endometrioid EC, the most common histotype, but it has yet to be convincingly confirmed in the other minor histotypes, which indeed account for a relevant proportion of EC mortality. Moreover, its daily use both requires a mindful pathologist who is able to correctly evaluate and unambiguously report immunohistochemical staining used as a surrogated diagnostic tool and is hampered by the unavailability of POLE mutation analysis. Further molecular characterization of ECs is needed to allow for the identification of better-tailored therapies in different settings, as well as the safe avoidance of surgery for fertility preservation. Hopefully, the numerous ongoing clinical trials in the adjuvant and metastatic settings of EC will likely produce evidence to refine the histo-molecular classification and therapeutic guidelines. Our review aims to retrace the origin and evolution of the molecular classification for EC, reveal its strengths and limitations, show clinical relevance, and uncover the desired future developments.
Collapse
Affiliation(s)
- Elisabetta Kuhn
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
- Pathology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Donatella Gambini
- Department of Neurorehabilitation Sciences, Casa di Cura Igea, 20144 Milan, Italy
| | - Letterio Runza
- Pathology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Stefano Ferrero
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
- Pathology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Giovanna Scarfone
- Gynecology Oncology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Gaetano Bulfamante
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
- Human Pathology and Molecular Pathology, TOMA Advanced Biomedical Assays S.p.A., 21052 Busto Arsizio, Italy
| | - Ayse Ayhan
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| |
Collapse
|
5
|
Darbandsari A, Farahani H, Asadi M, Wiens M, Cochrane D, Khajegili Mirabadi A, Jamieson A, Farnell D, Ahmadvand P, Douglas M, Leung S, Abolmaesumi P, Jones SJM, Talhouk A, Kommoss S, Gilks CB, Huntsman DG, Singh N, McAlpine JN, Bashashati A. AI-based histopathology image analysis reveals a distinct subset of endometrial cancers. Nat Commun 2024; 15:4973. [PMID: 38926357 PMCID: PMC11208496 DOI: 10.1038/s41467-024-49017-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Endometrial cancer (EC) has four molecular subtypes with strong prognostic value and therapeutic implications. The most common subtype (NSMP; No Specific Molecular Profile) is assigned after exclusion of the defining features of the other three molecular subtypes and includes patients with heterogeneous clinical outcomes. In this study, we employ artificial intelligence (AI)-powered histopathology image analysis to differentiate between p53abn and NSMP EC subtypes and consequently identify a sub-group of NSMP EC patients that has markedly inferior progression-free and disease-specific survival (termed 'p53abn-like NSMP'), in a discovery cohort of 368 patients and two independent validation cohorts of 290 and 614 from other centers. Shallow whole genome sequencing reveals a higher burden of copy number abnormalities in the 'p53abn-like NSMP' group compared to NSMP, suggesting that this group is biologically distinct compared to other NSMP ECs. Our work demonstrates the power of AI to detect prognostically different and otherwise unrecognizable subsets of EC where conventional and standard molecular or pathologic criteria fall short, refining image-based tumor classification. This study's findings are applicable exclusively to females.
Collapse
Affiliation(s)
- Amirali Darbandsari
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Hossein Farahani
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Maryam Asadi
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Matthew Wiens
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Dawn Cochrane
- Department of Molecular Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | | | - Amy Jamieson
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, BC, Canada
| | - David Farnell
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Vancouver General Hospital, Vancouver, BC, Canada
| | - Pouya Ahmadvand
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Maxwell Douglas
- Department of Molecular Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - Samuel Leung
- Department of Molecular Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - Purang Abolmaesumi
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Steven J M Jones
- Michael Smith Genome Sciences Center, British Columbia Cancer Research Center, Vancouver, BC, Canada
| | - Aline Talhouk
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, BC, Canada
| | - Stefan Kommoss
- Department of Women's Health, Tübingen University Hospital, Tübingen, Germany
| | - C Blake Gilks
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Vancouver General Hospital, Vancouver, BC, Canada
| | - David G Huntsman
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Oncology, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - Naveena Singh
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Vancouver General Hospital, Vancouver, BC, Canada
| | - Jessica N McAlpine
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, BC, Canada
| | - Ali Bashashati
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
6
|
Yang FF, Zhao TT, Milaneh S, Zhang C, Xiang DJ, Wang WL. Small molecule targeted therapies for endometrial cancer: progress, challenges, and opportunities. RSC Med Chem 2024; 15:1828-1848. [PMID: 38911148 PMCID: PMC11187550 DOI: 10.1039/d4md00089g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/10/2024] [Indexed: 06/25/2024] Open
Abstract
Endometrial cancer (EC) is a common malignancy among women worldwide, and its recurrence makes it a common cause of cancer-related death. Surgery and external radiation, chemotherapy, or a combination of strategies are the cornerstone of therapy for EC patients. However, adjuvant treatment strategies face certain drawbacks, such as resistance to chemotherapeutic drugs; therefore, it is imperative to explore innovative therapeutic strategies to improve the prognosis of EC. With the development of pathology and pathophysiology, several biological targets associated with EC have been identified, including PI3K/Akt/mTOR, PARP, GSK-3β, STAT-3, and VEGF. In this review, we summarize the progress of small molecule targeted therapies in terms of both basic research and clinical trials and provide cases of small molecules combined with fluorescence properties in the clinical applications of integrated diagnosis and treatment. We hope that this review will facilitate the further understanding of the regulatory mechanism governing the dysregulation of oncogenic signaling in EC and provide insights into the possible future directions of targeted therapeutic regimens for EC treatment by developing new agents with fluorescence properties for the clinical applications of integrated diagnosis and treatment.
Collapse
Affiliation(s)
- Fei-Fei Yang
- Yixing People's Hospital Yixing Jiangsu 214200 China
| | - Tian-Tian Zhao
- School of Life Sciences and Health Engineering, Jiangnan University Wuxi 214122 China
| | - Slieman Milaneh
- School of Life Sciences and Health Engineering, Jiangnan University Wuxi 214122 China
- Department of Pharmaceutical and Chemical Industries, Higher Institute of Applied Science and Technology Damascus Syria
| | - Chun Zhang
- School of Life Sciences and Health Engineering, Jiangnan University Wuxi 214122 China
| | - Da-Jun Xiang
- Xishan People's Hospital of Wuxi City Wuxi Jiangsu 214105 China
| | - Wen-Long Wang
- Yixing People's Hospital Yixing Jiangsu 214200 China
- School of Life Sciences and Health Engineering, Jiangnan University Wuxi 214122 China
| |
Collapse
|
7
|
Angelico G, Attanasio G, Colarossi L, Colarossi C, Montalbano M, Aiello E, Di Vendra F, Mare M, Orsi N, Memeo L. ARID1A Mutations in Gastric Cancer: A Review with Focus on Clinicopathological Features, Molecular Background and Diagnostic Interpretation. Cancers (Basel) 2024; 16:2062. [PMID: 38893181 PMCID: PMC11171396 DOI: 10.3390/cancers16112062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
AT-rich interaction domain 1 (ARID1A) is a pivotal gene with a significant role in gastrointestinal tumors which encodes a protein referred to as BAF250a or SMARCF1, an integral component of the SWI/SNF (SWItch/sucrose non-fermentable) chromatin remodeling complex. This complex is instrumental in regulating gene expression by modifying the structure of chromatin to affect the accessibility of DNA. Mutations in ARID1A have been identified in various gastrointestinal cancers, including colorectal, gastric, and pancreatic cancers. These mutations have the potential to disrupt normal SWI/SNF complex function, resulting in aberrant gene expression and potentially contributing to the initiation and progression of these malignancies. ARID1A mutations are relatively common in gastric cancer, particularly in specific adenocarcinoma subtypes. Moreover, such mutations are more frequently observed in specific molecular subtypes, such as microsatellite stable (MSS) cancers and those with a diffuse histological subtype. Understanding the presence and implications of ARID1A mutations in GC is of paramount importance for tailoring personalized treatment strategies and assessing prognosis, particularly given their potential in predicting patient response to novel treatment strategies including immunotherapy, poly(ADP) ribose polymerase (PARP) inhibitors, mammalian target of rapamycin (mTOR) inhibitors, and enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2) inhibitors.
Collapse
Affiliation(s)
- Giuseppe Angelico
- Department of Medicine and Surgery, Kore University of Enna, 94100 Enna, Italy;
| | - Giulio Attanasio
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, Anatomic Pathology, University of Catania, 95123 Catania, Italy;
| | - Lorenzo Colarossi
- Pathology Unit, Department of Experimental Oncology, Mediterranean Institute of Oncology, 95029 Catania, Italy; (L.C.); (C.C.); (E.A.)
| | - Cristina Colarossi
- Pathology Unit, Department of Experimental Oncology, Mediterranean Institute of Oncology, 95029 Catania, Italy; (L.C.); (C.C.); (E.A.)
| | - Matteo Montalbano
- Pathology Unit, Department of Experimental Oncology, Mediterranean Institute of Oncology, 95029 Catania, Italy; (L.C.); (C.C.); (E.A.)
- PhD Program in Precision Medicine, University of Palermo, 90144 Palermo, Italy
| | - Eleonora Aiello
- Pathology Unit, Department of Experimental Oncology, Mediterranean Institute of Oncology, 95029 Catania, Italy; (L.C.); (C.C.); (E.A.)
| | - Federica Di Vendra
- Department of Chemical, Biological and Environmental Chemistry, University of Messina, 98122 Messina, Italy
| | - Marzia Mare
- Medical Oncology Unit, Department of Experimental Oncology, Mediterranean Institute of Oncology, Viagrande, 95029 Catania, Italy
| | - Nicolas Orsi
- Leeds Institute of Medical Research, St James’s University Hospital, The University of Leeds, Leeds LS9 7TF, UK;
| | - Lorenzo Memeo
- Pathology Unit, Department of Experimental Oncology, Mediterranean Institute of Oncology, 95029 Catania, Italy; (L.C.); (C.C.); (E.A.)
| |
Collapse
|
8
|
Bostan IS, Mihaila M, Roman V, Radu N, Neagu MT, Bostan M, Mehedintu C. Landscape of Endometrial Cancer: Molecular Mechanisms, Biomarkers, and Target Therapy. Cancers (Basel) 2024; 16:2027. [PMID: 38893147 PMCID: PMC11171255 DOI: 10.3390/cancers16112027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/20/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Endometrial cancer is one the most prevalent gynecological cancers and, unfortunately, has a poor prognosis due to low response rates to traditional treatments. However, the progress in molecular biology and understanding the genetic mechanisms involved in tumor processes offers valuable information that has led to the current classification that describes four molecular subtypes of endometrial cancer. This review focuses on the molecular mechanisms involved in the pathogenesis of endometrial cancers, such as genetic mutations, defects in the DNA mismatch repair pathway, epigenetic changes, or dysregulation in angiogenic or hormonal signaling pathways. The preclinical genomic and molecular investigations presented allowed for the identification of some molecules that could be used as biomarkers to diagnose, predict, and monitor the progression of endometrial cancer. Besides the therapies known in clinical practice, targeted therapy is described as a new cancer treatment that involves identifying specific molecular targets in tumor cells. By selectively inhibiting these targets, key signaling pathways involved in cancer progression can be disrupted while normal cells are protected. The connection between molecular biomarkers and targeted therapy is vital in the fight against cancer. Ongoing research and clinical trials are exploring the use of standard therapy agents in combination with other treatment strategies like immunotherapy and anti-angiogenesis therapy to improve outcomes and personalize treatment for patients with endometrial cancer. This approach has the potential to transform the management of cancer patients. In conclusion, enhancing molecular tools is essential for stratifying the risk and guiding surgery, adjuvant therapy, and cancer treatment for women with endometrial cancer. In addition, the information from this review may have an essential value in the personalized therapy approach for endometrial cancer to improve the patient's life.
Collapse
Affiliation(s)
| | - Mirela Mihaila
- Stefan S. Nicolau Institute of Virology, Center of Immunology, Romanian Academy, 030304 Bucharest, Romania; (M.M.); (V.R.)
- Faculty of Pharmacy, Titu Maiorescu University, 040314 Bucharest, Romania
| | - Viviana Roman
- Stefan S. Nicolau Institute of Virology, Center of Immunology, Romanian Academy, 030304 Bucharest, Romania; (M.M.); (V.R.)
| | - Nicoleta Radu
- Department of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania;
- Biotechnology Department, National Institute for Chemistry and Petrochemistry R&D of Bucharest, 060021 Bucharest, Romania
| | - Monica Teodora Neagu
- Department of Immunology, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania;
| | - Marinela Bostan
- Stefan S. Nicolau Institute of Virology, Center of Immunology, Romanian Academy, 030304 Bucharest, Romania; (M.M.); (V.R.)
- Department of Immunology, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania;
| | - Claudia Mehedintu
- Filantropia Clinical Hospital, 011132 Bucharest, Romania; (I.-S.B.); (C.M.)
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, 050471 Bucharest, Romania
| |
Collapse
|
9
|
Addante F, d’Amati A, Santoro A, Angelico G, Inzani F, Arciuolo D, Travaglino A, Raffone A, D’Alessandris N, Scaglione G, Valente M, Tinnirello G, Sfregola S, Padial Urtueta B, Piermattei A, Cianfrini F, Mulè A, Bragantini E, Zannoni GF. Mismatch Repair Deficiency as a Predictive and Prognostic Biomarker in Endometrial Cancer: A Review on Immunohistochemistry Staining Patterns and Clinical Implications. Int J Mol Sci 2024; 25:1056. [PMID: 38256131 PMCID: PMC10816607 DOI: 10.3390/ijms25021056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/21/2023] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
Among the four endometrial cancer (EC) TCGA molecular groups, the MSI/hypermutated group represents an important percentage of tumors (30%), including different histotypes, and generally confers an intermediate prognosis for affected women, also providing new immunotherapeutic strategies. Immunohistochemistry for MMR proteins (MLH1, MSH2, MSH6 and PMS2) has become the optimal diagnostic MSI surrogate worldwide. This review aims to provide state-of-the-art knowledge on MMR deficiency/MSI in EC and to clarify the pathological assessment, interpretation pitfalls and reporting of MMR status.
