1
|
Kuzmuk V, Pranke I, Rollason R, Butler M, Ding WY, Beesley M, Waters AM, Coward RJ, Sessions R, Tuffin J, Foster RR, Mollet G, Antignac C, Edelman A, Welsh GI, Saleem MA. A small molecule chaperone rescues keratin-8 mediated trafficking of misfolded podocin to correct genetic Nephrotic Syndrome. Kidney Int 2024; 105:744-758. [PMID: 37995908 DOI: 10.1016/j.kint.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 10/02/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023]
Abstract
Podocin is a key membrane scaffolding protein of the kidney podocyte essential for intact glomerular filtration. Mutations in NPHS2, the podocin-encoding gene, represent the commonest form of inherited nephrotic syndrome (NS), with early, intractable kidney failure. The most frequent podocin gene mutation in European children is R138Q, causing retention of the misfolded protein in the endoplasmic reticulum. Here, we provide evidence that podocin R138Q (but not wild-type podocin) complexes with the intermediate filament protein keratin 8 (K8) thereby preventing its correct trafficking to the plasma membrane. We have also identified a small molecule (c407), a compound that corrects the Cystic Fibrosis Transmembrane Conductance Regulator protein defect, that interrupts this complex and rescues mutant protein mistrafficking. This results in both the correct localization of podocin at the plasma membrane and functional rescue in both human patient R138Q mutant podocyte cell lines, and in a mouse inducible knock-in model of the R138Q mutation. Importantly, complete rescue of proteinuria and histological changes was seen when c407 was administered both via osmotic minipumps or delivered orally prior to induction of disease or crucially via osmotic minipump two weeks after disease induction. Thus, our data constitute a therapeutic option for patients with NS bearing a podocin mutation, with implications for other misfolding protein disorders. Further studies are necessary to confirm our findings.
Collapse
Affiliation(s)
- Valeryia Kuzmuk
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Iwona Pranke
- INSERM, U1151, Institut Necker Enfants Malades, INEM, Paris, France
| | - Ruth Rollason
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Matthew Butler
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Wen Y Ding
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Matthew Beesley
- Department of Pathology, Gloucestershire Hospitals NHS Foundation Trust, Gloucester, UK
| | | | - Richard J Coward
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | | | - Jack Tuffin
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Rebecca R Foster
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Géraldine Mollet
- Laboratoire des Maladies Rénales Héréditaires, Inserm UMR 1163, Institut Imagine, Université Paris Cité, Paris, France
| | - Corinne Antignac
- Laboratoire des Maladies Rénales Héréditaires, Inserm UMR 1163, Institut Imagine, Université Paris Cité, Paris, France
| | | | - Gavin I Welsh
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Moin A Saleem
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK.
| |
Collapse
|
2
|
Hayward S, Parmesar K, Saleem MA. What is circulating factor disease and how is it currently explained? Pediatr Nephrol 2023; 38:3513-3518. [PMID: 36952039 PMCID: PMC10514121 DOI: 10.1007/s00467-023-05928-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 03/24/2023]
Abstract
Nephrotic syndrome (NS) consists of the clinical triad of hypoalbuminaemia, high levels of proteinuria and oedema, and describes a heterogeneous group of disease processes with different underlying drivers. The existence of circulating factor disease (CFD) as a driver of NS has been epitomised by a subset of patients who exhibit disease recurrence after transplantation, alongside laboratory work. Several circulating factors have been proposed and studied, broadly grouped into protease components such as soluble urokinase-type plasminogen activator (suPAR), hemopexin (Hx) and calcium/calmodulin-serine protease kinase (CASK), and other circulating proteases, and immune components such as TNF-α, CD40 and cardiotrophin-like cytokine-1 (CLC-1). While currently there is no definitive way of assessing risk of CFD pre-transplantation, promising work is emerging through the study of 'multi-omic' bioinformatic data from large national cohorts and biobanks.
Collapse
Affiliation(s)
- Samantha Hayward
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
| | - Kevon Parmesar
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Moin A Saleem
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
3
|
Ding WY, Kuzmuk V, Hunter S, Lay A, Hayes B, Beesley M, Rollason R, Hurcombe JA, Barrington F, Masson C, Cathery W, May C, Tuffin J, Roberts T, Mollet G, Chu CJ, McIntosh J, Coward RJ, Antignac C, Nathwani A, Welsh GI, Saleem MA. Adeno-associated virus gene therapy prevents progression of kidney disease in genetic models of nephrotic syndrome. Sci Transl Med 2023; 15:eabc8226. [PMID: 37556557 DOI: 10.1126/scitranslmed.abc8226] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/21/2023] [Indexed: 08/11/2023]
Abstract
Gene therapy for kidney diseases has proven challenging. Adeno-associated virus (AAV) is used as a vector for gene therapy targeting other organs, with particular success demonstrated in monogenic diseases. We aimed to establish gene therapy for the kidney by targeting a monogenic disease of the kidney podocyte. The most common cause of childhood genetic nephrotic syndrome is mutations in the podocyte gene NPHS2, encoding podocin. We used AAV-based gene therapy to rescue this genetic defect in human and mouse models of disease. In vitro transduction studies identified the AAV-LK03 serotype as a highly efficient transducer of human podocytes. AAV-LK03-mediated transduction of podocin in mutant human podocytes resulted in functional rescue in vitro, and AAV 2/9-mediated gene transfer in both the inducible podocin knockout and knock-in mouse models resulted in successful amelioration of kidney disease. A prophylactic approach of AAV 2/9 gene transfer before induction of disease in conditional knockout mice demonstrated improvements in albuminuria, plasma creatinine, plasma urea, plasma cholesterol, histological changes, and long-term survival. A therapeutic approach of AAV 2/9 gene transfer 2 weeks after disease induction in proteinuric conditional knock-in mice demonstrated improvement in urinary albuminuria at days 42 and 56 after disease induction, with corresponding improvements in plasma albumin. Therefore, we have demonstrated successful AAV-mediated gene rescue in a monogenic renal disease and established the podocyte as a tractable target for gene therapy approaches.
Collapse
Affiliation(s)
- Wen Y Ding
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - Valeryia Kuzmuk
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
- Purespring Therapeutics, Rolling Stock Yard, 188 York Way, London N7 9AS, UK
| | - Sarah Hunter
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - Abigail Lay
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - Bryony Hayes
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - Matthew Beesley
- Department of Histopathology, Cheltenham General Hospital, Cheltenham GL53 7AN, UK
| | - Ruth Rollason
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - Jennifer A Hurcombe
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - Fern Barrington
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - Catrin Masson
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - William Cathery
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - Carl May
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - Jack Tuffin
- Purespring Therapeutics, Rolling Stock Yard, 188 York Way, London N7 9AS, UK
| | - Timothy Roberts
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - Geraldine Mollet
- Laboratoire des Maladies Rénales Héréditaires, Inserm UMR 1163, Institut Imagine, Université Paris Cité, Paris 75015, France
| | - Colin J Chu
- Academic Unit of Ophthalmology, Bristol Medical School, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Jenny McIntosh
- Research Department of Haematology, UCL Cancer Institute, Paul O'Gorman Building, University College London, London WC1E 6BT, UK
| | - Richard J Coward
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - Corinne Antignac
- Laboratoire des Maladies Rénales Héréditaires, Inserm UMR 1163, Institut Imagine, Université Paris Cité, Paris 75015, France
| | - Amit Nathwani
- Research Department of Haematology, UCL Cancer Institute, Paul O'Gorman Building, University College London, London WC1E 6BT, UK
| | - Gavin I Welsh
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| | - Moin A Saleem
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, University of Bristol, Bristol BS1 3NY, UK
| |
Collapse
|
4
|
May CJ, Chesor M, Hunter SE, Hayes B, Barr R, Roberts T, Barrington FA, Farmer L, Ni L, Jackson M, Snethen H, Tavakolidakhrabadi N, Goldstone M, Gilbert R, Beesley M, Lennon R, Foster R, Coward R, Welsh GI, Saleem MA. Podocyte protease activated receptor 1 stimulation in mice produces focal segmental glomerulosclerosis mirroring human disease signaling events. Kidney Int 2023; 104:265-278. [PMID: 36940798 PMCID: PMC7616342 DOI: 10.1016/j.kint.2023.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 01/31/2023] [Accepted: 02/27/2023] [Indexed: 03/23/2023]
Abstract
About 30% of patients who have a kidney transplant with underlying nephrotic syndrome (NS) experience rapid relapse of disease in their new graft. This is speculated to be due to a host-derived circulating factor acting on podocytes, the target cells in the kidney, leading to focal segmental glomerulosclerosis (FSGS). Our previous work suggests that podocyte membrane protease receptor 1 (PAR-1) is activated by a circulating factor in relapsing FSGS. Here, the role of PAR-1 was studied in human podocytes in vitro, and using a mouse model with developmental or inducible expression of podocyte-specific constitutively active PAR-1, and using biopsies from patients with nephrotic syndrome. In vitro podocyte PAR-1 activation caused a pro-migratory phenotype with phosphorylation of the kinase JNK, VASP protein and docking protein Paxillin. This signaling was mirrored in podocytes exposed to patient relapse-derived NS plasma and in patient disease biopsies. Both developmental and inducible activation of transgenic PAR-1 (NPHS2 Cre PAR-1Active+/-) caused early severe nephrotic syndrome, FSGS, kidney failure and, in the developmental model, premature death. We found that the non-selective cation channel protein TRPC6 could be a key modulator of PAR-1 signaling and TRPC6 knockout in our mouse model significantly improved proteinuria and extended lifespan. Thus, our work implicates podocyte PAR-1 activation as a key initiator of human NS circulating factor and that the PAR-1 signaling effects were partly modulated through TRPC6.
Collapse
Affiliation(s)
- Carl J May
- Bristol Renal, University of Bristol, Bristol, UK
| | | | | | - Bryony Hayes
- Bristol Renal, University of Bristol, Bristol, UK
| | - Rachel Barr
- Bristol Renal, University of Bristol, Bristol, UK
| | - Tim Roberts
- Bristol Renal, University of Bristol, Bristol, UK
| | | | | | - Lan Ni
- Bristol Renal, University of Bristol, Bristol, UK
| | | | | | | | | | - Rodney Gilbert
- Renal Medicine and Nephrology, Southampton General Hospital, University Hospital Southampton, Southampton, UK
| | - Matt Beesley
- Pathology Department, Gloucestershire Royal Hospital, Gloucester, UK
| | - Rachel Lennon
- Wellcome Trust Centre for Cell Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medical and Health Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
| | | | - Richard Coward
- Bristol Renal, University of Bristol, Bristol, UK; Department of Paediatric Nephrology, Bristol Royal Hospital for Children, Bristol, UK
| | | | - Moin A Saleem
- Bristol Renal, University of Bristol, Bristol, UK; Department of Paediatric Nephrology, Bristol Royal Hospital for Children, Bristol, UK.
| |
Collapse
|
5
|
Ollero M, Sahali D. Stage lighting on PAR-1: a step further in the understanding of acquired focal and segmental glomerulosclerosis. Kidney Int 2023; 104:234-236. [PMID: 37479383 DOI: 10.1016/j.kint.2023.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/13/2023] [Accepted: 04/26/2023] [Indexed: 07/23/2023]
Abstract
The pathogenic mechanisms of acquired focal and segmental glomerular sclerosis are only partially known and represent a medical challenge in nephrology. The article by May et al. sheds additional light on previous data indicating the key role of the protease-activated receptor 1. The new evidence is based on in vivo studies in relevant animal models and on patient biopsies and represents a significant step forward in the understanding of this pathologic condition.
Collapse
Affiliation(s)
- Mario Ollero
- University Paris Est Créteil, INSERM, IMRB, Créteil, France
| | - Dil Sahali
- University Paris Est Créteil, INSERM, IMRB, Créteil, France; Service Néphrologie, AP-HP, Hôpital Henri Mondor, Créteil, France.
| |
Collapse
|
6
|
Chhuon C, Herrera-Marcos LV, Zhang SY, Charrière-Bertrand C, Jung V, Lipecka J, Savas B, Nasser N, Pawlak A, Boulmerka H, Audard V, Sahali D, Guerrera IC, Ollero M. Proteomics of Plasma and Plasma-Treated Podocytes: Application to Focal and Segmental Glomerulosclerosis. Int J Mol Sci 2023; 24:12124. [PMID: 37569500 PMCID: PMC10418338 DOI: 10.3390/ijms241512124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Focal and segmental glomerulosclerosis (FSGS) is a severe form of idiopathic nephrotic syndrome (INS), a glomerulopathy of presumably immune origin that is attributed to extrarenal pathogenic circulating factors. The recurrence of FSGS (rFSGS) after transplant occurs in 30% to 50% of cases. The direct analysis of patient plasma proteome has scarcely been addressed to date, mainly due to the methodological difficulties associated with plasma complexity and dynamic range. In this study, first, we compared different methods of plasma preparation, second, we compared the plasma proteomes of rFSGS and controls using two preparation methods, and third, we analyzed the early proximal signaling events in podocytes subjected to patient plasma, through a combination of phosphoproteomics and lipid-raft proteomics (raftomics). By combining immunodepletion and high pH fractionation, we performed a differential proteomic analysis of soluble plasma proteins and of extracellular vesicles (EV) obtained from healthy controls, non-INS patient controls, and rFSGS patients (n = 4). In both the soluble- and the EV-protein sets from the rFSGS patients, we found a statistically significant increase in a cluster of proteins involved in neutrophil degranulation. A group of lipid-binding proteins, generally associated with lipoproteins, was found to be decreased in the soluble set from the rFSGS patients. In addition, three amino acid transporters involved in mTORC1 activation were found to be significantly increased in the EV from the rFSGS. Next, we incubated human podocytes for 30 min with 10% plasma from both groups of patients. The phosphoproteomics and raftomics of the podocytes revealed profound differences in the proteins involved in the mTOR pathway, in autophagy, and in cytoskeleton organization. We analyzed the correlation between the abundance of plasma and plasma-regulated podocyte proteins. The observed changes highlight some of the mechanisms involved in FSGS recurrence and could be used as specific early markers of circulating-factor activity in podocytes.
