1
|
Ozgurbuz U, Kabadayi Ensarioglu H, Akogullari Celik D, Vatansever HS. Favipiravir Protects Enterocytes From Cell Death After Inflammatory Storm. Cureus 2023; 15:e47417. [PMID: 37873040 PMCID: PMC10590652 DOI: 10.7759/cureus.47417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2023] [Indexed: 10/25/2023] Open
Abstract
Over the past years, inflammatory bowel disease (IBD) treatment has become more targeted, anticipating the use of immune-modifying therapies at an earlier stage. During the treatment process prevention and management of viral infections hold significant importance. The protective role of favipiravir on enterocytes which are affected by inflammation is still unknown. We aim to analyze the effects of favipiravir on enterocytes after an inflammatory condition. We conducted a 2,5-diphenyl-2H-tetrazolium bromide (MTT) assay to assess the cytotoxicity of favipiravir on intestinal epithelioid cells (IEC-6). To mimic the inflammation model in cell culture conditions, we exposed IEC-6 cells to tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ). The cells were categorized into four groups: control, inflammation model, application of favipiravir before inflammation (prophylactic), and application of favipiravir after inflammation (treatment). We assessed the presence and distribution of caspase 1, caspase 3, interleukin 6 (IL6), interleukin 8 (IL8), mixed lineage kinase domain-like protein (MLKL), receptor-interacting protein kinase 1 (RIPK1), and TNF-α using indirect immunoperoxidase staining. TNF-α and IL8 levels were analyzed with enzyme-linked immunosorbent assay (ELISA) in a culture medium. Caspase 1 was observed to be strong (+++) in the treatment group and weak (+) in the prophylactic group compared to the inflammation group. Caspase 3 was weak (+) in the inflammation group, and it was strong (+++) in the prophylactic and treatment group, the increase in the treatment group was significant. Therefore administering favipiravir before inducing inflammation appears to control the inflammatory caspase pathway in intestinal enterocytes, protecting them from inflammatory responses, while the caspase 3-dependent apoptotic pathway may not be active in enterocytes during inflammation. IL6 and IL8 were negative (-) in control, IL6 was weak (+) in inflammation and favipiravir treated groups; IL8 increased significantly in favipiravir groups compared to control and inflammation groups. Consequently, favipiravir may trigger IL6 release, initiating the inflammatory pathway and potentially enhancing IL8 interactions with other cytokines. TNF-α immunoreactivity was strong (+++) in the inflammation group, while it was moderate (++) in favipiravir-administered groups. MLKL immunoreactivity was strong (+++) in all groups, RIPK1 was weak (+) in control, strong (+++) in the inflammation and treatment group, moderate (++) in the prophylactic group, and the increase in inflammation and treatment group was significant compared to control. Our findings suggest that in the treatment group, necroptosis was triggered by increased MLKL and RIPK1, key players in inflammation and cell death. After immunocytochemical evaluation, our findings suggest that, after the onset of inflammation, favipiravir may play a role in cell death by increasing necroptosis rather than apoptosis.
Collapse
Affiliation(s)
- Ugur Ozgurbuz
- Anesthesiology and Reanimation, Izmir Ataturk Research and Training Hospital, İzmir, TUR
| | | | | | | |
Collapse
|
2
|
Yasir A, Mahmood Y, Yaqoob MA, Zia UUR, Munoz-Zanzi C, Alam MM, Warraich MA, Hassan Mushtaq M. Epidemiological investigation of norovirus infections in Punjab, Pakistan, through the One Health approach. Front Public Health 2023; 11:1065105. [PMID: 37006581 PMCID: PMC10052407 DOI: 10.3389/fpubh.2023.1065105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 02/14/2023] [Indexed: 03/16/2023] Open
Abstract
IntroductionNorovirus, mainly associated with acute gastroenteritis, is very contagious and can affect a vast range of species ranging from cattle, pigs, dogs, mice, cats, sheep, and lions to humans. It is a foodborne pathogen that mainly transmits through the fecal–oral route.MethodsThis is the first-ever study conducted in Lahore and Sheikhupura districts of Punjab, Pakistan, to investigate noroviruses through the One Health approach. From January 2020 to September 2021, 200 fecal samples were collected from clinical cases of hospitalized patients and 200 fecal samples from sick animals at veterinary hospitals and local farms. In addition, 500 food and beverage samples were collected from street vendors and retail stores. A predesigned questionnaire was used to assess the risk factors and clinical characteristics of sick people and animals.Results and discussionOverall, 14% of the human clinical samples were positive by RT-PCR for genogroup GII. All bovine samples were negative. Food and beverage samples were tested in pools, resulting in sugarcane juice samples positive for genogroup GII. Previous contact with acute gastroenteritis patients, sex, and presence of vomiting were found to be significant risk factors (p ≤ 0.05). The substantial number of diarrhea cases associated with noroviruses calls for additional studies to investigate the epidemiology and transmission and to improve surveillance.
Collapse
Affiliation(s)
- Ammar Yasir
- Department of Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore, Pakistan
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | - Yasir Mahmood
- Department of Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Arsalan Yaqoob
- Department of Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Ubaid-ur-Rehman Zia
- Department of Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Claudia Munoz-Zanzi
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | | | | | - Muhammad Hassan Mushtaq
- Department of Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore, Pakistan
- *Correspondence: Muhammad Hassan Mushtaq
| |
Collapse
|
3
|
Strine MS, Alfajaro MM, Graziano VR, Song J, Hsieh LL, Hill R, Guo J, VanDussen KL, Orchard RC, Baldridge MT, Lee S, Wilen CB. Tuft-cell-intrinsic and -extrinsic mediators of norovirus tropism regulate viral immunity. Cell Rep 2022; 41:111593. [PMID: 36351394 PMCID: PMC9662704 DOI: 10.1016/j.celrep.2022.111593] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/19/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022] Open
Abstract
Murine norovirus (MNoV) is a model for human norovirus and for interrogating mechanisms of viral tropism and persistence. We previously demonstrated that the persistent strain MNoVCR6 infects tuft cells, which are dispensable for the non-persistent strain MNoVCW3. We now show that diverse MNoV strains require tuft cells for chronic enteric infection. We also demonstrate that interferon-λ (IFN-λ) acts directly on tuft cells to cure chronic MNoVCR6 infection and that type I and III IFNs signal together via STAT1 in tuft cells to restrict MNoVCW3 tropism. We then develop an enteroid model and find that MNoVCR6 and MNoVCW3 similarly infect tuft cells with equal IFN susceptibility, suggesting that IFN derived from non-epithelial cells signals on tuft cells in trans to restrict MNoVCW3 tropism. Thus, tuft cell tropism enables MNoV persistence and is determined by tuft cell-intrinsic factors (viral receptor expression) and -extrinsic factors (immunomodulatory signaling by non-epithelial cells).
Collapse
Affiliation(s)
- Madison S Strine
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA; Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Mia Madel Alfajaro
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA; Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Vincent R Graziano
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA
| | - Jaewon Song
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Leon L Hsieh
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Ryan Hill
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jun Guo
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO, USA
| | - Kelli L VanDussen
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, OH, USA
| | - Robert C Orchard
- Department of Immunology, University of Texas Southwestern Medical School, Dallas, TX, USA
| | - Megan T Baldridge
- Department of Medicine, Division of Infectious Diseases, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Sanghyun Lee
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA.
| | - Craig B Wilen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA; Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
4
|
He T, Chen X, Deng Y, Li B, Wang H, Wang Q, Zhai A, Shi L, Chen Y, Wu C. Development and validation of an efficient nomogram for risk assessment of norovirus infection in pediatric patients. Eur J Clin Microbiol Infect Dis 2022; 41:1433-1443. [PMID: 36282340 PMCID: PMC9592877 DOI: 10.1007/s10096-022-04510-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/14/2022] [Indexed: 11/27/2022]
Abstract
This study aimed to establish a predictive model and nomogram based on routine laboratory blood indicators and clinical symptoms, subsequently providing a rapid risk assessment of norovirus (NoV) infection in children. This retrospective study enrolled 307 pediatric patients with symptoms of acute gastroenteritis and detected NoV using real-time quantitative polymerase chain reaction. Significant indicators selected by multivariate logistic regression, including routine blood tests and consultation symptoms, were used to develop the nomogram. We divided the sample into training and internal validation sets and performed external validation of the final model. Furthermore, we evaluated the clinical performance using the Akaike information criterion (AIC), area under the curve (AUC), calibration curve, decision curve analysis (DCA), sensitivity, specificity, concordance rate, positive predictive value, and negative predictive value. Overall, 153 cases were NoV-PCR-positive, and 154 were negative. The multivariate logistic regression included five predictors of NoV infection, including symptoms of vomiting, upper respiratory tract infection, and indicators of white blood cells, lymphocyte absolute counts, and platelet counts. The nomogram showed a significant predictive value with overall internal set diagnosis, with an AUC of 0.827 (95% confidence interval (CI): 0.785–0.868), and 0.812 (95% CI: 0.755–0.869) with 0.799 (95% CI: 0.705–0.894) in the training and internal validation sets, respectively. Nevertheless, the AUC in the external validation set was higher (0.915; 95% CI: 0.862–0.968). This nomogram is a useful tool for risk assessment for NoV infection. Moreover, the evaluated indicators are accessible, substantially reducing the time for laboratory testing.
Collapse
Affiliation(s)
- Taojun He
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518033 Guangdong Province China
| | - Xiaohua Chen
- Department of Digestive Endoscopy Center, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518033 Guangdong Province China
| | - Yilin Deng
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518033 Guangdong Province China
| | - Bin Li
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518033 Guangdong Province China
| | - Hongmei Wang
- Department of Infectious Diseases, Shenzhen Children’s Hospital, Shenzhen, 518000 Guangdong Province China
| | - Qinjin Wang
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518033 Guangdong Province China
| | - Aixia Zhai
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518033 Guangdong Province China
| | - Liang Shi
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518033 Guangdong Province China
| | - Ying Chen
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518033 Guangdong Province China
| | - Chao Wu
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518033 Guangdong Province China
| |
Collapse
|
5
|
Choy RKM, Bourgeois AL, Ockenhouse CF, Walker RI, Sheets RL, Flores J. Controlled Human Infection Models To Accelerate Vaccine Development. Clin Microbiol Rev 2022; 35:e0000821. [PMID: 35862754 PMCID: PMC9491212 DOI: 10.1128/cmr.00008-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The timelines for developing vaccines against infectious diseases are lengthy, and often vaccines that reach the stage of large phase 3 field trials fail to provide the desired level of protective efficacy. The application of controlled human challenge models of infection and disease at the appropriate stages of development could accelerate development of candidate vaccines and, in fact, has done so successfully in some limited cases. Human challenge models could potentially be used to gather critical information on pathogenesis, inform strain selection for vaccines, explore cross-protective immunity, identify immune correlates of protection and mechanisms of protection induced by infection or evoked by candidate vaccines, guide decisions on appropriate trial endpoints, and evaluate vaccine efficacy. We prepared this report to motivate fellow scientists to exploit the potential capacity of controlled human challenge experiments to advance vaccine development. In this review, we considered available challenge models for 17 infectious diseases in the context of the public health importance of each disease, the diversity and pathogenesis of the causative organisms, the vaccine candidates under development, and each model's capacity to evaluate them and identify correlates of protective immunity. Our broad assessment indicated that human challenge models have not yet reached their full potential to support the development of vaccines against infectious diseases. On the basis of our review, however, we believe that describing an ideal challenge model is possible, as is further developing existing and future challenge models.