Collapse
Affiliation(s)
- Francesca Addante
- Unità di Ginecopatologia e Patologia Mammaria, Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy (A.d.); (G.S.); (A.P.); (G.F.Z.)
- Unit of Anatomical Pathology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Antonio d’Amati
- Unità di Ginecopatologia e Patologia Mammaria, Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy (A.d.); (G.S.); (A.P.); (G.F.Z.)
- Unit of Anatomical Pathology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
- Unit of Human Anatomy and Histology, Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Angela Santoro
- Unità di Ginecopatologia e Patologia Mammaria, Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy (A.d.); (G.S.); (A.P.); (G.F.Z.)
- Istituto di Anatomia Patologica, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Giuseppe Angelico
- Department of Medical and Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (G.A.)
| | - Frediano Inzani
- Anatomic Pathology Unit, Department of Molecular Medicine, University of Pavia and Fondazione IRCCS San Matteo Hospital, 27100 Pavia, Italy;
| | - Damiano Arciuolo
- Unità di Ginecopatologia e Patologia Mammaria, Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy (A.d.); (G.S.); (A.P.); (G.F.Z.)
| | - Antonio Travaglino
- Pathology Unit, Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy
| | - Antonio Raffone
- Gynecology and Obstetrics Unit, Department of Public Health, University of Naples Federico II, 80138 Naples, Italy
| | - Nicoletta D’Alessandris
- Unità di Ginecopatologia e Patologia Mammaria, Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy (A.d.); (G.S.); (A.P.); (G.F.Z.)
| | - Giulia Scaglione
- Unità di Ginecopatologia e Patologia Mammaria, Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy (A.d.); (G.S.); (A.P.); (G.F.Z.)
| | - Michele Valente
- Unità di Ginecopatologia e Patologia Mammaria, Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy (A.d.); (G.S.); (A.P.); (G.F.Z.)
| | - Giordana Tinnirello
- Department of Medical and Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (G.A.)
| | - Stefania Sfregola
- Unità di Ginecopatologia e Patologia Mammaria, Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy (A.d.); (G.S.); (A.P.); (G.F.Z.)
| | - Belen Padial Urtueta
- Unità di Ginecopatologia e Patologia Mammaria, Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy (A.d.); (G.S.); (A.P.); (G.F.Z.)
| | - Alessia Piermattei
- Unità di Ginecopatologia e Patologia Mammaria, Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy (A.d.); (G.S.); (A.P.); (G.F.Z.)
| | - Federica Cianfrini
- Unità di Ginecopatologia e Patologia Mammaria, Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy (A.d.); (G.S.); (A.P.); (G.F.Z.)
| | - Antonino Mulè
- Unità di Ginecopatologia e Patologia Mammaria, Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy (A.d.); (G.S.); (A.P.); (G.F.Z.)
| | - Emma Bragantini
- Department of Surgical Pathology, Ospedale S. Chiara, Largo Medaglie d’Oro 9, 38122 Trento, Italy
| | - Gian Franco Zannoni
- Unità di Ginecopatologia e Patologia Mammaria, Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy (A.d.); (G.S.); (A.P.); (G.F.Z.)
- Istituto di Anatomia Patologica, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy
| |
Collapse
|
10
|
Hashem S, Zare SY, Fadare O. HER2 Status Assessment in Endometrial Serous Carcinoma: Comparative Analysis of Two Proposed Testing and Interpretation Algorithms. Int J Gynecol Pathol 2024; 43:4-14. [PMID: 37406350 DOI: 10.1097/pgp.0000000000000943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
HER2 status is now routinely assessed in endometrial serous carcinoma (ESC) due to the reported predictive value of HER2 protein overexpression and/or gene amplification. Herein the authors compare 2 proposed testing and interpretation guidelines for HER2 in ESC. Forty-three consecutive cases of ESC that had been dually tested by both HER2 immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) were interpreted using 2 sets of guidelines. Guideline set 1 (GS1) is the 2018 American Society of Clinical Oncology/College of American Pathologists guidelines for breast cancer. Guideline set 2 (GS2) is a recent proposal that is a slight modification of the enrollment criteria for the clinical trial (NCT01367002) that demonstrated a survival benefit for anti-HER2 therapy in ESC. By IHC, GS1 and GS2, respectively classified 39.5% (17/43) and 28% (12/43) of ESC as HER2-negative, 37.2% (16/43) and 53.4% (23/43) as HER2 equivocal, and 23.2% (10/43) and 18.6% (8/43) as HER2-positive ( P > 0.05 for all). IHC and FISH were highly concordant at the extremes using either set of guidelines, as no cases were found to be IHC3+/FISH-negative or IHC 0-1+/FISH-positive. GS1 and GS2 were comparable regarding the proportion of IHC equivocal cases that were HER2 amplified by FISH (19% vs 23% respectively; [ P = 0.71]). GS1 and GS2 displayed 98% (42/43) concordance regarding the final (IHC and/or FISH-based) classification of tumors as being HER2-positive or negative, and the same 13 cases were ultimately classified as HER2 amplified using either GS1 or GS2. One "discordant" case was classified as HER2-positive using GS2 but HER2-negative using GS1 (HER2 IHC score 2+ using both guidelines, HER2:CEP17 signal ratio of 3, HER2 signal number of 3.4). Six (14%) of the 43 cases (FISH Groups: 2, 3, and 4) would require IHC results to interpret the FISH findings using GS1. Because GS1 requires that the HER2 IHC staining be observed within a homogeneous and contiguous invasive cell population, and this is not a requirement in GS2, GS2 may be better suited for ESC given its frequently heterogeneous staining pattern. Additional studies may be required on the optimal interpretation of problematic dual-probe FISH scenarios in GS2 and the necessity for IHC correlation in such scenarios. Using either set of guidelines, our findings support a reflex testing strategy of restricting FISH testing to cases that are IHC equivocal.
Collapse
|
11
|
Turashvili G, Hanley K. Practical Updates and Diagnostic Challenges in Endometrial Carcinoma. Arch Pathol Lab Med 2024; 148:78-98. [PMID: 36943242 DOI: 10.5858/arpa.2022-0280-ra] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2022] [Indexed: 03/23/2023]
Abstract
CONTEXT.— Clinical management of endometrial carcinoma largely depends on the morphologic parameters ascertained based on the pathologic evaluation of surgical resection specimens. However, there are numerous controversial and nonstandardized aspects of both the macroscopic and microscopic assessment of surgical specimens, including grossing, adequate sampling, diagnosis, staging, reporting, and ancillary testing. OBJECTIVE.— To provide a comprehensive practical review of standardized grossing, key morphologic findings for reporting and staging, and diagnostic and prognostic use of ancillary testing in endometrial carcinomas. DATA SOURCES.— The existing literature, recommendations of the International Society of Gynecological Pathologists, and specialty consensus guidelines. CONCLUSIONS.— This review article summarizes important aspects of the grossing and sampling of surgical resection specimens for microscopic examination, key morphologic parameters that are required for reporting and staging, and morphologic features and immunoprofiles helpful in the differential diagnosis of low-grade and high-grade endometrial carcinomas, as well as the current status of the molecular classification of endometrial carcinoma and human epidermal growth factor receptor 2 testing in serous carcinoma. The information presented herein can be helpful in overcoming diagnostic challenges and issues related to the pathology reporting of endometrial carcinoma to practicing anatomic pathologists.
Collapse
Affiliation(s)
- Gulisa Turashvili
- From the Department of Pathology, Emory University Hospital, Atlanta, Georgia
| | - Krisztina Hanley
- From the Department of Pathology, Emory University Hospital, Atlanta, Georgia
| |
Collapse
|
12
|
Makk E, Bohonyi N, Oszter A, Éles K, Tornóczky T, Tóth A, Kálmán E, Kovács K. Comparative analysis of EZH2, p16 and p53 expression in uterine carcinosarcomas. Pathol Oncol Res 2023; 29:1611547. [PMID: 38146588 PMCID: PMC10749357 DOI: 10.3389/pore.2023.1611547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/28/2023] [Indexed: 12/27/2023]
Abstract
Introduction: The role of p16 and p53 immunohistochemistry in the diagnosis of rare and aggressive uterine carcinosarcoma (UCS) has been well established. However, enhancer of zeste homolog 2 (EZH2), a histone methyltransferase and a member of the polycomb group family is a relatively new biomarker, with limited published data on its significance in this tumor type. The goal of this study was to examine EZH2 expression in UCS and its components, in correlation with morphological features, and p16 and p53 staining patterns. Methods: Twenty-eight UCSs were included in the study. EZH2, p16 and p53 immunoreactivity were assessed independently by two pathologists in both tumor components (epithelial and mesenchymal). EZH2 and p16 immunostains were scored semiquantitatively: based on the percentage and intensity of tumor cell staining a binary staining index ("high- or low-expressing") was calculated. The p53 staining pattern was evaluated as wild-type or aberrant (diffuse nuclear, null, or cytoplasmic expression). Statistical tests were used to evaluate the correlation between staining patterns for all three markers and the different tumor components and histotypes. Results: High EZH2 and p16 expression and aberrant p53 patterns were present in 89.3% 78.6% and 85.7% of the epithelial component and in 78.6%, 62.5% and 82.1% of the mesenchymal component, respectively. Differences among these expression rates were not found to be significant (p > 0.05). Regarding the epithelial component, aberrant p53 pattern was found to be significantly (p = 0.0474) more frequent in the serous (100%) than in endometrioid (66.6%) histotypes. Within the mesenchymal component, p53 null expression pattern occurred significantly (p = 0.0257) more frequently in heterologous sarcoma components (71.4%) compared to the homologous histotype (18.8%). Conclusion: In conclusion, EZH2, p16 and p53 seem to play a universal role in the pathogenesis of UCS; however, a distinctive pattern of p53 expression appears to exist between the serous and endometrioid carcinoma components and also between the homologous and heterologous sarcoma components.
Collapse
Affiliation(s)
- Evelin Makk
- Department of Pathology, University of Pécs Medical School, Pécs, Hungary
| | - Noémi Bohonyi
- Department of Obstretrics and Gynaecology, University of Pécs Medical School, Pécs, Hungary
| | - Angéla Oszter
- Department of Pathology, University of Pécs Medical School, Pécs, Hungary
| | - Klára Éles
- Department of Pathology, University of Pécs Medical School, Pécs, Hungary
| | - Tamás Tornóczky
- Department of Pathology, University of Pécs Medical School, Pécs, Hungary
| | - Arnold Tóth
- Department of Medical Imaging, University of Pécs Medical School, Pécs, Hungary
| | - Endre Kálmán
- Department of Pathology, University of Pécs Medical School, Pécs, Hungary
| | - Krisztina Kovács
- Department of Pathology, University of Pécs Medical School, Pécs, Hungary
| |
Collapse
|
13
|
Deng B, Kong W, Suo H, Shen X, Newton MA, Burkett WC, Zhao Z, John C, Sun W, Zhang X, Fan Y, Hao T, Zhou C, Bae-Jump VL. Oleic Acid Exhibits Anti-Proliferative and Anti-Invasive Activities via the PTEN/AKT/mTOR Pathway in Endometrial Cancer. Cancers (Basel) 2023; 15:5407. [PMID: 38001668 PMCID: PMC10670880 DOI: 10.3390/cancers15225407] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/08/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Reprogramming of fatty acid metabolism promotes cell growth and metastasis through a variety of processes that stimulate signaling molecules, energy storage, and membrane biosynthesis in endometrial cancer. Oleic acid is one of the most important monounsaturated fatty acids in the human body, which appears to have both pro- and anti-tumorigenic activities in various pre-clinical models. In this study, we evaluated the potential anti-tumor effects of oleic acid in endometrial cancer cells and the LKB1fl/flp53fl/fl mouse model of endometrial cancer. Oleic acid increased lipogenesis, inhibited cell proliferation, caused cell cycle G1 arrest, induced cellular stress and apoptosis, and suppressed invasion in endometrial cancer cells. Targeting of diacylglycerol acyltransferases 1 and 2 effectively increased the cytotoxicity of oleic acid. Moreover, oleic acid significantly increased the expression of wild-type PTEN, and knockdown of PTEN by shRNA partially reversed the anti-proliferative and anti-invasive effects of oleic acid. Inhibition of the AKT/mTOR pathway by ipatasertib effectively increased the anti-tumor activity of oleic acid in endometrial cancer cells. Oleic acid treatment (10 mg/kg, daily, oral) for four weeks significantly inhibited tumor growth by 52.1% in the LKB1fl/flp53fl/fl mice. Our findings demonstrated that oleic acid exhibited anti-tumorigenic activities, dependent on the PTEN/AKT/mTOR signaling pathway, in endometrial cancer.
Collapse
Affiliation(s)
- Boer Deng
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China; (B.D.); (H.S.); (X.S.); (Z.Z.); (X.Z.); (Y.F.)
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (W.K.); (M.A.N.); (W.C.B.); (C.J.); (W.S.); (T.H.)
| | - Weimin Kong
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (W.K.); (M.A.N.); (W.C.B.); (C.J.); (W.S.); (T.H.)
| | - Hongyan Suo
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China; (B.D.); (H.S.); (X.S.); (Z.Z.); (X.Z.); (Y.F.)
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (W.K.); (M.A.N.); (W.C.B.); (C.J.); (W.S.); (T.H.)
| | - Xiaochang Shen
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China; (B.D.); (H.S.); (X.S.); (Z.Z.); (X.Z.); (Y.F.)
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (W.K.); (M.A.N.); (W.C.B.); (C.J.); (W.S.); (T.H.)
| | - Meredith A. Newton
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (W.K.); (M.A.N.); (W.C.B.); (C.J.); (W.S.); (T.H.)
| | - Wesley C. Burkett
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (W.K.); (M.A.N.); (W.C.B.); (C.J.); (W.S.); (T.H.)
| | - Ziyi Zhao
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China; (B.D.); (H.S.); (X.S.); (Z.Z.); (X.Z.); (Y.F.)