Collapse
Affiliation(s)
- Cerina Chhuon
- Proteomic Platform Necker, Université Paris Cité Structure Fédérative de Recherche SFR Necker US24, 75015 Paris, France; (C.C.); (V.J.); (J.L.)
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| | - Luis Vicente Herrera-Marcos
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| | - Shao-Yu Zhang
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| | - Cécile Charrière-Bertrand
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| | - Vincent Jung
- Proteomic Platform Necker, Université Paris Cité Structure Fédérative de Recherche SFR Necker US24, 75015 Paris, France; (C.C.); (V.J.); (J.L.)
| | - Joanna Lipecka
- Proteomic Platform Necker, Université Paris Cité Structure Fédérative de Recherche SFR Necker US24, 75015 Paris, France; (C.C.); (V.J.); (J.L.)
| | - Berkan Savas
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| | - Nour Nasser
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| | - André Pawlak
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| | - Hocine Boulmerka
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| | - Vincent Audard
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
- AP-HP, Hôpitaux Universitaires Henri Mondor, Service de Néphrologie, F-94010 Creteil, France
| | - Dil Sahali
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
- AP-HP, Hôpitaux Universitaires Henri Mondor, Service de Néphrologie, F-94010 Creteil, France
| | - Ida Chiara Guerrera
- Proteomic Platform Necker, Université Paris Cité Structure Fédérative de Recherche SFR Necker US24, 75015 Paris, France; (C.C.); (V.J.); (J.L.)
| | - Mario Ollero
- Univ Paris Est Creteil, INSERM, IMRB, F-94010 Creteil, France; (L.V.H.-M.); (S.-Y.Z.); (C.C.-B.); (B.S.); (N.N.); (A.P.); (H.B.); (V.A.); (D.S.)
| |
Collapse
|
7
|
Bagang N, Gupta K, Singh G, Kanuri SH, Mehan S. Protease-activated receptors in kidney diseases: A comprehensive review of pathological roles, therapeutic outcomes and challenges. Chem Biol Interact 2023; 377:110470. [PMID: 37011708 DOI: 10.1016/j.cbi.2023.110470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/21/2023] [Accepted: 03/31/2023] [Indexed: 04/03/2023]
Abstract
Studies have demonstrated that protease-activated receptors (PARs) with four subtypes (PAR1-4) are mainly expressed in the renal epithelial, endothelial, and podocyte cells. Some endogenous and urinary proteases, namely thrombin, trypsin, urokinase, and kallikrein released during diseased conditions, are responsible for activating different subtypes of PARs. Each PAR receptor subtype is involved in kidney disease of distinct aetiology. PAR1 and PAR2 have shown differential therapeutic outcomes in rodent models of type-1 and type-2 diabetic kidney diseases due to the distinct etiological basis of each disease type, however such findings need to be confirmed in other diabetic renal injury models. PAR1 and PAR2 blockers have been observed to abolish drug-induced nephrotoxicity in rodents by suppressing tubular inflammation and fibrosis and preventing mitochondrial dysfunction. Notably, PAR2 inhibition improved autophagy and prevented fibrosis, inflammation, and remodeling in the urethral obstruction model. Only the PAR1/4 subtypes have emerged as a therapeutic target for treating experimentally induced nephrotic syndrome, where their respective antibodies attenuated the podocyte apoptosis induced upon thrombin activation. Strikingly PAR2 and PAR4 subtypes involvement has been tested in sepsis-induced acute kidney injury (AKI) and renal ischemia-reperfusion injury models. Thus, more studies are required to delineate the role of other subtypes in the sepsis-AKI model. Evidence suggests that PARs regulate oxidative, inflammatory stress, immune cell activation, fibrosis, autophagic flux, and apoptosis during kidney diseases.
Collapse
|
8
|
Hayward S, Parmesar K, Welsh GI, Suderman M, Saleem MA. Epigenetic Mechanisms and Nephrotic Syndrome: A Systematic Review. Biomedicines 2023; 11:514. [PMID: 36831050 PMCID: PMC9953384 DOI: 10.3390/biomedicines11020514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/12/2023] Open
Abstract
A small subset of people with nephrotic syndrome (NS) have genetically driven disease. However, the disease mechanisms for the remaining majority are unknown. Epigenetic marks are reversible but stable regulators of gene expression with utility as biomarkers and therapeutic targets. We aimed to identify and assess all published human studies of epigenetic mechanisms in NS. PubMed (MEDLINE) and Embase were searched for original research articles examining any epigenetic mechanism in samples collected from people with steroid resistant NS, steroid sensitive NS, focal segmental glomerulosclerosis or minimal change disease. Study quality was assessed by using the Joanna Briggs Institute critical appraisal tools. Forty-nine studies met our inclusion criteria. The majority of these examined micro-RNAs (n = 35, 71%). Study quality was low, with only 23 deemed higher quality, and most of these included fewer than 100 patients and failed to validate findings in a second cohort. However, there were some promising concordant results between the studies; higher levels of serum miR-191 and miR-30c, and urinary miR-23b-3p and miR-30a-5p were observed in NS compared to controls. We have identified that the epigenome, particularly DNA methylation and histone modifications, has been understudied in NS. Large clinical studies, which utilise the latest high-throughput technologies and analytical pipelines, should focus on addressing this critical gap in the literature.
Collapse
Affiliation(s)
- Samantha Hayward
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1UD, UK
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1UD, UK
| | - Kevon Parmesar
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1UD, UK
| | - Gavin I. Welsh
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1UD, UK
| | - Matthew Suderman
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1UD, UK
| | - Moin A. Saleem
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1UD, UK
| |
Collapse
|
9
|
Meng S, Li T, Wang T, Li D, Chen J, Li H, Cai W, Zeng Z, Liu D, Tang D, Hong X, Dai Y. Global Phosphoproteomics Unveils Kinase-Regulated Networks in Systemic Lupus Erythematosus. Mol Cell Proteomics 2022; 21:100434. [PMID: 36309313 PMCID: PMC9712766 DOI: 10.1016/j.mcpro.2022.100434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disorder characterized by immune complex deposition in multiple organs. Despite the severe symptoms caused by it, the underlying mechanisms of SLE, especially phosphorylation-dependent regulatory networks remain elusive. Herein, by combining high-throughput phosphoproteomics with bioinformatics approaches, we established the global phosphoproteome landscape of the peripheral blood mononuclear cells from a large number of SLE patients, including the remission stage (SLE_S), active stage (SLE_A), rheumatoid arthritis, and healthy controls, and thus a deep mechanistic insight into SLE signaling mechanism was yielded. Phosphorylation upregulation was preferentially in patients with SLE (SLE_S and SLE_A) compared with healthy controls and rheumatoid arthritis populations, resulting in an atypical enrichment in cell adhesion and migration signatures. Several specifically upregulated phosphosites were identified, and the leukocyte transendothelial migration pathway was enriched in the SLE_A group by expression pattern clustering analysis. Phosphosites identified by 4D-label-free quantification unveiled key kinases and kinase-regulated networks in SLE, then further validated by parallel reaction monitoring. Some of these validated phosphosites including vinculin S275, vinculin S579 and transforming growth factor beta-1-induced transcript 1 S68, primarily were phosphorylation of Actin Cytoskeleton -related proteins. Some predicted kinases including MAP3K7, TBK1, IKKβ, and GSK3β, were validated by Western blot using kinases phosphorylation sites-specific antibodies. Taken together, the study has yielded fundamental insights into the phosphosites, kinases, and kinase-regulated networks in SLE. The map of the global phosphoproteomics enables further understanding of this disease and will provide great help for seeking more potential therapeutic targets for SLE.
Collapse
Affiliation(s)
- Shuhui Meng
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, Guangdong, P. R. China,Department of Rheumatology and Immunology, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, Guangdong, P. R. China
| | - Teng Li
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, Guangdong, P. R. China
| | - Tingting Wang
- Department of Rheumatology and Immunology, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, Guangdong, P. R. China
| | - Dandan Li
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, Guangdong, P. R. China
| | - Jieping Chen
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, Guangdong, P. R. China
| | - Heng Li
- Department of Rheumatology and Immunology, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, Guangdong, P. R. China
| | - Wanxia Cai
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, Guangdong, P. R. China
| | - Zhipeng Zeng
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, Guangdong, P. R. China
| | - Dongzhou Liu
- Department of Rheumatology and Immunology, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, Guangdong, P. R. China
| | - Donge Tang
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, Guangdong, P. R. China,For correspondence: Yong Dai; Xiaoping Hong; Donge Tang
| | - Xiaoping Hong
- Department of Rheumatology and Immunology, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, Guangdong, P. R. China,For correspondence: Yong Dai; Xiaoping Hong; Donge Tang
| | - Yong Dai
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, Guangdong, P. R. China,For correspondence: Yong Dai; Xiaoping Hong; Donge Tang
| |
Collapse
|
10
|
Lausecker F, Koehler S, Fresquet M, Naylor RW, Tian P, Wanner N, Braun F, Butt L, Huber TB, Lennon R. Integrating basic science with translational research: the 13th International Podocyte Conference 2021. Kidney Int 2022; 102:708-719. [PMID: 35964799 PMCID: PMC9386279 DOI: 10.1016/j.kint.2022.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022]
Abstract
The 13th International Podocyte Conference was held in Manchester, UK, and online from July 28 to 30, 2021. Originally planned for 2020, this biannual meeting was postponed by a year because of the coronavirus disease 2019 (COVID-19) pandemic and proceeded as an innovative hybrid meeting. In addition to in-person attendance, online registration was offered, and this attracted 490 conference registrations in total. As a Podocyte Conference first, a day for early-career researchers was introduced. This premeeting included talks from graduate students and postdoctoral researchers. It gave early career researchers the opportunity to ask a panel, comprising academic leaders and journal editors, about career pathways and the future for podocyte research. The main meeting over 3 days included a keynote talk and 4 focused sessions each day incorporating invited talks, followed by selected abstract presentations, and an open panel discussion. The conference concluded with a Patient Day, which brought together patients, clinicians, researchers, and industry representatives. The Patient Day was an interactive and diverse day. As well as updates on improving diagnosis and potential new therapies, the Patient Day included a PodoArt competition, exercise and cooking classes with practical nutrition advice, and inspirational stories from patients and family members. This review summarizes the exciting science presented during the 13th International Podocyte Conference and demonstrates the resilience of researchers during a global pandemic.
Collapse
Affiliation(s)
- Franziska Lausecker
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Sybille Koehler
- Biomedical Sciences, University of Edinburgh, Edinburgh, UK; III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maryline Fresquet
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Richard W Naylor
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Pinyuan Tian
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Nicola Wanner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fabian Braun
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Linus Butt
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Department of Paediatric Nephrology, Royal Manchester Children's Hospital, Manchester University Hospitals National Health Service (NHS) Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
11
|
Medipally A, Xiao M, Biederman L, Satoskar AA, Ivanov I, Rovin B, Parikh S, Kerlin BA, Brodsky SV. Role of protease-activated receptor-1 (PAR-1) in the glomerular filtration barrier integrity. Physiol Rep 2022; 10:e15343. [PMID: 35923090 PMCID: PMC9349585 DOI: 10.14814/phy2.15343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 11/24/2022] Open
Abstract
Protease-activated receptors (PAR) play an important role in the regulation of cellular function by the coagulation system, and they are activated by thrombin. PAR-1 is expressed in both endothelial cells and podocytes in the kidney. The role of PAR1 in the maintenance of the glomerular filtration barrier is not clear. Anticoagulant-related nephropathy (ARN) is a kidney disease with glomerular hematuria and red blood cell tubular casts. We validated 5/6 nephrectomy (5/6NE) in rats as a model of ARN and had demonstrated that direct thrombin inhibitor (dabigatran) induces ARN. The aim of this study was to investigate the role of PAR-1 in the ARN pathogenesis. 5/6NE rats were treated with dabigatran (150 mg/kg/day), PAR-1 inhibitor SCH79797 (1 and 3 mg/kg/day) and PAR-1 agonist TFLLR-NH2 (0.25 and 0.50 µmol/kg/day) for 7 days. Serum creatinine and hematuria were assessed daily. Kidney morphology was evaluated at the end of the study. In 5/6NE rats treated with either dabigatran or combination with a PAR-1 modulator, there was an elevation in serum creatinine, glomerular hematuria, red blood casts in the tubules, and acute tubular epithelial cell injury. Interestingly, both PAR-1 modulators in a dose-depended manner had similar effects on the serum creatinine levels and hematuria as those of dabigatran. Dabigatran-induced increase in the systolic blood pressure was not affected by PAR-1 modulators. In conclusion, the normal function of PAR-1 is crucial to maintain the glomerular filtration barrier integrity. Either activation or blockage of PAR-1 leads to glomerular hematuria and subsequent acute tubular epithelial cell injury.