Collapse
Affiliation(s)
- Robert K. M. Choy
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | - A. Louis Bourgeois
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | | | - Richard I. Walker
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | | | - Jorge Flores
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| |
Collapse
|
6
|
Antonitsch L, Gallob R, Weidinger G, Kettenbach J. New insights and antimicrobial stewardship opportunities in viral pneumonia: five lung ultrasound cases. Wien Klin Wochenschr 2021; 133:1208-1214. [PMID: 34605974 PMCID: PMC8488548 DOI: 10.1007/s00508-021-01946-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 08/25/2021] [Indexed: 01/08/2023]
Abstract
Background Antimicrobial stewardship is crucial to avoid antimicrobial resistance in microbes and adverse drug effects in patients. In respiratory infections, however, viral pneumonia is difficult to distinguish from bacterial pneumonia, which explains the overuse of antibiotic therapy in this indication. Cases Five cases of lung consolidation are presented. Lung ultrasound, in conjunction with procalcitonin levels, were used to exclude or corroborate bacterial pneumonia. Conclusion Lung ultrasound is easy to learn and perform and is helpful in guiding diagnosis in unclear cases of pneumonia and may also offer new insights into the spectrum of certain virus diseases. The use of lung ultrasound can raise awareness in clinicians of the need for antimicrobial stewardship and may help to avoid the unnecessary use of antibiotics. Supplementary Information The online version of this article (10.1007/s00508-021-01946-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lukas Antonitsch
- Department of Internal Medicine and Gastroenterology, Landesklinikum Wiener Neustadt, Corvinusring 3-5, 2700, Wiener Neustadt, Austria.
| | - Ronald Gallob
- Department of Anesthesia, Emergency Medicine and Intensive Care, Landesklinikum Wiener Neustadt, Corvinusring 3-5, 2700, Wiener Neustadt, Austria
| | - Gerhard Weidinger
- Department of Internal Medicine and Gastroenterology, Landesklinikum Wiener Neustadt, Corvinusring 3-5, 2700, Wiener Neustadt, Austria
| | - Joachim Kettenbach
- Institute of Diagnostic, Interventional Radiology and Nuclear Medicine, Landesklinikum Wiener Neustadt, Corvinusring 3-5, 2700, Wiener Neustadt, Austria
| |
Collapse
|
7
|
Noroviruses-The State of the Art, Nearly Fifty Years after Their Initial Discovery. Viruses 2021; 13:v13081541. [PMID: 34452406 PMCID: PMC8402810 DOI: 10.3390/v13081541] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/06/2021] [Accepted: 07/31/2021] [Indexed: 12/11/2022] Open
Abstract
Human noroviruses are recognised as the major global cause of viral gastroenteritis. Here, we provide an overview of notable advances in norovirus research and provide a short recap of the novel model systems to which much of the recent progress is owed. Significant advances include an updated classification system, the description of alternative virus-like protein morphologies and capsid dynamics, and the further elucidation of the functions and roles of various viral proteins. Important milestones include new insights into cell tropism, host and microbial attachment factors and receptors, interactions with the cellular translational apparatus, and viral egress from cells. Noroviruses have been detected in previously unrecognised hosts and detection itself is facilitated by improved analytical techniques. New potential transmission routes and/or viral reservoirs have been proposed. Recent in vivo and in vitro findings have added to the understanding of host immunity in response to norovirus infection, and vaccine development has progressed to preclinical and even clinical trial testing. Ongoing development of therapeutics includes promising direct-acting small molecules and host-factor drugs.
Collapse
|
8
|
RNA Helicase DDX3: A Double-Edged Sword for Viral Replication and Immune Signaling. Microorganisms 2021; 9:microorganisms9061206. [PMID: 34204859 PMCID: PMC8227550 DOI: 10.3390/microorganisms9061206] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 12/19/2022] Open
Abstract
DDX3 is a cellular ATP-dependent RNA helicase involved in different aspects of RNA metabolism ranging from transcription to translation and therefore, DDX3 participates in the regulation of key cellular processes including cell cycle progression, apoptosis, cancer and the antiviral immune response leading to type-I interferon production. DDX3 has also been described as an essential cellular factor for the replication of different viruses, including important human threats such HIV-1 or HCV, and different small molecules targeting DDX3 activity have been developed. Indeed, increasing evidence suggests that DDX3 can be considered not only a promising but also a viable target for anticancer and antiviral treatments. In this review, we summarize distinct functional aspects of DDX3 focusing on its participation as a double-edged sword in the host immune response and in the replication cycle of different viruses.
Collapse
|
9
|
Ludwig-Begall LF, Di Felice E, Toffoli B, Ceci C, Di Martino B, Marsilio F, Mauroy A, Thiry E. Analysis of Synchronous and Asynchronous In Vitro Infections with Homologous Murine Norovirus Strains Reveals Time-Dependent Viral Interference Effects. Viruses 2021; 13:823. [PMID: 34063220 PMCID: PMC8147416 DOI: 10.3390/v13050823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 11/16/2022] Open
Abstract
Viral recombination is a key mechanism in the evolution and diversity of noroviruses. In vivo, synchronous single-cell coinfection by multiple viruses, the ultimate prerequisite to viral recombination, is likely to be a rare event and delayed secondary infections are a more probable occurrence. Here, we determine the effect of a temporal separation of in vitro infections with the two homologous murine norovirus strains MNV-1 WU20 and CW1 on the composition of nascent viral populations. WU20 and CW1 were either synchronously inoculated onto murine macrophage cell monolayers (coinfection) or asynchronously applied (superinfection with varying titres of CW1 at half-hour to 24-h delays). Then, 24 h after initial co-or superinfection, quantification of genomic copy numbers and discriminative screening of plaque picked infectious progeny viruses demonstrated a time-dependent predominance of primary infecting WU20 in the majority of viral progenies. Our results indicate that a time interval from one to two hours onwards between two consecutive norovirus infections allows for the establishment of a barrier that reduces or prevents superinfection.
Collapse
Affiliation(s)
- Louisa F. Ludwig-Begall
- FARAH Research Centre, Faculty of Veterinary Medicine, Veterinary Virology and Animal Viral Diseases, Department of Infectious and Parasitic Diseases, Liège University, 4000 Liège, Belgium; (L.F.L.-B.); (B.T.); (A.M.)
| | - Elisabetta Di Felice
- Department of Diagnosis and Surveillance of Exotic Disease, IZS Istituto Zooprofilattico Sperimentale A&M G. Caporale, 64100 Teramo, Italy;
| | - Barbara Toffoli
- FARAH Research Centre, Faculty of Veterinary Medicine, Veterinary Virology and Animal Viral Diseases, Department of Infectious and Parasitic Diseases, Liège University, 4000 Liège, Belgium; (L.F.L.-B.); (B.T.); (A.M.)
| | - Chiara Ceci
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, Italy; (C.C.); (B.D.M.); (F.M.)
| | - Barbara Di Martino
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, Italy; (C.C.); (B.D.M.); (F.M.)
| | - Fulvio Marsilio
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, Italy; (C.C.); (B.D.M.); (F.M.)
| | - Axel Mauroy
- FARAH Research Centre, Faculty of Veterinary Medicine, Veterinary Virology and Animal Viral Diseases, Department of Infectious and Parasitic Diseases, Liège University, 4000 Liège, Belgium; (L.F.L.-B.); (B.T.); (A.M.)
- Staff Direction for Risk Assessment, Control Policy, FASFC, 1000 Brussels, Belgium
| | - Etienne Thiry
- FARAH Research Centre, Faculty of Veterinary Medicine, Veterinary Virology and Animal Viral Diseases, Department of Infectious and Parasitic Diseases, Liège University, 4000 Liège, Belgium; (L.F.L.-B.); (B.T.); (A.M.)
| |
Collapse
|
10
|
Ishaq AR, Manzoor M, Hussain A, Altaf J, Rehman SU, Javed Z, Afzal I, Noor A, Noor F. Prospect of microbial food borne diseases in Pakistan: a review. BRAZ J BIOL 2021; 81:940-953. [PMID: 33605364 DOI: 10.1590/1519-6984.232466] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 10/23/2020] [Indexed: 01/05/2023] Open
Abstract
Nowadays food borne illness is most common in people due to their epidemic nature. These diseases affect the human digestive system through bacteria, viruses and parasites. The agents of illness are transmitted in our body through various types of food items, water and uncooked. Pathogens show drastic changes in immunosuppressant people. This review gives general insights to harmful microbial life. Pakistan is a developed country and because of its improper food management, a lot of gastrointestinal problems are noted in many patients. Bacteria are most common agents to spread diarrhoea, villi infection, constipation and dysenteric disease in human and induce the rejection of organ transplant. Enhancement of their lifestyle, properly cooked food should be used and to overcome the outbreak of the diseases.
Collapse
Affiliation(s)
- A R Ishaq
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Science, Hubei University, Wuhan, China
| | - M Manzoor
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan
| | - A Hussain
- Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - J Altaf
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan
| | - S Ur Rehman
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Z Javed
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan
| | - I Afzal
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan
| | - A Noor
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan
| | - F Noor
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
11
|
Characterization of a hospital-based gastroenteritis outbreak caused by GII.6 norovirus in Jinshan, China. Epidemiol Infect 2020; 148:e289. [PMID: 33292874 PMCID: PMC7770467 DOI: 10.1017/s0950268820002538] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
An acute gastroenteritis (AGE) outbreak caused by a norovirus occurred at a hospital in Shanghai, China, was studied for molecular epidemiology, host susceptibility and serological roles. Rectal and environmental swabs, paired serum samples and saliva specimens were collected. Pathogens were detected by real-time polymerase chain reaction and DNA sequencing. Histo-blood group antigens (HBGA) phenotypes of saliva samples and their binding to norovirus protruding proteins were determined by enzyme-linked immunosorbent assay. The HBGA-binding interfaces and the surrounding region were analysed by the MegAlign program of DNAstar 7.1. Twenty-seven individuals in two care units were attacked with AGE at attack rates of 9.02 and 11.68%. Eighteen (78.2%) symptomatic and five (38.4%) asymptomatic individuals were GII.6/b norovirus positive. Saliva-based HBGA phenotyping showed that all symptomatic and asymptomatic cases belonged to A, B, AB or O secretors. Only four (16.7%) out of the 24 tested serum samples showed low blockade activity against HBGA-norovirus binding at the acute phase, whereas 11 (45.8%) samples at the convalescence stage showed seroconversion of such blockade. Specific blockade antibody in the population played an essential role in this norovirus epidemic. A wide HBGA-binding spectrum of GII.6 supports a need for continuous health attention and surveillance in different settings.
