1
|
Hashimoto H, Okazaki T, Honkura Y, Ren Y, Ngamsnae P, Hisaoka T, Koshiba Y, Suzuki J, Ebihara S, Katori Y. Nrf2 Deficiency Exacerbates the Decline in Swallowing and Respiratory Muscle Mass and Function in Mice with Aspiration Pneumonia. Int J Mol Sci 2024; 25:11829. [PMID: 39519380 PMCID: PMC11546094 DOI: 10.3390/ijms252111829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Aspiration pneumonia exacerbates swallowing and respiratory muscle atrophy. It induces respiratory muscle atrophy through three steps: proinflammatory cytokine production, caspase-3 and calpain, and then ubiquitin-proteasome activations. In addition, autophagy induces swallowing muscle atrophy. Nrf2 is the central detoxifying and antioxidant gene whose function in aspiration pneumonia is unclear. We explored the role of Nrf2 in aspiration pneumonia by examining swallowing and respiratory muscle mass and function using wild-type and Nrf2-knockout mice. Pepsin and lipopolysaccharide aspiration challenges caused aspiration pneumonia. The swallowing (digastric muscles) and respiratory (diaphragm) muscles were isolated. Quantitative RT-PCR and Western blotting were used to assess their proteolysis cascade. Pathological and videofluoroscopic examinations evaluated atrophy and swallowing function, respectively. Nrf2-knockouts showed exacerbated aspiration pneumonia compared with wild-types. Nrf2-knockouts exhibited more persistent and intense proinflammatory cytokine elevation than wild-types. In both mice, the challenge activated calpains and caspase-3 in the diaphragm but not in the digastric muscles. The digastric muscles showed extended autophagy activation in Nrf2-knockouts compared to wild-types. The diaphragms exhibited autophagy activation only in Nrf2-knockouts. Nrf2-knockouts showed worsened muscle atrophies and swallowing function compared with wild-types. Thus, activation of Nrf2 may alleviate inflammation, muscle atrophy, and function in aspiration pneumonia, a major health problem for the aging population, and may become a therapeutic target.
Collapse
Affiliation(s)
- Hikaru Hashimoto
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (H.H.)
| | - Tatsuma Okazaki
- Department of Rehabilitation Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan (S.E.)
- Center for Dysphagia of Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Yohei Honkura
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (H.H.)
- Center for Dysphagia of Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Yuzhuo Ren
- Department of Rehabilitation Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan (S.E.)
| | - Peerada Ngamsnae
- Department of Rehabilitation Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan (S.E.)
| | - Takuma Hisaoka
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (H.H.)
- Center for Dysphagia of Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Yasutoshi Koshiba
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (H.H.)
- Center for Dysphagia of Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Jun Suzuki
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (H.H.)
- Center for Dysphagia of Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Satoru Ebihara
- Department of Rehabilitation Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan (S.E.)
- Center for Dysphagia of Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Yukio Katori
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan; (H.H.)
- Center for Dysphagia of Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| |
Collapse
|
2
|
Crossey E, Carty S, Shao F, Henao-Vasquez J, Ysasi AB, Zeng M, Hinds A, Lo M, Tilston-Lunel A, Varelas X, Jones MR, Fine A. Influenza induces lung lymphangiogenesis independent of YAP/TAZ activity in lymphatic endothelial cells. Sci Rep 2024; 14:21324. [PMID: 39266641 PMCID: PMC11393066 DOI: 10.1038/s41598-024-72115-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 09/03/2024] [Indexed: 09/14/2024] Open
Abstract
The lymphatic system consists of a vessel network lined by specialized lymphatic endothelial cells (LECs) that are responsible for tissue fluid homeostasis and immune cell trafficking. The mechanisms for organ-specific LEC responses to environmental cues are not well understood. We found robust lymphangiogenesis during influenza A virus infection in the adult mouse lung. We show that the number of LECs increases twofold at 7 days post-influenza infection (dpi) and threefold at 21 dpi, and that lymphangiogenesis is preceded by lymphatic dilation. We also show that the expanded lymphatic network enhances fluid drainage to mediastinal lymph nodes. Using EdU labeling, we found that a significantly higher number of pulmonary LECs are proliferating at 7 dpi compared to LECs in homeostatic conditions. Lineage tracing during influenza indicates that new pulmonary LECs are derived from preexisting LECs rather than non-LEC progenitors. Lastly, using a conditional LEC-specific YAP/TAZ knockout model, we established that lymphangiogenesis, fluid transport and the immune response to influenza are independent of YAP/TAZ activity in LECs. These findings were unexpected, as they indicate that YAP/TAZ signaling is not crucial for these processes.
Collapse
Affiliation(s)
- Erin Crossey
- Division of Pulmonary, Allergy, Sleep and Critical Care, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, 72 East Concord St, R-304, Boston, MA, 02118, USA.
| | - Senegal Carty
- Division of Pulmonary, Allergy, Sleep and Critical Care, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, 72 East Concord St, R-304, Boston, MA, 02118, USA
| | - Fengzhi Shao
- Division of Pulmonary, Allergy, Sleep and Critical Care, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, 72 East Concord St, R-304, Boston, MA, 02118, USA
| | - Jhonatan Henao-Vasquez
- Division of Pulmonary, Allergy, Sleep and Critical Care, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, 72 East Concord St, R-304, Boston, MA, 02118, USA
| | - Alexandra B Ysasi
- Division of Pulmonary, Allergy, Sleep and Critical Care, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, 72 East Concord St, R-304, Boston, MA, 02118, USA
| | - Michelle Zeng
- Division of Pulmonary, Allergy, Sleep and Critical Care, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, 72 East Concord St, R-304, Boston, MA, 02118, USA
| | - Anne Hinds
- Division of Pulmonary, Allergy, Sleep and Critical Care, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, 72 East Concord St, R-304, Boston, MA, 02118, USA
| | - Ming Lo
- Department of Pathology and Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Comparative Pathology Laboratory, Boston University National Emerging and Infectious Disease Laboratories, Boston, MA, USA
| | - Andrew Tilston-Lunel
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Xaralabos Varelas
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Matthew R Jones
- Division of Pulmonary, Allergy, Sleep and Critical Care, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, 72 East Concord St, R-304, Boston, MA, 02118, USA
| | - Alan Fine
- Division of Pulmonary, Allergy, Sleep and Critical Care, Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, 72 East Concord St, R-304, Boston, MA, 02118, USA
| |
Collapse
|
3
|
Cooper STE, Lokman AB, Riley PR. Role of the Lymphatics in Cardiac Disease. Arterioscler Thromb Vasc Biol 2024; 44:1181-1190. [PMID: 38634279 DOI: 10.1161/atvbaha.124.319854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Cardiovascular diseases remain the largest cause of death worldwide with recent evidence increasingly attributing the development and progression of these diseases to an exacerbated inflammatory response. As a result, significant research is now focused on modifying the immune environment to prevent the disease progression. This in turn has highlighted the lymphatic system in the pathophysiology of cardiovascular diseases owing, in part, to its established function in immune cell surveillance and trafficking. In this review, we highlight the role of the cardiac lymphatic system and its potential as an immunomodulatory therapeutic target in selected cardiovascular diseases.