Collapse
Affiliation(s)
- Ajay Medipally
- Departments of PathologyThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Min Xiao
- Departments of PathologyThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Laura Biederman
- Departments of PathologyThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Anjali A. Satoskar
- Departments of PathologyThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Iouri Ivanov
- Departments of PathologyThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Brad Rovin
- Departments of MedicineThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Samir Parikh
- Departments of MedicineThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Bryce A. Kerlin
- Department of PediatricsNationwide Children’s HospitalColumbusOhioUSA
- Center for Clinical and Translational ResearchAbigail Wexner Research InstituteNationwide Children’s HospitalColumbusOhioUSA
| | - Sergey V. Brodsky
- Departments of PathologyThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| |
Collapse
|
12
|
Aulicino F, Pelosse M, Toelzer C, Capin J, Ilegems E, Meysami P, Rollarson R, Berggren PO, Dillingham M, Schaffitzel C, Saleem M, Welsh G, Berger I. Highly efficient CRISPR-mediated large DNA docking and multiplexed prime editing using a single baculovirus. Nucleic Acids Res 2022; 50:7783-7799. [PMID: 35801912 PMCID: PMC9303279 DOI: 10.1093/nar/gkac587] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 06/15/2022] [Accepted: 06/27/2022] [Indexed: 12/13/2022] Open
Abstract
CRISPR-based precise gene-editing requires simultaneous delivery of multiple components into living cells, rapidly exceeding the cargo capacity of traditional viral vector systems. This challenge represents a major roadblock to genome engineering applications. Here we exploit the unmatched heterologous DNA cargo capacity of baculovirus to resolve this bottleneck in human cells. By encoding Cas9, sgRNA and Donor DNAs on a single, rapidly assembled baculoviral vector, we achieve with up to 30% efficacy whole-exon replacement in the intronic β-actin (ACTB) locus, including site-specific docking of very large DNA payloads. We use our approach to rescue wild-type podocin expression in steroid-resistant nephrotic syndrome (SRNS) patient derived podocytes. We demonstrate single baculovirus vectored delivery of single and multiplexed prime-editing toolkits, achieving up to 100% cleavage-free DNA search-and-replace interventions without detectable indels. Taken together, we provide a versatile delivery platform for single base to multi-gene level genome interventions, addressing the currently unmet need for a powerful delivery system accommodating current and future CRISPR technologies without the burden of limited cargo capacity.
Collapse
Affiliation(s)
- Francesco Aulicino
- BrisSynBio Bristol Synthetic Biology Centre, Biomedical Sciences, School of Biochemistry, 1 Tankard's Close, University of Bristol, Bristol BS8 1TD, UK
| | - Martin Pelosse
- BrisSynBio Bristol Synthetic Biology Centre, Biomedical Sciences, School of Biochemistry, 1 Tankard's Close, University of Bristol, Bristol BS8 1TD, UK
| | - Christine Toelzer
- BrisSynBio Bristol Synthetic Biology Centre, Biomedical Sciences, School of Biochemistry, 1 Tankard's Close, University of Bristol, Bristol BS8 1TD, UK
| | - Julien Capin
- BrisSynBio Bristol Synthetic Biology Centre, Biomedical Sciences, School of Biochemistry, 1 Tankard's Close, University of Bristol, Bristol BS8 1TD, UK
| | - Erwin Ilegems
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Parisa Meysami
- BrisSynBio Bristol Synthetic Biology Centre, Biomedical Sciences, School of Biochemistry, 1 Tankard's Close, University of Bristol, Bristol BS8 1TD, UK
| | - Ruth Rollarson
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, Whitson street, Bristol BS1 3NY, UK
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Mark Simon Dillingham
- BrisSynBio Bristol Synthetic Biology Centre, Biomedical Sciences, School of Biochemistry, 1 Tankard's Close, University of Bristol, Bristol BS8 1TD, UK
| | - Christiane Schaffitzel
- BrisSynBio Bristol Synthetic Biology Centre, Biomedical Sciences, School of Biochemistry, 1 Tankard's Close, University of Bristol, Bristol BS8 1TD, UK
| | - Moin A Saleem
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, Whitson street, Bristol BS1 3NY, UK
| | - Gavin I Welsh
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, Whitson street, Bristol BS1 3NY, UK
| | - Imre Berger
- BrisSynBio Bristol Synthetic Biology Centre, Biomedical Sciences, School of Biochemistry, 1 Tankard's Close, University of Bristol, Bristol BS8 1TD, UK
- Max Planck Bristol Centre for Minimal Biology, School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| |
Collapse
|
13
|
Tuffin J, Chesor M, Kuzmuk V, Johnson T, Satchell SC, Welsh GI, Saleem MA. GlomSpheres as a 3D co-culture spheroid model of the kidney glomerulus for rapid drug-screening. Commun Biol 2021; 4:1351. [PMID: 34857869 PMCID: PMC8640035 DOI: 10.1038/s42003-021-02868-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 10/28/2021] [Indexed: 01/28/2023] Open
Abstract
The glomerulus is the filtration unit of the kidney. Injury to any component of this specialised structure leads to impaired filtration and eventually fibrosis and chronic kidney disease. Current two and three dimensional (2D and 3D) models that attempt to recreate structure and interplay between glomerular cells are imperfect. Most 2D models are simplistic and unrepresentative, and 3D organoid approaches are currently difficult to reproduce at scale and do not fit well with current industrial drug-screening approaches. Here we report a rapidly generated and highly reproducible 3D co-culture spheroid model (GlomSpheres), better demonstrating the specialised physical and molecular structure of a glomerulus. Co-cultured using a magnetic spheroid formation approach, conditionally immortalised (CI) human podocytes and glomerular endothelial cells (GEnCs) deposited mature, organized isoforms of collagen IV and Laminin. We demonstrate a dramatic upregulation of key podocyte (podocin, nephrin and podocalyxin) and GEnC (pecam-1) markers. Electron microscopy revealed podocyte foot process interdigitation and endothelial vessel formation. Incubation with pro-fibrotic agents (TGF-β1, Adriamycin) induced extracellular matrix (ECM) dysregulation and podocyte loss, which were attenuated by the anti-fibrotic agent Nintedanib. Incubation with plasma from patients with kidney disease induced acute podocyte loss and ECM dysregulation relative to patient matched remission plasma, and Nintedanib reduced podocyte loss. Finally, we developed a rapid imaging approach to demonstrate the model's usefulness in higher throughput pharmaceutical screening. GlomSpheres therefore represent a robust, scalable, replacement for 2D in vitro glomerular disease models.
Collapse
Affiliation(s)
- Jack Tuffin
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS1 3NY, UK.
| | - Musleeha Chesor
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS1 3NY, UK.,Faculty of Medicine, Princess of Naradhiwas University, Narathiwat, Thailand
| | - Valeryia Kuzmuk
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS1 3NY, UK
| | | | - Simon C Satchell
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS1 3NY, UK
| | - Gavin I Welsh
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS1 3NY, UK
| | - Moin A Saleem
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS1 3NY, UK
| |
Collapse
|
14
|
Eroglu FK, Yazar V, Guler U, Yıldırım M, Yildirim T, Gungor T, Celikkaya E, Karakaya D, Turay N, Ciftci Dede E, Korkusuz P, Salih B, Bulbul M, Gursel I. Circulating extracellular vesicles of patients with steroid-sensitive nephrotic syndrome have higher RAC1 and induce recapitulation of nephrotic syndrome phenotype in podocytes. Am J Physiol Renal Physiol 2021; 321:F659-F673. [PMID: 34569252 DOI: 10.1152/ajprenal.00097.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Since previous research suggests a role of a circulating factor in the pathogenesis of steroid-sensitive nephrotic syndrome (NS), we speculated that circulating plasma extracellular vesicles (EVs) are a candidate source of such a soluble mediator. Here, we aimed to characterize and try to delineate the effects of these EVs in vitro. Plasma EVs from 20 children with steroid-sensitive NS in relapse and remission, 10 healthy controls, and 6 disease controls were obtained by serial ultracentrifugation. Characterization of these EVs was performed by electron microscopy, flow cytometry, and Western blot analysis. Major proteins from plasma EVs were identified via mass spectrometry. Gene Ontology classification analysis and Ingenuity Pathway Analysis were performed on selectively expressed EV proteins during relapse. Immortalized human podocyte culture was used to detect the effects of EVs on podocytes. The protein content and particle number of plasma EVs were significantly increased during NS relapse. Relapse NS EVs selectively expressed proteins that involved actin cytoskeleton rearrangement. Among these, the level of RAC-GTP was significantly increased in relapse EVs compared with remission and disease control EVs. Relapse EVs were efficiently internalized by podocytes and induced significantly enhanced motility and albumin permeability. Moreover, relapse EVs induced significantly higher levels of RAC-GTP and phospho-p38 and decreased the levels of synaptopodin in podocytes. Circulating relapse EVs are biologically active molecules that carry active RAC1 as cargo and induce recapitulation of the NS phenotype in podocytes in vitro.NEW & NOTEWORTHY Up to now, the role of extracellular vesicles (EVs) in the pathogenesis of steroid-sensitive nephrotic syndrome (NS) has not been studied. Here, we found that relapse NS EVs contain significantly increased active RAC1, induce enhanced podocyte motility, and increase expression of RAC-GTP and phospho-p38 expression in vitro. These results suggest that plasma EVs are biologically active molecules in the pathogenesis of NS.
Collapse
Affiliation(s)
- Fehime K Eroglu
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey.,SBU Dr Sami Ulus Maternity Child Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Volkan Yazar
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Ulku Guler
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Muzaffer Yıldırım
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Tugce Yildirim
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Tulin Gungor
- SBU Dr Sami Ulus Maternity Child Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Evra Celikkaya
- SBU Dr Sami Ulus Maternity Child Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Deniz Karakaya
- SBU Dr Sami Ulus Maternity Child Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Nilsu Turay
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Eda Ciftci Dede
- Department of Histology and Embryology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Petek Korkusuz
- Department of Histology and Embryology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Bekir Salih
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Mehmet Bulbul
- SBU Dr Sami Ulus Maternity Child Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Ihsan Gursel
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| |
Collapse
|
15
|
Rogacka D, Piwkowska A. Beneficial effects of metformin on glomerular podocytes in diabetes. Biochem Pharmacol 2021; 192:114687. [PMID: 34274355 DOI: 10.1016/j.bcp.2021.114687] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 01/15/2023]
Abstract
Podocytes and their foot processes form an important cellular layer of the glomerular barrier involved in regulating glomerular permeability. Disturbances in podocyte function play a central role in the development of proteinuria in diabetic nephropathy. The retraction of podocyte foot processes forming a slit diaphragm is a common feature of proteinuria. Metformin is an oral antidiabetic agent of the biguanide class that is widely recommended for the treatment of high blood glucose in patients with type 2 diabetes mellitus. In addition to lowering glucose, several recent studies have reported potential beneficial effects of metformin on diabetic kidney function. Furthermore, a key molecule of the antidiabetic mechanism of action of metformin is adenosine 5'-monophospate-activated protein kinase (AMPK), as the metformin-induced activation of AMPK is well documented. The present review summarizes current knowledge on the protective effects of metformin against pathological changes in podocytes that are induced by hyperglycemia.
Collapse
Affiliation(s)
- Dorota Rogacka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute Polish Academy of Sciences, Wita Stwosza 63, Gdansk 80-308, Poland; Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdansk 80-308, Poland
| | - Agnieszka Piwkowska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute Polish Academy of Sciences, Wita Stwosza 63, Gdansk 80-308, Poland; Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdansk 80-308, Poland.
| |
Collapse
|
16
|
Rachubik P, Szrejder M, Audzeyenka I, Rogacka D, Rychłowski M, Angielski S, Piwkowska A. The PKGIα/VASP pathway is involved in insulin- and high glucose-dependent regulation of albumin permeability in cultured rat podocytes. J Biochem 2021; 168:575-588. [PMID: 32484874 PMCID: PMC7763511 DOI: 10.1093/jb/mvaa059] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 05/23/2020] [Indexed: 12/15/2022] Open
Abstract
Podocytes, the principal component of the glomerular filtration barrier, regulate glomerular permeability to albumin via their contractile properties. Both insulin- and high glucose (HG)-dependent activation of protein kinase G type Iα (PKGIα) cause reorganization of the actin cytoskeleton and podocyte disruption. Vasodilator-stimulated phosphoprotein (VASP) is a substrate for PKGIα and involved in the regulation of actin cytoskeleton dynamics. We investigated the role of the PKGIα/VASP pathway in the regulation of podocyte permeability to albumin. We evaluated changes in high insulin- and/or HG-induced transepithelial albumin flux in cultured rat podocyte monolayers. Expression of PKGIα and downstream proteins was confirmed by western blot and immunofluorescence. We demonstrate that insulin and HG induce changes in the podocyte contractile apparatus via PKGIα-dependent regulation of the VASP phosphorylation state, increase VASP colocalization with PKGIα, and alter the subcellular localization of these proteins in podocytes. Moreover, VASP was implicated in the insulin- and HG-dependent dynamic remodelling of the actin cytoskeleton and, consequently, increased podocyte permeability to albumin under hyperinsulinaemic and hyperglycaemic conditions. These results indicate that insulin- and HG-dependent regulation of albumin permeability is mediated by the PKGIα/VASP pathway in cultured rat podocytes. This molecular mechanism may explain podocytopathy and albuminuria in diabetes.