Collapse
|
12
|
Xie D, Chen J, Yu J, Pei F, Koroma MM, Wang L, Qiu M, Hou Y, Yu D, Zhang XF, Dai YC. Characterization of Antigenic Relatedness Among GI Norovirus Genotypes Using Serum Samples From Norovirus-Infected Patients and Mouse Sera. Front Microbiol 2020; 11:607723. [PMID: 33363528 PMCID: PMC7752868 DOI: 10.3389/fmicb.2020.607723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/11/2020] [Indexed: 12/03/2022] Open
Abstract
Characterizing diversity and the antigenic relatedness of norovirus remains a primary focus in understanding its biological properties and vaccine designs. The precise antigenic and serological features of GI genotypes have not been studied. The study represented an investigation on a gastroenteritis outbreak related to GI.3 norovirus and the three most detected GI genotypes, GI.2 (belonging to immunotype B), GI.3 and GI.9 (belonging to immunotype C), were selected to characterize their phylogenetic relationship, HBGA binding profiles and antigenic relatedness within (intra-immunotype), and between (inter-immunotypes) genotypes using mouse sera and patient’s serum samples from the GI.3 related outbreak. Wide HBGA binding profiles and evolution of binding affinity were observed in the three GI genotypes studied. A low specific blockade antibody to GI.3 in the population generated the pool of susceptible individuals and supported virus spread in the outbreak. We found strong blockade immune response in homologous strains, moderate intra-immunotype blockade but weak inter-immunotypes blockade in humans following GI.3 norovirus infections. These findings further support the immunotypes grouping and will be valuable for optimizing the design of norovirus vaccine.
Collapse
Affiliation(s)
- Dongjie Xie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Junrui Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jingrong Yu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Fuyu Pei
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mark Momoh Koroma
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Lu Wang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Mengsi Qiu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yuzhen Hou
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Dexian Yu
- Guangzhou Military Command Center for Disease Control and Prevention, Guangzhou, China
| | - Xu-Fu Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Ying-Chun Dai
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
13
|
Rathnayake AD, Kim Y, Dampalla CS, Nguyen HN, Jesri ARM, Kashipathy MM, Lushington GH, Battaile KP, Lovell S, Chang KO, Groutas WC. Structure-Guided Optimization of Dipeptidyl Inhibitors of Norovirus 3CL Protease. J Med Chem 2020; 63:11945-11963. [PMID: 32945669 DOI: 10.1021/acs.jmedchem.0c01252] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Acute gastroenteritis caused by noroviruses has a major impact on public health worldwide in terms of morbidity, mortality, and economic burden. The disease impacts most severely immunocompromised patients, the elderly, and children. The current lack of approved vaccines and small-molecule therapeutics for the treatment and prophylaxis of norovirus infections underscores the need for the development of norovirus-specific drugs. The studies described herein entail the use of the gem-dimethyl moiety as a means of improving the pharmacological activity and physicochemical properties of a dipeptidyl series of transition state inhibitors of norovirus 3CL protease, an enzyme essential for viral replication. Several compounds were found to be potent inhibitors of the enzyme in biochemical and cell-based assays. The pharmacological activity and cellular permeability of the inhibitors were found to be sensitive to the location of the gem-dimethyl group.
Collapse
Affiliation(s)
- Athri D Rathnayake
- Department of Chemistry, Wichita State University, Wichita, Kansas 67260, United States
| | - Yunjeong Kim
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
| | - Chamandi S Dampalla
- Department of Chemistry, Wichita State University, Wichita, Kansas 67260, United States
| | - Harry Nhat Nguyen
- Department of Chemistry, Wichita State University, Wichita, Kansas 67260, United States
| | - Abdul-Rahman M Jesri
- Department of Chemistry, Wichita State University, Wichita, Kansas 67260, United States
| | - Maithri M Kashipathy
- Protein Structure Laboratory, The University of Kansas, Lawrence, Kansas 66047, United States
| | | | - Kevin P Battaile
- NYX, New York Structural Biology Center, Upton, New York 11973, United States
| | - Scott Lovell
- Protein Structure Laboratory, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Kyeong-Ok Chang
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
| | - William C Groutas
- Department of Chemistry, Wichita State University, Wichita, Kansas 67260, United States
| |
Collapse
|
14
|
Human norovirus targets enteroendocrine epithelial cells in the small intestine. Nat Commun 2020; 11:2759. [PMID: 32488028 PMCID: PMC7265440 DOI: 10.1038/s41467-020-16491-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 05/02/2020] [Indexed: 12/21/2022] Open
Abstract
Human noroviruses are a major cause of diarrheal illness, but pathogenesis is poorly understood. Here, we investigate the cellular tropism of norovirus in specimens from four immunocompromised patients. Abundant norovirus antigen and RNA are detected throughout the small intestinal tract in jejunal and ileal tissue from one pediatric intestinal transplant recipient with severe gastroenteritis. Negative-sense viral RNA, a marker of active viral replication, is found predominantly in intestinal epithelial cells, with chromogranin A-positive enteroendocrine cells (EECs) identified as a permissive cell type in this patient. These findings are consistent with the detection of norovirus-positive EECs in the other three immunocompromised patients. Investigation of the signaling pathways induced in EECs that mediate communication between the gut and brain may clarify mechanisms of pathogenesis and lead to the development of in vitro model systems in which to evaluate norovirus vaccines and treatment. Human norovirus pathogenesis is incompletely understood due to a lack of appropriate animal disease models. Here, Green et al. show norovirus replication in chromogranin A-positive enteroendocrine cells and other epithelial cells in tissue from a pediatric intestinal transplant recipient with severe gastroenteritis.
Collapse
|
15
|
Ludwig-Begall LF, Lu J, Hosmillo M, de Oliveira-Filho EF, Mathijs E, Goodfellow I, Mauroy A, Thiry E. Replicative fitness recuperation of a recombinant murine norovirus - in vitro reciprocity of genetic shift and drift. J Gen Virol 2020; 101:510-522. [PMID: 32242791 DOI: 10.1099/jgv.0.001406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Noroviruses are recognized as the major cause of non-bacterial gastroenteritis in humans. Molecular mechanisms driving norovirus evolution are the accumulation of point mutations and recombination. Recombination can create considerable changes in a viral genome, potentially eliciting a fitness cost, which must be compensated via the adaptive capacity of a recombinant virus. We previously described replicative fitness reduction of the first in vitro generated WU20-CW1 recombinant murine norovirus, RecMNV. In this follow-up study, RecMNV's capability of replicative fitness recuperation and genetic characteristics of RecMNV progenies at early and late stages of an adaptation experiment were evaluated. Replicative fitness regain of the recombinant was demonstrated via growth kinetics and plaque size differences between viral progenies prior to and post serial in vitro passaging. Point mutations at consensus and sub-consensus population levels of early and late viral progenies were characterized via next-generation sequencing and putatively associated to fitness changes. To investigate the effect of genomic changes separately and in combination in the context of a lab-generated inter-MNV infectious virus, mutations were introduced into a recombinant WU20-CW1 cDNA for subsequent DNA-based reverse genetics recovery. We thus associated fitness loss of RecMNV to a C7245T mutation and functional VP2 (ORF3) truncation and demonstrated individual and cumulative compensatory effects of one synonymous OFR2 and two non-synonymous ORF1 consensus-level mutations acquired during successive rounds of in vitro replication. Our data provide evidence of viral adaptation in a controlled environment via genetic drift after genetic shift induced a fitness cost of an infectious recombinant norovirus.
Collapse
Affiliation(s)
- Louisa F Ludwig-Begall
- Veterinary Virology and Animal Viral Diseases, Department of Infectious and Parasitic Diseases, FARAH Research Centre, Faculty of Veterinary Medicine, Liège University, Liège, Belgium
| | - Jia Lu
- Present address: The Babraham Institute, Babraham Hall House, Babraham, Cambridge, UK.,Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Myra Hosmillo
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Edmilson F de Oliveira-Filho
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Veterinary Virology and Animal Viral Diseases, Department of Infectious and Parasitic Diseases, FARAH Research Centre, Faculty of Veterinary Medicine, Liège University, Liège, Belgium
| | - Elisabeth Mathijs
- Infectious diseases in animals, Sciensano, Ukkel, Belgium.,Veterinary Virology and Animal Viral Diseases, Department of Infectious and Parasitic Diseases, FARAH Research Centre, Faculty of Veterinary Medicine, Liège University, Liège, Belgium
| | - Ian Goodfellow
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Axel Mauroy
- Staff direction for risk assessment, Control Policy, FASFC, Brussels, Belgium.,Veterinary Virology and Animal Viral Diseases, Department of Infectious and Parasitic Diseases, FARAH Research Centre, Faculty of Veterinary Medicine, Liège University, Liège, Belgium
| | - Etienne Thiry
- Veterinary Virology and Animal Viral Diseases, Department of Infectious and Parasitic Diseases, FARAH Research Centre, Faculty of Veterinary Medicine, Liège University, Liège, Belgium
| |
Collapse
|
16
|
Hosmillo M, Chaudhry Y, Nayak K, Sorgeloos F, Koo BK, Merenda A, Lillestol R, Drumright L, Zilbauer M, Goodfellow I. Norovirus Replication in Human Intestinal Epithelial Cells Is Restricted by the Interferon-Induced JAK/STAT Signaling Pathway and RNA Polymerase II-Mediated Transcriptional Responses. mBio 2020; 11:e00215-20. [PMID: 32184238 PMCID: PMC7078467 DOI: 10.1128/mbio.00215-20] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 02/04/2020] [Indexed: 02/06/2023] Open
Abstract
Human noroviruses (HuNoV) are a leading cause of viral gastroenteritis worldwide and a significant cause of morbidity and mortality in all age groups. The recent finding that HuNoV can be propagated in B cells and mucosa-derived intestinal epithelial organoids (IEOs) has transformed our ability to dissect the life cycle of noroviruses. Using transcriptome sequencing (RNA-Seq) of HuNoV-infected intestinal epithelial cells (IECs), we have found that replication of HuNoV in IECs results in interferon (IFN)-induced transcriptional responses and that HuNoV replication in IECs is sensitive to IFN. This contrasts with previous studies that suggested that the innate immune response may play no role in the restriction of HuNoV replication in immortalized cells. We demonstrated that inhibition of Janus kinase 1 (JAK1)/JAK2 enhanced HuNoV replication in IECs. Surprisingly, targeted inhibition of cellular RNA polymerase II-mediated transcription was not detrimental to HuNoV replication but instead enhanced replication to a greater degree than blocking of JAK signaling directly. Furthermore, we demonstrated for the first time that IECs generated from genetically modified intestinal organoids, engineered to be deficient in the interferon response, were more permissive to HuNoV infection. Taking the results together, our work revealed that IFN-induced transcriptional responses restrict HuNoV replication in IECs and demonstrated that inhibition of these responses mediated by modifications of the culture conditions can greatly enhance the robustness of the norovirus culture system.IMPORTANCE Noroviruses are a major cause of gastroenteritis worldwide, and yet the challenges associated with their growth in culture have greatly hampered the development of therapeutic approaches and have limited our understanding of the cellular pathways that control infection. Here, we show that human intestinal epithelial cells, which represent the first point of entry of human noroviruses into the host, limit virus replication by induction of innate responses. Furthermore, we show that modulating the ability of intestinal epithelial cells to induce transcriptional responses to HuNoV infection can significantly enhance human norovirus replication in culture. Collectively, our findings provide new insights into the biological pathways that control norovirus infection but also identify mechanisms that enhance the robustness of norovirus culture.