Collapse
Affiliation(s)
- Susanna T E Cooper
- Institute of Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom
| | - Adam B Lokman
- Institute of Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom
| | - Paul R Riley
- Institute of Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom
| |
Collapse
|
4
|
Zhang L, Okazaki T, Ebihara S, Izumi SI. High-intensity intermittent inspiratory and abdominal muscle combined training in respiratory, swallowing and systemic muscles of healthy adults. J Oral Rehabil 2024. [PMID: 38816919 DOI: 10.1111/joor.13761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/11/2024] [Accepted: 05/19/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Low-intensity continuous inspiratory muscle training improves its strength. The abdominal muscles are the main expiratory muscles, and their training may improve expiratory muscle strength. Respiratory muscle strength regulates coughing effectiveness, which is critical for pneumonia management. In older people, risk factors for the development of pneumonia were respiratory muscle weakness and swallowing impairment. Currently, the impact of high-intensity intermittent inspiratory and abdominal muscle combined training on the respiratory, swallowing, and systemic muscles is unclear. OBJECTIVE We aimed to explore the effects of high-intensity inspiratory muscle training combined with or without abdominal muscle training on respiratory muscle strength as well as the strength, mass, and performance of swallowing and systemic muscles. METHODS Twenty-eight healthy adults were divided into two groups. Participants performed high-intensity intermittent inspiratory muscle single or its combination with abdominal muscle training for 4 weeks. Respiratory muscle strength, swallowing muscle strength and mass, systemic muscle strength, mass and performance were measured at baseline, Week 2 and Week 4. RESULTS Both groups showed greater maximal respiratory pressures at Week 2 and Week 4 than baseline. Both groups showed improved tongue pressure and geniohyoid muscle thickness at Week 4. In addition, the combined training group improved body trunk muscle mass, handgrip strength and five-time chair stand test, whereas the single training group did not. CONCLUSION This study revealed that high-intensity inspiratory muscle training improved inspiratory muscle strength and swallowing muscle strength and mass. Moreover, inspiratory and abdominal muscle combined training showed an additional benefit of improving systemic muscle strength, mass and performance. CLINICAL TRIAL REGISTRATION NUMBER UMIN000046724; https://upload.umin.ac.jp/cgi-open-bin/ctr/index.cgi?ctrno=UMIN000046724.
Collapse
Affiliation(s)
- Linlin Zhang
- Department of Rehabilitation Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Tatsuma Okazaki
- Department of Rehabilitation Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Center for Dysphagia of Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Satoru Ebihara
- Department of Rehabilitation Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Center for Dysphagia of Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Shin-Ichi Izumi
- Center for Dysphagia of Tohoku University Hospital, Sendai, Miyagi, Japan
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Biomedical Engineering, Sendai, Miyagi, Japan
| |
Collapse
|
5
|
Jang BC, Kwon ES, Lee YJ, Jung JI, Moon YS, Kwon DR. Comparison of Muscle Regeneration Effects at Different Melittin Concentrations in Rabbit Atrophied Muscle. Int J Mol Sci 2024; 25:5035. [PMID: 38732255 PMCID: PMC11084904 DOI: 10.3390/ijms25095035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/18/2024] [Accepted: 05/04/2024] [Indexed: 05/13/2024] Open
Abstract
This research aimed to explore the healing impacts of Melittin treatment on gastrocnemius muscle wasting caused by immobilization with a cast in rabbits. Twenty-four rabbits were randomly allocated to four groups. The procedures included different injections: 0.2 mL of normal saline to Group 1 (G1-NS); 4 μg/kg of Melittin to Group 2 (G2-4 μg/kg Melittin); 20 μg/kg of Melittin to Group 3 (G3-20 μg/kg Melittin); and 100 μg/kg of Melittin to Group 4 (G4-100 μg/kg Melittin). Ultrasound was used to guide the injections into the rabbits' atrophied calf muscles following two weeks of immobilization via casting. Clinical measurements, including the length of the calf, the compound muscle action potential (CMAP) of the tibial nerve, and the gastrocnemius muscle thickness, were assessed. Additionally, cross-sectional slices of gastrocnemius muscle fibers were examined, and immunohistochemistry and Western blot analyses were performed following two weeks of therapy. The mean regenerative changes, as indicated by clinical parameters, in Group 4 were significantly more pronounced than in the other groups (p < 0.05). Furthermore, the cross-sectional area of the gastrocnemius muscle fibers and immunohistochemical indicators in Group 4 exceeded those in the remaining groups (p < 0.05). Western blot analysis also showed a more significant presence of anti-inflammatory and angiogenic cytokines in Group 4 compared to the others (p < 0.05). Melittin therapy at a higher dosage can more efficiently activate regeneration in atrophied gastrocnemius muscle compared to lower doses of Melittin or normal saline.
Collapse
Affiliation(s)
- Byeong-Churl Jang
- Department of Molecular Medicine, College of Medicine, Keimyung University, Daegu 42601, Republic of Korea;
| | - Eun Sang Kwon
- Department of Medicine, College of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Yoon-Jin Lee
- Department of Biochemistry, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea;
| | - Jae Ik Jung
- Department of Rehabilitation Medicine, Catholic University of Daegu School of Medicine, Daegu 42472, Republic of Korea;
| | - Yong Suk Moon
- Department of Anatomy, Catholic University of Daegu School of Medicine, Daegu 42472, Republic of Korea;
| | - Dong Rak Kwon
- Department of Rehabilitation Medicine, Catholic University of Daegu School of Medicine, Daegu 42472, Republic of Korea;
| |
Collapse
|
6
|
Mondal DK, Xie C, Pascal GJ, Buraschi S, Iozzo RV. Decorin suppresses tumor lymphangiogenesis: A mechanism to curtail cancer progression. Proc Natl Acad Sci U S A 2024; 121:e2317760121. [PMID: 38652741 PMCID: PMC11067011 DOI: 10.1073/pnas.2317760121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
The complex interplay between malignant cells and the cellular and molecular components of the tumor stroma is a key aspect of cancer growth and development. These tumor-host interactions are often affected by soluble bioactive molecules such as proteoglycans. Decorin, an archetypical small leucine-rich proteoglycan primarily expressed by stromal cells, affects cancer growth in its soluble form by interacting with several receptor tyrosine kinases (RTK). Overall, decorin leads to a context-dependent and protracted cessation of oncogenic RTK activity by attenuating their ability to drive a prosurvival program and to sustain a proangiogenic network. Through an unbiased transcriptomic analysis using deep RNAseq, we identified that decorin down-regulated a cluster of tumor-associated genes involved in lymphatic vessel (LV) development when systemically delivered to mice harboring breast carcinoma allografts. We found that Lyve1 and Podoplanin, two established markers of LVs, were markedly suppressed at both the mRNA and protein levels, and this suppression correlated with a significant reduction in tumor LVs. We further identified that soluble decorin, but not its homologous proteoglycan biglycan, inhibited LV sprouting in an ex vivo 3D model of lymphangiogenesis. Mechanistically, we found that decorin interacted with vascular endothelial growth factor receptor 3 (VEGFR3), the main lymphatic RTK, and its activity was required for the decorin-mediated block of lymphangiogenesis. Finally, we identified that Lyve1 was in part degraded via decorin-evoked autophagy in a nutrient- and energy-independent manner. These findings implicate decorin as a biological factor with antilymphangiogenic activity and provide a potential therapeutic agent for curtailing breast cancer growth and metastasis.