Collapse
Affiliation(s)
- Patrycja Rachubik
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Maria Szrejder
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Irena Audzeyenka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Wita Stwosza 63, 80-308 Gdańsk, Poland.,Faculty of Chemistry, Department of Molecular Biotechnology, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Dorota Rogacka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Wita Stwosza 63, 80-308 Gdańsk, Poland.,Faculty of Chemistry, Department of Molecular Biotechnology, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Michał Rychłowski
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk, Medical University of Gdańsk, Abrahama 58, 80-307 Gdańsk, Poland
| | - Stefan Angielski
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Agnieszka Piwkowska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Wita Stwosza 63, 80-308 Gdańsk, Poland.,Faculty of Chemistry, Department of Molecular Biotechnology, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
17
|
Immune-mediated entities of (primary) focal segmental glomerulosclerosis. Cell Tissue Res 2021; 385:423-434. [PMID: 33907872 PMCID: PMC8523460 DOI: 10.1007/s00441-021-03454-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/19/2021] [Indexed: 12/21/2022]
Abstract
Focal segmental glomerulosclerosis (FSGS) represents a glomerular scar formation downstream of various different mechanisms leading to podocytopathy and podocyte loss. Recently, significant advances were made in understanding genetic factors, podocyte intrinsic mechanisms, and adaptive mechanisms causing FSGS. However, while most cases of nephrotic FSGS are being treated with immunosuppressants, the underlying immune dysregulation, involved immune cells, and soluble factors are only incompletely understood. Thus, we here summarize the current knowledge of proposed immune effector cells, secreted soluble factors, and podocyte response in immune-mediated (primary) FSGS.
Collapse
|
18
|
Ozawa S, Matsubayashi M, Nanaura H, Yanagita M, Mori K, Asanuma K, Kajiwara N, Hayashi K, Ohashi H, Kasahara M, Yokoi H, Kataoka H, Mori E, Nakagawa T. Proteolytic cleavage of Podocin by Matriptase exacerbates podocyte injury. J Biol Chem 2020; 295:16002-16012. [PMID: 32907879 DOI: 10.1074/jbc.ra120.013721] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/18/2020] [Indexed: 01/15/2023] Open
Abstract
Podocyte injury is a critical step toward the progression of renal disease and is often associated with a loss of slit diaphragm proteins, including Podocin. Although there is a possibility that the extracellular domain of these slit diaphragm proteins can be a target for a pathological proteolysis, the precise mechanism driving the phenomenon remains unknown. Here we show that Matriptase, a membrane-anchored protein, was activated at podocytes in CKD patients and mice, whereas Matriptase inhibitors slowed the progression of mouse kidney disease. The mechanism could be accounted for by an imbalance favoring Matriptase over its cognate inhibitor, hepatocyte growth factor activator inhibitor type 1 (HAI-1), because conditional depletion of HAI-1 in podocytes accelerated podocyte injury in mouse model. Matriptase was capable of cleaving Podocin, but such a reaction was blocked by either HAI-1 or dominant-negative Matriptase. Furthermore, the N terminus of Podocin, as a consequence of Matriptase cleavage of Podocin, translocated to nucleoli, suggesting that the N terminus of Podocin might be involved in the process of podocyte injury. Given these observations, we propose that the proteolytic cleavage of Podocin by Matriptase could potentially cause podocyte injury and that targeting Matriptase could be a novel therapeutic strategy for CKD patients.
Collapse
Affiliation(s)
- Shota Ozawa
- TMK Project at the Medical Innovation Center, Kyoto University, Kyoto, Japan; Research Unit/Innovative Medical Science, Mitsubishi Tanabe Pharma Corporation, Saitama, Japan
| | - Masaya Matsubayashi
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Hitoki Nanaura
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Motoko Yanagita
- TMK Project at the Medical Innovation Center, Kyoto University, Kyoto, Japan; Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
| | - Kiyoshi Mori
- TMK Project at the Medical Innovation Center, Kyoto University, Kyoto, Japan; Department of Molecular and Clinical Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Katsuhiko Asanuma
- TMK Project at the Medical Innovation Center, Kyoto University, Kyoto, Japan; Department of Nephrology, Chiba University, Chiba, Japan
| | | | - Kazuyuki Hayashi
- Department of Nephrology, Ikeda City Hospital, Ikeda, Osaka, Japan
| | - Hiroshi Ohashi
- Department of Pathology, Ikeda City Hospital, Ikeda, Osaka, Japan
| | - Masato Kasahara
- Institute for Clinical and Translational Science, Nara Medical University, Kashihara, Nara, Japan
| | - Hideki Yokoi
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroaki Kataoka
- Department of Pathology, University of Miyazaki, Kihara, Miyazaki, Japan
| | - Eiichiro Mori
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Nara, Japan.
| | - Takahiko Nakagawa
- TMK Project at the Medical Innovation Center, Kyoto University, Kyoto, Japan; Department of Future Basic Medicine, Nara Medical University, Kashihara, Nara, Japan.
| |
Collapse
|
19
|
Wenyang Lishui Decoction Ameliorates Podocyte Injury in Membranous Nephropathy Rat and Cell Models by Regulating p53 and Bcl-2. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:6813760. [PMID: 32454867 PMCID: PMC7243012 DOI: 10.1155/2020/6813760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 04/24/2020] [Indexed: 01/08/2023]
Abstract
Wenyang Lishui decoction (WYD) has been frequently used to treat patients with membranous nephropathy (MN) in China. Our previous study in vitro showed that WYD aqueous extract could alleviate F-actin reorganization of podocytes induced by serum from idiopathic membranous nephropathy (IMN) patients. This study aims to investigate the effects and molecular mechanisms of WYD on MN. MN rat models were induced by cationic bovine serum albumin. Experimental rats were divided into four groups: normal, model, WYD, and benazepril. The normal group consisted of normal rats receiving distilled water for four weeks, while the model, WYD, and benazepril groups consisted of MN rats receiving distilled water, 16.5 g/kg/day WYD aqueous extract, and 10 mg/kg/day benazepril, respectively. Alanine aminotransferase, kidney function, albumin, and 24 h urine total protein (UTP) were measured. Hematoxylin-eosin and electron microscopy analyses were performed. Mouse podocytes were induced to develop cell models by serum from IMN patients with antibody to the M-type phospholipase A2 receptor and spleen and kidney Yang deficiency syndrome. They were divided into five groups: control, model, 2 mg/ml WYD, 4 mg/ml WYD, and 8 mg/ml WYD. CCK-8 assays, flow cytometry, qRT-PCR, and Western blot analyses were performed. In the animal experiment, side effects of WYD were not found. Also, there was no significant difference in kidney function among the groups. In addition, UTP level was significantly reduced, and kidney histological damage was restored in both WYD and benazepril groups but difference in UTP level between them was not found. In the cell experiment, apoptosis rate was increased in the model group while it was decreased by coincubation with WYD. Besides, mRNA and protein levels of p53 were decreased, and those of Bcl-2 were increased by treatment using WYD. In conclusion, WYD could reduce proteinuria and ameliorate podocyte injury by regulating the expression of p53 and Bcl-2. The study is registered in the Chinese Clinical Trial Registry (ChiCTR-OCH-14005137).
Collapse
|
20
|
Audzeyenka I, Rachubik P, Rogacka D, Typiak M, Kulesza T, Angielski S, Rychłowski M, Wysocka M, Gruba N, Lesner A, Saleem MA, Piwkowska A. Cathepsin C is a novel mediator of podocyte and renal injury induced by hyperglycemia. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118723. [PMID: 32302668 DOI: 10.1016/j.bbamcr.2020.118723] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 02/07/2023]
Abstract
A growing body of evidence suggests a role of proteolytic enzymes in the development of diabetic nephropathy. Cathepsin C (CatC) is a well-known regulator of inflammatory responses, but its involvement in podocyte and renal injury remains obscure. We used Zucker rats, a genetic model of metabolic syndrome and insulin resistance, to determine the presence, quantity, and activity of CatC in the urine. In addition to the animal study, we used two cellular models, immortalized human podocytes and primary rat podocytes, to determine mRNA and protein expression levels via RT-PCR, Western blot, and confocal microscopy, and to evaluate CatC activity. The role of CatC was analyzed in CatC-depleted podocytes using siRNA and glycolytic flux parameters were obtained from extracellular acidification rate (ECAR) measurements. In functional analyses, podocyte and glomerular permeability to albumin was determined. We found that podocytes express and secrete CatC, and a hyperglycemic environment increases CatC levels and activity. Both high glucose and non-specific activator of CatC phorbol 12-myristate 13-acetate (PMA) diminished nephrin, cofilin, and GLUT4 levels and induced cytoskeletal rearrangements, increasing albumin permeability in podocytes. These negative effects were completely reversed in CatC-depleted podocytes. Moreover, PMA, but not high glucose, increased glycolytic flux in podocytes. Finally, we demonstrated that CatC expression and activity are increased in the urine of diabetic Zucker rats. We propose a novel mechanism of podocyte injury in diabetes, providing deeper insight into the role of CatC in podocyte biology.
Collapse
Affiliation(s)
- Irena Audzeyenka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Gdansk, Poland; Faculty of Chemistry, University of Gdansk, Poland.
| | - Patrycja Rachubik
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Gdansk, Poland
| | - Dorota Rogacka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Gdansk, Poland; Faculty of Chemistry, University of Gdansk, Poland
| | - Marlena Typiak
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Gdansk, Poland
| | - Tomasz Kulesza
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Gdansk, Poland
| | - Stefan Angielski
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Gdansk, Poland
| | - Michał Rychłowski
- Intercollegiate Faculty of Biotechnology, University of Gdansk - Medical University of Gdansk, Poland
| | | | | | - Adam Lesner
- Faculty of Chemistry, University of Gdansk, Poland
| | - Moin A Saleem
- Bristol Renal, University of Bristol, United Kingdom
| | - Agnieszka Piwkowska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Gdansk, Poland; Faculty of Chemistry, University of Gdansk, Poland
| |
Collapse
|
21
|
Jacobs-Cachá C, Puig-Gay N, Helm D, Rettel M, Sellarès J, Meseguer A, Savitski MM, Moreso FJ, Soler MJ, Seron D, Lopez-Hellin J. A misprocessed form of Apolipoprotein A-I is specifically associated with recurrent Focal Segmental Glomerulosclerosis. Sci Rep 2020; 10:1159. [PMID: 31980684 PMCID: PMC6981185 DOI: 10.1038/s41598-020-58197-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 01/10/2020] [Indexed: 12/29/2022] Open
Abstract
Apolipoprotein A-Ib (ApoA-Ib) is a high molecular weight form of Apolipoprotein A-I (ApoA-I) found specifically in the urine of kidney-transplanted patients with recurrent idiopathic focal segmental glomerulosclerosis (FSGS). To determine the nature of the modification present in ApoA-Ib, we sequenced the whole APOA1 gene in ApoA-Ib positive and negative patients, and we also studied the protein primary structure using mass spectrometry. No genetic variations in the APOA1 gene were found in the ApoA-Ib positive patients that could explain the increase in its molecular mass. The mass spectrometry analysis revealed three extra amino acids at the N-Terminal end of ApoA-Ib that were not present in the standard plasmatic form of ApoA-I. These amino acids corresponded to half of the propeptide sequence of the immature form of ApoA-I (proApoA-I) indicating that ApoA-Ib is a misprocessed form of proApoA-I. The description of ApoA-Ib could be relevant not only because it can allow the automated analysis of this biomarker in the clinical practice but also because it has the potential to shed light into the molecular mechanisms that cause idiopathic FSGS, which is currently unknown.