Collapse
Affiliation(s)
- Myra Hosmillo
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Yasmin Chaudhry
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Komal Nayak
- Department of Paediatrics, University of Cambridge, Cambridge, United Kingdom
| | - Frederic Sorgeloos
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Bon-Kyoung Koo
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| | - Alessandra Merenda
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Reidun Lillestol
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Lydia Drumright
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Matthias Zilbauer
- Department of Paediatrics, University of Cambridge, Cambridge, United Kingdom
| | - Ian Goodfellow
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
17
|
Yu Q, Liu M, Wei S, Xiao H, Wu S, Ke K, Huang X, Qin Q, Li P. Identification of Major Capsid Protein as a Potential Biomarker of Grouper Iridovirus-Infected Cells Using Aptamers Selected by SELEX. Front Microbiol 2019; 10:2684. [PMID: 31849862 PMCID: PMC6901930 DOI: 10.3389/fmicb.2019.02684] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/05/2019] [Indexed: 01/31/2023] Open
Abstract
Biomarkers have important roles in disease pathogenesis, and serve as important disease indicators for developing novel diagnostic and therapeutic approaches. Grouper iridovirus is a nucleocytoplasmic DNA virus, which not only causes great economic losses in mariculture but also seriously threatens the global biodiversity. However, a lack of biomarkers has limited the progress in clarifying iridovirus pathogenesis. Here, we report novel molecular probes, aptamers, for specific identification of biomarkers in grouper iridovirus-infected cells. Aptamers are selected by SELEX, which is a completely different approach from conventional antibody-based methods for biomarkers discovery. Aptamer-based technology is the unique efficient selection for cell-specific target molecules, and helps find out new biomarkers without the knowledge of characteristics of proteins expressed on virus-infected cell surface. With the implementation of a two-step strategy (aptamer selection and biomarker discovery), combined with mass spectrometry, grouper iridovirus major capsid protein was ultimately identified as a potential biomarker of aptamer Q5 for grouper iridovirus infection. The specific interactions of aptamer Q5 and MCP were experimentally validated by several assays, including EMSA, co-localization of fluorescence by LSCM, binding competition tests, and siRNA silencing tests by flow cytometry. This aptamer-based method for biomarkers discovery developed with grouper iridovirus-infected cells could be applicable to other types of virus infection, markedly improve our studies of biomarker discovery and virus pathogenesis, and further facilitate the development of diagnostic tools and therapeutic approaches to treat virus infection.
Collapse
Affiliation(s)
- Qing Yu
- Guangxi Key Laboratory for Marine Biotechnology, Guangxi Institute of Oceanography, Guangxi Academy of Sciences, Nanning, China
| | - Mingzhu Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Shina Wei
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Sciences, Nanning, China
| | - Hehe Xiao
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Siting Wu
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Sciences, Nanning, China
| | - Ke Ke
- Guangxi Key Laboratory for Marine Biotechnology, Guangxi Institute of Oceanography, Guangxi Academy of Sciences, Nanning, China
| | - Xiaohong Huang
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Sciences, Nanning, China
| | - Qiwei Qin
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Sciences, Nanning, China
| | - Pengfei Li
- Guangxi Key Laboratory for Marine Biotechnology, Guangxi Institute of Oceanography, Guangxi Academy of Sciences, Nanning, China.,College of Marine Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
18
|
[Molecular epidemiology of norovirus in children with acute gastroenteritis in Tianjin, China]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2019; 21. [PMID: 30782275 PMCID: PMC7389835 DOI: 10.7499/j.issn.1008-8830.2019.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE To investigate the molecular epidemiological characteristics of norovirus (NoV) among children with acute gastroenteritis in Tianjin in 2017. METHODS A total of 758 stool specimens were collected from the children with acute gastroenteritis possibly caused by viral infection in Tianjin Children's Hospital between January and December, 2017. Quantitative real-time RT-PCR was used for primary screening of NoV, and conventional RT-PCR was used for gene amplification, sequencing and genotype identification of the VP1 region of capsid protein in positive specimens. RESULTS Among the 758 specimens, 241 (31.8%) were found to have GII NoV. Sequencing of the VP1 region of capsid protein in positive specimens showed that among the 241 specimens with GII NoV, 69 (28.6%) had GII.4 subtype, 51 (21.2%) had GII.3 subtype, 24 (10.0%) had GII.2 subtype, and 18 (7.5%) had other subtypes. There was a significant difference in NoV detection rate between different age groups (P=0.018), and the 1- <4 years group had the highest NoV detection rate (37.3%). There was also a significant difference in NoV detection rate across seasons (P<0.001), and there was a highest NoV detection rate in winter (48.1%). Twenty-seven children (3.6%) had co-infections with NoV and rotavirus. CONCLUSIONS NoV is one of the major pathogens of the children with acute gastroenteritis from Tianjin in 2017. GII genotype, especially GII.4 subtype, is the prevalent strain. NoV infection is commonly seen in children less than 4 years and reaches the peak in winter. Some children are found to have co-infections with rotavirus.
Collapse
|
19
|
Predictive models for thermal inactivation of human norovirus and surrogates in strawberry puree. Food Control 2019. [DOI: 10.1016/j.foodcont.2018.08.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
20
|
Kuiper BD, Muzzarelli KM, Keusch BJ, Holcomb J, Amblard F, Liu P, Zhou S, Kovari IA, Yang Z, Schinazi RF, Kovari LC. Expression, Purification and Characterization of a GII.4 Norovirus Protease from Minerva Virus. Infect Disord Drug Targets 2019; 18:224-232. [PMID: 29779487 DOI: 10.2174/1871526518666180521091158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 04/30/2018] [Accepted: 05/15/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Noroviruses are the leading cause of acute gastroenteritis worldwide. Norovirus proteases, which are responsible for cleavage of the viral polyprotein, have become an attractive drug target to treat norovirus infections. Genogroup II (GII) noroviruses are responsible for a majority of outbreaks; however, limited data exists regarding GII norovirus proteases. METHODS We report here successful expression, purification, characterization, and inhibition of the Minerva virus protease (MVpro), a genogroup II genotype 4 (GII.4) norovirus protease. We observed MVpro as both a monomer and dimer in solution through sizeexclusion chromatography. In addition, MVpro cleaves the synthetic substrate mimicking the MVpro NS2/NS3 cleavage site more efficiently than other norovirus proteases such as the Norwalk virus protease (GI.1) and the MD145 protease (GII.4). RESULTS AND CONCLUSION Compound A, a potent inhibitor of MVpro, is a good starting point for the design of inhibitors to target GII.4 noroviruses. Furthermore, the results presented here will allow for future characterization of MVpro inhibitors as they are synthesized.
Collapse
Affiliation(s)
- Benjamin D Kuiper
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201, United States
| | - Kendall M Muzzarelli
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201, United States
| | - Bradley J Keusch
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201, United States
| | - Joshua Holcomb
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201, United States
| | - Franck Amblard
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Peng Liu
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Shaoman Zhou
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Iulia A Kovari
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201, United States
| | - Zhe Yang
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201, United States
| | - Raymond F Schinazi
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Ladislau C Kovari
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201, United States
| |
Collapse
|
21
|
Yildiz M, Kocak A. Molecular Dynamics Studies of Histo-Blood Group Antigen Blocking Human Immunoglobulin A Antibody and Escape Mechanism in Noroviruses Upon Mutation. J Comput Biol 2018; 26:962-974. [PMID: 30570348 DOI: 10.1089/cmb.2018.0163] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Norovirus is the causing agent of acute gastroenteritis disease globally. Efforts in developing therapeutics against virus infection mostly fail due to emergence of drug resistance that is a consequence of presence of high mutation rates in virus genome during virus' life cycle. In this study, we computationally analyzed the affinity of a drug target, wild type VP1 envelope protein and its three variants to a therapeutic antibody FAB5I2. We have found that mutations break important hydrogen bonds and cause high fluctuations in residues that form VP1-FAB5I2 complex interface. In addition to changes in dynamics, we also revealed that the affinity of FAB5I2 to VP1 protein drops significantly upon mutations in terms of relative binding free energy.
Collapse
Affiliation(s)
- Muslum Yildiz
- Department of Molecular Biology and Genetics, Gebze Technical University, Kocaeli, Turkey
| | - Abdulkadir Kocak
- Department of Chemistry, Gebze Technical University, Kocaeli, Turkey
| |
Collapse
|
22
|
Ruder B, Murtadak V, Stürzl M, Wirtz S, Distler U, Tenzer S, Mahapatro M, Greten FR, Hu Y, Neurath MF, Cesarman E, Ballon G, Günther C, Becker C. Chronic intestinal inflammation in mice expressing viral Flip in epithelial cells. Mucosal Immunol 2018; 11:1621-1629. [PMID: 30104627 PMCID: PMC8063487 DOI: 10.1038/s41385-018-0068-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 07/04/2018] [Accepted: 07/10/2018] [Indexed: 02/04/2023]
Abstract
Viruses are present in the intestinal microflora and are currently discussed as a potential causative mechanism for the development of inflammatory bowel disease. A number of viruses, such as Human Herpesvirus-8, express homologs to cellular FLIPs, which are major contributors for the regulation of epithelial cell death. In this study we analyzed the consequences of constitutive expression of HHV8-viral FLIP in intestinal epithelial cells (IECs) in mice. Surprisingly, expression of vFlip disrupts tissue homeostasis and induces severe intestinal inflammation. Moreover vFlipIEC-tg mice showed reduced Paneth cell numbers, associated with excessive necrotic cell death. On a molecular level vFlip expression altered classical and alternative NFκB activation. Blocking of alternative NFκB signaling by deletion of Ikka in vivo largely protected mice from inflammation and Paneth cell loss induced by vFLIP. Collectively, our data provide functional evidence that expression of a single viral protein in IECs can be sufficient to disrupt epithelial homeostasis and to initiate chronic intestinal inflammation.
Collapse
Affiliation(s)
- Barbara Ruder
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Vinay Murtadak
- Division of Molecular and Experimental Surgery, Department of Surgery, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Michael Stürzl
- Division of Molecular and Experimental Surgery, Department of Surgery, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Stefan Wirtz
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Ute Distler
- Institute for Immunology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Stefan Tenzer
- Institute for Immunology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Mousumi Mahapatro
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Florian R. Greten
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany
| | - Yinling Hu
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Markus F. Neurath
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Ethel Cesarman
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY, USA
| | - Gianna Ballon
- Department of Pathology and Laboratory Medicine, Northwell Health, Lake Success, NY, USA
| | - Claudia Günther
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Christoph Becker
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
23
|
Ludwig-Begall LF, Mauroy A, Thiry E. Norovirus recombinants: recurrent in the field, recalcitrant in the lab - a scoping review of recombination and recombinant types of noroviruses. J Gen Virol 2018; 99:970-988. [PMID: 29906257 DOI: 10.1099/jgv.0.001103] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Noroviruses are recognized as the major global cause of sporadic and epidemic non-bacterial gastroenteritis in humans. Molecular mechanisms driving norovirus evolution are the accumulation of point mutations and recombination. Intragenotypic recombination has long been postulated to be a driving force of GII.4 noroviruses, the predominant genotype circulating in humans for over two decades. Increasingly, emergence and re-emergence of different intragenotype recombinants have been reported. The number and types of norovirus recombinants remained undefined until the 2007 Journal of General Virology research article 'Norovirus recombination' reported an assembly of 20 hitherto unclassified intergenotypic norovirus recombinant types. In the intervening decade, a host of novel recombinants has been analysed. New recombination breakpoints have been described, in vitro and in vivo studies supplement in silico analyses, and advances have been made in analysing factors driving norovirus recombination. This work presents a timely overview of these data and focuses on important aspects of norovirus recombination and its role in norovirus molecular evolution. An overview of intergenogroup, intergenotype, intragenotype and 'obligatory' norovirus recombinants as detected via in silico methods in the field is provided, enlarging the scope of intergenotypic recombinant types to 80 in total, and notably including three intergenogroup recombinants. A recap of advances made studying norovirus recombination in the laboratory is given. Putative drivers and constraints of norovirus recombination are discussed and the potential link between recombination and norovirus zoonosis risk is examined.