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (W.K.); (M.A.N.); (W.C.B.); (C.J.); (W.S.); (T.H.)
| | - Catherine John
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (W.K.); (M.A.N.); (W.C.B.); (C.J.); (W.S.); (T.H.)
| | - Wenchuan Sun
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (W.K.); (M.A.N.); (W.C.B.); (C.J.); (W.S.); (T.H.)
| | - Xin Zhang
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China; (B.D.); (H.S.); (X.S.); (Z.Z.); (X.Z.); (Y.F.)
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (W.K.); (M.A.N.); (W.C.B.); (C.J.); (W.S.); (T.H.)
| | - Yali Fan
- Department of Gynecology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China; (B.D.); (H.S.); (X.S.); (Z.Z.); (X.Z.); (Y.F.)
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (W.K.); (M.A.N.); (W.C.B.); (C.J.); (W.S.); (T.H.)
| | - Tianran Hao
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (W.K.); (M.A.N.); (W.C.B.); (C.J.); (W.S.); (T.H.)
| | - Chunxiao Zhou
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (W.K.); (M.A.N.); (W.C.B.); (C.J.); (W.S.); (T.H.)
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Victoria L. Bae-Jump
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (W.K.); (M.A.N.); (W.C.B.); (C.J.); (W.S.); (T.H.)
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
14
|
Watanabe T, Soeda S, Okoshi C, Fukuda T, Yasuda S, Fujimori K. Landscape of somatic mutated genes and inherited susceptibility genes in gynecological cancer. J Obstet Gynaecol Res 2023; 49:2629-2643. [PMID: 37632362 DOI: 10.1111/jog.15766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/26/2023] [Indexed: 08/28/2023]
Abstract
Traditionally, gynecological cancers have been classified based on histology. Since remarkable advancements in next-generation sequencing technology have enabled the exploration of somatic mutations in various cancer types, comprehensive sequencing efforts have revealed the genomic landscapes of some common forms of human cancer. The genomic features of various gynecological malignancies have been reported by several studies of large-scale genomic cohorts, including The Cancer Genome Atlas. Although recent comprehensive genomic profiling tests, which can detect hundreds of genetic mutations at a time from cancer tissues or blood samples, have been increasingly used as diagnostic clinical biomarkers and in therapeutic management decisions, germline pathogenic variants associated with hereditary cancers can also be detected using this test. Gynecological cancers are closely related to genetic factors, with approximately 5% of endometrial cancer cases and 20% of ovarian cancer cases being caused by germline pathogenic variants. Hereditary breast and ovarian cancer syndrome and Lynch syndrome are the two major cancer susceptibility syndromes among gynecological cancers. In addition, several other hereditary syndromes have been reported to be associated with gynecological cancers. In this review, we highlight the genes for somatic mutation and germline pathogenic variants commonly seen in gynecological cancers. We first describe the relationship between clinicopathological attributes and somatic mutated genes. Subsequently, we discuss the characteristics and clinical management of inherited cancer syndromes resulting from pathogenic germline variants in gynecological malignancies.
Collapse
Affiliation(s)
- Takafumi Watanabe
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima, Japan
| | - Shu Soeda
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima, Japan
| | - Chihiro Okoshi
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima, Japan
| | - Toma Fukuda
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima, Japan
| | - Shun Yasuda
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima, Japan
| | - Keiya Fujimori
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
15
|
Li J, Li X, Quan C, Li X, Wan C, Wu X. Genomic profile of Chinese patients with endometrial carcinoma. BMC Cancer 2023; 23:888. [PMID: 37730563 PMCID: PMC10512642 DOI: 10.1186/s12885-023-11382-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/06/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUNDS Endometrial carcinoma (EC) is one of the most commonly diagnosed gynecologic malignancy in China. However, the genetic profile of Chinese EC patients has not been well established yet. METHODS In current study, 158 Chinese EC patients were subjected to next-generation sequencing assay (74 took testing of EC-related 20-genes panel, and 84 took the expanded panel). Of the 158 patients, 91 patients were performed germline mutation testing using the expanded panel. Moreover, the public datasets from TCGA and MSKCC were utilized to compare the genomic differences between Chinese and Western EC patients. The proteomic and transcriptomic from CPTAC and TCGA were derived and performed unsupervised clustering to identify molecular subtypes. RESULTS Among the 158 patients analyzed, a significant majority (85.4%) exihibited at least one somatic alteration, with the most prevalent alterations occurring in PTEN, PIK3CA, TP53, and ARID1A. These genomic alterations were mainly enriched in the PI3K, cell cycle, RAS/RAF/MAPK, Epigenetic modifiers/Chromatin remodelers, and DNA damage repair (DDR) signaling pathways. Additionally, we identified ten individuals (11.0%) with pathogenic or likely pathogenic germline alterations in seven genes, with the DDR pathway being predominantly involved. Compared to Western EC patients, Chinese EC patients displayed different prevalence in AKT1, MET, PMS2, PIK3R1, and CTCF. Notably, 69.6% of Chinese EC patients were identified with actionable alterations. In addition, we discovered novel molecular subtypes in ARID1A wild-type patients, characterized by an inferior prognosis, higher TP53 but fewer PTEN and PIK3CA alterations. Additionally, this subtype exhibited a significantly higher abundance of macrophages and activated dendritic cells. CONCLUSION Our study has contributed valuable insights into the unique germline and somatic genomic profiles of Chinese EC patients, enhancing our understanding of their biological characteristics and potential therapeutic avenues. Furthermore, we have highlighted the presence of molecular heterogeneity in ARID1A-wild type EC patients, shedding light on the complexity of this subgroup.
Collapse
Affiliation(s)
- Jin Li
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, 200032, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China
| | - Xiaoqi Li
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, 200032, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China
| | - Chenlian Quan
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, 200032, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China
| | - Xiaoqiu Li
- Department of Pathology, Fudan University Shanghai Cancer Center, Fudan University, 200032, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China
| | - Chong Wan
- Precision Medicine Center, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, China
| | - Xiaohua Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, 200032, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China.
| |
Collapse
|
16
|
Bian X, Sun C, Cheng J, Hong B. Targeting DNA Damage Repair and Immune Checkpoint Proteins for Optimizing the Treatment of Endometrial Cancer. Pharmaceutics 2023; 15:2241. [PMID: 37765210 PMCID: PMC10536053 DOI: 10.3390/pharmaceutics15092241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/04/2023] [Accepted: 08/12/2023] [Indexed: 09/29/2023] Open
Abstract
The dependence of cancer cells on the DNA damage response (DDR) pathway for the repair of endogenous- or exogenous-factor-induced DNA damage has been extensively studied in various cancer types, including endometrial cancer (EC). Targeting one or more DNA damage repair protein with small molecules has shown encouraging treatment efficacy in preclinical and clinical models. However, the genes coding for DDR factors are rarely mutated in EC, limiting the utility of DDR inhibitors in this disease. In the current review, we recapitulate the functional role of the DNA repair system in the development and progression of cancer. Importantly, we discuss strategies that target DDR proteins, including PARP, CHK1 and WEE1, as monotherapies or in combination with cytotoxic agents in the treatment of EC and highlight the compounds currently being evaluated for their efficacy in EC in clinic. Recent studies indicate that the application of DNA damage agents in cancer cells leads to the activation of innate and adaptive immune responses; targeting immune checkpoint proteins could overcome the immune suppressive environment in tumors. We further summarize recently revolutionized immunotherapies that have been completed or are now being evaluated for their efficacy in advanced EC and propose future directions for the development of DDR-based cancer therapeutics in the treatment of EC.
Collapse
Affiliation(s)
- Xing Bian
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an 237012, China; (X.B.); (C.S.); (J.C.)
| | - Chuanbo Sun
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an 237012, China; (X.B.); (C.S.); (J.C.)
| | - Jin Cheng
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an 237012, China; (X.B.); (C.S.); (J.C.)
| | - Bo Hong
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
17
|
Koufopoulos N, Pateras IS, Koratzanis C, Gouloumis AR, Ieronimaki AI, Fotiou A, Panayiotides IG, Vrachnis N. Uterine collision tumor (PEComa and endometrioid carcinoma) in a tuberous sclerosis patient: a case report. Front Oncol 2023; 13:1244261. [PMID: 37621679 PMCID: PMC10445650 DOI: 10.3389/fonc.2023.1244261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/21/2023] [Indexed: 08/26/2023] Open
Abstract
Perivascular epithelioid cell tumors are very rare mesenchymal neoplasms arising in various locations, such as the female genital tract, kidney, lung, prostate, bladder, pancreas, soft tissues, and bone. They possess a unique immunophenotype, co-expressing myogenic and melanocytic markers; molecular findings include mutations of tuberous sclerosis complex and translocations of transcription factor E3, a member of the microphthalmia transcription factor gene family. We herewith report a uterine collision tumor consisting of a perivascular epithelioid cell tumor and a moderately differentiated endometrial endometrioid carcinoma in a patient with genetically proven tuberous sclerosis; two leiomyomas were also found in contact with the tumor. Although two such cases one with a benign and another with a malignant perivascular epithelioid cell tumor have previously been reported, ours is, to our knowledge, the first reported in a tuberous sclerosis patient.
Collapse
Affiliation(s)
- Nektarios Koufopoulos
- Second Department of Pathology, National and Kapodistrian University of Athens School of Medicine, “Attikon” University Hospital, Haidari, Greece
| | - Ioannis S. Pateras
- Second Department of Pathology, National and Kapodistrian University of Athens School of Medicine, “Attikon” University Hospital, Haidari, Greece
| | - Christos Koratzanis
- Third Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens School of Medicine, “Attikon” University Hospital, Haidari, Greece
| | - Alina-Roxani Gouloumis
- Second Department of Pathology, National and Kapodistrian University of Athens School of Medicine, “Attikon” University Hospital, Haidari, Greece
| | - Argyro-Ioanna Ieronimaki
- Second Department of Pathology, National and Kapodistrian University of Athens School of Medicine, “Attikon” University Hospital, Haidari, Greece
| | - Alexandros Fotiou
- Third Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens School of Medicine, “Attikon” University Hospital, Haidari, Greece
| | - Ioannis G. Panayiotides
- Second Department of Pathology, National and Kapodistrian University of Athens School of Medicine, “Attikon” University Hospital, Haidari, Greece
| | - Nikolaos Vrachnis
- Third Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens School of Medicine, “Attikon” University Hospital, Haidari, Greece
| |
Collapse
|
18
|
Kuwahara Y, Iehara T, Matsumoto A, Okuda T. Recent insights into the SWI/SNF complex and the molecular mechanism of hSNF5 deficiency in rhabdoid tumors. Cancer Med 2023; 12:16323-16336. [PMID: 37317642 PMCID: PMC10469780 DOI: 10.1002/cam4.6255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 05/04/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023] Open
Abstract
Genetic information encoded by DNA is packaged in the nucleus using the chromatin structure. The accessibility of transcriptional elements in DNA is controlled by the dynamic structural changes of chromatin for the appropriate regulation of gene transcription. Chromatin structure is regulated by two general mechanisms, one is histone modification and the other is chromatin remodeling in an ATP-dependent manner. Switch/sucrose nonfermentable (SWI/SNF) complexes utilize the energy from ATP hydrolysis to mobilize nucleosomes and remodel the chromatin structure, contributing to conformational changes in chromatin. Recently, the inactivation of encoding genes for subunits of the SWI/SNF complexes has been documented in a series of human cancers, accounting for up to almost 20% of all human cancers. For example, human SNF5 (hSNF5), the gene that encodes a subunit of the SWI/SNF complexes, is the sole mutation target that drives malignant rhabdoid tumors (MRT). Despite remarkably simple genomes, the MRT has highly malignant characteristics. As a key to understanding MRT tumorigenesis, it is necessary to fully examine the mechanism of chromatin remodeling by the SWI/SNF complexes. Herein, we review the current understanding of chromatin remodeling by focusing on SWI/SNF complexes. In addition, we describe the molecular mechanisms and influences of hSNF5 deficiency in rhabdoid tumors and the prospects for developing new therapeutic targets to overcome the epigenetic drive of cancer that is caused by abnormal chromatin remodeling.
Collapse
Affiliation(s)
- Yasumichi Kuwahara
- Department of Biochemistry and Molecular Biology, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Tomoko Iehara
- Department of Pediatrics, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Akifumi Matsumoto
- Department of Ophthalmology, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Tsukasa Okuda
- Department of Biochemistry and Molecular Biology, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| |
Collapse
|
19
|
Wang Y, Du H, Dai W, Bao C, Zhang X, Hu Y, Xie Z, Zhao X, Li C, Zhang W, Wu R. Diagnostic Potential of Endometrial Cancer DNA from Pipelle, Pap-Brush, and Swab Sampling. Cancers (Basel) 2023; 15:3522. [PMID: 37444632 DOI: 10.3390/cancers15133522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Endometrial cancer (EC) is a major gynecological malignancy with rising morbidity and mortality worldwide. The aim of this study was to explore a safe and readily available sample and a sensitive and effective detection method and its biomarkers for early diagnosis of EC, which is critical for patient prognosis. This study designed a panel targeting variants for EC-related genes, assessed its technical performance by comparing it with whole-exon sequencing, and explored the diagnostic potential of endometrial biopsies using the Pipelle aspirator, cervical samples using the Pap brush, and vaginal specimens using the swab from 38 EC patients and 208 women with risk factors for EC by applying targeted panel sequencing (TPS). TPS produced high-quality data (Q30 > 85% and mapping ratios > 99.35%) and was found to have strong consistency with whole-exome sequencing (WES) in detecting pathogenic mutations (92.11%), calculating homologous recombination deficiency (HRD) scores (r = 0.65), and assessing the microsatellite instability (MSI) status of EC (100%). The sensitivity of TPS in detection of EC is slightly better than that of WES (86.84% vs. 84.21%). Of the three types of samples detected using TPS, endometrial biopsy using the Pipelle aspirator had the highest sensitivity in detection of pathogenic mutations (81.87%) and the best consistency with surgical tumor specimens in MSI (85.16%). About 84% of EC patients contained pathogenic mutations in PIK3CA, PTEN, TP53, ARID1A, CTNNB1, KRAS, and MTOR, suggesting that this small gene set can achieve an excellent pathogenic mutation detection rate in Chinese EC patients. The custom panel combined with ultra-deep sequencing serves as a sensitive method for detecting genetic lesions from endometrial biopsy using the Pipelle aspirator.