Collapse
Affiliation(s)
- Conxita Jacobs-Cachá
- Nephrology Research Group, Hospital Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain. .,Nephrology Department, Hospital Vall d'Hebrón, Barcelona, Spain.
| | - Natàlia Puig-Gay
- Renal Physiopathology Group-CIBBIM. Hospital Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Dominic Helm
- Proteomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Mandy Rettel
- Proteomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Joana Sellarès
- Nephrology Research Group, Hospital Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Nephrology Department, Hospital Vall d'Hebrón, Barcelona, Spain
| | - Anna Meseguer
- Renal Physiopathology Group-CIBBIM. Hospital Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Mikhail M Savitski
- Proteomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany.,Genome Biology, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Francesc J Moreso
- Nephrology Research Group, Hospital Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Nephrology Department, Hospital Vall d'Hebrón, Barcelona, Spain
| | - Maria José Soler
- Nephrology Research Group, Hospital Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Nephrology Department, Hospital Vall d'Hebrón, Barcelona, Spain
| | - Daniel Seron
- Nephrology Research Group, Hospital Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Nephrology Department, Hospital Vall d'Hebrón, Barcelona, Spain
| | - Joan Lopez-Hellin
- Renal Physiopathology Group-CIBBIM. Hospital Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain. .,Biochemistry Department, Hospital Vall d'Hebrón, Barcelona, Spain.
| |
Collapse
|
22
|
Nephrotic syndrome in a dish: recent developments in modeling in vitro. Pediatr Nephrol 2020; 35:1363-1372. [PMID: 30820702 PMCID: PMC7316697 DOI: 10.1007/s00467-019-4203-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/20/2018] [Accepted: 01/16/2019] [Indexed: 01/05/2023]
Abstract
Nephrotic syndrome is a heterogeneous disease, and one of the most frequent glomerular disorders among children. Depending on the etiology, it may result in end-stage renal disease and the need for renal replacement therapy. A dysfunctional glomerular filtration barrier, comprising of endothelial cells, the glomerular basement membrane and podocytes, characterizes nephrotic syndrome. Podocytes are often the primary target cells in the pathogenesis, in which not only the podocyte function but also their crosstalk with other glomerular cell types can be disturbed due to a myriad of factors. The pathophysiology of nephrotic syndrome is highly complex and studying molecular mechanisms in vitro requires state-of-the-art cell-based models resembling the in vivo situation and preferably a fully functional glomerular filtration barrier. Current advances in stem cell biology and microfluidic platforms have heralded a new era of three-dimensional (3D) cultures that might have the potential to recapitulate the glomerular filtration barrier in vitro. Here, we highlight the molecular basis of nephrotic syndrome and discuss requirements to accurately study nephrotic syndrome in vitro, including an overview of specific podocyte markers, cutting-edge stem cell organoids, and the implementation of microfluidic platforms. The development of (patho) physiologically relevant glomerular models will accelerate the identification of molecular targets involved in nephrotic syndrome and may be the harbinger of a new era of therapeutic avenues.
Collapse
|
23
|
Molecular stratification of idiopathic nephrotic syndrome. Nat Rev Nephrol 2019; 15:750-765. [DOI: 10.1038/s41581-019-0217-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2019] [Indexed: 01/03/2023]
|
24
|
Diagnostic and Prognostic Value of Soluble Urokinase-type Plasminogen Activator Receptor (suPAR) in Focal Segmental Glomerulosclerosis and Impact of Detection Method. Sci Rep 2019; 9:13783. [PMID: 31551522 PMCID: PMC6760112 DOI: 10.1038/s41598-019-50405-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/11/2019] [Indexed: 01/01/2023] Open
Abstract
The plasma soluble urokinase-type plasminogen activator receptor (suPAR) is a biomarker for focal segmental glomerulosclerosis (FSGS), but its value is under discussion because of ambiguous results arising from different ELISA methods in previous studies. The aim of this study was to compare diagnostic performance of two leading suPAR ELISA kits and examine four objectives in 146 subjects: (1) plasma suPAR levels according to glomerular disease (primary, secondary and recurrent FSGS after kidney transplantation, other glomerulonephritis) and in healthy controls; (2) suPAR levels based on glomerular filtration rate; (3) sensitivity and specificity of suPAR for FSGS diagnosis and determination of optimal cut-offs; (4) suPAR as prognostic tool. Patients with FSGS showed significant higher suPAR values than patients with other glomerulonephritis and healthy individuals. This applied to subjects with and without chronic kidney disease. Although both suPARnostic™ assay and Quantikine Human uPAR ELISA Kit exerted high sensitivity and specificity for FSGS diagnosis, their cut-off values of 4.644 ng/mL and 2.789 ng/mL were significantly different. Higher suPAR was furthermore predictive for progression to end-stage renal disease. In summary, suPAR values must be interpreted in the context of population and test methods used. Knowing test specific cut-offs makes suPAR a valuable biomarker for FSGS.
Collapse
|
25
|
Farmer LK, Rollason R, Whitcomb DJ, Ni L, Goodliff A, Lay AC, Birnbaumer L, Heesom KJ, Xu SZ, Saleem MA, Welsh GI. TRPC6 Binds to and Activates Calpain, Independent of Its Channel Activity, and Regulates Podocyte Cytoskeleton, Cell Adhesion, and Motility. J Am Soc Nephrol 2019; 30:1910-1924. [PMID: 31416818 DOI: 10.1681/asn.2018070729] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 06/17/2019] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Mutations in the transient receptor potential channel 6 (TRPC6) gene are associated with an inherited form of FSGS. Despite widespread expression, patients with TRPC6 mutations do not present with any other pathologic phenotype, suggesting that this protein has a unique yet unidentified role within the target cell for FSGS, the kidney podocyte. METHODS We generated a stable TRPC6 knockout podocyte cell line from TRPC6 knockout mice. These cells were engineered to express wild-type TRPC6, a dominant negative TRPC6 mutation, or either of two disease-causing mutations of TRPC6, G109S or K874*. We extensively characterized these cells using motility, detachment, and calpain activity assays; immunofluorescence; confocal or total internal reflection fluorescence microscopy; and western blotting. RESULTS Compared with wild-type cells, TRPC6-/- podocytes are less motile and more adhesive, with an altered actin cytoskeleton. We found that TRPC6 binds to ERK1/2 and the actin regulatory proteins, caldesmon (a calmodulin- and actin-binding protein) and calpain 1 and 2 (calcium-dependent cysteine proteases that control the podocyte cytoskeleton, cell adhesion, and motility via cleavage of paxillin, focal adhesion kinase, and talin). Knockdown or expression of the truncated K874* mutation (but not expression of the gain-of-function G019S mutation or dominant negative mutant of TRPC6) results in the mislocalization of calpain 1 and 2 and significant downregulation of calpain activity; this leads to altered podocyte cytoskeleton, motility, and adhesion-characteristics of TRPC6 -/- podocytes. CONCLUSIONS Our data demonstrate that independent of TRPC6 channel activity, the physical interaction between TRPC6 and calpain in the podocyte is important for cell motility and detachment and demonstrates a scaffolding role of the TRPC6 protein in disease.
Collapse
Affiliation(s)
| | | | - Daniel J Whitcomb
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Bristol Medical School, and
| | - Lan Ni
- Bristol Renal, Bristol Medical School
| | | | | | - Lutz Birnbaumer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina.,Faculty of Medical Sciences, Institute of Biomedical Research, Catholic University of Argentina, Buenos Aires, Argentina; and
| | - Kate J Heesom
- Proteomics Facility, University of Bristol, Bristol, United Kingdom
| | - Shang-Zhong Xu
- Centre for Cardiovascular and Metabolic Research, Hull York Medical School, University of Hull, Hull, United Kingdom
| | | | | |
Collapse
|
26
|
May CJ, Welsh GI, Chesor M, Lait PJ, Schewitz-Bowers LP, Lee RWJ, Saleem MA. Human Th17 cells produce a soluble mediator that increases podocyte motility via signaling pathways that mimic PAR-1 activation. Am J Physiol Renal Physiol 2019; 317:F913-F921. [PMID: 31339775 DOI: 10.1152/ajprenal.00093.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The specific pathogenesis of idiopathic nephrotic syndrome (NS) is poorly understood, and the role of immune mediators remains contentious. However, there is good evidence for the role of a circulating factor, and we recently postulated circulating proteases as candidate factors. Immunosuppressive therapy with glucocorticoids (GCs) and T cell inhibitors are widely used in the clinical treatment of NS. Given that T helper (CD4+) cells expressing IL-17A (so-called Th17 cells) have recently been reported to be resistant to GC treatment, and GC resistance remains a major challenge in the management of NS, we hypothesized that Th17 cells produce a circulating factor that is capable of signaling to the podocyte and inducing deleterious phenotypic changes. To test this, we generated human Th17 cells from healthy volunteers and added the supernatants from these T cell cultures to conditionally immortalized human podocytes in vitro. This demonstrated that podocytes treated with Th17 cell culture supernatant, as well as with patient disease plasma, showed significant stimulation of JNK and p38 MAPK pathways and an increase in motility, which was blocked using a JNK inhibitor. We have previously shown that nephrotic plasma elicits a podocyte response via protease-activated receptor-1 (PAR-1). Stimulation of PAR-1 in podocytes elicited the same signaling response as Th17 cell culture supernatant treatment. Equally, protease inhibitors with Th17 cell culture treatment blocked the signaling response. This was not replicated by the reagents added to Th17 cell cultures or by IL-17A. Hence, we conclude that an undefined soluble mediator produced by Th17 cells mimics the deleterious effect of PAR-1 activation in vitro. Given the association between pathogenic subsets of Th17 cells and GC resistance, these observations have potential therapeutic relevance for patients with NS.
Collapse
Affiliation(s)
- Carl J May
- Bristol Renal, University of Bristol, Bristol, United Kingdom
| | - Gavin I Welsh
- Bristol Renal, University of Bristol, Bristol, United Kingdom
| | - Musleeha Chesor
- Bristol Renal, University of Bristol, Bristol, United Kingdom
| | - Phillipa J Lait
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Lauren P Schewitz-Bowers
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Richard W J Lee
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Moin A Saleem
- Bristol Renal, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
27
|
Rachubik P, Piwkowska A. The role of vasodilator‐stimulated phosphoprotein in podocyte functioning. Cell Biol Int 2019; 43:1092-1101. [DOI: 10.1002/cbin.11149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 04/06/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Patrycja Rachubik
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research CentrePolish Academy of Sciences Wita Stwosza 63, 80‐308 Gdańsk Poland
| | - Agnieszka Piwkowska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research CentrePolish Academy of Sciences Wita Stwosza 63, 80‐308 Gdańsk Poland
| |
Collapse
|
28
|
Kienzl-Wagner K, Waldegger S, Schneeberger S. Disease Recurrence-The Sword of Damocles in Kidney Transplantation for Primary Focal Segmental Glomerulosclerosis. Front Immunol 2019; 10:1669. [PMID: 31379860 PMCID: PMC6652209 DOI: 10.3389/fimmu.2019.01669] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/04/2019] [Indexed: 12/21/2022] Open
Abstract
A major obstacle in kidney transplantation for primary focal segmental glomerulosclerosis (FSGS) is the risk of disease recurrence. Recurrent FSGS affects up to 60% of first kidney grafts and exceeds 80% in patients who have lost their first graft due to recurrent FSGS. Clinical and experimental evidence support the hypothesis that a circulating permeability factor is the mediator in the pathogenesis of primary and recurrent disease. Despite all efforts, the causing agent has not yet been identified. Several treatment options for the management of recurrent FSGS have been proposed. In addition to plasma exchange, B-cell depleting antibodies are effective in recurrent FSGS. This indicates, that the secretion and/or activity of the postulated circulating permeability factor(s) may be B-cell related. This review summarizes the current knowledge on permeability factor(s) possibly related to the disease and discusses strategies for the management of recurrent FSGS. These include profound B-cell depletion prior to transplantation, as well as the salvage of an allograft affected by recurrent FSGS by transfer into a second recipient.
Collapse
Affiliation(s)
- Katrin Kienzl-Wagner
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Siegfried Waldegger
- Department of Pediatrics, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefan Schneeberger
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
29
|
Torban E, Braun F, Wanner N, Takano T, Goodyer PR, Lennon R, Ronco P, Cybulsky AV, Huber TB. From podocyte biology to novel cures for glomerular disease. Kidney Int 2019; 96:850-861. [PMID: 31420194 DOI: 10.1016/j.kint.2019.05.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/23/2019] [Accepted: 05/13/2019] [Indexed: 01/20/2023]
Abstract
The podocyte is a key component of the glomerular filtration barrier. Podocyte dysfunction is central to the underlying pathophysiology of many common glomerular diseases, including diabetic nephropathy, glomerulonephritis and genetic forms of nephrotic syndrome. Collectively, these conditions affect millions of people worldwide, and account for the majority of kidney diseases requiring dialysis and transplantation. The 12th International Podocyte Conference was held in Montreal, Canada from May 30 to June 2, 2018. The primary aim of this conference was to bring together nephrologists, clinician scientists, basic scientists and their trainees from all over the world to present their research and to establish networks with the common goal of developing new therapies for glomerular diseases based on the latest advances in podocyte biology. This review briefly highlights recent advances made in understanding podocyte structure and metabolism, experimental systems in which to study podocytes and glomerular disease, disease mediators, genetic and immune origins of glomerulopathies, and the development of novel therapeutic agents to protect podocyte and glomerular injury.