Collapse
Affiliation(s)
- Louisa F Ludwig-Begall
- 1Veterinary Virology and Animal Viral Diseases, Department of Infectious and Parasitic Diseases, FARAH Research Centre, Faculty of Veterinary Medicine, Liège University, B43b, Quartier Vallée 2, Avenue de Cureghem, 10, B-4000 Liège, Belgium
| | - Axel Mauroy
- 2Staff direction for risk assessment, Control Policy, Federal Agency for the Safety of the Food Chain, Blv du Jardin Botanique 55, 1000 Brussels, Belgium
| | - Etienne Thiry
- 1Veterinary Virology and Animal Viral Diseases, Department of Infectious and Parasitic Diseases, FARAH Research Centre, Faculty of Veterinary Medicine, Liège University, B43b, Quartier Vallée 2, Avenue de Cureghem, 10, B-4000 Liège, Belgium
| |
Collapse
|
24
|
TLR7 Agonists Display Potent Antiviral Effects against Norovirus Infection via Innate Stimulation. Antimicrob Agents Chemother 2018. [PMID: 29530841 DOI: 10.1128/aac.02417-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Norovirus infections are a significant health and economic burden globally, accounting for hundreds of millions of cases of acute gastroenteritis every year. In the absence of an approved norovirus vaccine, there is an urgent need to develop antivirals to treat chronic infections and provide prophylactic therapy to limit viral spread during epidemics and pandemics. Toll-like receptor (TLR) agonists have been explored widely for their antiviral potential, and several are progressing through clinical trials for the treatment of human immunodeficiency virus (HIV) and hepatitis B virus (HBV) and as adjuvants for norovirus viruslike particle (VLP) vaccines. However, norovirus therapies in development are largely direct-acting antivirals (DAAs) with fewer compounds that target the host. Our aim was to assess the antiviral potential of TLR7 agonist immunomodulators on norovirus infection using the murine norovirus (MNV) and human Norwalk replicon models. TLR7 agonists R-848, Gardiquimod, GS-9620, R-837, and loxoribine were screened using a plaque reduction assay, and each displayed inhibition of MNV replication (50% effective concentrations [EC50s], 23.5 nM, 134.4 nM, 0.59 μM, 1.5 μM, and 79.4 μM, respectively). RNA sequencing of TLR7-stimulated cells revealed a predominant upregulation of innate immune response genes and interferon (IFN)-stimulated genes (ISGs) that are known to drive an antiviral state. Furthermore, the combination of R-848 and the nucleoside analogue (NA) 2'C-methylcytidine elicited a synergistic antiviral effect against MNV, demonstrating that combinational therapy of host modulators and DAAs might be used to reduce drug cytotoxicity. In summary, we have identified that TLR7 agonists display potent inhibition of norovirus replication and are a therapeutic option to combat norovirus infections.
Collapse
|
25
|
Li J, Zhang T, Cai K, Jiang Y, Guan X, Zhan J, Zou W, Yang Z, Xing X, Wu Y, Song Y, Yu X, Xu J. Temporal evolutionary analysis of re-emerging recombinant GII.P16_GII.2 norovirus with acute gastroenteritis in patients from Hubei Province of China, 2017. Virus Res 2018; 249:99-109. [PMID: 29604360 DOI: 10.1016/j.virusres.2018.03.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/27/2018] [Accepted: 03/27/2018] [Indexed: 11/28/2022]
Abstract
Norovirus (NoV) is a major pathogenic agent of human acute viral gastroenteritis that occurs worldwide. In March 2017, a series of acute NoV-associated gastroenteritis outbreaks occurred in Hubei Province in central China. Here, we sought to better understand the main genotypes and potential evolutionary advantages of circulating NoV strains underlying these outbreaks. During the outbreak, 111 fecal swabs and stool samples were collected from outpatients with acute NoV-associated gastroenteritis in Hubei Province. RNA was extracted from the samples and used as a template for real-time RT-PCR. Sequencing of a portion of the capsid gene and the ORF1/ORF2 overlap was used to assess DNA sequence homology, phylogeny, and recombination using pairwise alignments, MEGA, and Simplot, respectively. Bayesian evolutionary inference analysis was performed using the BEAST software platform to assess the genetic relationships, evolution rate, and evolutionary history of norovirus. GII NoV was determined to be the major pathogen of the acute gastroenteritis outbreaks in Hubei Province, with a 57.7% positive rate. Homology and phylogenic analysis of a portion of the capsid region for GII NoV isolates collected during outbreaks in Hubei showed that the isolates had a very high sequence identity and belonged to GII.2 genotype. Phylogenetic analysis of recombination using the ORF1/ORF2 overlap region revealed a recombinant strain, GII.P16_GII.2, in samples isolated from Hubei Province. The partial polymerase region and capsid gene of the recombinant strain had very high identity (98.7-98.8%) with the NoV strains isolated in Germany in 2016. The evolutionary rate of VP1 gene of GII.2 was distinctly higher than that of the partial polymerase region of GII.16. A phylogenetic tree generated using MCMC showed that the recombinant NoV GII.16_GII.2 was significantly divergent from other GII.16_GII.2 strains observed in China and Japan. Continued circulation of this GII.16_GII.2 recombinant could overtake the predominant GII.4 NoV strain with geographic expansion. Further analysis of the evolutionary dynamics of norovirus is necessary to develop more effective prevention and control strategies.
Collapse
Affiliation(s)
- Jing Li
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Ting Zhang
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Kun Cai
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Yongzhong Jiang
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Xuhua Guan
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Jianbo Zhan
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Wenjing Zou
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Zhaohui Yang
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Xuesen Xing
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Yang Wu
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Yi Song
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, China; University of Texas Medical Branch at Galveston, Texas, 77550, United States.
| | - Xuejie Yu
- Wuhan University School of Healthy Sciences, Wuhan, China; University of Texas Medical Branch at Galveston, Texas, 77550, United States.
| | - Junqiang Xu
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, China; University of Texas Medical Branch at Galveston, Texas, 77550, United States.
| |
Collapse
|
26
|
Rocha-Pereira J, Jacobs S, Noppen S, Verbeken E, Michiels T, Neyts J. Interferon lambda (IFN-λ) efficiently blocks norovirus transmission in a mouse model. Antiviral Res 2018; 149:7-15. [DOI: 10.1016/j.antiviral.2017.10.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/20/2017] [Accepted: 10/21/2017] [Indexed: 11/25/2022]
|
27
|
Galasiti Kankanamalage AC, Kim Y, Rathnayake AD, Alliston KR, Butler MM, Cardinale SC, Bowlin TL, Groutas WC, Chang KO. Design, Synthesis, and Evaluation of Novel Prodrugs of Transition State Inhibitors of Norovirus 3CL Protease. J Med Chem 2017; 60:6239-6248. [PMID: 28671827 DOI: 10.1021/acs.jmedchem.7b00497] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Ester and carbamate prodrugs of aldehyde bisulfite adduct inhibitors were synthesized in order to improve their pharmacokinetic and pharmacodynamic properties. The inhibitory activity of the compounds against norovirus 3C-like protease in enzyme and cell-based assays was determined. The ester and carbamate prodrugs displayed equivalent potency to those of the precursor aldehyde bisulfite adducts and precursor aldehydes. Furthermore, the rate of ester cleavage was found to be dependent on alkyl chain length. The generated prodrugs exhibited low cytotoxicity and satisfactory liver microsomes stability and plasma protein binding. The methodology described herein has wide applicability and can be extended to the bisulfite adducts of common warheads employed in the design of transition state inhibitors of serine and cysteine proteases of medical relevance.
Collapse
Affiliation(s)
| | - Yunjeong Kim
- Department of Diagnostic Medicine & Pathobiology, Kansas State University College of Veterinary Medicine, Kansas State University , Manhattan, Kansas 66506, United States
| | - Athri D Rathnayake
- Department of Chemistry, Wichita State University , Wichita, Kansas 67260, United States
| | - Kevin R Alliston
- Department of Chemistry, Wichita State University , Wichita, Kansas 67260, United States
| | | | | | - Terry L Bowlin
- Microbiotix, Inc. , Worcester, Massachusetts 01605, United States
| | - William C Groutas
- Department of Chemistry, Wichita State University , Wichita, Kansas 67260, United States
| | - Kyeong-Ok Chang
- Department of Diagnostic Medicine & Pathobiology, Kansas State University College of Veterinary Medicine, Kansas State University , Manhattan, Kansas 66506, United States
| |
Collapse
|
28
|
Abstract
Norovirus causes viral gastroenteritis, which is a major problem in health care. The disease causes death in elderly and seriously ill patients, and results in significant health costs each year. Proton pump inhibitors (PPIs) reduce gastric acidity, which is an important protection against microorganisms. We hypothesised that treatment with PPIs increases the risk of contracting norovirus infection. This has not previously been studied. The study was a retrospective case–control study, in which 192 hospitalised patients positive for norovirus in Örebro County, Sweden, were identified as cases. For each case, a hospitalised patient who did not have the infection was selected as a control, and matched with respect to ward, gender, admission date and age. Details of exposure, i.e. treatment with PPIs, were retrieved from the patient records. Odds ratio (OR) with confidence intervals (CIs) and P-values were calculated using McNemar's test. There was a significantly increased risk of norovirus infection in patients treated with PPIs compared with patients without PPI treatment (OR 1·73, 95% CI 1·07–2·81; P = 0·02). PPIs appear to be a risk factor for norovirus infection, and our results motivate future studies to further examine this association.