Collapse
Affiliation(s)
- Yinan Wang
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen 518036, China
- School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen 518036, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen 518036, China
| | - Hui Du
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen 518036, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen 518036, China
| | - Wenkui Dai
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen 518036, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen 518036, China
| | - Cuijun Bao
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen 518036, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen 518036, China
| | - Xi Zhang
- Department of Clinical Medicine, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yan Hu
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen 518036, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen 518036, China
| | - Zhiyu Xie
- Department of Clinical Medicine, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xin Zhao
- China National GeneBank, BGI-Shenzhen, Shenzhen 518116, China
| | - Changzhong Li
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen 518036, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen 518036, China
| | - Wenyong Zhang
- School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, China
| | - Ruifang Wu
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen 518036, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen 518036, China
| |
Collapse
|
20
|
Munakata S, Ito T, Asano T, Yamashita T. Tumor-Infiltrating CD8-Positive T-Cells Associated with MMR and p53 Protein Expression Can Stratify Endometrial Carcinoma for Prognosis. Diagnostics (Basel) 2023; 13:1985. [PMID: 37370880 DOI: 10.3390/diagnostics13121985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Inspired by the molecular classification of endometrial carcinoma (EC) proposed by The Cancer Genome Atlas Research Network (TCGA), we investigated tumor-infiltrating CD8-positive T-cell as well as DNA mismatch repair (MMR) protein and p53 protein expression, and we developed a new classification system for ECs to predict patients' prognosis using immunohistochemical methods. METHODS The study included 128 patients with ECs who underwent surgery. Paraffin-embedded tissue sections of the tumor were stained using antibodies against MMR protein, p53, and CD8. Cases were stratified into four classes by a sequential algorithm. An immunohistochemical classification system for ECs (ICEC) was created, including HCD8, MMR-D, LCD8, and p53 LCD8. RESULTS In ICEC, 16 cases (12.5%), 27 cases (21.09%), 67 cases (52.34%), and 18 cases (14.06%) belonged to HCD8, MMR-D, LCD8, and p53 LCD8, respectively. ICEC did not show any correlation with clinical stage, lymphovascular space invasion, or lymph node metastasis. However, the p53 LCD8 class contained a significantly higher proportion of G3 ECs and serous carcinoma (p < 0.0001). ICEC showed prognostic significance in overall survival (OS) (p < 0.0001) and disease-free survival (DFS) (p < 0.0001). The class of p53 LCD8 showed the worst prognosis among the classes. CONCLUSIONS ICEC classification is useful in predicting the prognosis of ECs.
Collapse
Affiliation(s)
- Satoru Munakata
- Department of Pathology, Hakodate Municipal Hospital, 1-10-1 Minato-Cho, Hakodate 041-8680, Hokkaido, Japan
| | - Takahiro Ito
- Department of Obstetrics and Gynecology, Hakodate Municipal Hospital, 1-10-1 Minato-Cho, Hakodate 041-8680, Hokkaido, Japan
| | - Takuya Asano
- Department of Obstetrics and Gynecology, Hakodate Municipal Hospital, 1-10-1 Minato-Cho, Hakodate 041-8680, Hokkaido, Japan
| | - Tsuyoshi Yamashita
- Department of Obstetrics and Gynecology, Hakodate Municipal Hospital, 1-10-1 Minato-Cho, Hakodate 041-8680, Hokkaido, Japan
| |
Collapse
|
21
|
Lebedev T, Kousar R, Patrick B, Usama M, Lee MK, Tan M, Li XG. Targeting ARID1A-Deficient Cancers: An Immune-Metabolic Perspective. Cells 2023; 12:cells12060952. [PMID: 36980292 PMCID: PMC10047504 DOI: 10.3390/cells12060952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Epigenetic remodeling and metabolic reprogramming, two well-known cancer hallmarks, are highly intertwined. In addition to their abilities to confer cancer cell growth advantage, these alterations play a critical role in dynamically shaping the tumor microenvironment and antitumor immunity. Recent studies point toward the interplay between epigenetic regulation and metabolic rewiring as a potentially targetable Achilles' heel in cancer. In this review, we explore the key metabolic mechanisms that underpin the immunomodulatory role of AT-rich interaction domain 1A (ARID1A), the most frequently mutated epigenetic regulator across human cancers. We will summarize the recent advances in targeting ARID1A-deficient cancers by harnessing immune-metabolic vulnerability elicited by ARID1A deficiency to stimulate antitumor immune response, and ultimately, to improve patient outcome.
Collapse
Affiliation(s)
- Timofey Lebedev
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Rubina Kousar
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 110122, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 110122, Taiwan
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, China Medical University, Taichung 110122, Taiwan
| | - Bbumba Patrick
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 110122, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 110122, Taiwan
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, China Medical University, Taichung 110122, Taiwan
| | - Muhammad Usama
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 110122, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 110122, Taiwan
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, China Medical University, Taichung 110122, Taiwan
| | - Meng-Kuei Lee
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 110122, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 110122, Taiwan
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, China Medical University, Taichung 110122, Taiwan
| | - Ming Tan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 110122, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 110122, Taiwan
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, China Medical University, Taichung 110122, Taiwan
| | - Xing-Guo Li
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 110122, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 110122, Taiwan
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, China Medical University, Taichung 110122, Taiwan
| |
Collapse
|
22
|
Tabata J, Takenaka M, Okamoto A. Molecular typing guiding treatment and prognosis of endometrial cancer. GYNECOLOGY AND OBSTETRICS CLINICAL MEDICINE 2023; 3:7-17. [DOI: 10.1016/j.gocm.2023.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
AbstractGenetic abnormalities, such asPTEN, PIK3CA,CTNNB1,ARID1A, andERBB2, which frequently occur in endometrial cancer (EC), are potential therapeutic targets. In 2013, integrated genomic analysis conducted by The Cancer Genome Atlas identified four molecular subtypes, including POLE ultra-mutated, microsatellite instability hypermutated, copy-number low, and copy-number high, which strongly correlate with prognosis. Surrogate markers-based molecular classification methods have been developed to make these molecular classifications accessible and affordable, achieving classification into POLEmut, mismatch repair deficient (MMRd), p53abn, and no specific molecular profile (NSMP) with normal p53 expression. Although POLEmut EC has aggressive pathologic features, there are few cases of advanced and/or recurrence. Therefore, the possibility of de-escalating adjuvant therapy can be considered. Additionally, immune checkpoint inhibitors (ICI) may be a candidate for treating advanced and recurrent POLEmut EC because of their high immunogenicity. MMRd EC shows an intermediate prognosis between those of POLEmut and p53abn EC. MMRd EC is generally characterized by high immunogenicity similar to POLEmut EC, suggesting that ICI can also be a potential therapeutic agent. Among the four molecular subtypes, p53abn EC has the worst prognosis. However, some p53abn tumors have the molecular hallmark of homologous recombination deficiency and could be treated with poly (ADP-ribose) polymerase inhibitors. In addition, some p53abn tumors overexpress the human epidermal growth factor receptor 2, which can also be a potential therapeutic target. NSMP EC are a heterogeneous population because they lack characteristic molecular biological features. Approximately half of the NSMP EC show high expression of estrogen receptor/progesterone receptor, suggesting the possibility of hormonal therapy. In addition, the PI3K/AKT/mTOR pathway frequently altered in EC may be a therapeutic target. This review summarizes the molecular biological characteristics and potential therapeutic agents in molecularly featured EC. Several clinical trials are in progress to stratify EC into molecular classifications and demonstrate the efficacy and safety of molecularly matched treatment and management strategies.
Collapse
|
23
|
Karabağ S, Şentürk M, Söğüt FC, Ergül ÖS, Ersoy T. Histopathological and molecular findings in 98 cases of endometrial carcinoma: MMR, p53 and next generation sequencing. Pathol Res Pract 2023; 241:154275. [PMID: 36528987 DOI: 10.1016/j.prp.2022.154275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
Gynecological malignancies arise from hereditary and somatic mutations, transcriptional aberrations, and genomic alterations influenced by epigenetic factors. This study aims to identify the mutations and their frequency in endometrial carcinomas (EC), and furthermore, to determine the relationship of these mutations with histopathological and immunohistochemical (IHC) parameters. The study was carried out in a retrospective cohort of 98 patients who received treatment upon being diagnosed with EC at a tertiary university hospital in Turkey between 2016 and 2021. The NGS-DNA tumor panel containing 29 genes was used in the study. NGS data of the cases were obtained from state of the evidence Tier 1 and 2 mutations. The relationship of patients' next generation sequencing (NGS) DNA panel results with histopathological parameters and IHC results (MLH1, MSH2, PMS2, MSH6 and p53) were evaluated. In 59 of the 98 cases, mutations were detected in at least one gene investigated with the NGS DNA panel. The most common somatic mutations in endometrial carcinoma were PIK3CA (33.6%), CTNNB1 (16.3%), KRAS (12.2%) and FGFR2 (11.2%) in this cohort. Abnormal p53 was detected by IHC in 15 out of 75 (20%) cases. Loss of expression was observed in at least one mismatch repair (MMR) protein by means of IHC in 39 out of 72 (39.8%) cases. Metastasis was found in 14 out of 82 (14.3%) patients who underwent lymph node dissection. FGFR2 mutation was more common in the group with lymph node metastasis compared to those without metastasis (p = 0.02). We report the mutational landscape of EC in a tertiary referral hospital in northwestern Turkey. Although our data are very limited, we think that the FGFR2 mutation may be associated with lymph node metastasis, but studies with larger patient numbers and longer follow-up periods are needed.
Collapse
Affiliation(s)
- Sevil Karabağ
- Tekirdağ Namık Kemal University Medical Faculty, Pathology Department, Turkey.
| | - Mehmetbaki Şentürk
- Tekirdağ Namık Kemal University Medical Faculty, Department of Obstetrics and Gynecology, Turkey
| | - Fırat Can Söğüt
- Tekirdağ Namık Kemal University Medical Faculty, Department of Obstetrics and Gynecology, Turkey; Sakarya Training and Research Hospital, Turkey
| | - Özlem Sevinç Ergül
- Tekirdağ Namık Kemal University Medical Faculty, Department of Obstetrics and Gynecology, Turkey
| | - Tuğçe Ersoy
- Tekirdağ Namık Kemal University Medical Faculty, Department of Obstetrics and Gynecology, Turkey
| |
Collapse
|
24
|
Tong A, Di X, Zhao X, Liang X. Review the progression of ovarian clear cell carcinoma from the perspective of genomics and epigenomics. Front Genet 2023; 14:952379. [PMID: 36873929 PMCID: PMC9978161 DOI: 10.3389/fgene.2023.952379] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Ovarian clear cell carcinoma (OCCC) is a rare subtype of epithelial ovarian cancer with unique molecular characteristics, specific biological and clinical behavior, poor prognosis and high resistance to chemotherapy. Pushed by the development of genome-wide technologies, our knowledge about the molecular features of OCCC has been considerably advanced. Numerous studies are emerging as groundbreaking, and many of them are promising treatment strategies. In this article, we reviewed studies about the genomics and epigenetics of OCCC, including gene mutation, copy number variations, DNA methylation and histone modifications.
Collapse
Affiliation(s)
- An Tong
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiangjie Di
- Clinical Trial Center, NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiao Liang
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
25
|
He WP, Chen YY, Wu LX, Guo YY, You ZS, Yang GF. A novel necroptosis-related lncRNA signature for predicting prognosis and anti-cancer treatment response in endometrial cancer. Front Immunol 2022; 13:1018544. [PMID: 36466815 PMCID: PMC9708746 DOI: 10.3389/fimmu.2022.1018544] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/31/2022] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND Necroptosis, a form of programmed cell death, underlies tumorigenesis and the progression of cancers. Anti-cancer strategies targeting necroptosis have increasingly been shown to present a potential cancer therapy. However, the predictive utility and anticancer sensitivity value of necroptosis-related lncRNAs (NRLs) for endometrial cancer (EC) are currently unknown. METHODS EC patient gene expression profiles and the corresponding clinical information collected from The Cancer Genome Atlas were used to identify NRLs that constituted a predictive signature for EC. The functional pathways, immune status, clinicopathological correlation, and anticancer drug sensitivity of the patients relative to the NRLs signatures were analyzed. RESULTS A signature composed of 7 NRLs (AC019080.5, BOLA3-AS1, AC022144.1, AP000345.2, LEF1-AS1, AC010503.4, and RPARP-AS1) was identified. The high-risk patient group with this signature exhibited a poorer prognosis and lower survival rate than low-risk group lacking this signature. This necroptosis-related lncRNA signature had a higher predictive accuracy compared with other clinicopathological variables (area under the receiver operating characteristic curve of the risk score: 0.717). Additionally, when patients were stratified based on other clinicopathological variables, the overall survival was significantly shorter in the high-risk versus low-risk group across all cohorts. Gene set enrichment analysis (GSEA) revealed that immune- and tumor-related signaling pathways and biological processes were enriched in the high-risk group compared to the low-risk group. Single-sample gene set enrichment analysis (ssGSEA) additionally showed that the resulting risk score was strongly correlated with EC patient immune status. Finally, patients with high-risk scores were more sensitive to the anti-cancer drugs such as Docetaxel, Mitomycin.C, Vinblastine, AZD.2281 (olaparib), AZD6244, and PD.0332991 (Palbociclib). CONCLUSION These findings reveal a novel necroptosis-related lncRNA signature for predicting EC patient prognosis and shed new light on anticancer therapy strategies for EC.