Collapse
Affiliation(s)
- Elena Torban
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada.
| | - Fabian Braun
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola Wanner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tomoko Takano
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
| | - Paul R Goodyer
- Department of Pediatrics, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | - Pierre Ronco
- Sorbonne University, INSERM UMR_S 1155, and Nephrology and Dialysis Department, Hôpital Tenon, Paris France
| | - Andrey V Cybulsky
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
30
|
Srivastava P, Solanki AK, Arif E, Wolf BJ, Janech MG, Budisavljevic MN, Kwon SH, Nihalani D. Development of a novel cell-based assay to diagnose recurrent focal segmental glomerulosclerosis patients. Kidney Int 2019; 95:708-716. [PMID: 30709661 PMCID: PMC6396290 DOI: 10.1016/j.kint.2018.10.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/25/2018] [Accepted: 10/18/2018] [Indexed: 11/20/2022]
Abstract
Definitive diagnosis of glomerular disease requires a kidney biopsy, an invasive procedure that may not be safe or feasible to perform in all patients. We developed a noninvasive, accurate, and economical diagnostic assay with easy commercial adaptability to detect recurrent focal segmental glomerulosclerosis (rFSGS) after kidney transplant. Since FSGS involves podocyte damage and death, our approach involved mRNA profiling of cultured podocytes treated with plasma from patients with rFSGS to identify upregulated genes involved in podocyte damage. For concept validation, three upregulated pro-apoptotic candidate genes (IL1β, BMF, and IGFBP3) were selected, and their promoter regions were cloned into a luciferase-based reporter vector and transfected into podocytes to generate stable podocyte cell lines. Strikingly, when exposed to rFSGS patient plasma, these cell lines showed increased reporter activity; in contrast, no reporter activity was noted with plasma from patients with non-recurrent FSGS or membranous nephropathy. Area under the receiver operating characteristics curves (AUCs) for models discriminating between rFSGS and other nephropathies (non-recurrent FSGS and membranous nephropathy) and between rFSGS and non-recurrent FSGS ranged from 0.81 to 0.86, respectively. Estimated sensitivities and specificities for the diagnosis of rFSGS were greater than 80% for the IL1β and BMF cell lines, and were slightly lower for the IGFBP3 cell line. Importantly, the novel approach outlined here for the diagnosis of rFSGS is widely applicable to the design of sensitive and specific diagnostic/prognostic assays for other glomerular diseases.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Biological Assay/methods
- Cell Line
- Diagnosis, Differential
- Gene Expression Profiling
- Genes, Reporter
- Glomerulosclerosis, Focal Segmental/blood
- Glomerulosclerosis, Focal Segmental/complications
- Glomerulosclerosis, Focal Segmental/diagnosis
- Humans
- Insulin-Like Growth Factor Binding Protein 3/genetics
- Insulin-Like Growth Factor Binding Protein 3/metabolism
- Interleukin-1beta/genetics
- Interleukin-1beta/metabolism
- Kidney Failure, Chronic/etiology
- Kidney Failure, Chronic/surgery
- Kidney Transplantation
- Luciferases/genetics
- Plasma/metabolism
- Podocytes/metabolism
- Promoter Regions, Genetic/genetics
- RNA, Messenger/metabolism
- RNA-Seq
- ROC Curve
- Recurrence
Collapse
Affiliation(s)
- Pankaj Srivastava
- Department of Medicine, Nephrology Division, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Ashish K Solanki
- Department of Medicine, Nephrology Division, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Ehtesham Arif
- Department of Medicine, Nephrology Division, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Bethany J Wolf
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Michael G Janech
- Department of Medicine, Nephrology Division, Medical University of South Carolina, Charleston, South Carolina, USA; College of Charleston, Charleston, South Carolina, USA
| | - Milos N Budisavljevic
- Department of Medicine, Nephrology Division, Medical University of South Carolina, Charleston, South Carolina, USA; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, USA
| | - Sang-Ho Kwon
- Department of Medicine, Nephrology Division, Medical University of South Carolina, Charleston, South Carolina, USA; Department of Cellular Biology and Anatomy, Augusta University, Augusta, Georgia, USA
| | - Deepak Nihalani
- Department of Medicine, Nephrology Division, Medical University of South Carolina, Charleston, South Carolina, USA.
| |
Collapse
|
31
|
Wen Y, Shah S, Campbell KN. Molecular Mechanisms of Proteinuria in Focal Segmental Glomerulosclerosis. Front Med (Lausanne) 2018; 5:98. [PMID: 29713631 PMCID: PMC5912003 DOI: 10.3389/fmed.2018.00098] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 03/26/2018] [Indexed: 01/01/2023] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) is the most common primary glomerular disease resulting in end-stage renal disease in the USA and is increasing in prevalence worldwide. It is a diverse clinical entity with idiopathic, genetic, metabolic, infectious, and other causes that culminate in a characteristic histologic pattern of injury. Proteinuria is a hallmark of FSGS as well as other primary and secondary glomerular disorders. The magnitude of proteinuria at disease onset and during treatment has prognostic implications for renal survival as well as associated cardiovascular morbidity and mortality. Significant advances over the last two decades have shed light on the molecular architecture of the glomerular filtration barrier. The podocyte is the target cell for injury in FSGS. A growing list of disease-causing gene mutations encoding proteins that regulate podocyte survival and homeostasis has been identified in FSGS patients. Several pathogenic and regulatory pathways have been uncovered that result in proteinuria in rodent models and human FSGS. The recurrence of proteinuria and FSGS after kidney transplantation is supporting evidence for the role of a circulating permeability factor in disease pathogenesis. These advances reviewed herein have significant implications for disease classification and therapeutic drug development for FSGS.
Collapse
Affiliation(s)
- Yumeng Wen
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Sapna Shah
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kirk N Campbell
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
32
|
Desideri S, Onions KL, Qiu Y, Ramnath RD, Butler MJ, Neal CR, King MLR, Salmon AE, Saleem MA, Welsh GI, Michel CC, Satchell SC, Salmon AHJ, Foster RR. A novel assay provides sensitive measurement of physiologically relevant changes in albumin permeability in isolated human and rodent glomeruli. Kidney Int 2018; 93:1086-1097. [PMID: 29433915 PMCID: PMC5912930 DOI: 10.1016/j.kint.2017.12.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 12/05/2017] [Accepted: 12/13/2017] [Indexed: 01/06/2023]
Abstract
Increased urinary albumin excretion is a key feature of glomerular disease but has limitations as a measure of glomerular permeability. Here we describe a novel assay to measure the apparent albumin permeability of single capillaries in glomeruli, isolated from perfused kidneys cleared of red blood cells. The rate of decline of the albumin concentration within the capillary lumen was quantified using confocal microscopy and used to calculate apparent permeability. The assay was extensively validated and provided robust, reproducible estimates of glomerular albumin permeability. These values were comparable with previous in vivo data, showing this assay could be applied to human as well as rodent glomeruli. To confirm this, we showed that targeted endothelial glycocalyx disruption resulted in increased glomerular albumin permeability in mice. Furthermore, incubation with plasma from patients with post-transplant recurrence of nephrotic syndrome increased albumin permeability in rat glomeruli compared to remission plasma. Finally, in glomeruli isolated from rats with early diabetes there was a significant increase in albumin permeability and loss of endothelial glycocalyx, both of which were ameliorated by angiopoietin-1. Thus, a glomerular permeability assay, producing physiologically relevant values with sufficient sensitivity to measure changes in glomerular permeability and independent of tubular function, was developed and validated. This assay significantly advances the ability to study biology and disease in rodent and human glomeruli.
Collapse
Affiliation(s)
- Sara Desideri
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Karen L Onions
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Yan Qiu
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Raina D Ramnath
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Matthew J Butler
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Christopher R Neal
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Matthew L R King
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Andrew E Salmon
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Moin A Saleem
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Gavin I Welsh
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | | | - Simon C Satchell
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Andrew H J Salmon
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Rebecca R Foster
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK.
| |
Collapse
|
33
|
Jayasinghe K, Quinlan C, Stark Z, Patel C, Sampson MG, Saleem M, Mallett AJ. Meeting report of the 2017 KidGen Renal Genetics Symposium. Hum Genomics 2018; 12:5. [PMID: 29382385 PMCID: PMC5791341 DOI: 10.1186/s40246-018-0137-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 01/23/2018] [Indexed: 12/31/2022] Open
Abstract
The 2017 KidGen Renal Genetics Symposium was held at the Royal Children’s Hospital and Murdoch Children’s Research Institute, Melbourne, from 6 to 8 December 2017. This meeting addressed clinical, diagnostic, and research aspects of inherited kidney disease. More than 100 clinicians, researchers, and patient representatives attended the conference. The overall goal was to improve the understanding and direction of genomics in renal medicine in Australia and discuss barriers to the use of genomic testing within this area. It also aimed to strengthen collaborations between local, state, and global research and diagnostic and clinical groups.
Collapse
Affiliation(s)
- Kushani Jayasinghe
- Department of Nephrology, Monash Medical Centre, Melbourne, Australia. .,KidGen Renal Genetics Flagship, Australian Genomic Health Alliance, Melbourne, Australia.
| | - Cathy Quinlan
- KidGen Renal Genetics Flagship, Australian Genomic Health Alliance, Melbourne, Australia.,Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatric Nephrology, Royal Children's Hospital, Melbourne, Australia
| | - Zornitza Stark
- KidGen Renal Genetics Flagship, Australian Genomic Health Alliance, Melbourne, Australia.,Murdoch Children's Research Institute, Melbourne, Australia.,Department of Pediatrics, University of Melbourne, Melbourne, Australia
| | - Chirag Patel
- KidGen Renal Genetics Flagship, Australian Genomic Health Alliance, Melbourne, Australia.,Genetic Health Queensland, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Matthew G Sampson
- Department Of Pediatrics-Nephrology, University of Michigan School of Medicine, Ann Arbor, USA
| | - Moin Saleem
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Andrew J Mallett
- KidGen Renal Genetics Flagship, Australian Genomic Health Alliance, Melbourne, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, Australia.,Kidney Health Service and Conjoint Renal Research Laboratory, Royal Brisbane and Women's Hospital, Butterfield Street, Herston, Brisbane, Queensland, 4029, Australia
| | | |
Collapse
|
34
|
Deriving and understanding the risk of post-transplant recurrence of nephrotic syndrome in the light of current molecular and genetic advances. Pediatr Nephrol 2018; 33:2027-2035. [PMID: 29022104 PMCID: PMC6153493 DOI: 10.1007/s00467-017-3793-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 08/22/2017] [Indexed: 12/31/2022]
Abstract
After renal transplantation, recurrence of the original disease is the second most common cause of graft loss, after rejection. The most dramatic manifestation of this phenomenon is in patients with nephrotic syndrome (NS). NS is a descriptive term describing a clinical picture centred on proteinuria arising from damage to the glomerular filtration barrier (GFB). There are many different drivers of that damage, ranging from immune dysregulation to genetic disorders and chronic disease/infections. The main categories in childhood are "idiopathic" (presumed immune mediated) and genetic NS, with further stratification of the idiopathic group according to steroid responses. A significant proportion of patients with NS progress to established renal failure, requiring transplantation, and one of the most difficult clinical scenarios faced by nephrologists is the recurrence of the original disease in up to 50% of patients, usually rapidly post-transplant. This is thought to be the archetypal "circulating factor" disease, in which as yet unknown circulating plasma "factor(s)" in the recipient target the donor kidney. The ability to predict in advance which patients will suffer recurrence would enhance our ability to counsel patients and families, and potentially identify those patients before transplant for tailored immunosuppressive preparation. Until very recently, stratification based on clinical categorisations has been poor in being able to predict those patients in whom disease will recur, and laboratory biomarkers are yet to be adequately refined. However, by mapping our growing understanding of disease mechanisms to clinical phenotypes, and with greatly improved genetic diagnostics, we have made progress in being able to stratify patients more specifically, and allow better predictive algorithms to be developed. Using our knowledge of podocyte biology, circulating factor-induced specific biomarkers are also being tested. This review is aimed at outlining those advances, and suggesting how we can move further forward in both clinical and biological markers of disease type.
Collapse
|
35
|
Sharma R, Waller AP, Agrawal S, Wolfgang KJ, Luu H, Shahzad K, Isermann B, Smoyer WE, Nieman MT, Kerlin BA. Thrombin-Induced Podocyte Injury Is Protease-Activated Receptor Dependent. J Am Soc Nephrol 2017; 28:2618-2630. [PMID: 28424276 PMCID: PMC5576925 DOI: 10.1681/asn.2016070789] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 03/16/2017] [Indexed: 12/29/2022] Open
Abstract
Nephrotic syndrome is characterized by massive proteinuria and injury of specialized glomerular epithelial cells called podocytes. Studies have shown that, whereas low-concentration thrombin may be cytoprotective, higher thrombin concentrations may contribute to podocyte injury. We and others have demonstrated that ex vivo plasma thrombin generation is enhanced during nephrosis, suggesting that thrombin may contribute to nephrotic progression. Moreover, nonspecific thrombin inhibition has been shown to decrease proteinuria in nephrotic animal models. We thus hypothesized that thrombin contributes to podocyte injury in a protease-activated receptor-specific manner during nephrosis. Here, we show that specific inhibition of thrombin with hirudin reduced proteinuria in two rat nephrosis models, and thrombin colocalized with a podocyte-specific marker in rat glomeruli. Furthermore, flow cytometry immunophenotyping revealed that rat podocytes express the protease-activated receptor family of coagulation receptors in vivo High-concentration thrombin directly injured conditionally immortalized human and rat podocytes. Using receptor-blocking antibodies and activation peptides, we determined that thrombin-mediated injury depended upon interactions between protease-activated receptor 3 and protease-activated receptor 4 in human podocytes, and between protease-activated receptor 1 and protease-activated receptor 4 in rat podocytes. Proximity ligation and coimmunoprecipitation assays confirmed thrombin-dependent interactions between human protease-activated receptor 3 and protease-activated receptor 4, and between rat protease-activated receptor 1 and protease-activated receptor 4 in cultured podocytes. Collectively, these data implicate thrombinuria as a contributor to podocyte injury during nephrosis, and suggest that thrombin and/or podocyte-expressed thrombin receptors may be novel therapeutic targets for nephrotic syndrome.