Collapse
Affiliation(s)
- Dipon K. Mondal
- Department of Pathology and Genomic Medicine, and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA19107
| | - Christopher Xie
- Department of Pathology and Genomic Medicine, and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA19107
| | - Gabriel J. Pascal
- Department of Pathology and Genomic Medicine, and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA19107
| | - Simone Buraschi
- Department of Pathology and Genomic Medicine, and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA19107
| | - Renato V. Iozzo
- Department of Pathology and Genomic Medicine, and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA19107
| |
Collapse
|
7
|
Costanzo A, Clarke D, Holt M, Sharma S, Nagy K, Tan X, Kain L, Abe B, Luce S, Boitard C, Wyseure T, Mosnier LO, Su AI, Grimes C, Finn MG, Savage PB, Gottschalk M, Pettus J, Teyton L. Repositioning the Early Pathology of Type 1 Diabetes to the Extraislet Vasculature. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1094-1104. [PMID: 38426888 PMCID: PMC10944819 DOI: 10.4049/jimmunol.2300769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024]
Abstract
Type 1 diabetes (T1D) is a prototypic T cell-mediated autoimmune disease. Because the islets of Langerhans are insulated from blood vessels by a double basement membrane and lack detectable lymphatic drainage, interactions between endocrine and circulating T cells are not permitted. Thus, we hypothesized that initiation and progression of anti-islet immunity required islet neolymphangiogenesis to allow T cell access to the islet. Combining microscopy and single cell approaches, the timing of this phenomenon in mice was situated between 5 and 8 wk of age when activated anti-insulin CD4 T cells became detectable in peripheral blood while peri-islet pathology developed. This "peri-insulitis," dominated by CD4 T cells, respected the islet basement membrane and was limited on the outside by lymphatic endothelial cells that gave it the attributes of a tertiary lymphoid structure. As in most tissues, lymphangiogenesis seemed to be secondary to local segmental endothelial inflammation at the collecting postcapillary venule. In addition to classic markers of inflammation such as CD29, V-CAM, and NOS, MHC class II molecules were expressed by nonhematopoietic cells in the same location both in mouse and human islets. This CD45- MHC class II+ cell population was capable of spontaneously presenting islet Ags to CD4 T cells. Altogether, these observations favor an alternative model for the initiation of T1D, outside of the islet, in which a vascular-associated cell appears to be an important MHC class II-expressing and -presenting cell.
Collapse
Affiliation(s)
- Anne Costanzo
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Don Clarke
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Marie Holt
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Siddhartha Sharma
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Kenna Nagy
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Xuqian Tan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA
| | - Lisa Kain
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Brian Abe
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | | | | | - Tine Wyseure
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - Laurent O. Mosnier
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - Andrew I. Su
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA
| | - Catherine Grimes
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE
| | - M. G. Finn
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA
| | - Paul B. Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT
| | - Michael Gottschalk
- Rady Children’s Hospital, University of California San Diego, San Diego, CA
| | - Jeremy Pettus
- UC San Diego School of Medicine, University of California San Diego, San Diego, CA
| | - Luc Teyton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| |
Collapse
|
8
|
Crossey E, Carty S, Shao F, Henao-Vasquez J, Ysasi AB, Zeng M, Hinds A, Lo M, Tilston-Lunel A, Varelas X, Jones MR, Fine A. Influenza Induces Lung Lymphangiogenesis Independent of YAP/TAZ Activity in Lymphatic Endothelial Cells. RESEARCH SQUARE 2024:rs.3.rs-3951689. [PMID: 38463972 PMCID: PMC10925403 DOI: 10.21203/rs.3.rs-3951689/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The lymphatic system consists of a vessel network lined by specialized lymphatic endothelial cells (LECs) that are responsible for tissue fluid homeostasis and immune cell trafficking. The mechanisms for organ-specific LEC responses to environmental cues are not well understood. We found robust lymphangiogenesis during influenza A virus infection in the adult mouse lung. We show that the number of LECs increases 2-fold at 7 days post-influenza infection (dpi) and 3-fold at 21 dpi, and that lymphangiogenesis is preceded by lymphatic dilation. We also show that the expanded lymphatic network enhances fluid drainage to mediastinal lymph nodes. Using EdU labeling, we found that a significantly higher number of pulmonary LECs are proliferating at 7 dpi compared to LECs in homeostatic conditions. Lineage tracing during influenza indicates that new pulmonary LECs are derived from preexisting LECs rather than non-LEC progenitors. Lastly, using a conditional LEC-specific YAP/TAZ knockout model, we established that lymphangiogenesis, fluid transport and the immune response to influenza are independent of YAP/TAZ activity in LECs. These findings were unexpected, as they indicate that YAP/TAZ signaling is not crucial for these processes.
Collapse
Affiliation(s)
- Erin Crossey
- Boston University Chobanian and Avedisian School of Medicine
| | - Senegal Carty
- Boston University Chobanian and Avedisian School of Medicine
| | - Fengzhi Shao
- Boston University Chobanian and Avedisian School of Medicine
| | | | | | - Michelle Zeng
- Boston University Chobanian and Avedisian School of Medicine
| | - Anne Hinds
- Boston University Chobanian and Avedisian School of Medicine
| | - Ming Lo
- Boston University Chobanian and Avedisian School of Medicine
| | | | | | - Matthew R Jones
- Boston University Chobanian and Avedisian School of Medicine
| | - Alan Fine
- Boston University Chobanian and Avedisian School of Medicine
| |
Collapse
|
9
|
Yu R, Okazaki T, Ren Y, Okuyama J, Ebihara S, Izumi SI. Effects of body postures on respiratory muscle force and coughing in healthy people. Respir Physiol Neurobiol 2024; 319:104181. [PMID: 37866524 DOI: 10.1016/j.resp.2023.104181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/03/2023] [Accepted: 10/14/2023] [Indexed: 10/24/2023]
Abstract
The respiratory muscle force determines the intensity of cough force. A greater cough force for cleaning the airways is essential for preventing and managing pneumonia. Body posture can affect the onset of aspiration pneumonia. However, the effects of body posture on the respiratory muscle and cough forces remain unclear. Thus, we aimed to explore the influence of the four body postures on respiratory muscle force, cough pressure, subjective ease of coughing, and pulmonary function in healthy individuals. Twenty healthy individuals were included in this study. Body postures were 0-degree supine, 30- and 60-degree semi-recumbent, and 90-degree sitting. The maximal inspiratory and expiratory pressures, maximal cough pressure, subjective ease of coughing, and pulmonary function, including peak expiratory flow, were evaluated. We set the measured values in the supine posture to 100% and showed the relative values. The 60-degree posture showed stronger inspiratory (125.1 ± 3.9%, mean ± standard error [SE]) and expiratory (116.4 ± 3.0%) muscle force, cough pressure, more subjective ease of coughing, and greater peak expiratory flow (113.4 ± 3.0%) than the supine posture. The sitting posture also showed greater inspiratory muscle force and peak expiratory flow than the supine posture. The correlation coefficient for the 60-degree posture showed that the maximal inspiratory pressure was moderately correlated with the maximal expiratory pressure (r = 0.512), cough pressure (r = 0.495), and peak expiratory flow (r = 0.558). The above findings suggest the advantage of keeping a 60-degree posture and avoiding the supine posture to generate a greater cough force in the prevention and management of pneumonia.
Collapse
Affiliation(s)
- Rui Yu
- Department of Internal Medicine and Rehabilitation Science, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Tatsuma Okazaki
- Department of Internal Medicine and Rehabilitation Science, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan; Center for Dysphagia of Tohoku University Hospital, Sendai, Miyagi, Japan.