Collapse
Affiliation(s)
| | | | | | | | | | - Guo-Fen Yang
- Department of Gynecology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
26
|
Vaicekauskaitė I, Sabaliauskaitė R, Lazutka JR, Jarmalaitė S. The Emerging Role of Chromatin Remodeling Complexes in Ovarian Cancer. Int J Mol Sci 2022; 23:ijms232213670. [PMID: 36430148 PMCID: PMC9697406 DOI: 10.3390/ijms232213670] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/31/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022] Open
Abstract
Ovarian cancer (OC) is the fifth leading cause of women's death from cancers. The high mortality rate is attributed to the late presence of the disease and the lack of modern diagnostic tools, including molecular biomarkers. Moreover, OC is a highly heterogeneous disease, which contributes to early treatment failure. Thus, exploring OC molecular mechanisms could significantly enhance our understanding of the disease and provide new treatment options. Chromatin remodeling complexes (CRCs) are ATP-dependent molecular machines responsible for chromatin reorganization and involved in many DNA-related processes, including transcriptional regulation, replication, and reparation. Dysregulation of chromatin remodeling machinery may be related to cancer development and chemoresistance in OC. Some forms of OC and other gynecologic diseases have been associated with mutations in specific CRC genes. Most notably, ARID1A in endometriosis-related OC, SMARCA4, and SMARCB1 in hypercalcemic type small cell ovarian carcinoma (SCCOHT), ACTL6A, CHRAC1, RSF1 amplification in high-grade serous OC. Here we review the available literature on CRCs' involvement in OC to improve our understanding of its development and investigate CRCs as possible biomarkers and treatment targets for OC.
Collapse
Affiliation(s)
- Ieva Vaicekauskaitė
- Laboratory of Genetic Diagnostic, National Cancer Institute, Santariškių 1, LT-08406 Vilnius, Lithuania
- Institute of Biosciences, Vilnius University, Sauletekio Avenue 7, LT-10222 Vilnius, Lithuania
| | - Rasa Sabaliauskaitė
- Laboratory of Genetic Diagnostic, National Cancer Institute, Santariškių 1, LT-08406 Vilnius, Lithuania
| | - Juozas Rimantas Lazutka
- Institute of Biosciences, Vilnius University, Sauletekio Avenue 7, LT-10222 Vilnius, Lithuania
| | - Sonata Jarmalaitė
- Institute of Biosciences, Vilnius University, Sauletekio Avenue 7, LT-10222 Vilnius, Lithuania
- Laboratory of Clinical Oncology, National Cancer Institute, Santariškių 1, LT-08406 Vilnius, Lithuania
- Correspondence:
| |
Collapse
|
27
|
Kong W, Tu Y, Jiang P, Huang Y, Zhang J, Jiang S, Li N, Yuan R. Development and validation of a nomogram involving immunohistochemical markers for prediction of recurrence in early low-risk endometrial cancer. Int J Biol Markers 2022; 37:395-403. [DOI: 10.1177/03936155221132292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Background The purpose of this study was to construct a nomogram based on classical parameters and immunohistochemical markers to predict the recurrence of early low-risk endometrial cancer patients. Methods A total of 998 patients with early low-risk endometrial cancer who underwent primary surgical treatment were enrolled (668 in the training cohort, 330 in the validation cohort). Prognostic factors identified by univariate and multivariate analysis in the training cohort were used to construct the nomogram. Prediction performance of the nomogram was evaluated using the calibration curve, concordance index (C-index), and the time-dependent receiver operating characteristic curve. The cumulative incidence curve was used to describe the prognosis of patients in high-risk and low-risk groups divided by the optimal risk threshold of the model. Results In the training cohort, grade ( P = 0.040), estrogen receptor ( P < 0.001), progesterone receptor ( P = 0.001), P53 ( P = 0.004), and Ki67 ( P = 0.002) were identified as independent risk factors of recurrence of early low-risk endometrial cancer, and were used to establish the nomogram. The calibration curve showed that the fitting degree of the model was good. The C-indexes of training and validation cohorts were 0.862 and 0. 827, respectively. Based on the optimal risk threshold of the nomogram, patients were split into a high-risk group and a low-risk group. The cumulative incidence curves showed that the prognosis of the high-risk group was far worse than that of the low-risk group ( P < 0.001). Conclusion This nomogram, with a combination of classical parameters and immunohistochemical markers, can effectively predict recurrence in early low-risk endometrial cancer patients.
Collapse
Affiliation(s)
- Wei Kong
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Gynecology, Guiqian International General Hospital, Guizhou, China
| | - Yuan Tu
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Jiang
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuzhen Huang
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jingni Zhang
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shan Jiang
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ning Li
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rui Yuan
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
28
|
Nakad Borrego S, Lengyel E, Kurnit KC. Molecular Characterizations of Gynecologic Carcinosarcomas: A Focus on the Immune Microenvironment. Cancers (Basel) 2022; 14:cancers14184465. [PMID: 36139624 PMCID: PMC9497294 DOI: 10.3390/cancers14184465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/10/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
Gynecologic carcinosarcomas, specifically of endometrial and ovarian origin, are aggressive and rare tumors. Treatment data are limited and are often extrapolated from other histologies and smaller retrospective studies. While the optimal therapy approach remains contentious, treatment is often multimodal and may include surgery, chemotherapy, radiation, or a combination of multiple strategies. However, despite aggressive treatment, these tumors fare worse than carcinomas of the same anatomic sites irrespective of their stage. Recent studies have described in-depth molecular characterizations of gynecologic carcinosarcomas. Although many molecular features mirror those seen in other uterine and ovarian epithelial tumors, the high prevalence of epithelial-mesenchymal transition is more unique. Recently, molecular descriptions have expanded to begin to characterize the tumor immune microenvironment. While the importance of the immune microenvironment has been well-established for other tumor types, it has been less systematically explored in gynecologic carcinosarcomas. Furthermore, the use of immunotherapy in patients with gynecologic carcinosarcomas has not been extensively evaluated. In this review, we summarize the available data surrounding gynecologic carcinosarcomas, with a focus on the immune microenvironment. We end with a discussion of potential immunotherapy uses and future directions for the field.
Collapse
|
29
|
Wilhite AM, Baca Y, Xiu J, Paladugu R, ElNaggar AC, Brown J, Winer IS, Morris R, Erickson BK, Olawaiye AB, Powell M, Korn WM, Rocconi RP, Khabele D, Jones NL. Molecular profiles of endometrial cancer tumors among Black patients. Gynecol Oncol 2022; 166:108-116. [PMID: 35490034 DOI: 10.1016/j.ygyno.2022.04.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 01/10/2023]
Abstract
OBJECTIVES Disparate outcomes exist between Black and White patients with endometrial cancer (EC). One contributing factor is the disproportionately low representation of Black patients in clinical trials and in tumor molecular profiling studies. Our objective was to investigate molecular profiles of ECs in a cohort with a high proportion of tumors from Black patients. METHODS A total of 248 EC samples and self-reported race data were collected from 6 institutions. Comprehensive tumor profiling and analyses were performed by Caris Life Sciences. RESULTS Tumors from 105 (42%) Black and 143 (58%) White patients were included. Serous histology (58% vs 36%) and carcinosarcoma (25% vs 16%), was more common among Black patients, and endometrioid was less common (17% vs 48%) (p < 0.01). Differences in gene mutations between cohorts corresponded to observed histologic differences between races. Specifically, TP53 mutations were predominant in serous tumors. In endometrioid tumors, mutations in ARID1A were the most common, and high rates of MSI-H, MMRd, and TMB-H were observed. In carcinosarcoma tumors, hormone receptor expression was high in tumors of Black patients (PR 23.4%, ER 30.8%). When stratified by histology, there were no significant differences between tumors from Black and White women. CONCLUSIONS This cohort had a high proportion of tumors from Black women. Distinct molecular profiles were driven primarily by more aggressive histologic subtypes among Black women. Continued effort is needed to include Black women and other populations under-represented in EC molecular profiling studies as targeted therapies and personalized medicine become mainstream.
Collapse
Affiliation(s)
- Annelise M Wilhite
- Mitchell Cancer Institute, University of South Alabama, Division of Gynecologic Oncology Mobile, AL, United States of America.
| | - Yasmine Baca
- Caris Life Sciences, Pheonix, AZ, United States of America
| | - Joanne Xiu
- Caris Life Sciences, Pheonix, AZ, United States of America
| | - Rajesh Paladugu
- Mitchell Cancer Institute, University of South Alabama, Division of Gynecologic Oncology Mobile, AL, United States of America
| | - Adam C ElNaggar
- West Cancer Center and Research Institute, Division of Gynecologic Oncology, Memphis, TN, United States of America
| | - Jubilee Brown
- Atrium Health, Division of Gynecologic Oncology, Charlotte, NC, United States of America
| | - Ira S Winer
- Wayne State University and Karmanos Cancer Institute, Division of Gynecologic Oncology, Detroit, MI, United States of America
| | - Robert Morris
- Wayne State University and Karmanos Cancer Institute, Division of Gynecologic Oncology, Detroit, MI, United States of America
| | - Britt K Erickson
- University of Minnesota, Division of Gynecologic Oncology, Minneapolis, MN, United States of America
| | - Alexander B Olawaiye
- Magee-Womens Hospital, University of Pittsburgh Medical Center, Division of Gynecologic Oncology, Pittsburgh, PA, United States of America
| | - Matthew Powell
- University of Alabama at Birmingham, Division of Gynecologic Oncology, Birmingham, AL, United States of America
| | - W Michael Korn
- Caris Life Sciences, Pheonix, AZ, United States of America
| | - Rodney P Rocconi
- University of Alabama at Birmingham, Division of Gynecologic Oncology, Birmingham, AL, United States of America
| | - Dineo Khabele
- Washington University, Division of Gynecologic Oncology, St. Louis, MO, United States of America
| | - Nathaniel L Jones
- Mitchell Cancer Institute, University of South Alabama, Division of Gynecologic Oncology Mobile, AL, United States of America
| |
Collapse
|
30
|
Inhibition of BAD-Ser99 phosphorylation synergizes with PARP inhibition to ablate PTEN-deficient endometrial carcinoma. Cell Death Dis 2022; 13:558. [PMID: 35725817 PMCID: PMC9209517 DOI: 10.1038/s41419-022-04982-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 01/21/2023]
Abstract
Loss of phosphatase and tensin homolog (PTEN) impairs DNA double-strand repair and confers sensitivity to poly (ADP-ribose) polymerase inhibitors (PARPis). However, PARPis also hyperactivate the MAPK and PI3K/AKT/mTOR pathways in PTEN-deficient endometrial carcinoma (EC), which allows the emergence of PARPi resistance. BCL-2-associated death promoter (BAD), integrates the common cell survival effects of the RAS/MEK/MAPK and PI3K/AKT/mTOR pathways. Herein, it was observed that increased BADSer99 (BADS99) phosphorylation in EC cells was significantly associated with PTEN-deficient status. Forced expression of phosphorylation deficient human BADS99A in PTEN-deficient EC cells significantly increased CASPASE 3/7 activity and decreased EC cell viability. Using NPB as a pharmacological inhibitor of pBADS99 phosphorylation, it was demonstrated that NPB synergized with PARPis (Olaparib, Rucaparib and Talazoparib) to enhance PARPi IC50 up to 60-fold and decreased survival, foci formation, and growth in 3D ex vivo culture of PTEN-deficient EC cells. Combined NPB-PARPi treatment of PTEN-deficient EC cells stimulated apoptosis and promoted DNA damage by impairment of homologous recombination. Using the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 endonuclease system it was demonstrated that deletion of PTEN in PTEN replete EC cells enhanced the efficacy of combined NPB-PARPi treatment. Furthermore, combined inhibition of BADS99 phosphorylation and PARP ablated xenograft growth of PTEN-deficient EC cells. Similarly, a combination of NPB and PARPis significantly suppressed the growth of PTEN deficient patient-derived EC organoids. Hence, combined inhibition of BADS99 phosphorylation and PARP represents a rational and efficacious strategy to improve the prognosis of recurrent EC patients.
Collapse
|
31
|
Munakata S. Diagnostic value of endometrial cytology and related technology. Diagn Cytopathol 2022; 50:363-366. [PMID: 35302716 DOI: 10.1002/dc.24956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Endometrial cytology is not much popular in the world, but is commonly used in a few countries. Although cytomorphological evaluation of endometrial cytology is complicating, recent advance in technology helps improve diagnostic accuracy. In addition, new reporting system, The Yokohama System, has been introduced as a standard reporting system resembling The Bethesda System of the uterine cervical cytology. Although sample standardization is one of the causes in diagnostic problem, it was solved by liquid-based cytology (LBC) technology. In addition, standardized diagnostic algorithm by cytomorphological assessment of LBC samples, the Osaki Study Group (OSG) method, was recently proposed as a reliable and reproducible method. LBC can be utilized for ancillary methods. Application of immunocytochemistry and molecular technology on endometrial cytology samples has been studied to improve diagnostic accuracy. Recent progress of molecular technology has revealed many driver gene mutations in endometrial cancer and its precursors. Surprisingly, many studies revealed that even normal endometrial tissue had driver gene mutations. CONCLUSION Based on the recent advance in knowledge of molecular profile of endometrial lesions and normal endometrial tissue, endometrial cytology will gain much power in clinical usefulness.