Collapse
Affiliation(s)
- Ruchika Sharma
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital
- Division of Hematology, Oncology, and BMT, and
| | - Amanda P Waller
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital
| | - Shipra Agrawal
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital
| | - Katelyn J Wolfgang
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital
| | - Hiep Luu
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital
- Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio
| | - Khurrum Shahzad
- Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke University, Magdeburg, Germany
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan; and
| | - Berend Isermann
- Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke University, Magdeburg, Germany
| | - William E Smoyer
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital
- Division of Nephrology, Nationwide Children's Hospital, Columbus, Ohio
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Marvin T Nieman
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio
| | - Bryce A Kerlin
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital,
- Division of Hematology, Oncology, and BMT, and
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio
| |
Collapse
|
36
|
Svenningsen P, Hinrichs GR, Zachar R, Ydegaard R, Jensen BL. Physiology and pathophysiology of the plasminogen system in the kidney. Pflugers Arch 2017; 469:1415-1423. [DOI: 10.1007/s00424-017-2014-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/09/2017] [Accepted: 06/12/2017] [Indexed: 12/31/2022]
|
37
|
Hahm E, Peev V, Reiser J. Extrarenal determinants of kidney filter function. Cell Tissue Res 2017; 369:211-216. [PMID: 28560690 DOI: 10.1007/s00441-017-2635-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 04/28/2017] [Indexed: 12/27/2022]
Abstract
The kidney is an organ involved in cross talk with many human organs. The link between the immune system and the kidney has been studied in some detail, although data precisely elucidating their interaction are sparse, in particular with regard to the function of the kidney filter apparatus. Current research suggests that an understanding of the impairment of this cross talk between the bone marrow, as a fundament of the immune system and the kidney will provide meaningful insights into the pathophysiological mechanisms of impaired kidney filter function. Circulating factors have long been implicated in the pathogenesis of idiopathic nephrotic syndrome, particularly focal segmental glomerulosclerosis (FSGS) and its recurrence. Soluble urokinase receptor (suPAR) has emerged as a circulating factor responsible for FSGS and also as an early predictive marker for the development of various renal diseases. The bone marrow has recently been revealed as a predominant source of suPAR with deleterious effects on the kidney filter. These new findings have led to bone marrow or hematopoietic stem cell transplants being considered as potential therapeutic options for preventing the post-transplantation recurrence of FSGS or even as a treatment for the original disease associated with high suPAR levels. Whereas bone marrow transplantation for patients with pre-existing chronic kidney disease is challenging, recent clinical trials have demonstrated the promising outcome of combined bone marrow and kidney transplantation in patients with kidney failure. In this review, with its brief update on suPAR, we describe the critical new role of the bone marrow in the pathogenesis of the kidney disease process and the functional connection between these two organs through the soluble mediator, suPAR. We also comment on the feasibility of bone marrow transplants for the treatment of patients with chronic renal failure arising from recurrent FSGS.
Collapse
Affiliation(s)
- Eunsil Hahm
- Department of Internal Medicine, Rush University Medical Center, Chicago, Ill., USA
| | - Vasil Peev
- Department of Internal Medicine, Rush University Medical Center, Chicago, Ill., USA. .,Rush University Transplant Program, 1725 W. Harrison Street, Suite 161, Chicago, IL, 60612, USA.
| | - Jochen Reiser
- Department of Internal Medicine, Rush University Medical Center, Chicago, Ill., USA
| |
Collapse
|
38
|
Beaudreuil S, Lorenzo HK, Elias M, Nnang Obada E, Charpentier B, Durrbach A. Optimal management of primary focal segmental glomerulosclerosis in adults. Int J Nephrol Renovasc Dis 2017; 10:97-107. [PMID: 28546764 PMCID: PMC5436760 DOI: 10.2147/ijnrd.s126844] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) is a frequent glomerular kidney disease that is revealed by proteinuria or even nephrotic syndrome. A diagnosis can be established from a kidney biopsy that shows focal and segmental glomerulosclerosis. This histopathological lesion may be caused by a primary podocyte injury (idiopathic FSGS) but is also associated with other pathologies (secondary FSGS). The first-line treatment for idiopathic FSGS with nephrotic syndrome is a prolonged course of corticosteroids. However, steroid resistance or steroid dependence is frequent, and despite intensified immunosuppressive treatment, FSGS can lead to end-stage renal failure. In addition, in some cases, FSGS can recur on a graft after kidney transplantation: an unidentified circulating factor may be implicated. Understanding of its physiopathology is unclear, and it remains an important challenge for the scientific community to identify a specific diagnostic biomarker and to develop specific therapeutics. This study reviews the treatment of primary FSGS and the recurrence of FSGS after kidney transplantation in adults.
Collapse
Affiliation(s)
- Séverine Beaudreuil
- Department of Nephrology Dialysis Transplantation, Paris-Sud University Hospital, Le Kremlin Bicêtre.,INSERM Unit 1197, Paris-Sud University Hospital, Villejuif, France
| | - Hans Kristian Lorenzo
- Department of Nephrology Dialysis Transplantation, Paris-Sud University Hospital, Le Kremlin Bicêtre.,INSERM Unit 1197, Paris-Sud University Hospital, Villejuif, France
| | - Michele Elias
- Department of Nephrology Dialysis Transplantation, Paris-Sud University Hospital, Le Kremlin Bicêtre
| | - Erika Nnang Obada
- Department of Nephrology Dialysis Transplantation, Paris-Sud University Hospital, Le Kremlin Bicêtre
| | - Bernard Charpentier
- Department of Nephrology Dialysis Transplantation, Paris-Sud University Hospital, Le Kremlin Bicêtre.,INSERM Unit 1197, Paris-Sud University Hospital, Villejuif, France
| | - Antoine Durrbach
- Department of Nephrology Dialysis Transplantation, Paris-Sud University Hospital, Le Kremlin Bicêtre.,INSERM Unit 1197, Paris-Sud University Hospital, Villejuif, France
| |
Collapse
|
39
|
Abstract
Focal segmental glomerulosclerosis (FSGS) is a leading cause of kidney disease worldwide. The presumed etiology of primary FSGS is a plasma factor with responsiveness to immunosuppressive therapy and a risk of recurrence after kidney transplant-important disease characteristics. In contrast, adaptive FSGS is associated with excessive nephron workload due to increased body size, reduced nephron capacity, or single glomerular hyperfiltration associated with certain diseases. Additional etiologies are now recognized as drivers of FSGS: high-penetrance genetic FSGS due to mutations in one of nearly 40 genes, virus-associated FSGS, and medication-associated FSGS. Emerging data support the identification of a sixth category: APOL1 risk allele-associated FSGS in individuals with sub-Saharan ancestry. The classification of a particular patient with FSGS relies on integration of findings from clinical history, laboratory testing, kidney biopsy, and in some patients, genetic testing. The kidney biopsy can be helpful, with clues provided by features on light microscopy (e.g, glomerular size, histologic variant of FSGS, microcystic tubular changes, and tubular hypertrophy), immunofluorescence (e.g, to rule out other primary glomerulopathies), and electron microscopy (e.g., extent of podocyte foot process effacement, podocyte microvillous transformation, and tubuloreticular inclusions). A complete assessment of renal histology is important for establishing the parenchymal setting of segmental glomerulosclerosis, distinguishing FSGS associated with one of many other glomerular diseases from the clinical-pathologic syndrome of FSGS. Genetic testing is beneficial in particular clinical settings. Identifying the etiology of FSGS guides selection of therapy and provides prognostic insight. Much progress has been made in our understanding of FSGS, but important outstanding issues remain, including the identity of the plasma factor believed to be responsible for primary FSGS, the value of routine implementation of genetic testing, and the identification of more effective and less toxic therapeutic interventions for FSGS.
Collapse
Affiliation(s)
- Avi Z. Rosenberg
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland; and
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Jeffrey B. Kopp
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland; and
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
40
|
Abstract
Idiopathic nephrotic syndrome (INS) is one of the most common glomerular diseases in children and adults, and the central event is podocyte injury. INS is a heterogeneous disease, and treatment is largely empirical and in many cases unsuccessful, and steroids are the initial mainstay of therapy. Close to 70% of children with INS have some response to steroids and are labelled as steroid-‘sensitive’, and the rest as steroid-‘resistant’ (also termed focal segmental glomerulosclerosis), and single-gene mutations underlie a large proportion of the latter group. The burden of morbidity is enormous, both to patients with lifelong chronic disease and to health services, particularly in managing dialysis and transplantation. The target cell of nephrotic syndrome is the glomerular podocyte, and podocyte biology research has exploded over the last 15 years. Major advances in genetic and biological understanding now put clinicians and researchers at the threshold of a major reclassification of the disease and testing of targeted therapies both identified and novel. That potential is based on complete genetic analysis, deep clinical phenotyping, and the introduction of mechanism-derived biomarkers into clinical practice. INS can now be split off into those with a single-gene defect, of which currently at least 53 genes are known to be causative, and the others. Of the others, the majority are likely to be immune-mediated and caused by the presence of a still-unknown circulating factor or factors, and whether there is a third (or more) mechanistic group or groups remains to be discovered. Treatment is therefore now being refined towards separating out the monogenic cases to minimise immunosuppression and further understanding how best to stratify and appropriately direct immunosuppressive treatments within the immune group. Therapies directed specifically towards the target cell, the podocyte, are in their infancy but hold considerable promise for the near future.
Collapse
Affiliation(s)
| | - Moin Saleem
- University of Bristol, Bristol Royal Hospital for Children, Bristol, UK
| |
Collapse
|
41
|
Soluble Urokinase Receptors in Focal Segmental Glomerulosclerosis: A Review on the Scientific Point of View. J Immunol Res 2016; 2016:2068691. [PMID: 27504461 PMCID: PMC4967695 DOI: 10.1155/2016/2068691] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 06/12/2016] [Indexed: 12/17/2022] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) is one of the primary glomerular disorders in both children and adults which can progress to end-stage renal failure. Although there are genetic and secondary causes, circulating factors have also been regarded as an important factor in the pathogenesis of FSGS, because about 40% of the patients with FSGS have recurrence after renal transplantation. Soluble urokinase-type plasminogen activator receptor (suPAR) is a soluble form of uPAR, which is a membrane-bound protein linked to GPI in various immunologically active cells, including podocytes. It has recently been suggested as a potential circulating factor in FSGS by in vitro podocyte experiments, in vivo mice models, and human studies. However, there have also been controversies on this issue, because subsequent studies showed conflicting results. suPAR levels were also increased in patients with other glomerular diseases and were inversely correlated with estimated glomerular filtration rate. Nevertheless, there has been no balanced review on this issue. In this review, we compare the conflicting data on the involvement of suPAR in the pathogenesis of FSGS and shed light on interpretation by taking into account many points and the potential variables and confounders influencing serum suPAR levels.
Collapse
|
42
|
Pullen N, Fornoni A. Drug discovery in focal and segmental glomerulosclerosis. Kidney Int 2016; 89:1211-20. [PMID: 27165834 PMCID: PMC4875964 DOI: 10.1016/j.kint.2015.12.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/23/2015] [Accepted: 12/29/2015] [Indexed: 11/26/2022]
Abstract
Despite the high medical burden experienced by patients with focal segmental glomerulosclerosis, the etiology of the condition remains largely unknown. Focal segmental glomerulosclerosis is highly heterogeneous in clinical and morphologic manifestations. While this presents challenges for the development of new treatments, research investments over the last 2 decades have yielded a surfeit of potential avenues for therapeutic intervention. The development of many of those ideas and concepts into new therapies, however, has been very disappointing. Here, we describe some of the factors that have potentially contributed to the poor translational performance from this research investment, including the confidence we ascribe to a target, the conduct of experimental studies, and the availability of selective reagents to test hypotheses. We will discuss the significance of genetic and systems traits as well as other methods for reducing bias. We will analyze the limitations of a successful drug development. We will use specific examples hoping that these will guide a consensus for investment and drive greater translational quality. We hope that this substrate will serve to exemplify the tremendous opportunity for intervention as well as facilitate greater collaborative effort between industry, academia, and private foundations in promoting appropriate validation of these targets. Only then will we have achieved our goal for curative therapies for this devastating disease.
Collapse
Affiliation(s)
- Nick Pullen
- Pfizer Global Research & Development, Cambridge, Massachusetts, USA.
| | - Alessia Fornoni
- Katz Family Drug Discovery Center and Division of Nephrology and Hypertension, University of Miami Miller School of Medicine, Miami, Florida, USA.
| |
Collapse
|
43
|
Recurrence and Treatment after Renal Transplantation in Children with FSGS. BIOMED RESEARCH INTERNATIONAL 2016; 2016:6832971. [PMID: 27213154 PMCID: PMC4860214 DOI: 10.1155/2016/6832971] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 03/14/2016] [Accepted: 04/04/2016] [Indexed: 01/15/2023]
Abstract
Focal segmental glomerulosclerosis (FSGS) is a common cause of end-stage renal disease and a common pathologic diagnosis of idiopathic nephrotic syndrome (NS), especially in steroid-resistant cases. FSGS is known to recur after kidney transplantation, frequently followed by graft loss. However, not all patients with FSGS suffer from recurrence after kidney transplantation, and genetic and secondary FSGS have a negligible risk of recurrence. Furthermore, many cases of recurrence achieve remission with the current management of recurrence (intensive plasmapheresis/immunosuppression, including rituximab), and other promising agents are being evaluated. Therefore, a pathologic diagnosis of FSGS itself should not cause postponement of allograft kidney transplantation. For patients with a high risk of recurrence who presented with classical symptoms of NS, that is, severe edema, proteinuria, and hypoalbuminemia, close monitoring of proteinuria is necessary, followed by immediate, intensive treatment for recurrence.