Collapse
|
29
|
Lateef Z, Gimenez G, Baker ES, Ward VK. Transcriptomic analysis of human norovirus NS1-2 protein highlights a multifunctional role in murine monocytes. BMC Genomics 2017; 18:39. [PMID: 28056773 PMCID: PMC5217272 DOI: 10.1186/s12864-016-3417-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 12/12/2016] [Indexed: 12/22/2022] Open
Abstract
Background The GII.4 Sydney 2012 strain of human norovirus (HuNoV) is a pandemic strain that is responsible for the majority of norovirus outbreaks in healthcare settings. The function of the non-structural (NS)1-2 protein from HuNoV is unknown. Results In silico analysis of human norovirus NS1-2 protein showed that it shares features with the murine NS1-2 protein, including a disordered region, a transmembrane domain and H-box and NC sequence motifs. The proteins also contain caspase cleavage and phosphorylation sites, indicating that processing and phosphorylation may be a conserved feature of norovirus NS1-2 proteins. In this study, RNA transcripts of human and murine norovirus full-length and the disordered region of NS1-2 were transfected into monocytes, and next generation sequencing was used to analyse the transcriptomic profile of cells expressing virus proteins. The profiles were then compared to the transcriptomic profile of MNV-infected cells. Conclusions RNAseq analysis showed that NS1-2 proteins from human and murine noroviruses affect multiple immune systems (chemokine, cytokine, and Toll-like receptor signaling) and intracellular pathways (NFκB, MAPK, PI3K-Akt signaling) in murine monocytes. Comparison to the transcriptomic profile of MNV-infected cells indicated the pathways that NS1-2 may affect during norovirus infection. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3417-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zabeen Lateef
- Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, 720 Cumberland St, Dunedin, 9054, New Zealand.
| | - Gregory Gimenez
- Otago Genomics and Bioinformatics Facility, University of Otago, Dunedin, 9054, New Zealand
| | - Estelle S Baker
- Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, 720 Cumberland St, Dunedin, 9054, New Zealand
| | - Vernon K Ward
- Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, 720 Cumberland St, Dunedin, 9054, New Zealand
| |
Collapse
|
30
|
Norovirus Infection. EMERGING AND RE-EMERGING INFECTIOUS DISEASES OF LIVESTOCK 2017. [PMCID: PMC7122952 DOI: 10.1007/978-3-319-47426-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
31
|
Rodrigues DM, Moreira JCDO, Lancellotti M, Gilioli R, Corat MAF. Murine norovirus infection in Brazilian animal facilities. Exp Anim 2016; 66:115-124. [PMID: 28049885 PMCID: PMC5411298 DOI: 10.1538/expanim.16-0027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Murine norovirus (MNV) is a single-stranded positive-sense RNA virus of the
Caliciviridae family. MNV has been reported to infect laboratory mice
with the ability to cause lethal infections in strains lacking components of the innate
immune response. Currently, MNV is considered the most prevalent infectious agent detected
in laboratory mouse facilities. In this study, mice in 22 laboratory animal facilities
within Brazil were analyzed for MNV infection. Using primers targeting a conserved region
of the viral capsid, MNV was detected by RT-PCR in 137 of 359 mice from all 22 facilities.
Nucleotide sequencing and phylogenetic analysis of the capsid region from the viral genome
showed identity ranging from 87% to 99% when compared to reported MNV sequences. In
addition, RAW264.7 cells inoculated with a mouse fecal suspension displayed cytopathic
effect after the fifth passage. This study represents the first report of MNV in mouse
colonies in Brazilian laboratory animal facilities, emphasizing the relevance of a health
surveillance program in such environments.
Collapse
Affiliation(s)
- Daniele Masselli Rodrigues
- Multidisciplinary Center for Biological Research on Laboratory Animal Science (CEMIB), Animal Health Laboratory, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Josélia Cristina de Oliveira Moreira
- Multidisciplinary Center for Biological Research on Laboratory Animal Science (CEMIB), Animal Health Laboratory, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Marcelo Lancellotti
- Department of Biochemistry, Institute of Biology, University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Rovilson Gilioli
- Multidisciplinary Center for Biological Research on Laboratory Animal Science (CEMIB), Animal Health Laboratory, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Marcus Alexandre Finzi Corat
- Multidisciplinary Center for Biological Research on Laboratory Animal Science (CEMIB), Animal Health Laboratory, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
32
|
Baldridge MT, Turula H, Wobus CE. Norovirus Regulation by Host and Microbe. Trends Mol Med 2016; 22:1047-1059. [PMID: 27887808 DOI: 10.1016/j.molmed.2016.10.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/05/2016] [Accepted: 10/05/2016] [Indexed: 12/16/2022]
Abstract
Norovirus (NoV) infection is the leading cause of epidemic gastroenteritis globally, and can lead to detrimental chronic infection in immunocompromised hosts. Despite its prevalence as a cause of diarrheal illness, the study of human NoVs (HNoVs) has historically been limited by a paucity of models. The use of murine NoV (MNoV) to interrogate mechanisms of host control of viral infection has facilitated the exploration of different genetic mouse models, revealing roles for both innate and adaptive immunity in viral regulation. MNoV studies have also recently identified important interactions between the commensal microbiota and NoV with clear extensions to HNoVs. In this review, we discuss the most current understanding of how the host, the microbiome, and their interactions regulate NoV infections.
Collapse
Affiliation(s)
- Megan T Baldridge
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA.
| | - Holly Turula
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Christiane E Wobus
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
33
|
Matsuo H, Tsunoda T, Ooyama K, Sakiyama M, Sogo T, Takada T, Nakashima A, Nakayama A, Kawaguchi M, Higashino T, Wakai K, Ooyama H, Hokari R, Suzuki H, Ichida K, Inui A, Fujimori S, Shinomiya N. Hyperuricemia in acute gastroenteritis is caused by decreased urate excretion via ABCG2. Sci Rep 2016; 6:31003. [PMID: 27571712 PMCID: PMC5004129 DOI: 10.1038/srep31003] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 07/11/2016] [Indexed: 01/02/2023] Open
Abstract
To clarify the physiological and pathophysiological roles of intestinal urate excretion via ABCG2 in humans, we genotyped ABCG2 dysfunctional common variants, Q126X (rs72552713) and Q141K (rs2231142), in end-stage renal disease (hemodialysis) and acute gastroenteritis patients, respectively. ABCG2 dysfunction markedly increased serum uric acid (SUA) levels in 106 hemodialysis patients (P = 1.1 × 10(-4)), which demonstrated the physiological role of ABCG2 for intestinal urate excretion because their urate excretion almost depends on intestinal excretion via ABCG2. Also, ABCG2 dysfunction significantly elevated SUA in 67 acute gastroenteritis patients (P = 6.3 × 10(-3)) regardless of the degree of dehydration, which demonstrated the pathophysiological role of ABCG2 in acute gastroenteritis. These findings for the first time show ABCG2-mediated intestinal urate excretion in humans, and indicates the physiological and pathophysiological importance of intestinal epithelium as an excretion pathway besides an absorption pathway. Furthermore, increased SUA could be a useful marker not only for dehydration but also epithelial impairment of intestine.
Collapse
Affiliation(s)
- Hirotaka Matsuo
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| | - Tomoyuki Tsunoda
- Department of Pediatric Hepatology and Gastroenterology, Saiseikai Yokohamashi Tobu Hospital, Yokohama, Kanagawa 230-0012, Japan
| | - Keiko Ooyama
- Ryougoku East Gate Clinic, Sumida-ku, Tokyo 130-0026, Japan
| | - Masayuki Sakiyama
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan.,Department of Dermatology, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| | - Tsuyoshi Sogo
- Department of Pediatric Hepatology and Gastroenterology, Saiseikai Yokohamashi Tobu Hospital, Yokohama, Kanagawa 230-0012, Japan
| | - Tappei Takada
- Department of Pharmacy, The University of Tokyo Hospital, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Akio Nakashima
- Division of Kidney and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Minato-ku, Tokyo 105-8471, Japan
| | - Akiyoshi Nakayama
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| | - Makoto Kawaguchi
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan.,Department of Urology, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| | - Toshihide Higashino
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| | - Kenji Wakai
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi 461-8673, Japan
| | - Hiroshi Ooyama
- Ryougoku East Gate Clinic, Sumida-ku, Tokyo 130-0026, Japan
| | - Ryota Hokari
- Department of Internal Medicine, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| | - Hiroshi Suzuki
- Department of Pharmacy, The University of Tokyo Hospital, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kimiyoshi Ichida
- Division of Kidney and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Minato-ku, Tokyo 105-8471, Japan.,Department of Pathophysiology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Ayano Inui
- Department of Pediatric Hepatology and Gastroenterology, Saiseikai Yokohamashi Tobu Hospital, Yokohama, Kanagawa 230-0012, Japan
| | - Shin Fujimori
- Department of Internal Medicine, Teikyo University School of Medicine, Itabashi-ku, Tokyo 173-8605, Japan
| | - Nariyoshi Shinomiya
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| |
Collapse
|
34
|
Bartsch C, Szabo K, Dinh-Thanh M, Schrader C, Trojnar E, Johne R. Comparison and optimization of detection methods for noroviruses in frozen strawberries containing different amounts of RT-PCR inhibitors. Food Microbiol 2016; 60:124-30. [PMID: 27554153 DOI: 10.1016/j.fm.2016.07.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/18/2016] [Accepted: 07/18/2016] [Indexed: 01/01/2023]
Abstract
Frozen berries have been repeatedly identified as vehicles for norovirus (NoV) transmission causing large gastroenteritis outbreaks. However, virus detection in berries is often hampered by the presence of RT-PCR-inhibiting substances. Here, several virus extraction methods for subsequent real-time RT-PCR-based NoV-RNA detection in strawberries were compared and optimized. NoV recovery rates (RRs) between 0.21 ± 0.13% and 10.29 ± 6.03% were found when five different artificially contaminated strawberry batches were analyzed by the ISO/TS15216-2 method indicating the presence of different amounts of RT-PCR inhibitors. A comparison of five different virus extraction methods using artificially contaminated strawberries containing high amounts of RT-PCR inhibitors revealed the best NoV RRs for the ISO/TS15216 method. Further improvement of NoV RRs from 2.83 ± 2.92% to 15.28 ± 9.73% was achieved by the additional use of Sephacryl(®)-based columns for RNA purification. Testing of 22 frozen strawberry samples from a batch involved in a gastroenteritis outbreak resulted in 5 vs. 13 NoV GI-positive and in 9 vs. 20 NoV GII-positive samples using the original ISO/TS15216 method vs. the extended protocol, respectively. It can be concluded that the inclusion of an additional RNA purification step can increase NoV detection by the ISO/TS15216-2 method in frozen berries containing high amounts of RT-PCR inhibitors.
Collapse
Affiliation(s)
- Christina Bartsch
- Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Kathrin Szabo
- Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Mai Dinh-Thanh
- Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Christina Schrader
- Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Eva Trojnar
- Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Reimar Johne
- Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany.
| |
Collapse
|
35
|
Nakakubo S, Sasaki D, Uetake K, Kobayashi I. Stroke During Norovirus Infection as the Initial Episode of Antiphospholipid Syndrome. Glob Pediatr Health 2016; 3:2333794X15622771. [PMID: 27335993 PMCID: PMC4784556 DOI: 10.1177/2333794x15622771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 11/04/2015] [Accepted: 11/16/2015] [Indexed: 11/15/2022] Open
|
36
|
Damalanka VC, Kim Y, Alliston KR, Weerawarna PM, Galasiti Kankanamalage AC, Lushington GH, Mehzabeen N, Battaile KP, Lovell S, Chang KO, Groutas WC. Oxadiazole-Based Cell Permeable Macrocyclic Transition State Inhibitors of Norovirus 3CL Protease. J Med Chem 2016; 59:1899-913. [PMID: 26823007 DOI: 10.1021/acs.jmedchem.5b01464] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Human noroviruses are the primary causative agents of acute gastroenteritis and a pressing public health burden worldwide. There are currently no vaccines or small molecule therapeutics available for the treatment or prophylaxis of norovirus infections. Norovirus 3CL protease plays a vital role in viral replication by generating structural and nonstructural proteins via the cleavage of the viral polyprotein. Thus, molecules that inhibit the viral protease may have potential therapeutic value. We describe herein the structure-based design, synthesis, and in vitro and cell-based evaluation of the first class of oxadiazole-based, permeable macrocyclic inhibitors of norovirus 3CL protease.