Collapse
Affiliation(s)
- Satoru Munakata
- Department of Pathology, Hakodate Municipal Hospital, Hakodate, Japan
| |
Collapse
|
32
|
Kobayashi Kato M, Asami Y, Takayanagi D, Matsuda M, Shimada Y, Hiranuma K, Kuno I, Komatsu M, Hamamoto R, Matumoto K, Ishikawa M, Kohno T, Kato T, Shiraishi K, Yoshida H. Clinical impact of genetic alterations of
CTNNB1
in patients with grade 3 endometrial endometrioid carcinoma. Cancer Sci 2022; 113:1712-1721. [PMID: 35278272 PMCID: PMC9128156 DOI: 10.1111/cas.15328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/17/2022] [Accepted: 03/07/2022] [Indexed: 11/30/2022] Open
Abstract
To identify prognostic factors in patients with grade 3 (high‐grade) endometrial endometrioid carcinoma, we evaluated the spectrum of genomic alterations and examined whether previously reported molecular subtypes of endometrial carcinoma were adapted to clinical outcome prediction. Seventy‐five Japanese patients with grade 3 endometrial endometrioid carcinoma, who underwent a potentially curative resection procedure between 1997 and 2018 at the National Cancer Center Hospital, were included. We classified the patients into four risk groups of the disease based on the Proactive Molecular Risk Classifier for Endometrial Cancer. Genomic alterations in PTEN, ARID1A, TP53, and PIK3CA were detected in more than 30% of the patients. Overall survival and recurrence‐free survival of patients with genomic alterations in CTNNB1 were poorer than those of patients with wild‐type CTNNB1 (p = 0.006 and p = 0.004, respectively). Compared with that of alterations prevalent in Caucasians, the frequency of genomic alterations in POLE and TP53 was higher in our study than in The Cancer Genome Atlas dataset (p = 0.01 and p = 0.01, respectively). The tendency for recurrence‐free survival in the POLE exonuclease domain mutation group was better than that in the TP53 mutation and mismatch repair‐deficient groups (p = 0.08 and p = 0.07, respectively), consistent with the Proactive Molecular Risk Classifier for Endometrial Cancer risk classifier definition. The CTNNB1 mutation is a potential novel biomarker for the prognosis of patients with grade 3 endometrial endometrioid carcinoma, and prognosis classification using Proactive Molecular Risk Classifier for Endometrial Cancer may help screen Japanese patients with the disease.
Collapse
Affiliation(s)
- Mayumi Kobayashi Kato
- Division of Genome Biology National Cancer Center Research Institute Tokyo 104‐0045 Japan
- Department of Gynecology National Cancer Center Hospital Tokyo 104‐0045 Japan
| | - Yuka Asami
- Division of Genome Biology National Cancer Center Research Institute Tokyo 104‐0045 Japan
- Department of Obstetrics and Gynecology Showa University School of Medicine Tokyo 142‐8555 Japan
| | - Daisuke Takayanagi
- Division of Genome Biology National Cancer Center Research Institute Tokyo 104‐0045 Japan
| | - Maiko Matsuda
- Division of Genome Biology National Cancer Center Research Institute Tokyo 104‐0045 Japan
| | - Yoko Shimada
- Division of Genome Biology National Cancer Center Research Institute Tokyo 104‐0045 Japan
| | - Kengo Hiranuma
- Division of Genome Biology National Cancer Center Research Institute Tokyo 104‐0045 Japan
| | - Ikumi Kuno
- Department of Gynecology National Cancer Center Hospital Tokyo 104‐0045 Japan
| | - Masaaki Komatsu
- Division of Medical AI Research and Development National Cancer Center Research Institute Tokyo 104‐0045 Japan
- Cancer Translational Research Team RIKEN Center for Advanced Intelligence Project Tokyo 103‐0027 Japan
| | - Ryuji Hamamoto
- Division of Medical AI Research and Development National Cancer Center Research Institute Tokyo 104‐0045 Japan
- Cancer Translational Research Team RIKEN Center for Advanced Intelligence Project Tokyo 103‐0027 Japan
| | - Koji Matumoto
- Department of Obstetrics and Gynecology Showa University School of Medicine Tokyo 142‐8555 Japan
| | - Mitsuya Ishikawa
- Department of Gynecology National Cancer Center Hospital Tokyo 104‐0045 Japan
| | - Takashi Kohno
- Division of Genome Biology National Cancer Center Research Institute Tokyo 104‐0045 Japan
| | - Tomoyasu Kato
- Department of Gynecology National Cancer Center Hospital Tokyo 104‐0045 Japan
| | - Kouya Shiraishi
- Division of Genome Biology National Cancer Center Research Institute Tokyo 104‐0045 Japan
| | - Hiroshi Yoshida
- Division of Diagnostic Pathology National Cancer Center Hospital Tokyo 104‐0045 Japan
| |
Collapse
|
33
|
Tanos P, Dimitriou S, Gullo G, Tanos V. Biomolecular and Genetic Prognostic Factors That Can Facilitate Fertility-Sparing Treatment (FST) Decision Making in Early Stage Endometrial Cancer (ES-EC): A Systematic Review. Int J Mol Sci 2022; 23:2653. [PMID: 35269800 PMCID: PMC8910305 DOI: 10.3390/ijms23052653] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/12/2022] [Accepted: 02/22/2022] [Indexed: 02/01/2023] Open
Abstract
Endometrial cancer occurs in up to 29% of women before 40 years of age. Seventy percent of these patients are nulliparous at the time. Decision making regarding fertility preservation in early stage endometrial cancer (ES-EC) is, therefore, a big challenge since the decision between the risk of cancer progression and a chance to parenthood needs to be made. Sixty-two percent of women with complete remission of ES-EC after fertility-sparing treatment (FST) report to have a pregnancy wish which, if not for FST, they would not be able to fulfil. The aim of this review was to identify and summarise the currently established biomolecular and genetic prognostic factors that can facilitate decision making for FST in ES-EC. A comprehensive search strategy was carried out across four databases; Cochrane, Embase, MEDLINE, and PubMed; they were searched between March 1946 and 22nd December 2022. Thirty-four studies were included in this study which was conducted in line with the PRISMA criteria checklist. The final 34 articles encompassed 9165 patients. The studies were assessed using the Critical Appraisal Skills Program (CASP). PTEN and POLE alterations we found to be good prognostic factors of ES-EC, favouring FST. MSI, CTNNB1, and K-RAS alterations were found to be fair prognostic factors of ES-EC, favouring FST but carrying a risk of recurrence. PIK3CA, HER2, ARID1A, P53, L1CAM, and FGFR2 were found to be poor prognostic factors of ES-EC and therefore do not favour FST. Clinical trials with bigger cohorts are needed to further validate the fair genetic prognostic factors. Using the aforementioned good and poor genetic prognostic factors, we can make more confident decisions on FST in ES-EC.
Collapse
Affiliation(s)
- Panayiotis Tanos
- Institute of Applied Health Sciences, University of Aberdeen & Aberdeen Royal Infirmary, Aberdeen AB25 2ZN, UK
| | - Savvas Dimitriou
- Aberdeen Fertility Centre, NHS Grampian and University of Aberdeen, Aberdeen AB25 2ZN, UK;
| | - Giuseppe Gullo
- In Vitro Fertilization Unit (IVF Unit), Azienda Ospedaliera Ospedali Riuniti, Villa Sofia Cervello, 90146 Palermo, Italy;
| | - Vasilios Tanos
- Department of Obstetrics and Gynecology, Aretaeio Hospital, Nicosia 2024, Cyprus;
- St. Georges’ Medical School, University of Nicosia, Nicosia 2408, Cyprus
| |
Collapse
|
34
|
Lucas E, Carrick KS. Low grade endometrial endometrioid adenocarcinoma: A review and update with emphasis on morphologic variants, mimics, immunohistochemical and molecular features. Semin Diagn Pathol 2022; 39:159-175. [DOI: 10.1053/j.semdp.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 11/11/2022]
|
35
|
Kobayashi Y, Kitazono I, Akahane T, Yanazume S, Kamio M, Togami S, Nohara S, Sakamoto I, Yokoyama S, Tabata K, Kobayashi H, Tanimoto A. Molecular Evaluation of Endometrial Dedifferentiated Carcinoma, Endometrioid Carcinoma, Carcinosarcoma, and Serous Carcinoma Using a Custom-Made Small Cancer Panel. Pathol Oncol Res 2022; 27:1610013. [PMID: 35002543 PMCID: PMC8734147 DOI: 10.3389/pore.2021.1610013] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/28/2021] [Indexed: 12/18/2022]
Abstract
It is often difficult to histologically differentiate among endometrial dedifferentiated carcinoma (DC), endometrioid carcinoma (EC), serous carcinoma (SC), and carcinosarcoma (CS) due to the presence of solid components. In this study, we aimed to categorize these carcinomas according to The Cancer Genome Atlas (TCGA) classification using a small custom-made cancer genome panel (56 genes and 17 microsatellite regions) for integrated molecular diagnosis. A total of 36 endometrial cancer cases with solid components were assessed using IHC, next-generation sequencing (NGS), and the custom-made panel. Among 19 EC cases, six were categorized as MMR-deficient (MMR-d) and eight were classified as having a nonspecific molecular profile. Three EC cases were classified as POLE mutation (POLEmut)-type, which had a very high tumor mutation burden (TMB) and low microsatellite instability (MSI). Increased TMB and MSI were observed in all three DC cases, classified as MMR-d with mutations in MLH1 and POLD1. Except for one case classified as MMR-d, all SC cases exhibited TP53 mutations and were classified as p53 mutation-type. SC cases also exhibited amplification of CCND1, CCNE1, and MYC. CS cases were classified as three TCGA types other than the POLEmut-type. The IHC results for p53 and ARID1A were almost consistent with their mutation status. NGS analysis using a small panel enables categorization of endometrial cancers with solid proliferation according to TCGA classification. As TCGA molecular classification does not consider histological findings, an integrated analytical procedure including IHC and NGS may be a practical diagnostic tool for endometrial cancers.
Collapse
Affiliation(s)
- Yusuke Kobayashi
- Course of Advanced Cancer Medicine for Gynecologic Cancer, Kagoshima, Japan
| | - Ikumi Kitazono
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Toshiaki Akahane
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.,Center for Human Genome and Gene Analysis, Kagoshima University Hospital, Kagoshima, Japan
| | - Shintaro Yanazume
- Department of Obstetrics and Gynecology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Masaki Kamio
- Department of Obstetrics and Gynecology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Shinichi Togami
- Department of Obstetrics and Gynecology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Sachio Nohara
- Department of Biomedical Informatics, Mitsubishi Space Software, Amagasaki, Japan
| | - Ippei Sakamoto
- Department of Biomedical Informatics, Mitsubishi Space Software, Amagasaki, Japan
| | - Seiya Yokoyama
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kazuhiro Tabata
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hiroaki Kobayashi
- Course of Advanced Cancer Medicine for Gynecologic Cancer, Kagoshima, Japan.,Department of Obstetrics and Gynecology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akihide Tanimoto
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.,Center for Human Genome and Gene Analysis, Kagoshima University Hospital, Kagoshima, Japan
| |
Collapse
|
36
|
Venkata PP, Chen Y, Alejo S, He Y, Palacios BE, Loeffel I, Liu J, Pratap UP, Gray G, Achuthan Pillai SM, Zou Y, Lai Z, Suzuki T, Viswanadhapalli S, Palakurthi S, Tekmal RR, Vadlamudi RK, Kost E, Sareddy GR. KDM1A inhibition augments the efficacy of rapamycin for the treatment of endometrial cancer. Cancer Lett 2022; 524:219-231. [PMID: 34673129 PMCID: PMC10000284 DOI: 10.1016/j.canlet.2021.10.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/30/2021] [Accepted: 10/13/2021] [Indexed: 11/21/2022]
Abstract
Endometrial cancer (EC) often exhibit aberrant activation of PI3K/Akt/mTOR signaling and targeted therapies using mTOR inhibitors showed limited success. The epigenetic modifier, lysine-specific histone demethylase-1A (KDM1A/LSD1) is overexpressed in EC, however, the mechanistic and therapeutic implications of KDM1A in EC are poorly understood. Here, using 119 FDA-approved drugs screen, we identified that KDM1A inhibition is highly synergistic with mTOR inhibitors. Combination therapy of KDM1A and mTOR inhibitors potently reduced the cell viability, survival, and migration of EC cells. Mechanistic studies demonstrated that KDM1A inhibition attenuated the activation of mTOR signaling cascade and abolished rapamycin induced feedback activation of Akt. RNA-seq analysis identified that KDM1A inhibition downregulated the expression of genes involved in rapamycin induced activation of Akt, including the mTORC2 complex. Chromatin immunoprecipitation experiments confirmed KDM1A recruitment to the promoter regions of mTORC2 complex genes and that KDM1A inhibition promoted enrichment of repressive H3K9me2 marks at their promoters. Combination therapy of KDM1A inhibitor and rapamycin reduced the tumor growth in EC xenograft and patient derived xenograft models in vivo and patient derived tumor explants ex vivo. Importantly, in silico analysis of TCGA EC patients data sets revealed that KDM1A expression positively correlated with the levels of PI3K/Akt/mTOR genes. Collectively, our results provide compelling evidence that KDM1A inhibition potentiates the activity of mTOR inhibitors by attenuating the feedback activation of Akt survival signaling. Furthermore, the use of concurrent KDM1A and mTOR inhibitors may be an attractive targeted therapy for EC patients.
Collapse
Affiliation(s)
- Prabhakar Pitta Venkata
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Yihong Chen
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA; Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Salvador Alejo
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Yi He
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA; Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Bridgitte E Palacios
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Ilanna Loeffel
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Junhao Liu
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA; Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Uday P Pratap
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Gabrielle Gray
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | | | - Yi Zou
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Zhao Lai
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, 78229, USA; Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Takayoshi Suzuki
- The Institute of Scientific and Industrial Research, Osaka University, Japan
| | - Suryavathi Viswanadhapalli
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Srinath Palakurthi
- Department of Pharmaceutical Sciences, Texas A&M University, Kingsville, TX, 78363, USA
| | - Rajeshwar R Tekmal
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA; Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA; Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA; Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, TX 78229, USA
| | - Edward Kost
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Gangadhara R Sareddy
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA; Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
37
|
Yu K, Wang Y. The Advance and Correlation of KRAS Mutation With the Fertility-Preservation Treatment of Endometrial Cancer in the Background of Molecular Classification Application. Pathol Oncol Res 2021; 27:1609906. [PMID: 34975345 PMCID: PMC8716400 DOI: 10.3389/pore.2021.1609906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 11/10/2021] [Indexed: 11/13/2022]
Abstract
The annually increasing incidence of endometrial cancer in younger women has created a growing demand for fertility preservation. However, the diverse therapeutic efficacy among patients under the same histological subtype and the same tumor grade suggests the potential interference of the innate molecular characteristics. The molecular classification has now been applied in clinical practice and might help to stratify the endometrial cancer patients and individualize the therapy, but the candidates for the fertility-spared treatment are most likely to be subdivided in the subgroup lacking the specific signature. KRAS mutation has been linked to the malignant transition of the endometrium, while its role in molecular classification and fertility preservation is vague. Here, we mainly review the advance of molecular classification and the role of KRAS in endometrial cancer, as well as their correlation with fertility-preservation treatment.