Collapse
|
44
|
Circulating Permeability Factors in Primary Focal Segmental Glomerulosclerosis: A Review of Proposed Candidates. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3765608. [PMID: 27200372 PMCID: PMC4856884 DOI: 10.1155/2016/3765608] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 02/22/2016] [Indexed: 12/20/2022]
Abstract
Primary focal segmental glomerulosclerosis (FSGS) is a major cause of the nephrotic syndrome and often leads to end-stage renal disease. This review focuses on circulating permeability factors in primary FSGS that have been implicated in the pathogenesis for a long time, partly due to the potential recurrence in renal allografts within hours after transplantation. Recently, three molecules have been proposed as a potential permeability factor by different groups: the soluble urokinase plasminogen activator receptor (suPAR), cardiotrophin-like cytokine factor-1 (CLCF-1), and CD40 antibodies. Both CLCF-1 and CD40 antibodies have not been validated by independent research groups yet. Since the identification of suPAR, different studies have questioned the validity of suPAR as a biomarker to distinguish primary FSGS from other proteinuric kidney diseases as well as suPAR's pathogenic role in podocyte damage. Researchers have suggested that cleaved molecules of suPAR have a pathogenic role in FSGS but further studies are needed to determine this role. In future studies, proposed standards for the research of the permeability factor should be carefully followed. The identification of the permeability factor in primary FSGS would be of great clinical relevance as it could influence potential individual treatment regimen.
Collapse
|
45
|
Abstract
Minimal change disease (MCD) is an important cause of nephrotic syndrome and is characterized by massive proteinuria and hypoalbuminemia, resulting in edema and hypercholesterolemia. The podocyte plays a key role in filtration and its disruption results in a dramatic loss of function leading to proteinuria. Immunologic disturbance has been suggested in the pathogenesis of MCD. Because of its clinical features, such as recurrent relapse/remission course, steroid response in most patients, and rare familial cases, a genetic defect has been thought to be less likely in MCD. Recent progress in whole-exome sequencing reveals pathogenic mutations in familial cases in steroid-sensitive nephrotic syndrome (SSNS) and sheds light on possible mechanisms and key molecules in podocytes in MCD. On the other hand, in the majority of cases, the existence of circulating permeability factors has been implicated along with T lymphocyte dysfunction. Observations of benefit with rituximab added B cell involvement to the disease. Animal models are unsatisfactory, and the humanized mouse may be a good model that well reflects MCD pathophysiology to investigate suggested “T cell dysfunction” directly related to podocytes
in vivo. Several candidate circulating factors and their effects on podocytes have been proposed but are still not sufficient to explain whole mechanisms and clinical features in MCD. Another circulating factor disease is focal segmental glomerulosclerosis (FSGS), and it is not clear if this is a distinct entity, or on the same spectrum, implicating the same circulating factor(s). These patients are mostly steroid resistant and often have a rapid relapse after transplantation. In clinical practice, predicting relapse or disease activity and response to steroids is important and is an area where novel biomarkers can be developed based on our growing knowledge of podocyte signaling pathways. In this review, we discuss recent findings in genetics and podocyte biology in MCD.
Collapse
Affiliation(s)
- Moin A Saleem
- Paediatric Renal Medicine, University of Bristol, Bristol, UK; Children's Renal Unit, Bristol Royal Hospital for Children, Bristol, UK
| | - Yasuko Kobayashi
- Paediatric Renal Medicine, University of Bristol, Bristol, UK; Department of Pediatrics, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| |
Collapse
|
46
|
Kachurina N, Chung CF, Benderoff E, Babayeva S, Bitzan M, Goodyer P, Kitzler T, Matar D, Cybulsky AV, Alachkar N, Torban E. Novel unbiased assay for circulating podocyte-toxic factors associated with recurrent focal segmental glomerulosclerosis. Am J Physiol Renal Physiol 2015; 310:F1148-56. [PMID: 26719363 DOI: 10.1152/ajprenal.00349.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 12/28/2015] [Indexed: 01/28/2023] Open
Abstract
Focal segmental glomerular sclerosis (FSGS) is an irreversible renal pathology characterized by podocyte detachment from the glomerular basement membrane, hyalinosis, and sclerosis. Clinically, it manifests with proteinuria and progressive loss of glomerular filtration. Primary idiopathic FSGS can occur in isolation and frequently progresses to end-stage renal disease, requiring dialysis or kidney transplantation. In 30-50% of these patients, proteinuria and FSGS recur in the renal allograft, suggesting the presence of a podocyte-toxic factor(s) in the recipient's serum. Currently, there is no reliable way to quantify the serum activity or predict the subset of FSGS patients at risk for recurrence after transplantation. We describe a novel in vitro method that measures the podocyte-toxic activity of sera from FSGS patients using cultured human podocytes; we compare this with the effect of compounds such as adriamycin. Using immunofluorescence microscopy followed by computerized image-processing analysis, we show that incubation of human podocytes with adriamycin leads to a dose-dependent disassembly of focal adhesion complexes (FACs). We then demonstrate that sera from patients with posttransplant recurrent or idiopathic FSGS cause a similar FAC disturbance. In contrast, sera from nonrecurrent FSGS patients do not affect FACs. In some FSGS patients, toxic effects of serum can be prevented by blockade of the tumor necrosis factor-α pathway. We propose that this method may be useful as a diagnostic tool to identify FSGS patients with serum podocyte-toxic activity that presumably places them at increased risk for recurrence in the renal allograft.
Collapse
Affiliation(s)
- Nadezda Kachurina
- Department of Medicine, McGill University and McGill University Health Center, Montreal, Quebec, Canada
| | - Chen-Fang Chung
- Department of Medicine, McGill University and McGill University Health Center, Montreal, Quebec, Canada
| | - Erin Benderoff
- Department of Medicine, McGill University and McGill University Health Center, Montreal, Quebec, Canada
| | - Sima Babayeva
- Department of Medicine, McGill University and McGill University Health Center, Montreal, Quebec, Canada
| | - Martin Bitzan
- The Montreal Children's Hospital, Department of Paediatric Nephrology, McGill University Health Center, Montreal, Quebec, Canada
| | - Paul Goodyer
- The Montreal Children's Hospital, Department of Paediatric Nephrology, McGill University Health Center, Montreal, Quebec, Canada; Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Thomas Kitzler
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Dany Matar
- McKinsey & Company, Washington, District of Columbia; and
| | - Andrey V Cybulsky
- Department of Medicine, McGill University and McGill University Health Center, Montreal, Quebec, Canada
| | - Nada Alachkar
- Division of Nephrology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elena Torban
- Department of Medicine, McGill University and McGill University Health Center, Montreal, Quebec, Canada;
| |
Collapse
|
47
|
Keir LS, Firth R, May C, Ni L, Welsh GI, Saleem MA. Generating conditionally immortalised podocyte cell lines from wild-type mice. Nephron Clin Pract 2015; 129:128-36. [PMID: 25720381 DOI: 10.1159/000369816] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 11/10/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Understanding podocyte biology is key to deciphering the pathogenesis of numerous glomerular diseases. However, cultivation of primary podocytes results in dedifferentiation with loss of specialised architecture. Human conditionally immortalised podocytes partly overcome this problem, utilising a temperature-sensitive transgene. Conditionally immortalised murine podocytes exist, but are derived from the Immortomouse. METHODS Using retroviral temperature-sensitive SV40 transfection, we created a conditionally immortalised podocyte cell line from wild-type mice. RESULTS These cells develop characteristic mature podocyte morphology and robustly express slit diaphragm proteins. Functionally, these cells demonstrate comparable responses in motility and glucose uptake to human conditionally immortalised podocytes. CONCLUSION Podocyte-specific transgenic mice are extensively used to study glomerular disease and this technique could be used to make podocyte cell lines from any mouse, allowing study at the cellular level. This will help characterise these disease models and add to the laboratory resources used to study podocytopathies and glomerular disease.
Collapse
|
48
|
Madhusudhan T, Kerlin BA, Isermann B. The emerging role of coagulation proteases in kidney disease. Nat Rev Nephrol 2015; 12:94-109. [PMID: 26592189 DOI: 10.1038/nrneph.2015.177] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A role of coagulation proteases in kidney disease beyond their function in normal haemostasis and thrombosis has long been suspected, and studies performed in the past 15 years have provided novel insights into the mechanisms involved. The expression of protease-activated receptors (PARs) in renal cells provides a molecular link between coagulation proteases and renal cell function and revitalizes research evaluating the role of haemostasis regulators in renal disease. Renal cell-specific expression and activity of coagulation proteases, their regulators and their receptors are dynamically altered during disease processes. Furthermore, renal inflammation and tissue remodelling are not only associated, but are causally linked with altered coagulation activation and protease-dependent signalling. Intriguingly, coagulation proteases signal through more than one receptor or induce formation of receptor complexes in a cell-specific manner, emphasizing context specificity. Understanding these cell-specific signalosomes and their regulation in kidney disease is crucial to unravelling the pathophysiological relevance of coagulation regulators in renal disease. In addition, the clinical availability of small molecule targeted anticoagulants as well as the development of PAR antagonists increases the need for in-depth knowledge of the mechanisms through which coagulation proteases might regulate renal physiology.
Collapse
Affiliation(s)
- Thati Madhusudhan
- Institute of Clinical Chemistry and Pathobiochemistry, Medical Faculty, Otto-von-Guericke-University, Magdeburg, Leipziger Strasse 44, Magdeburg D-39120, Germany
| | - Bryce A Kerlin
- Center for Clinical and Translational Research, Nationwide Children's Hospital, 700 Children's Drive, W325 Columbus, Ohio 43205, USA
| | - Berend Isermann
- Institute of Clinical Chemistry and Pathobiochemistry, Medical Faculty, Otto-von-Guericke-University, Magdeburg, Leipziger Strasse 44, Magdeburg D-39120, Germany
| |
Collapse
|
49
|
Levamisole in steroid-sensitive nephrotic syndrome: usefulness in adult patients and laboratory insights into mechanisms of action via direct action on the kidney podocyte. Clin Sci (Lond) 2015; 128:883-93. [PMID: 25626449 DOI: 10.1042/cs20140749] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Minimal change nephropathy (MCN) is the third most common cause of primary nephrotic syndrome in adults. Most patients with MCN respond to corticosteroid therapy, but relapse is common. In children, steroid-dependent patients are often given alternative agents to spare the use of steroids and to avoid the cumulative steroid toxicity. In this respect, levamisole has shown promise due to its ability to effectively maintain remission in children with steroid-sensitive or steroid-dependent nephrotic syndrome. Despite clinical effectiveness, there is a complete lack of molecular evidence to explain its mode of action and there are no published reports on the use of this compound in adult patients. We studied the effectiveness of levamisole in a small cohort of adult patients and also tested the hypothesis that levamisole's mode of action is attributable to its direct effects on podocytes. In the clinic, we demonstrate that in our adult patients, cohort levamisole is generally well tolerated and clinically useful. Using conditionally immortalized human podocytes, we show that levamisole is able to induce expression of glucocorticoid receptor (GR) and to activate GR signalling. Furthermore, levamisole is able to protect against podocyte injury in a puromycin aminonucleoside (PAN)-treated cell model. In this model the effects of levamisole are blocked by the GR antagonist mifepristone (RU486), suggesting that GR signalling is a critical target of levamisole's action. These results indicate that levamisole is effective in nephrotic syndrome in adults, as well as in children, and point to molecular mechanisms for this drug's actions in podocyte diseases.
Collapse
|
50
|
Maas RJ, Deegens JK, Wetzels JF. Permeability factors in idiopathic nephrotic syndrome: historical perspectives and lessons for the future. Nephrol Dial Transplant 2015; 29:2207-16. [PMID: 25416821 DOI: 10.1093/ndt/gfu355] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The term idiopathic nephrotic syndrome (iNS) traditionally covers minimal change disease and primary focal segmental glomerulosclerosis (FSGS), now thought to be separate disease entities. Clinical and experimental evidence suggest that circulating permeability factors are involved in their pathogenesis. In the past four decades, many investigators have searched for the responsible factors, thus far with little success. The recent report of the soluble urokinase plasminogen activator receptor as a causative factor in FSGS has received much attention, but again the initially promising findings were not confirmed. We describe the history of the search for permeability factors, discuss the pitfalls that are likely responsible for the lack of success and propose criteria that should be used in future studies when evaluating candidate permeability factors.
Collapse
Affiliation(s)
- Rutger J Maas
- Department of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jeroen K Deegens
- Department of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jack F Wetzels
- Department of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|