Collapse
Affiliation(s)
- Vishnu C Damalanka
- Department of Chemistry, Wichita State University , Wichita, Kansas 67260, United States
| | - Yunjeong Kim
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University , Manhattan, Kansas 66506, United States
| | - Kevin R Alliston
- Department of Chemistry, Wichita State University , Wichita, Kansas 67260, United States
| | - Pathum M Weerawarna
- Department of Chemistry, Wichita State University , Wichita, Kansas 67260, United States
| | | | | | - Nurjahan Mehzabeen
- Protein Structure Laboratory, The University of Kansas , Lawrence, Kansas 66047, United States
| | - Kevin P Battaile
- IMCA-CAT, Hauptman-Woodward Medical Research Institute, APS Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Scott Lovell
- Protein Structure Laboratory, The University of Kansas , Lawrence, Kansas 66047, United States
| | - Kyeong-Ok Chang
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University , Manhattan, Kansas 66506, United States
| | - William C Groutas
- Department of Chemistry, Wichita State University , Wichita, Kansas 67260, United States
| |
Collapse
|
37
|
Hsu CC, Piotrowski SL, Meeker SM, Smith KD, Maggio-Price L, Treuting PM. Histologic Lesions Induced by Murine Norovirus Infection in Laboratory Mice. Vet Pathol 2016; 53:754-63. [PMID: 26792844 DOI: 10.1177/0300985815618439] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Murine noroviruses (MNVs) are highly prevalent in laboratory mice, can cause persistent infections, and have been shown to infect macrophages, dendritic cells, and B cells. To address the potential impact of MNV infection on research outcomes, numerous studies have been conducted with various mouse models of human disease and have generated mixed results, ranging from no impact to significant disease. Many of these studies included histologic evaluations after MNV infection, and these results have similarly been variable in terms of whether MNV induces lesions, despite the fact that localization of MNV by viral culture and molecular techniques have demonstrated systemic distribution regardless of mouse immune status. The aim of this review is to summarize the histologic findings that have been reported with MNV infection in several mouse models. The studies demonstrate that experimental infection of MNV in wild-type mice results in minimal to no histologic changes. In contrast, immunodeficient mice consistently have detectable MNV-induced lesions that are typically inflammatory and, in the most severe cases, accompanied by necrosis. In these, the liver is commonly affected, with more variable lesions reported in the lung, gastrointestinal tract, mesenteric lymph nodes, brain, and spleen. In specific disease models including atherosclerosis, MNV infection had a variable impact that was dependent on the mouse model, viral strain, timing of infection, or other experimental variables. It is important to recognize the reported MNV lesions to help discern the possible influence of MNV infection on data generated in mouse models.
Collapse
Affiliation(s)
- C C Hsu
- Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - S L Piotrowski
- Department of Comparative Medicine, University of Washington, Seattle, WA, USA The University of Texas Health Science Center at Houston, Center for Laboratory Animal Medicine and Care, Houston, TX, USA
| | - S M Meeker
- Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - K D Smith
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - L Maggio-Price
- Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - P M Treuting
- Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
38
|
Galasiti Kankanamalage AC, Weerawarna PM, Kim Y, Chang KO, Groutas WC. Anti-norovirus therapeutics: a patent review (2010-2015). Expert Opin Ther Pat 2016; 26:297-308. [PMID: 26881878 PMCID: PMC4948123 DOI: 10.1517/13543776.2016.1153065] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Human noroviruses are the primary causative agents of acute gastroenteritis and are a pressing public health burden worldwide. There are currently no vaccines or small molecule therapeutics available for the treatment or prophylaxis of norovirus infections. An improved understanding of norovirus biology, as well as the pathogenic mechanisms underlying the disease, has provided the impetus for a range of intense exploratory drug discovery efforts targeting viral and host factors. AREAS COVERED An overview of norovirus inhibitors disclosed in the patent literature (2010-present) and Clinicaltrials.gov is presented. The review is further enriched and supplemented by recent literature reports. EXPERT OPINION Seminal discoveries made in recent years, including a better understanding of the pathobiology and life cycle of norovirus, the identification and targeting of multiple viral and host factors, the advent of a replicon system and a small animal model for the preclinical evaluation of lead compounds, and the availability of high resolution X-ray crystal structures that can be utilized in structure-based drug design and lead optimization campaigns, collectively suggest that a small molecule therapeutic and prophylactic for norovirus infection is likely to emerge in the not too distant future.
Collapse
Affiliation(s)
| | | | - Yunjeong Kim
- Department of Diagnostic Medicine & Pathobiology, Manhattan, Kansas 66506, USA
| | - Kyeong-Ok Chang
- Department of Diagnostic Medicine & Pathobiology, Manhattan, Kansas 66506, USA
| | - William C. Groutas
- Department of Chemistry, Wichita State University, Wichita, Kansas 67260, USA
| |
Collapse
|
39
|
Li P, Zhou L, Yu Y, Yang M, Ni S, Wei S, Qin Q. Characterization of DNA aptamers generated against the soft-shelled turtle iridovirus with antiviral effects. BMC Vet Res 2015; 11:245. [PMID: 26419355 PMCID: PMC4588899 DOI: 10.1186/s12917-015-0559-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 09/22/2015] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Soft-shelled turtle iridovirus (STIV) causes severe systemic disease in farmed soft-shelled turtles (Trionyx sinensis). More efficient methods of controlling and detecting STIV infections are urgently needed. METHODS In this study, we generated eight single-stranded DNA (ssDNA) aptamers against STIV using systematic evolution of ligands by exponential enrichment (SELEX). RESULTS The aptamers formed representative stem-loop secondary structures. Electrophoretic mobility shift assays and fluorescent localization showed that the selected aptamers had high binding affinity for STIV. Aptamer QA-36 had the highest calculated binding affinity (K d ) of 53.8 nM. Flow cytometry and fluorescence microscopy of cell-aptamer interactions demonstrated that QA-12 was able to recognize both STIV-infected cells and tissues with a high level of specificity. Moreover, the selected aptamers inhibited STIV infection in vitro and in vivo, with aptamer QA-36 demonstrating the greatest protective effect against STIV and inhibiting STIV infection in a dose-dependent manner. DISCUSSION We generated DNA aptamers that bound STIV with a high level of specificity, providing an alternative means for investigating STIV pathogenesis, drug development, and medical therapies for STIV infection. CONCLUSIONS These DNA aptamers may thus be suitable antiviral candidates for the control of STIV infections.
Collapse
Affiliation(s)
- Pengfei Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Lingli Zhou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Yepin Yu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Min Yang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China
| | - Songwei Ni
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Shina Wei
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China.
| | - Qiwei Qin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China. .,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
40
|
Yamamoto K, Fukuda S, Mushimoto Y, Minami N, Kanai R, Tsukamoto K, Yamaguchi S. Acute Myositis Associated with Concurrent Infection of Rotavirus and Norovirus in a 2-Year-Old Girl. Pediatr Rep 2015; 7:5873. [PMID: 26500744 PMCID: PMC4594443 DOI: 10.4081/pr.2015.5873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 04/21/2015] [Accepted: 05/25/2015] [Indexed: 11/23/2022] Open
Abstract
Rotavirus and norovirus are common pathogens associated with gastroenteritis in children. Although rotavirus occasionally induces central nervous system disease, only 3 cases with rotavirus-induced acute myositis have been reported in the English literature. We recently treated a female patient with acute myositis associated with gastroenteritis induced by concurrent infection with rotavirus and norovirus. Having suffered from gastroenteritis for 3 days, she suddenly developed myositis affecting her lower extremities with concomitant creatine kinase elevation. Herein, we present our patient and review the previous cases including those reported in the Japanese literature.
Collapse
Affiliation(s)
- Kei Yamamoto
- Department of Pediatrics, Shimane University School of Medicine, Japan
| | - Seiji Fukuda
- Department of Pediatrics, Shimane University School of Medicine, Japan
| | - Yuichi Mushimoto
- Department of Pediatrics, Shimane University School of Medicine, Japan
| | - Noriaki Minami
- Department of Pediatrics, Shimane University School of Medicine, Japan
| | - Rie Kanai
- Department of Pediatrics, Shimane University School of Medicine, Japan
| | - Kazuki Tsukamoto
- Department of Pediatrics, National Hospital Organization Hamada Medical Center, Japan
| | - Seiji Yamaguchi
- Department of Pediatrics, Shimane University School of Medicine, Japan
| |
Collapse
|
41
|
Emmott E, Sweeney TR, Goodfellow I. A Cell-based Fluorescence Resonance Energy Transfer (FRET) Sensor Reveals Inter- and Intragenogroup Variations in Norovirus Protease Activity and Polyprotein Cleavage. J Biol Chem 2015; 290:27841-53. [PMID: 26363064 PMCID: PMC4646915 DOI: 10.1074/jbc.m115.688234] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Indexed: 12/22/2022] Open
Abstract
The viral protease represents a key drug target for the development of antiviral therapeutics. Because many protease inhibitors mimic protease substrates, differences in substrate recognition between proteases may affect their sensitivity to a given inhibitor. Here we use a cell-based FRET sensor to investigate the activity of different norovirus proteases upon cleavage of various norovirus cleavage sites inserted into a linker region separating cyan fluorescent protein and yellow fluorescent protein. Using this system, we demonstrate that differences in substrate processing exist between proteases from human noroviruses (genogroups I (GI) and II) and the commonly used murine norovirus (MNV, genogroup V) model. These altered the cleavage efficiency of specific cleavage sites both within and between genogroups. The differences observed between these proteases may affect sensitivity to protease inhibitors and the suitability of MNV as a model system for testing such molecules against the human norovirus protease. Finally, we demonstrate that replacement of MNV polyprotein cleavage sites with the GI or GII equivalents, with the exception of the NS6–7 junction, leads to the production of infectious virus when the MNV NS6 protease, but not the GI or GII proteases, are present.
Collapse
Affiliation(s)
- Edward Emmott
- From the Division of Virology, Department of Pathology, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge CB2 2QQ, United Kingdom
| | - Trevor R Sweeney
- From the Division of Virology, Department of Pathology, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge CB2 2QQ, United Kingdom
| | - Ian Goodfellow
- From the Division of Virology, Department of Pathology, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge CB2 2QQ, United Kingdom
| |
Collapse
|
42
|
Newman KL, Leon JS. Norovirus immunology: Of mice and mechanisms. Eur J Immunol 2015; 45:2742-57. [PMID: 26256101 DOI: 10.1002/eji.201545512] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/30/2015] [Accepted: 07/30/2015] [Indexed: 01/08/2023]
Abstract
Noroviruses (NoVs) are the most common cause of sporadic and epidemic gastroenteritis in the United States and Europe and are responsible for 20% of acute gastroenteritis worldwide. Over the past decade, the understanding of NoV immunology has grown immensely. Studies of the natural immune response to NoV in humans and animal models have laid the foundation for innovations in cell culture systems for NoV and development of new therapeutics. Evidence from animal models, NoV surrogates, observational human research, and human challenge studies suggest that the innate immune response is critical for limiting NoV infection but is insufficient for viral clearance. NoV may antagonize the innate immune response to establish or prolong infection. However, once a robust adaptive immune response is initiated, the immune system clears the infection through the action of T and B cells, simultaneously generating highly specific protective immunologic memory. We review here both the current knowledge on NoV immunity and exciting new developments, with a focus on ongoing vaccine development work, novel cell culture systems, and advances in understanding the role of the gut microbiome. These changes reinforce the need for a better understanding of the human immune response to NoV and suggest novel hypotheses.