Collapse
|
38
|
Cao C, Yu R, Gong W, Liu D, Zhang X, Fang Y, Xia Y, Zhang W, Gao Q. Genomic mutation features identify distinct BRCA-associated mutation characteristics in endometrioid carcinoma and endometrioid ovarian carcinoma. Aging (Albany NY) 2021; 13:24686-24709. [PMID: 34837690 PMCID: PMC8660599 DOI: 10.18632/aging.203710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/25/2021] [Indexed: 01/19/2023]
Abstract
Although endometrioid carcinoma (EC) and endometrioid ovarian carcinoma (EnOC) display similar pathological features, their molecular characteristics remain to be determined. Somatic mutation data from 2777 EC, 423 EnOC, and 57 endometriosis patients from the Catalogue of Somatic Mutations in Cancer (COSMIC) dataset were analyzed and showed similar profiles with different mutation frequencies among them. By using 275 overlapping mutated genes, EC was clustered into two groups with different disease outcomes and different clinical characteristics. Although BRCA-associated mutation characteristics were identified in both EC and EnOC, the mutation frequencies of BRCA1 (P=0.0146), BRCA2 (P=0.0321), ATR (P=3.25E-11), RAD51 (P=3.95E-08), RAD1 (P=0.0003), TP53 (P=6.11E-33), and BRIP1 (P=2.90E-09) were higher in EnOC. Further analysis showed that EnOC cell lines with BRCA-associated mutation characteristics were more sensitive to poly ADP-ribose polymerase (PARP) inhibitors than EC cell lines, including olaparib, talazoparib, rucaparib, and veliparib. Moreover, based on BRCA-associated mutational and transcriptomic profiles, EC with BRCA-associated mutational burdens shows lower levels of immune cell infiltration, higher expression of immunosuppressive checkpoint molecules and worse prognosis than EC without BRCA mutation. Our study comprehensively analyzed the genome mutation features of EC and EnOC and provide insights into the molecular characteristics of EC and EnOC.
Collapse
Affiliation(s)
- Canhui Cao
- Cancer Biology Research Center, Key Laboratory of the Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ruidi Yu
- Cancer Biology Research Center, Key Laboratory of the Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenjian Gong
- Cancer Biology Research Center, Key Laboratory of the Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dan Liu
- Cancer Biology Research Center, Key Laboratory of the Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoxue Zhang
- Cancer Biology Research Center, Key Laboratory of the Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yong Fang
- Cancer Biology Research Center, Key Laboratory of the Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yu Xia
- Cancer Biology Research Center, Key Laboratory of the Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Zhang
- Cancer Biology Research Center, Key Laboratory of the Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qinglei Gao
- Cancer Biology Research Center, Key Laboratory of the Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
39
|
Peluso JJ, Pru JK. Progesterone Receptor Membrane Component (PGRMC)1 and PGRMC2 and Their Roles in Ovarian and Endometrial Cancer. Cancers (Basel) 2021; 13:cancers13235953. [PMID: 34885064 PMCID: PMC8656518 DOI: 10.3390/cancers13235953] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 01/02/2023] Open
Abstract
Cancers of the female reproductive tract are both lethal and highly prevalent. For example, the five-year survival rate of women diagnosed with ovarian cancer is still less than 50%, and endometrial cancer is the fourth most common cancer in women with > 65,000 new cases in the United States in 2020. Among the many genes already established as key participants in ovarian and endometrial oncogenesis, progesterone receptor membrane component (PGRMC)1 and PGRMC2 have gained recent attention given that there is now solid correlative information supporting a role for at least PGRMC1 in enhancing tumor growth and chemoresistance. The expression of PGRMC1 is significantly increased in both ovarian and endometrial cancers, similar to that reported in other cancer types. Xenograft studies using human ovarian and endometrial cancer cell lines in immunocompromised mice demonstrate that reduced expression of PGRMC1 results in tumors that grow substantially slower. While the molecular underpinnings of PGRMCs' mechanisms of action are not clearly established, it is known that PGRMCs regulate survival pathways that attenuate stress-induced cell death. The objective of this review is to provide an overview of what is known about the roles that PGRMC1 and PGRMC2 play in ovarian and endometrial cancers, particularly as related to the mechanisms through which they regulate mitosis, apoptosis, chemoresistance, and cell migration.
Collapse
Affiliation(s)
- John J. Peluso
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Obstetrics and Gynecology, University of Connecticut Health Center, Farmington, CT 06030, USA
- Correspondence: ; +1-860-679-2860
| | - James K. Pru
- Department of Animal Science, Program in Reproductive Biology, University of Wyoming, Laramie, WY 82071, USA;
| |
Collapse
|
40
|
Munakata S, Yamamoto T. Application of immunocytochemical and molecular analysis of six genes in liquid-based endometrial cytology. Diagn Cytopathol 2021; 50:8-17. [PMID: 34783431 DOI: 10.1002/dc.24903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND The Yokohama System of Endometrial Cytology has been used for reporting endometrial cytology, which includes gray zone category, atypical endometrial cells (ATEC), subdivided into ATEC-US and ATEC-AE. ATEC-US has been reported to be correlated with malignancy in nearly 10% of the cases. For accurate diagnosis, application of ancillary techniques on endometrial cytology was investigated. METHODS Thirty-seven liquid based cytological specimens (SurePath™) with diagnosis of ATEC or malignant which have corresponding histological specimens, were subjected to immunocytochemical analysis for β-catenin, ARID1A, and PTEN. Hot spots of mutations for KRAS, BRAF and PIK3CA were evaluated by using i-densy system (ARKRAY). RESULTS In endometrial samples with the diagnosis of ATEC and malignant, aberrant gene expressions and/or gene mutations for β-catenin, ARID1A, PTEN, KRAS, BRAF, and PIK3CA were observed in 32.4, 18.9, 37.8, 18.8, 0, and 37.1%, respectively. When any of the genes had aberrant expression or mutation, only sensitivity was better than that of cytology (77 vs. 53.8%). However, specificity, positive predictive value, negative predictive value, and accuracy was better in cytology than those of ancillary techniques. Increasing rate of abnormality according to the consequent histology results was observed in ARID1A (p = .015). Frequent loss of PTEN immunostaining (45.8%) and PIK3CA mutation (43.5%) was observed in the cases with consequent benign histology results. CONCLUSION In ATEC category of endometrial cytology, gene expression and mutation analysis of six genes were insufficient to aid conventional cytological diagnoses albeit increased sensitivity. Further investigation would be necessary.
Collapse
Affiliation(s)
- Satoru Munakata
- Department of Pathology, Hakodate Municipal Hospital, Hakodate, Hokkaido, Japan
| | - Toshiya Yamamoto
- Department of Obstetrics and Gynecology, Sakai City Hospital Organization, Sakai City Medical Center, Osaka, Japan
| |
Collapse
|
41
|
Wang M, Hui P. A Timely Update of Immunohistochemistry and Molecular Classification in the Diagnosis and Risk Assessment of Endometrial Carcinomas. Arch Pathol Lab Med 2021; 145:1367-1378. [PMID: 34673912 DOI: 10.5858/arpa.2021-0098-ra] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2021] [Indexed: 11/06/2022]
Abstract
CONTEXT.— Endometrial carcinoma is the most common gynecologic malignancy in the United States and has been traditionally classified based on histology. However, the distinction of certain histologic subtypes based on morphology is not uncommonly problematic, and as such, immunohistochemical study is often needed. Advances in comprehensive tumor sequencing have provided novel molecular profiles of endometrial carcinomas. Four distinct molecular subtypes with different prognostic values have been proposed by The Cancer Genome Atlas program: polymerase epsilon ultramutated, microsatellite instability hypermutated, copy number low (microsatellite stable or no specific molecular profile), and copy number high (serouslike, p53 mutant). OBJECTIVE.— To discuss the utilities of commonly used immunohistochemical markers for the classification of endometrial carcinomas and to review the recent advancements of The Cancer Genome Atlas molecular reclassification and their potential impact on treatment strategies. DATA SOURCES.— Literature review and authors' personal practice experience. CONCLUSIONS.— The current practice of classifying endometrial cancers is predominantly based on morphology. The use of ancillary testing, including immunohistochemistry, is helpful in the identification, differential diagnosis, and classification of these cancers. New developments such as molecular subtyping have provided insightful prognostic values for endometrial carcinomas. The proposed The Cancer Genome Atlas classification is poised to gain further prominence in guiding the prognostic evaluation for tailored treatment strategies in the near future.
Collapse
Affiliation(s)
- Minhua Wang
- From the Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Pei Hui
- From the Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
42
|
Evaluation of SWI/SNF Protein Expression by Immunohistochemistry in Ovarian Clear Cell Carcinoma. Int J Gynecol Pathol 2021; 40:156-164. [PMID: 32897960 DOI: 10.1097/pgp.0000000000000687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Ovarian clear cell carcinomas (OCCC) are known to harbor ARID1A mutations, and several recent studies have described immunohistochemical loss of SMARCA2, SMARCA4, and SMARCB1 in a subset of tumors. We performed ARID1A, SMARCA2, SMARCA4, and SMARCB1 immunohistochemistry on 105 OCCCs to identify possible associations with clinicopathologic features and assess their prognostic value in these tumors. ARID1A, SMARCA4, and SMARCB1 were considered retained if any tumor cell nucleus stained while for SMARCA2, >5% of tumor nuclei were required to be positive. Patients had a mean age of 56 yr and tumors averaged 13 cm in size. Most patients (63%) had stage I tumors with 47% being alive and well, 41% dead from disease, 10% dead from other causes, and 3% alive with disease at last follow-up (mean 72 mo). Tumors showed an admixture of architectural patterns, but papillary was most frequent (49%). Stromal hyalinization was detected in 83% of OCCCs and a background precursor in 78%. High-grade atypia and/or oxyphilic cells were noted in 45% and 29% of tumors, respectively. All OCCCs expressed SMARCA4 and SMARCB1, but the absence of ARID1A was noted in 30% of tumors and SMARCA2 in 8%. ARID1A-retained OCCCs were associated with a dominant tubulocystic or solid pattern, but no other clinicopathologic features reached statistical significance. No switch/sucrose non-fermentable protein expression was predictive of prognosis. Additional studies with known mutational status of these proteins are warranted to better assess their prognostic utility and develop a standardized immunohistochemical scoring system.
Collapse
|
43
|
Caldwell I, Byrne D, Lade S, Akhurst T, Minson A, Dickinson M, Thompson E, Scott C, Blombery P. Response to everolimus in a patient with refractory HGBL-NOS harboring multiple genomic aberrations in PTEN. Leuk Lymphoma 2021; 62:3521-3525. [PMID: 34396903 DOI: 10.1080/10428194.2021.1965139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Imogen Caldwell
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - David Byrne
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Stephen Lade
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Tim Akhurst
- Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Adrian Minson
- Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Australia
| | - Michael Dickinson
- Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, Australia
| | - Ella Thompson
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, Australia
| | - Clare Scott
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, Australia.,The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Piers Blombery
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Australia.,Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, Australia
| |
Collapse
|
44
|
Safdar NS, Thompson EF, Gilks CB, Isacson C, Bennett JA, Clarke B, Young RH, Oliva E. Corded and Hyalinized and Spindled Endometrioid Endometrial Carcinoma: A Clinicopathologic and Molecular Analysis of 9 Tumors Based on the TCGA Classifier. Am J Surg Pathol 2021; 45:1038-1046. [PMID: 34115671 DOI: 10.1097/pas.0000000000001737] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Corded and hyalinized and spindled carcinomas are rare variants of endometrioid carcinoma (EC) characterized by cords of low-grade epithelial cells (±spindle cells) within a hyalinized stroma or spindled epithelial cells, respectively, that merge with conventional low-grade EC. Due to their "biphasic" morphology, these tumors are often misdiagnosed as carcinosarcoma. The clinicopathologic features including mismatch repair protein (PMS2 and MSH6) and p53 immunohistochemical expression and POLE mutational status of 9 corded and hyalinized and spindled endometrial ECs were evaluated and classified into The Cancer Genome Atlas (TCGA) based molecular subgroups. Beta-catenin immunohistochemistry was performed as a surrogate for CTNNB1 mutational status. The mean age at diagnosis was 49 years (range: 34 to 68 y) with staging information available for 6 patients: stage IA (n=1), stage IB (n=1), stage II (n=2), stage IIIA (n=1), stage IIIC1 (n=1). A prominent corded and hyalinized component was present in 7 ECs comprising 15% to 80% of the tumor with a minor (5% to 15%) spindled morphology in 5. Two additional tumors were composed of a low-grade spindled component comprising 25% to 30% of the neoplasm. Tumors were grade 1 (n=3), grade 2 (n=5), and grade 2 to 3 (n=1) and squamous differentiation was identified in 8/9. All tumors had preserved expression of mismatch repair proteins with 8 showing a p53 wild-type phenotype including the grade 2 to 3 EC; 1 grade 2, stage IB tumor exhibited a mutant pattern of expression. All (n=7) but 1 tumor demonstrated nuclear beta-catenin expression in the glandular, squamous, and corded or spindled components. POLE exonuclease domain mutations were absent in all tumors. Based on our findings, corded and hyalinized EC and EC with spindle cells are usually low grade, low stage, and present at a younger age and exhibit squamous differentiation at an increased frequency compared to typical EC. Unlike carcinosarcomas, which frequently harbor TP53 mutations, these tumors usually exhibit wild-type p53 and nuclear beta-catenin expression, indicative of underlying CTNNB1 mutations. According to the TCGA subgroups of endometrial carcinoma, the majority of corded and hyalinized and spindled EC appear to fall into the copy number low ("no specific molecular profile") subgroup.