| | - Yuzhuo Ren
- Department of Internal Medicine and Rehabilitation Science, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Junko Okuyama
- Department of Internal Medicine and Rehabilitation Science, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Satoru Ebihara
- Department of Internal Medicine and Rehabilitation Science, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan; Center for Dysphagia of Tohoku University Hospital, Sendai, Miyagi, Japan
| | - Shin-Ichi Izumi
- Center for Dysphagia of Tohoku University Hospital, Sendai, Miyagi, Japan; Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan; Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Biomedical Engineering, Sendai, Miyagi, Japan
| |
Collapse
|
10
|
Xu C, Guo R, Hou C, Ma M, Dong X, Ouyang C, Wu J, Huang T. Resveratrol regulates macrophage recruitment and M1 macrophage polarization and prevents corneal allograft rejection in rats. Front Med (Lausanne) 2023; 10:1250914. [PMID: 37937143 PMCID: PMC10626464 DOI: 10.3389/fmed.2023.1250914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/15/2023] [Indexed: 11/09/2023] Open
Abstract
Introduction Resveratrol is an immune modulator that can reduce M1 macrophage polarization in vitro. Reducing macrophage recruitment and M1 polarization can prevent corneal allograft rejection (CGR). In this study, rat corneal allograft rejection models were established to explore the effects of resveratrol on CGR and macrophages and the underlying mechanisms after corneal transplantation. Methods Corneal allograft models were established, and 100 mg/kg resveratrol was injected intraperitoneally. The corneal allografts were assessed clinically using the Holland rejection scoring system, anterior segment photography, and anterior segment optical coherence tomography. Corneal macrophages, pro-inflammatory cytokines, and corneal lymphatic vessels were detected using hematoxylin and eosin staining, immunofluorescence staining, and real-time quantitative polymerase chain reaction (qRT-PCR). Dendritic cells (DCs) in cervical lymph nodes were explored using flow cytometry. RNA sequencing experiments were conducted to identify the mechanisms through which resveratrol affected CGR. The results were verified using Simple Western analysis. Pro-inflammatory cytokines by macrophages in vitro were measured using qRT-PCR and enzyme-linked immunosorbent assays. Results Resveratrol significantly prolonged the survival of corneal grafts and reduced graft edema and central corneal thickness. Corneal macrophage recruitment and M1 macrophage polarization decreased significantly after corneal transplantation in the resveratrol group. Resveratrol also reduced pro-inflammatory cytokines in corneal grafts and suppressed the early generation of cornea lymphatic vessels and the recruitment of cornea inflammatory cells 14 days after surgery. Resveratrol decreased the proportion of DCs in ipsilateral cervical lymph nodes. The effect of resveratrol on CGR was related to the phosphatidylinositol 3-kinase/protein kinase-B (PI3K/Akt) pathway. Resveratrol reduced the secretion of pro-inflammatory cytokines by M1 macrophages in vitro. Conclusion Our findings suggest that resveratrol can reduce corneal macrophage recruitment and M1 macrophage polarization after corneal transplantation in rats and prevent CGR. The PI3K/Akt pathway may be an important mechanism that warrants further research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ting Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
11
|
Mondal DK, Xie C, Buraschi S, Iozzo RV. Decorin suppresses tumor lymphangiogenesis: A mechanism to curtail cancer progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555187. [PMID: 37693608 PMCID: PMC10491239 DOI: 10.1101/2023.08.28.555187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The complex interplay between malignant cells and the cellular and molecular components of the tumor stroma is a key aspect of cancer growth and development. These tumor-host interactions are often affected by soluble bioactive molecules such as proteoglycans. Decorin, an archetypical small leucine-rich proteoglycan primarily expressed by stromal cells, affects cancer growth in its soluble form by interacting with several receptor tyrosine kinases (RTK). Overall, decorin leads to a context-dependent and protracted cessation of oncogenic RTK activity by attenuating their ability to drive a pro-survival program and to sustain a pro-angiogenic network. Through an unbiased transcriptomic analysis using deep RNAseq, we discovered that decorin downregulated a cluster of tumor-associated genes involved in lymphatic vessel development when systemically delivered to mice harboring breast carcinoma allografts. We found that Lyve1 and Podoplanin, two established markers of lymphatic vessels, were markedly suppressed at both the mRNA and protein levels and this suppression correlated with a significant reduction in tumor lymphatic vessels. We further discovered that soluble decorin, but not its homologous proteoglycan biglycan, inhibited lymphatic vessel sprouting in an ex vivo 3D model of lymphangiogenesis. Mechanistically, we found that decorin interacted with VEGFR3, the main lymphatic RTK, and its activity was required for the decorin-mediated block of lymphangiogenesis. Finally, we discovered that Lyve1 was in part degraded via decorin-evoked autophagy in a nutrient- and energy-independent manner. These findings implicate decorin as a new biological factor with anti-lymphangiogenic activity and provide a potential therapeutic agent for curtailing breast cancer growth and metastasis.
Collapse
|
12
|
Lu F, Okazaki T, Okuyama J, Izumi S. Impacts of body positions on the geniohyoid muscle contraction and swallowing difficulty in healthy adults. Clin Exp Dent Res 2023; 9:670-678. [PMID: 37408360 PMCID: PMC10441597 DOI: 10.1002/cre2.760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 06/01/2023] [Accepted: 06/17/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Body positions affect swallowing and gastroesophageal reflux. Swallowing impairment is one of the main causes of aspiration pneumonia. To prevent pneumonia, evaluation of body positions on gastroesophageal reflux recommended 30 degrees or higher semi-recumbent positions. The geniohypoid muscle and tongue play central roles in swallowing. However, the effects of body positions on contracting rates in the geniohyoid muscle and tongue pressure are unclear. Moreover, correlations between geniohyoid muscle contracting rates and subjective swallowing difficulties are unclear. AIMS This study aimed to identify the proper body positions on contracting rates in the geniohyoid muscle, tongue pressure, and subjective swallowing difficulties. MATERIALS & METHODS Twenty healthy adults swallowed 15- or 50 ml of water at 90 degrees sitting, 60- and 30 degrees semi-recumbent, and 0 degrees supine positions. We scored the subjective swallowing difficulties and measured the tongue pressure and the number of swallows. An ultrasound evaluated the geniohyoid muscle size and contracting rates. RESULTS At sitting and 60 degrees semi-recumbent positions, the geniohyoid muscle showed greter contracting rates than at 30 degrees semi-recumbent and supine postions (P < 0.05), which resulted in easier swalloiwng. Greater tongue pressure was weakly correlated with fewer swallows (r = -0.339, P = 0.002), whereas the body positions did not affect. CONCLUSION Considering swallowing and gastroesophageal reflux together, a trunk angle of 60 degrees or more might be beneficial for reducing the risk of aspiration.
Collapse
Affiliation(s)
- Fuwen Lu
- Department of Physical Medicine and RehabilitationTohoku University Graduate School of MedicineSendaiMiyagiJapan
| | - Tatsuma Okazaki
- Department of Physical Medicine and RehabilitationTohoku University Graduate School of MedicineSendaiMiyagiJapan
- Center for Dysphagia of Tohoku University HospitalSendaiMiyagiJapan
| | - Junko Okuyama
- Department of Physical Medicine and RehabilitationTohoku University Graduate School of MedicineSendaiMiyagiJapan
| | - Shin‐Ichi Izumi
- Department of Physical Medicine and RehabilitationTohoku University Graduate School of MedicineSendaiMiyagiJapan
- Center for Dysphagia of Tohoku University HospitalSendaiMiyagiJapan
- Department of Physical Medicine and RehabilitationTohoku University Graduate School of Biomedical EngineeringSendaiMiyagiJapan
| |
Collapse
|
13
|
Matsui K, Torii S, Hara S, Maruyama K, Arai T, Imanaka-Yoshida K. Tenascin-C in Tissue Repair after Myocardial Infarction in Humans. Int J Mol Sci 2023; 24:10184. [PMID: 37373332 DOI: 10.3390/ijms241210184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Adverse ventricular remodeling after myocardial infarction (MI) is progressive ventricular dilatation associated with heart failure for weeks or months and is currently regarded as the most critical sequela of MI. It is explained by inadequate tissue repair due to dysregulated inflammation during the acute stage; however, its pathophysiology remains unclear. Tenascin-C (TNC), an original member of the matricellular protein family, is highly up-regulated in the acute stage after MI, and a high peak in its serum level predicts an increased risk of adverse ventricular remodeling in the chronic stage. Experimental TNC-deficient or -overexpressing mouse models have suggested the diverse functions of TNC, particularly its pro-inflammatory effects on macrophages. The present study investigated the roles of TNC during human myocardial repair. We initially categorized the healing process into four phases: inflammatory, granulation, fibrogenic, and scar phases. We then immunohistochemically examined human autopsy samples at the different stages after MI and performed detailed mapping of TNC in human myocardial repair with a focus on lymphangiogenesis, the role of which has recently been attracting increasing attention as a mechanism to resolve inflammation. The direct effects of TNC on human lymphatic endothelial cells were also assessed by RNA sequencing. The results obtained support the potential roles of TNC in the regulation of macrophages, sprouting angiogenesis, the recruitment of myofibroblasts, and the early formation of collagen fibrils during the inflammatory phase to the early granulation phase of human MI. Lymphangiogenesis was observed after the expression of TNC was down-regulated. In vitro results revealed that TNC modestly down-regulated genes related to nuclear division, cell division, and cell migration in lymphatic endothelial cells, suggesting its inhibitory effects on lymphatic endothelial cells. The present results indicate that TNC induces prolonged over-inflammation by suppressing lymphangiogenesis, which may be one of the mechanisms underlying adverse post-infarct remodeling.