Collapse
Affiliation(s)
- Kira L Newman
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA.,Medical Scientist Training Program, Emory University School of Medicine, Atlanta, GA, USA
| | - Juan S Leon
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA.,Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| |
Collapse
|
43
|
Li P, Wei S, Zhou L, Yang M, Yu Y, Wei J, Jiang G, Qin Q. Selection and characterization of novel DNA aptamers specifically recognized by Singapore grouper iridovirus-infected fish cells. J Gen Virol 2015; 96:3348-3359. [PMID: 26310792 DOI: 10.1099/jgv.0.000270] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Singapore grouper iridovirus (SGIV) is a major viral pathogen of grouper aquaculture, and has caused heavy economic losses in China and South-east Asia. In this study, we generated four ssDNA aptamers against SGIV-infected grouper spleen (GS) cells using SELEX (systematic evolution of ligands by exponential enrichment) technology. Four aptamers exhibited high affinity to SGIV-infected GS cells, in particular the Q2 aptamer. Q2 had a binding affinity of 12.09 nM, the highest of the four aptamers. These aptamers also recognized SGIV-infected tissues with high levels of specificity. Protease treatment and flow cytometry analysis of SGIV-infected cells revealed that the target molecules of the Q3, Q4 and Q5 aptamers were trypsin-sensitive proteins, whilst the target molecules of Q2 might be membrane lipids or surface proteins that were not trypsin-sensitive. The generated aptamers appeared to inhibit SGIV infection in vitro. Aptamer Q2 conferred the highest levels of protection against SGIV and was able to inhibit SGIV infection in a dose-dependent manner. In addition, Q2 was efficiently internalized by SGIV-infected GS cells and localized at the viral assembly sites. Our results demonstrated that the four novel aptamers we generated were specific for SGIV-infected cells and could potentially be applied as rapid molecular diagnostic test reagents or therapeutic drugs targeting SGIV.
Collapse
Affiliation(s)
- Pengfei Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, PR China
| | - Shina Wei
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China
| | - Lingli Zhou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, PR China
| | - Min Yang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China
| | - Yepin Yu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, PR China
| | - Jingguang Wei
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China
| | - Guohua Jiang
- Analytical and Testing Center, Beijing Normal University, Xinjiekouwai Street, Beijing 100875, PR China
| | - Qiwei Qin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China.,University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, PR China
| |
Collapse
|
44
|
Kim Y, Galasiti Kankanamalage AC, Chang KO, Groutas WC. Recent Advances in the Discovery of Norovirus Therapeutics. J Med Chem 2015; 58:9438-50. [PMID: 26258852 DOI: 10.1021/acs.jmedchem.5b00762] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Noroviruses are members of the family Caliciviridae. Norovirus infections are a global health burden that impacts >20 million individuals annually in the U.S. alone. Noroviruses are associated with high morbidity among vulnerable populations, particularly immunocompromised patients. This perspective highlights recent developments related to the discovery and development of norovirus-specific small-molecule therapeutics as well as recent advances in our understanding of norovirus biology and pathogenesis. Most of the work in this area is at the early discovery stage and has been primarily focused on inhibitors of norovirus 3C-like protease and RNA dependent RNA polymerase. However, recent discoveries emanating from basic studies in norovirus research have resulted in the identification of new host-related drug targets that can be exploited. A repurposed compound has been advanced to human clinical studies.
Collapse
Affiliation(s)
- Yunjeong Kim
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University , Manhattan, Kansas 66506, United States
| | | | - Kyeong-Ok Chang
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University , Manhattan, Kansas 66506, United States
| | - William C Groutas
- Department of Chemistry, Wichita State University , 1845 North Fairmount Avenue, Wichita, Kansas 67260, United States
| |
Collapse
|
45
|
Drouaz N, Schaeffer J, Farkas T, Le Pendu J, Le Guyader FS. Tulane Virus as a Potential Surrogate To Mimic Norovirus Behavior in Oysters. Appl Environ Microbiol 2015; 81:5249-56. [PMID: 26025893 PMCID: PMC4495214 DOI: 10.1128/aem.01067-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/20/2015] [Indexed: 01/08/2023] Open
Abstract
Oyster contamination by noroviruses is an important health and economic problem. The present study aimed to compare the behaviors of Norwalk virus (the prototype genogroup I norovirus) and two culturable viruses: Tulane virus and mengovirus. After bioaccumulation, tissue distributions were quite similar for Norwalk virus and Tulane virus, with the majority of viral particles detected in digestive tissues, while mengovirus was detected in large amounts in the gills and mantle as well as in digestive tissues. The levels of persistence of all three viruses over 8 days were comparable, but clear differences were observed over longer periods, with Norwalk and Tulane viruses displaying rather similar half-lives, unlike mengovirus, which was cleared more rapidly. These results indicate that Tulane virus may be a good surrogate for studying norovirus behavior in oysters, and they confirm the prolonged persistence of Norwalk virus in oyster tissues.
Collapse
Affiliation(s)
- Najoua Drouaz
- IFREMER, Laboratoire de Microbiologie, LSEM-SG2M, Nantes, France
| | - Julien Schaeffer
- IFREMER, Laboratoire de Microbiologie, LSEM-SG2M, Nantes, France
| | - Tibor Farkas
- Laboratory of Specialized Clinical Studies, Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jacques Le Pendu
- INSERM, U892, CNRS, UMR6299, Université de Nantes, Nantes, France
| | | |
Collapse
|
46
|
Valiente-Echeverría F, Hermoso MA, Soto-Rifo R. RNA helicase DDX3: at the crossroad of viral replication and antiviral immunity. Rev Med Virol 2015; 25:286-99. [PMID: 26174373 DOI: 10.1002/rmv.1845] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 06/08/2015] [Accepted: 06/08/2015] [Indexed: 12/17/2022]
Abstract
Asp-Glu-Ala-Asp (DEAD)-box polypeptide 3, or DDX3, belongs to the DEAD-box family of ATP-dependent RNA helicases and is known to play different roles in RNA metabolism ranging from transcription to nuclear export, translation, and assembly of stress granules. In addition, there is growing evidence that DDX3 is a component of the innate immune response against viral infections. As such, DDX3 has been shown to play roles both upstream and downstream of I-kappa beta kinase ε (IKKε)/TANK-binding kinase 1, leading to IFN-β production. Interestingly, several RNA viruses, including human threats such as HIV-1 and hepatitis C virus, hijack DDX3 to accomplish various steps of their replication cycles. Thus, it seems that viruses have evolved to exploit DDX3's functions while threatening the innate immune response. Understanding this interesting dichotomy in DDX3 function will help us not only to improve our knowledge of virus-host interactions but also to develop novel antiviral drugs targeting the multifaceted roles of DDX3 in viral replication.
Collapse
Affiliation(s)
- Fernando Valiente-Echeverría
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Marcela A Hermoso
- Innate Immunity Laboratory, Immunology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Ricardo Soto-Rifo
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
47
|
Kocher J, Yuan L. Norovirus vaccines and potential antinorovirus drugs: recent advances and future perspectives. Future Virol 2015; 10:899-913. [PMID: 26568768 DOI: 10.2217/fvl.15.57] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Human noroviruses (HuNoVs) are a leading cause of acute, nonbacterial gastroenteritis worldwide. The lack of a cell culture system and smaller animal model has delayed the development and commercial availability of vaccines and antiviral drugs. Current vaccines rely on recombinant capsid proteins, such as P particles and virus-like particles (VLPs), which have been promising in clinical trials. Anti-HuNoV drug development is another area of extensive research, including currently available antiviral drugs for other viral pathogens. This review will provide an overview of recent advances in vaccine and antiviral development. The implication of recent advances in HuNoV cell culture for improving vaccine and antiviral development is also discussed.
Collapse
Affiliation(s)
- Jacob Kocher
- Department of Biomedical Sciences & Pathobiology, Center for Molecular Medicine & Infectious Diseases, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061-0913, USA
| | - Lijuan Yuan
- Department of Biomedical Sciences & Pathobiology, Center for Molecular Medicine & Infectious Diseases, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061-0913, USA
| |
Collapse
|
48
|
Herrington CS, Coates PJ, Duprex WP. Viruses and disease: emerging concepts for prevention, diagnosis and treatment. J Pathol 2015; 235:149-52. [PMID: 25366544 PMCID: PMC7168080 DOI: 10.1002/path.4476] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 10/30/2014] [Accepted: 10/31/2014] [Indexed: 12/27/2022]
Abstract
Viruses cause a wide range of human diseases, ranging from acute self‐resolving conditions to acute fatal diseases. Effects that arise long after the primary infection can also increase the propensity for chronic conditions or lead to the development of cancer. Recent advances in the fields of virology and pathology have been fundamental in improving our understanding of viral pathogenesis, in providing improved vaccination strategies and in developing newer, more effective treatments for patients worldwide. The reviews assembled here focus on the interface between virology and pathology and encompass aspects of both the clinical pathology of viral disease and the underlying disease mechanisms. Articles on emerging diseases caused by Ebola virus, Marburg virus, coronaviruses such as SARS and MERS, Nipah virus and noroviruses are followed by reviews of enteroviruses, HIV infection, measles, mumps, human respiratory syncytial virus (RSV), influenza, cytomegalovirus (CMV) and varicella zoster virus (VZV). The issue concludes with a series of articles reviewing the relationship between viruses and cancer, including the role played by Epstein–Barr virus (EBV) in the pathogenesis of lymphoma and carcinoma; how human papillomaviruses (HPVs) are involved in the development of skin cancer; the involvement of hepatitis B virus infection in hepatocellular carcinoma; and the mechanisms by which Kaposi's sarcoma‐associated herpesvirus (KSHV) leads to Kaposi's sarcoma. We hope that this collection of articles will be of interest to a wide range of scientists and clinicians at a time when there is a renaissance in the appreciation of the power of pathology as virologists dissect the processes of disease. Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- C S Herrington
- Medical Research Institute, University of Dundee Medical School, Ninewells Hospital, Dundee, UK
| | | | | |
Collapse
|
49
|
Alhatlani B, Vashist S, Goodfellow I. Functions of the 5' and 3' ends of calicivirus genomes. Virus Res 2015; 206:134-43. [PMID: 25678268 PMCID: PMC4509552 DOI: 10.1016/j.virusres.2015.02.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/30/2015] [Accepted: 02/02/2015] [Indexed: 12/16/2022]
Abstract
Noroviruses are now recognized as the most common cause of viral gastroenteritis. The 5′ and 3′ ends of caliciviruses genome fold into characteristic structures conserved within the family. The tirmini of calicivirus genome is involved in recruiting host factors to the replication complex. The 5′ and 3′ ends of the MNV genome have been shown to interact with host proteins and further stabilize this interaction.
The Caliciviridae family of small positive sense RNA viruses contains a diverse range of pathogens of both man and animals. The molecular mechanisms of calicivirus genome replication and translation have not been as widely studied as many other RNA viruses. With the relatively recent development of robust cell culture and reverse genetics systems for several members of the Caliciviridae family, a more in-depth analysis of the finer detail of the viral life cycle has now been obtained. As a result, the identification and characterization of the role of RNA structures in the calicivirus life cycle has also been possible. This review aims to summarize the current state of knowledge with respect to the role of RNA structures at the termini of calicivirus genomes.
Collapse
Affiliation(s)
- Bader Alhatlani
- Division of Virology, Department of Pathology, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 2QQ, UK.
| | - Surender Vashist
- Division of Virology, Department of Pathology, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 2QQ, UK
| | - Ian Goodfellow
- Division of Virology, Department of Pathology, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 2QQ, UK.
| |
Collapse
|