Collapse
Affiliation(s)
- Nida S Safdar
- James Homer Wright Pathology Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | | | | | | | | | - Blaise Clarke
- University Health Network, University of Toronto, Toronto, ON, Canada
| | - Robert H Young
- James Homer Wright Pathology Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Esther Oliva
- James Homer Wright Pathology Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
45
|
Maru Y, Tanaka N, Tatsumi Y, Nakamura Y, Itami M, Hippo Y. Kras activation in endometrial organoids drives cellular transformation and epithelial-mesenchymal transition. Oncogenesis 2021; 10:46. [PMID: 34172714 PMCID: PMC8233399 DOI: 10.1038/s41389-021-00337-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/04/2021] [Accepted: 06/10/2021] [Indexed: 01/06/2023] Open
Abstract
KRAS, an oncogene, is frequently activated by mutations in many cancers. Kras-driven adenocarcinoma development in the lung, pancreas, and biliary tract has been extensively studied using gene targeting in mice. By taking the organoid- and allograft-based genetic approach to these organs, essentially the same results as in vivo models were obtained in terms of tumor development. To verify the applicability of this approach to other organs, we investigated whether the combination of Kras activation and Pten inactivation, which gives rise to endometrial tumors in mice, could transform murine endometrial organoids in the subcutis of immunodeficient mice. We found that in KrasG12D-expressing endometrial organoids, Pten knockdown did not confer tumorigenicity, but Cdkn2a knockdown or Trp53 deletion led to the development of carcinosarcoma (CS), a rare, aggressive tumor comprising both carcinoma and sarcoma. Although they originated from epithelial cells, some CS cells expressed both epithelial and mesenchymal markers. Upon inoculation in immunodeficient mice, tumor-derived round organoids developed carcinoma or CS, whereas spindle-shaped organoids formed monophasic sarcoma only, suggesting an irreversible epithelial-mesenchymal transition during the transformation of endometrial cells and progression. As commonly observed in mutant Kras-driven tumors, the deletion of the wild-type Kras allele was identified in most induced tumors, whereas some epithelial cells in CS-derived organoids were unexpectedly negative for KrasG12D. Collectively, we showed that the oncogenic potential of KrasG12D and the histological features of derived tumors are context-dependent and varies according to the organ type and experimental settings. Our findings provide novel insights into the mechanisms underlying tissue-specific Kras-driven tumorigenesis.
Collapse
Affiliation(s)
- Yoshiaki Maru
- Department of Molecular Carcinogenesis, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Naotake Tanaka
- Department of Gynecology, Chiba Cancer Center, Chiba, Japan
| | - Yasutoshi Tatsumi
- Division of Oncogenomics, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Yuki Nakamura
- Division of Oncogenomics, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Makiko Itami
- Division of Surgical Pathology, Chiba Cancer Center, Chiba, Japan
| | - Yoshitaka Hippo
- Department of Molecular Carcinogenesis, Chiba Cancer Center Research Institute, Chiba, Japan.
| |
Collapse
|
46
|
Ma J, Yang D, Ma XX. Immune infiltration-related N6-methyladenosine RNA methylation regulators influence the malignancy and prognosis of endometrial cancer. Aging (Albany NY) 2021; 13:16287-16315. [PMID: 34230220 PMCID: PMC8266343 DOI: 10.18632/aging.203157] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 05/11/2021] [Indexed: 12/11/2022]
Abstract
N6-methyladenosine (m6A) RNA methylation is associated with malignant tumor progression and is modulated by various m6A RNA methylation regulator proteins. However, its role in endometrial cancer is unclear. In this work, we analyzed sequence, copy number variation, and clinical data obtained from the TCGA database. Expression was validated using real-time quantitative polymerase chain reaction and immunohistochemistry. Changes in m6A RNA methylation regulators were closely related to the clinicopathological stage and prognosis of endometrial cancer. In particular, ZC3H13, YTHDC1, and METTL14 were identified as potential markers for endometrial cancer diagnosis and prognosis. The TIMER algorithm indicated that immune cell infiltration correlated with changes in ZC3H13, YTHDC1, and METTL14 expression. Meanwhile, ZC3H13 or YTHDC1 knockdown promoted the proliferation and invasion of endometrial cancer cells. Through gene enrichment analysis, we constructed a regulatory network in order to explore the potential molecular mechanism involving ZC3H13, YTHDC1, and METTL14. Virtual screening predicted interactions of potential therapeutic compounds with METTL14 and YTHDC1. These findings advance the understanding of RNA epigenetic modifications in endometrial cancer while identifying m6A regulators associated with immune infiltration, prognosis, and potential treatment strategies.
Collapse
Affiliation(s)
- Jian Ma
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Di Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xiao-Xin Ma
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
47
|
Mori S, Gotoh O, Kiyotani K, Low SK. Genomic alterations in gynecological malignancies: histotype-associated driver mutations, molecular subtyping schemes, and tumorigenic mechanisms. J Hum Genet 2021; 66:853-868. [PMID: 34092788 DOI: 10.1038/s10038-021-00940-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/14/2021] [Accepted: 05/25/2021] [Indexed: 02/08/2023]
Abstract
There are numerous histological subtypes (histotypes) of gynecological malignancies, with each histotype considered to largely reflect a feature of the "cell of origin," and to be tightly linked with the clinical behavior and biological phenotype of the tumor. The recent advances in massive parallel sequencing technologies have provided a more complete picture of the range of the genomic alterations that can persist within individual tumors, and have highlighted the types and frequencies of driver-gene mutations and molecular subtypes often associated with these histotypes. Several large-scale genomic cohorts, including the Cancer Genome Atlas (TCGA), have been used to characterize the genomic features of a range of gynecological malignancies, including high-grade serous ovarian carcinoma, uterine corpus endometrial carcinoma, uterine cervical carcinoma, and uterine carcinosarcoma. These datasets have also been pivotal in identifying clinically relevant molecular targets and biomarkers, and in the construction of molecular subtyping schemes. In addition, the recent widespread use of clinical sequencing for the more ubiquitous types of gynecological cancer has manifested in a series of large genomic datasets that have allowed the characterization of the genomes, driver mutations, and histotypes of even rare cancer types, with sufficient statistical power. Here, we review the field of gynecological cancer, and seek to describe the genomic features by histotype. We also will demonstrate how these are linked with clinicopathological attributes and highlight the potential tumorigenic mechanisms.
Collapse
Affiliation(s)
- Seiichi Mori
- Project for Development of Innovative Research on Cancer Therapeutics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan.
| | - Osamu Gotoh
- Project for Development of Innovative Research on Cancer Therapeutics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kazuma Kiyotani
- Project for Immunogenomics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Siew Kee Low
- Project for Immunogenomics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
48
|
Frequent CTNNB1 or PIK3CA Mutations Occurred in Endometrial Endometrioid Adenocarcinoma With High Levels of Microsatellite Instability and Loss of MSH2/MSH6 Expression. Appl Immunohistochem Mol Morphol 2021; 28:284-289. [PMID: 30789355 DOI: 10.1097/pai.0000000000000749] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND DNA mismatch repair (MMR) proteins form 2 heterodimers-MutSα formed by MSH2 and MSH6, and MutLα by MLH1 and PMS2. In endometrial endometrioid adenocarcinomas, cases with MMR protein defect also usually harbor other recurrent genetic mutations of the neoplasm. However, it remains unknown whether defects of the 2 functionally different heterodimers are linked to mutations in different genes. We aimed to study the MMR protein expression, microsatellite instability (MSI), and other common genetic mutations of endometrial endometrioid adenocarcinoma. MATERIALS AND METHODS We investigated the MSI status of 107 endometrial endometrioid adenocarcinoma patients. MMR protein expression, and mutation of KRAS, CTNNB1, and PIK3CA were also evaluated by immunohistochemistry and sequencing. RESULTS An overall 34.6% (37/107) of endometrial endometrioid adenocarcinomas were MSI-H. All MSI-H tumors exhibited loss of MMR protein expression (loss of MLH1, PMS2, MSH6, and MSH2 was noted in 22, 25, 12, and 7 cases, respectively). CTNNB1, PIK3CA, and KRAS mutation were present in 9, 7, and 7 MSI-H tumors. Compared with patients with loss of PMS2 and/or MLH1 expression, patients with loss of MSH6 and/or MSH2 expression were associated with higher frequencies of CTNNB1 mutation (P=0.036) and PIK3CA mutation (P=0.025). CONCLUSIONS In MSI-H endometrial endometrioid adenocarcinomas, different types of MMR protein deficiency indicate different molecular genetic alterations.
Collapse
|
49
|
Kawahara N, Yamada Y, Kobayashi H. CCNE1 Is a Putative Therapeutic Target for ARID1A-Mutated Ovarian Clear Cell Carcinoma. Int J Mol Sci 2021; 22:ijms22115869. [PMID: 34070839 PMCID: PMC8198755 DOI: 10.3390/ijms22115869] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/13/2021] [Accepted: 05/27/2021] [Indexed: 12/19/2022] Open
Abstract
Background: Ovarian clear cell carcinoma (OCCC) is resistant to platinum chemotherapy and is characterized by poor prognosis. Today, the use of poly (ADP-ribose) polymerase (PARP) inhibitor, which is based on synthetic lethality strategy and characterized by cancer selectivity, is widely used for new types of molecular-targeted treatment of relapsed platinum-sensitive ovarian cancer. However, it is less effective against OCCC. Methods: We conducted siRNA screening to identify synthetic lethal candidates for the ARID1A mutation; as a result, we identified Cyclin-E1 (CCNE1) as a potential target that affects cell viability. To further clarify the effects of CCNE1, human OCCC cell lines, namely TOV-21G and KOC7c (ARID1A mutant lines), and RMG-I and ES2 (ARID1A wild type lines) were transfected with siRNA targeting CCNE1 or a control vector. Results: Loss of CCNE1 reduced proliferation of the TOV-21G and KOC7c cells but not of the RMG-I and ES2 cells. Furthermore, in vivo interference of CCNE1 effectively inhibited tumor cell proliferation in a xenograft mouse model. Conclusion: This study showed for the first time that CCNE1 is a synthetic lethal target gene to ARID1A-mutated OCCC. Targeting this gene may represent a putative, novel, anticancer strategy in OCCC treatment.
Collapse
Affiliation(s)
- Naoki Kawahara
- Correspondence: ; Tel.: +81-744-29-8877; Fax: +81-(744)-23-6557
| | | | | |
Collapse
|
50
|
T Danley K, Schmitz K, Ghai R, Sclamberg JS, Buckingham LE, Burgess K, Kuzel TM, Usha L. A Durable Response to Pembrolizumab in a Patient with Uterine Serous Carcinoma and Lynch Syndrome due to the MSH6 Germline Mutation. Oncologist 2021; 26:811-817. [PMID: 34018286 DOI: 10.1002/onco.13832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/07/2021] [Indexed: 11/06/2022] Open
Abstract
Pembrolizumab, a programmed death 1 ligand (PD-1) checkpoint inhibitor, has elicited responses in mismatch repair (MMR)-deficient advanced solid tumors, leading to its agnostic approval by the US Food and Drug Administration in 2017 when no other therapeutic options are available. However, there are still insufficient data on the response to checkpoint inhibitors in advanced endometrial cancer related to Lynch syndrome (LS) and, specifically, in uterine serous carcinoma, which is uncommon in LS. Here we report a case of metastatic uterine serous carcinoma due to a germline MSH6 mutation (Lynch syndrome) that was discovered because of a patient's tumor MMR deficiency. The patient was started on first-line pembrolizumab in 2018 and sustained a partial response. She remains asymptomatic and progression free for more than 2 years. Tumor sequencing showed a high mutational burden and an upstream somatic mutation in the same gene, p.F1088fs. Immunohistochemical staining was negative for PD-L1 expression. We discuss clinical characteristics of the patient, molecular features of her tumor, and the mechanism of her tumor response. We also discuss the duration of immunotherapy in her case. Our case demonstrated a partial response and a long-term remission from the frontline single-agent pembrolizumab in a woman with metastatic uterine serous carcinoma and Lynch syndrome due to a germline MSH6 gene mutation. Our experience suggests a potential significant clinical benefit of checkpoint inhibitors used as single agents early on in the treatment of MMR-deficient/high microsatellite instability/hypermutated uterine cancers in women with Lynch syndrome. KEY POINTS: Even though checkpoint inhibitors are effective in mismatch repair-deficient endometrial cancer, it is unknown whether the response to them differs between women with endometrial cancer due to germline mutations in a mismatch repair gene (Lynch syndrome) and women with sporadic endometrial cancer. In our case, a patient with Lynch syndrome and recurrent mismatch repair-deficient serous endometrial cancer achieved a durable remission on the first-line therapy with the checkpoint inhibitor pembrolizumab and remains progression free after more than 2 years. Based on our observation and the data, suggesting the stronger immune activation in women with Lynch syndrome-associated endometrial cancer, we propose to use checkpoint inhibitor monotherapy early in the course of their treatment and stratify patients for the presence of Lynch syndrome in clinical trials.
Collapse
Affiliation(s)
- Kelsey T Danley
- Department of Medicine, Division of Hematology, Oncology, and Stem Cell Transplant Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Karen Schmitz
- Department of Medicine, Division of Hematology, Oncology, and Stem Cell Transplant Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Ritu Ghai
- Department of Pathology, Advocate Christ Medical Center, Chicago, Illinois, USA.,Department of Pathology, Rush University Medical Center, Chicago, Illinois, USA
| | - Joy S Sclamberg
- Department of Diagnostic Radiology & Nuclear Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Lela E Buckingham
- Department of Pathology, Advocate Christ Medical Center, Chicago, Illinois, USA
| | - Kelly Burgess
- Department of Medicine, Division of Hematology, Oncology, and Stem Cell Transplant Medicine, Rush University Medical Center, Chicago, Illinois, USA.,Ambry Genetics, Enterprise, Aliso Viejo, California, USA
| | - Timothy M Kuzel
- Department of Medicine, Division of Hematology, Oncology, and Stem Cell Transplant Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Lydia Usha
- Department of Medicine, Division of Hematology, Oncology, and Stem Cell Transplant Medicine, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|