Collapse
Affiliation(s)
- Kenta Matsui
- Department of Pathology and Matrix Biology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu 514-8507, Japan
| | - Sota Torii
- Department of Pathology and Matrix Biology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu 514-8507, Japan
| | - Shigeru Hara
- Department of Pathology and Matrix Biology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu 514-8507, Japan
| | - Kazuaki Maruyama
- Department of Pathology and Matrix Biology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu 514-8507, Japan
| | - Tomio Arai
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, 3-52 Sakaecho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Kyoko Imanaka-Yoshida
- Department of Pathology and Matrix Biology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu 514-8507, Japan
| |
Collapse
|
14
|
Maisel K, McClain CA, Bogseth A, Thomas SN. Nanotechnologies for Physiology-Informed Drug Delivery to the Lymphatic System. Annu Rev Biomed Eng 2023; 25:233-256. [PMID: 37000965 PMCID: PMC10879987 DOI: 10.1146/annurev-bioeng-092222-034906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
Accompanying the increasing translational impact of immunotherapeutic strategies to treat and prevent disease has been a broadening interest across both bioscience and bioengineering in the lymphatic system. Herein, the lymphatic system physiology, ranging from its tissue structures to immune functions and effects, is described. Design principles and engineering approaches to analyze and manipulate this tissue system in nanoparticle-based drug delivery applications are also elaborated.
Collapse
Affiliation(s)
- Katharina Maisel
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA;
| | - Claire A McClain
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA;
| | - Amanda Bogseth
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA;
| | - Susan N Thomas
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA;
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
15
|
Ren Y, Okazaki T, Ngamnsae P, Hashimoto H, Ikeda R, Honkura Y, Suzuki J, Izumi SI. Anatomy and function of the lymphatic vessels in the parietal pleura and their plasticity under inflammation in mice. Microvasc Res 2023; 148:104546. [PMID: 37230165 DOI: 10.1016/j.mvr.2023.104546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023]
Abstract
Inflammatory pleuritis often causes pleural effusions, which are drained through lymphatic vessels (lymphatics) in the parietal pleura. The distribution of button- and zipper-like endothelial junctions can identify the subtypes of lymphatics, the initial, pre-collecting, and collecting lymphatics. Vascular endothelial growth factor receptor (VEGFR)-3 and its ligands VEGF-C/D are crucial lymphangiogenic factors. Currently, in the pleura covering the chest walls, the anatomy of the lymphatics and connecting networks of blood vessels are incompletely understood. Moreover, their pathological and functional plasticity under inflammation and the effects of VEGFR inhibition are unclear. This study aimed to learn the above-unanswered questions and immunostained mouse chest walls as whole-mount specimens. Confocal microscopic images and their 3-dimensional reconstruction analyzed the vasculatures. Repeated intra-pleural cavity lipopolysaccharide challenge induced pleuritis, which was also treated with VEGFR inhibition. Levels of vascular-related factors were evaluated by quantitative real-time polymerase chain reaction. We observed the initial lymphatics in the intercostals, collecting lymphatics under the ribs, and pre-collecting lymphatics connecting both. Arteries branched into capillaries and gathered into veins from the cranial to the caudal side. Lymphatics and blood vessels were in different layers with an adjacent distribution of the lymphatic layer to the pleural cavity. Inflammatory pleuritis elevated expression levels of VEGF-C/D and angiopoietin-2, induced lymphangiogenesis and blood vessel remodeling, and disorganized the lymphatic structures and subtypes. The disorganized lymphatics showed large sheet-like structures with many branches and holes inside. Such lymphatics were abundant in zipper-like endothelial junctions with some button-like junctions. The blood vessels were tortuous and had various diameters and complex networks. Stratified layers of lymphatics and blood vessels were disorganized, with impaired drainage function. VEGFR inhibition partially maintained their structures and drainage function. These findings demonstrate anatomy and pathological changes of the vasculatures in the parietal pleura and their potential as a novel therapeutic target.
Collapse
Affiliation(s)
- Yuzhuo Ren
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Tatsuma Okazaki
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan; Center for Dysphagia of Tohoku University Hospital, Sendai, Miyagi, Japan.
| | - Peerada Ngamnsae
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hikaru Hashimoto
- Center for Dysphagia of Tohoku University Hospital, Sendai, Miyagi, Japan; Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-0872, Japan
| | - Ryoukichi Ikeda
- Center for Dysphagia of Tohoku University Hospital, Sendai, Miyagi, Japan; Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-0872, Japan
| | - Yohei Honkura
- Center for Dysphagia of Tohoku University Hospital, Sendai, Miyagi, Japan; Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-0872, Japan
| | - Jun Suzuki
- Center for Dysphagia of Tohoku University Hospital, Sendai, Miyagi, Japan; Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-0872, Japan
| | - Shin-Ichi Izumi
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan; Center for Dysphagia of Tohoku University Hospital, Sendai, Miyagi, Japan; Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Biomedical Engineering, Sendai, Miyagi, Japan
| |
Collapse
|
16
|
Shiokawa N, Okazaki T, Suzukamo Y, Miyatake M, Kogure M, Nakaya N, Hozawa A, Ebihara S, Izumi SI. Association between Low Forced Vital Capacity and High Pneumonia Mortality, and Impact of Muscle Power. J Clin Med 2023; 12:jcm12093272. [PMID: 37176712 PMCID: PMC10179042 DOI: 10.3390/jcm12093272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Impaired % predicted value forced vital capacity (% FVC) is related to higher all-cause mortality in aged adults, and strong muscle force may improve this relationship. A muscle disease, sarcopenia, causes higher mortality. We aimed to identify the unknown disease that relates impaired % FVC with higher mortality in aged adults among the three major leading causes of death, and the effect of strong leg force on this relationship. Cox proportional hazard model analyzed the longitudinal Tsurugaya cohort that registered 1048 aged Japanese for 11 years. The primary outcome was the relationship between % FVC and mortality by cancer, cardiovascular disease, or pneumonia. Exposure variables were % FVC or leg force divided by 80% or median values, respectively. The secondary outcome was the effects of leg force on the relationship. Among the diseases, % FVC < 80% was related only to higher pneumonia mortality (hazard ratio [HR], 4.09; 95% CI, 1.90-8.83) relative to the % FVC ≥ 80% group before adjustment. Adding the leg force as an explanatory variable reduced the HR to 3.34 (1.54-7.25). Weak leg force might indicate sarcopenia, and its prevention may improve higher pneumonia mortality risk related to impaired % FVC, which we may advise people in clinical settings.
Collapse
Affiliation(s)
- Nanako Shiokawa
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Tatsuma Okazaki
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Center for Dysphagia, Tohoku University Hospital, Sendai 980-8574, Japan
| | - Yoshimi Suzukamo
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Midori Miyatake
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Mana Kogure
- Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Sendai 980-8575, Japan
| | - Naoki Nakaya
- Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Sendai 980-8575, Japan
| | - Atsushi Hozawa
- Department of Preventive Medicine and Epidemiology, Tohoku Medical Megabank Organization, Sendai 980-8575, Japan
| | - Satoru Ebihara
- Department of Internal Medicine and Rehabilitation Science, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Shin-Ichi Izumi
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Center for Dysphagia, Tohoku University Hospital, Sendai 980-8574, Japan
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Biomedical Engineering, Sendai 980-8575, Japan
| |
Collapse
|
17
|
Anatomy and pathology of lymphatic vessels under physiological and inflammatory conditions in the mouse diaphragm. Microvasc Res 2023; 145:104438. [PMID: 36122645 DOI: 10.1016/j.mvr.2022.104438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/28/2022] [Accepted: 09/13/2022] [Indexed: 02/03/2023]
Abstract
The lymphatic vessels in the parietal pleura drain fluids. Impaired drainage function and excessive fluid entry in the pleural cavity accumulate effusion. The rat diaphragmatic lymphatics drain fluids from the pleura to the muscle layer. Lymphatic subtypes are characterized by the major distribution of discontinuous button-like endothelial junctions (buttons) in initial lymphatics and continuous zipper-like junctions (zippers) in the collecting lymphatics. Inflammation replaced buttons with zippers in tracheal lymphatics. In the mouse diaphragm, the structural relationship between the lymphatics and blood vessels, the presence of lymphatics in the muscle layer, and the distributions of initial and collecting lymphatics are unclear. Moreover, the endothelial junctional alterations and effects of vascular endothelial growth factor receptor (VEGFR) inhibition under pleural inflammation are unclear. We subjected the whole-mount mouse diaphragms to immunohistochemistry. The lymphatics and blood vessels were distributed in different layers of the pleural membrane. Major lymphatic subtypes were initial lymphatics in the pleura and collecting lymphatics in the muscle layer. Chronic pleural inflammation disorganized the stratified layers of the lymphatics and blood vessels and replaced buttons with zippers in the pleural lymphatics, which impaired drainage function. VEGFR inhibition under inflammation maintained the vascular structures and drainage function. In addition, VEGFR inhibition maintained the lymphatic endothelial junctions and reduced the blood vessel permeability under inflammation. These findings may provide new targets for managing pleural effusions caused by inflammation, such as pleuritis and empyema, which are common pneumonia comorbidities.
Collapse
|
18
|
Liu X, Cui K, Wu H, Li KS, Peng Q, Wang D, Cowan DB, Dixon JB, Srinivasan RS, Bielenberg DR, Chen K, Wang DZ, Chen Y, Chen H. Promoting Lymphangiogenesis and Lymphatic Growth and Remodeling to Treat Cardiovascular and Metabolic Diseases. Arterioscler Thromb Vasc Biol 2023; 43:e1-e10. [PMID: 36453280 PMCID: PMC9780193 DOI: 10.1161/atvbaha.122.318406] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022]
Abstract
Lymphatic vessels are low-pressure, blind-ended tubular structures that play a crucial role in the maintenance of tissue fluid homeostasis, immune cell trafficking, and dietary lipid uptake and transport. Emerging research has indicated that the promotion of lymphatic vascular growth, remodeling, and function can reduce inflammation and diminish disease severity in several pathophysiologic conditions. In particular, recent groundbreaking studies have shown that lymphangiogenesis, which describes the formation of new lymphatic vessels from the existing lymphatic vasculature, can be beneficial for the alleviation and resolution of metabolic and cardiovascular diseases. Therefore, promoting lymphangiogenesis represents a promising therapeutic approach. This brief review summarizes the most recent findings related to the modulation of lymphatic function to treat metabolic and cardiovascular diseases such as obesity, myocardial infarction, atherosclerosis, and hypertension. We also discuss experimental and therapeutic approaches to enforce lymphatic growth and remodeling as well as efforts to define the molecular and cellular mechanisms underlying these processes.
Collapse
Affiliation(s)
- Xiaolei Liu
- Lemole Center for Integrated Lymphatics Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Kui Cui
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA
| | - Hao Wu
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA
| | - Kathryn S. Li
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA
| | - Qianman Peng
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA
| | - Donghai Wang
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA
| | - Douglas B. Cowan
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA
| | - J. Brandon Dixon
- George W. Woodruff School of Mechanical Engineering, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA
| | - R. Sathish Srinivasan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Diane R. Bielenberg
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA
| | - Kaifu Chen
- Department of Cardiology, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Da-Zhi Wang
- USF Heart Institute, Center for Regenerative Medicine, College of Medicine Internal Medicine, University of South Florida, Tampa, FL
| | - Yabing Chen
- Department of Pathology, Birmingham Veterans Affairs Medical Center, University of Alabama at Birmingham, Birmingham, AL
| | - Hong Chen
- Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
19
|
Hosseinzadeh A, Ebrahimi K, Shahriarirad R, Dalfardi F. Lower limb lymphedema and cellulitis as a complication of COVID-19 vaccine: A case report. Clin Case Rep 2022; 10:e6317. [PMID: 36540881 PMCID: PMC9755814 DOI: 10.1002/ccr3.6317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 12/23/2022] Open
Abstract
A 68-year-old man without complications following his first dose of Sinopharm (BBIBP-CorV) COVID-19 vaccine developed left foot and ankle edema, extending to his left leg 3 days after his second dose. Color-Doppler sonography and lymphoscintigraphy showed extensive soft tissue swelling and fat edema in both legs, proposing lymphatic drainage disorder.
Collapse
Affiliation(s)
- Ahmad Hosseinzadeh
- Thoracic and Vascular Surgery Research CenterShiraz University of Medical SciencesShirazIran
| | - Kamyar Ebrahimi
- Thoracic and Vascular Surgery Research CenterShiraz University of Medical SciencesShirazIran
- School of MedicineShiraz University of Medical SciencesShirazIran
| | - Reza Shahriarirad
- Thoracic and Vascular Surgery Research CenterShiraz University of Medical SciencesShirazIran
- School of MedicineShiraz University of Medical SciencesShirazIran
| | - Farzad Dalfardi
- Thoracic and Vascular Surgery Research CenterShiraz University of Medical SciencesShirazIran
| |
Collapse
|
20
|
Abstract
Background Despite great advances in surgical techniques for rotator cuff tear (RCT) over the past decades, the postoperative failure rate of RCT is still high due to the poor healing competence of bone-tendon interface (BTI). The lymphatic vasculature plays a regulatory role in inflammatory disease and affects tissue healing. However, whether lymphangiogenesis and the role of lymphatic vasculature in the physiopathological process of rotator cuff (RC)injury remains unknown. Methods In this study, we constructed a mouse RC injury model and the BTI samples were collected for measurement. Firstly, immunofluorescence was used to investigate the temporal and spatial distribution of lymphangiogenesis in BTI area at different post-injury time points. Subsequently, the mice of experimental group were gavaged with the lymphatic inhibitors (SAR131675) on the first postoperative day to inhibit lymphangiogenesis, while the control group was treated with the vehicle. At postoperative week 2 and 4, the samples were collected for immunofluorescence staining to evaluate lymphatic angiogenesis inhibition. At postoperative week 4 and 8, The supraspinatus (SS) tendon-humeral complexes were collected for bone morphometric, histological and biomechanical tests to assess the healing outcome of the BTI. Results Immunofluorescence results showed that the lymphatic proliferation in the BTI injury area and increased in consistence with the healing time, and the lymphatic hyperplasia area significantly diminished at postoperative week 4. The lymphatic hyperplasia area in the SAR group was significantly lower than that in the control group both at 2 and 4 weeks postoperatively. Moreover, the administration of SAR131675 significantly impeded RC healing, as evidenced by lower histological scores, lower bone morphometric parameters, and worse biomechanical properties in comparison with that in control group at postoperative weeks 4 and 8. Conclusion Lymphangiogenesis plays a positive role in RC healing, and targeting the lymphatic drainage at healing site may be a new therapeutic approach to promote RC injury repair. The translational potential of this article This is the first study to assess the specific role of lymphatic vessels in RC healing, and improving lymphatic drainage may be a potential new therapeutic approach to facilitate repair of BTI. Further, our study provides a reference for possible future treatment of BTI by intervening the lymphatic system.
Collapse
|
21
|
Zhang L, Yuan J, Kofi Wiredu Ocansey D, Lu B, Wan A, Chen X, Zhang X, Qiu W, Mao F. Exosomes derived from human umbilical cord mesenchymal stem cells regulate lymphangiogenesis via the miR-302d-3p/VEGFR3/AKT axis to ameliorate inflammatory bowel disease. Int Immunopharmacol 2022; 110:109066. [DOI: 10.1016/j.intimp.2022.109066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/01/2022] [Accepted: 07/12/2022] [Indexed: 11/26/2022]
|
22
|
Liu Z, Zhang C, Hao J, Chen G, Liu L, Xiong Y, Chang Y, Li H, Shimosawa T, Yang F, Xu Q. Eplerenone ameliorates lung fibrosis in unilateral ureteral obstruction rats by inhibiting lymphangiogenesis. Exp Ther Med 2022; 24:623. [PMID: 36160894 PMCID: PMC9468786 DOI: 10.3892/etm.2022.11560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/18/2022] [Indexed: 12/04/2022] Open
Abstract
Chronic kidney disease (CKD) involves progressive and irreversible loss of renal function, often causing complications and comorbidities and impairing the function of various organs. In particular, lung injury is observed not only in advanced CKD but also in early-stage CKD. The present study investigated the potential involvement of mineralocorticoid receptors (MRs) and lymphatic vessels in lung injury using a 180-day unilateral ureteral obstruction (UUO) model for CKD. Changes in lung associated with lymphangiogenesis and inflammatory were analyzed in UUO rats. The pathology of the lung tissue was observed by hematoxylin and eosin and Masson's staining. Detection of the expression of lymphatic vessel endothelial hyaluronic acid receptor-1 (LYVE-1), Podoplanin, vascular endothelial growth factor receptor-3 (VEGFR-3) and VEGF C to investigate lymphangiogenesis. The mRNA and protein expression levels of IL-1β, monocyte chemotactic protein 1, tumor necrosis factor-α, nuclear factor κB, phosphorylated serum and glucocorticoid-induced protein kinase-1 and MR were evaluated using western blot, reverse transcription-quantitative PCR, immunohistochemical staining and immunofluorescence staining. In the present study, long-term UUO caused kidney damage, which also led to lung inflammation, accompanied by lymphangiogenesis. However, treatment with eplerenone, an MR blocker, significantly reduced the severity of lung injury and lymphangiogenesis. Therefore, lymphangiogenesis contributed to lung fibrosis in UUO rats due to activation of MRs. In addition, transdifferentiation of lymphatic epithelial cells into myofibroblasts may also be involved in lung fibrosis. Collectively, these findings provided a potential mechanism for lung fibrosis in CKD and suggested that the use of eplerenone decreased kidney damage and lung fibrosis.
Collapse
Affiliation(s)
- Ziqian Liu
- Hebei Key Laboratory of Integrative Medicine on Liver‑Kidney Patterns, Institute of Integrative Medicine, Shijiazhuang, Hebei 050091, P.R. China
| | - Cuijuan Zhang
- Hebei Key Laboratory of Integrative Medicine on Liver‑Kidney Patterns, Institute of Integrative Medicine, Shijiazhuang, Hebei 050091, P.R. China
| | - Juan Hao
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050091, P.R. China
| | - Gege Chen
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050091, P.R. China
| | - Lingjin Liu
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050091, P.R. China
| | - Yunzhao Xiong
- Hebei Key Laboratory of Integrative Medicine on Liver‑Kidney Patterns, Institute of Integrative Medicine, Shijiazhuang, Hebei 050091, P.R. China
| | - Yi Chang
- Hebei Key Laboratory of Integrative Medicine on Liver‑Kidney Patterns, Institute of Integrative Medicine, Shijiazhuang, Hebei 050091, P.R. China
| | - Hui Li
- Hebei Key Laboratory of Integrative Medicine on Liver‑Kidney Patterns, Institute of Integrative Medicine, Shijiazhuang, Hebei 050091, P.R. China
| | - Tatsuo Shimosawa
- Department of Clinical Laboratory, School of Medicine, International University of Health and Welfare, Narita, Chiba 108‑8329, Japan
| | - Fan Yang
- Hebei Key Laboratory of Integrative Medicine on Liver‑Kidney Patterns, Institute of Integrative Medicine, Shijiazhuang, Hebei 050091, P.R. China
| | - Qingyou Xu
- Hebei Key Laboratory of Integrative Medicine on Liver‑Kidney Patterns, Institute of Integrative Medicine, Shijiazhuang, Hebei 050091, P.R. China
| |
Collapse
|
23
|
Okazaki T, Matashiro M, Kodama G, Tshubota T, Furusawa Y, Izumi SI. Frequent Onsets of Cellulitis in Lower Limbs with Lymphedema Following COVID-19 mRNA Vaccination. Vaccines (Basel) 2022; 10:vaccines10040517. [PMID: 35455266 PMCID: PMC9025572 DOI: 10.3390/vaccines10040517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 12/24/2022] Open
Abstract
Four patients with secondary lower limb lymphedema developed cellulitis at their lymphedema lesion following COVID-19 mRNA vaccinations. They did not develop adverse effects at their vaccination site. All the patients were Japanese females aged <60 years. Three patients developed cellulitis following the first vaccination. The date of onset of cellulitis following the first vaccination varied from 0 to 21 days. Two received BNT162b2 mRNA vaccines and the others received mRNA-1273 vaccines. All the patients were treated with oral antibiotics and recovered. Two patients had repeated cellulitis. The patients with the repeated development of cellulitis could not perform good skincare. One patient had joint contractures in their lower limbs and could not reach her lymphedema lesions, and the other patient could not master the skincare. According to previous studies, the development of cellulitis following vaccination was rare. In this study, four patients aged <60 years developed cellulitis among the eight patients that regularly visited our hospital for rehabilitation for their lower limb lymphedema. In patients with lymphedema, prolonged inflammation may impair lymphatic functions and worsen edema. Therefore, at the time of vaccination, we should keep in mind the prevention and immediate management of cellulitis using intensive skincare and antibiotic treatment.
Collapse
Affiliation(s)
- Tatsuma Okazaki
- Department of Physical Medicine and Rehabilitation, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan; (Y.F.); (S.-I.I.)
- Department of Rehabilitation, Tohoku University Hospital, Sendai 980-8574, Japan; (M.M.); (G.K.); (T.T.)
- Center for Dysphagia of Tohoku University Hospital, Sendai 980-8575, Japan
- Correspondence: ; Tel.: +81-22-717-7338; Fax: +81-22-717-7340
| | - Momoko Matashiro
- Department of Rehabilitation, Tohoku University Hospital, Sendai 980-8574, Japan; (M.M.); (G.K.); (T.T.)
| | - Gaku Kodama
- Department of Rehabilitation, Tohoku University Hospital, Sendai 980-8574, Japan; (M.M.); (G.K.); (T.T.)
| | - Takeshi Tshubota
- Department of Rehabilitation, Tohoku University Hospital, Sendai 980-8574, Japan; (M.M.); (G.K.); (T.T.)
| | - Yoshihito Furusawa
- Department of Physical Medicine and Rehabilitation, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan; (Y.F.); (S.-I.I.)
- Department of Rehabilitation, Tohoku University Hospital, Sendai 980-8574, Japan; (M.M.); (G.K.); (T.T.)
- Center for Dysphagia of Tohoku University Hospital, Sendai 980-8575, Japan
| | - Shin-Ichi Izumi
- Department of Physical Medicine and Rehabilitation, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan; (Y.F.); (S.-I.I.)
- Department of Rehabilitation, Tohoku University Hospital, Sendai 980-8574, Japan; (M.M.); (G.K.); (T.T.)
- Center for Dysphagia of Tohoku University Hospital, Sendai 980-8575, Japan
- Department of Physical Medicine and Rehabilitation, Graduate School of Biomedical Engineering, Tohoku University, Sendai 980-8575, Japan
| |
Collapse
|
24
|
Yu J, Li P, Li Z, Li Y, Luo J, Su W, Liang D. Topical Administration of 0.3% Tofacitinib Suppresses M1 Macrophage Polarization and Allograft Corneal Rejection by Blocking STAT1 Activation in the Rat Cornea. Transl Vis Sci Technol 2022; 11:34. [PMID: 35353151 PMCID: PMC8976928 DOI: 10.1167/tvst.11.3.34] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Purpose M1 macrophages can promote corneal allograft rejection (CGR). Inhibiting M1 macrophage polarization by the JAK/STAT1 pathway may be a new strategy to prevent CGR. Tofacitinib, a potent pan-JAK inhibitor, can inhibit JAK/STAT activation. Here, we investigated the inhibitory effects of tofacitinib on M1 macrophage polarization and its therapeutic effect on rat CGR. Methods Corneal allograft transplantation was performed and administrated with 0.3% tofacitinib in rats. The corneal allografts were assessed clinically. The corneas were detected for M1 macrophages, lymphatic vessels, and inflammatory cytokine expression using immunohistochemistry and real-time polymerase chain reaction (PCR). Dendritic cells (DCs) in ipsilateral cervical lymph nodes were detected by flow cytometry. The effect and mechanism of tofacitinib on macrophages were explored by real-time PCR, enzyme-linked immunoassay, and western blot analysis in vitro. Results The results showed that topical administration of 0.3% tofacitinib significantly prolonged corneal graft survival. Tofacitinib-treated corneal allografts displayed a proportionate decrease in M1 macrophages and reduced lymphatic vessel density with fewer DCs in rat ipsilateral cervical lymph nodes. Tofacitinib reduced the mRNA expression of inflammatory cytokines, including iNOS, MCP-1, TNF-α, IL-6, IL-1β, and VEGF-C, and inhibited STAT1 activation in rat corneal grafts. In addition, tofacitinib suppressed M1 macrophage polarization via STAT1 activation after IFN-γ and lipopolysaccharide stimulation in vitro. Conclusions Tofacitinib could suppress M1 macrophage polarization and subsequently delay CGR by inhibiting STAT1 activation. The data indicate that tofacitinib is an effective drug for CGR. Translational Relevance This study provided evidence that topical administration of 0.3% tofacitinib may be a novel clinical strategy to prevent CGR.
Collapse
Affiliation(s)
- Jianfeng Yu
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.,Medical School, Nantong University, Nantong, Jiangsu Province, China.,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China
| | - Pengfei Li
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.,Medical School, Nantong University, Nantong, Jiangsu Province, China
| | - Zhuang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China
| | - Yingqi Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China
| | - Jiawei Luo
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.,Medical School, Nantong University, Nantong, Jiangsu Province, China
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China
| | - Dan Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong Province, China
| |
Collapse
|
25
|
Wu H, Norton V, Cui K, Zhu B, Bhattacharjee S, Lu YW, Wang B, Shan D, Wong S, Dong Y, Chan SL, Cowan D, Xu J, Bielenberg DR, Zhou C, Chen H. Diabetes and Its Cardiovascular Complications: Comprehensive Network and Systematic Analyses. Front Cardiovasc Med 2022; 9:841928. [PMID: 35252405 PMCID: PMC8891533 DOI: 10.3389/fcvm.2022.841928] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/18/2022] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus is a worldwide health problem that usually comes with severe complications. There is no cure for diabetes yet and the threat of these complications is what keeps researchers investigating mechanisms and treatments for diabetes mellitus. Due to advancements in genomics, epigenomics, proteomics, and single-cell multiomics research, considerable progress has been made toward understanding the mechanisms of diabetes mellitus. In addition, investigation of the association between diabetes and other physiological systems revealed potentially novel pathways and targets involved in the initiation and progress of diabetes. This review focuses on current advancements in studying the mechanisms of diabetes by using genomic, epigenomic, proteomic, and single-cell multiomic analysis methods. It will also focus on recent findings pertaining to the relationship between diabetes and other biological processes, and new findings on the contribution of diabetes to several pathological conditions.
Collapse
Affiliation(s)
- Hao Wu
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Vikram Norton
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Kui Cui
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Bo Zhu
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Sudarshan Bhattacharjee
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Yao Wei Lu
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Beibei Wang
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Dan Shan
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Scott Wong
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Yunzhou Dong
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Siu-Lung Chan
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Douglas Cowan
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Jian Xu
- Department of Medicine, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma, OK, United States
| | - Diane R. Bielenberg
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Changcheng Zhou
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Hong Chen
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| |
Collapse
|
26
|
Bae SJ, Kim K, Yun SJ, Lee SH. Sarcopenia measured with paraspinous muscle using computed tomography for predicting prognosis in elderly pneumonia patients. HONG KONG J EMERG ME 2021. [DOI: 10.1177/10249079211041872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: In the elderly, diagnostic findings of pneumonia are often atypical. Computed tomography was recommended for the diagnosis of pneumonia in elderly patients. Recently, the usage of computed tomography as a screening tool for pneumonia in emergency departments has increased. Sarcopenia is defined as the loss of skeletal muscle mass and strength with aging. In this study, the association between sarcopenia and prognosis measured through computed tomography was evaluated compared to CURB-65. Methods: This study was conducted on patients diagnosed with pneumonia through computed tomography from 1 March 2018 to 31 March 2020. The paraspinous muscle size and attenuation were measured at a level located at the T12 pedicle level on axial computed tomography images. Paraspinous muscle size was presented as paraspinous muscle index. Differences in the prognostic performance among the paraspinous muscle size and attenuation, and CURB-65 were evaluated by the area under the receiver operating characteristic curve. Results: A total of 509 patients were included and 132 patients (25.9%) were admitted to the ICU, and 58 patients (11.4%) died in hospital. Paraspinous muscle index was the significant factor for predicting in-hospital mortality and ICU admission. The area under the receiver operating characteristic value of paraspinous muscle index for prediction of mortality was 0.738 and CURB-65 was 0.707. The area under the receiver operating characteristic of paraspinous muscle index and CURB-65 for predicting ICU admission were 0.766 and 0.704, respectively. Conclusion: As a method of measuring sarcopenia, paraspinous muscle index was superior to CURB-65 in elderly pneumonia patients. The use of computed tomography in predicting prognosis for elderly pneumonia patients will ease the economic burden.
Collapse
Affiliation(s)
- Sung Jin Bae
- Chung-Ang University Hospital, Department of Emergency Medicine, College of Medicine, Seoul, Chung-Ang University, Seoul, Republic of Korea
| | - Keon Kim
- Ewha Womans University Seoul Hospital, Department of Emergency Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Seong Jong Yun
- Department of Radiology, G SAM Hospital, Gunpo, Republic of Korea
| | - Sun Hwa Lee
- Ewha Womans University Mokdong Hospital, Department of Emergency Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
27
|
Sykes DL, Morice AH. The Cough Reflex: The Janus of Respiratory Medicine. Front Physiol 2021; 12:684080. [PMID: 34267675 PMCID: PMC8277195 DOI: 10.3389/fphys.2021.684080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/09/2021] [Indexed: 01/11/2023] Open
Abstract
In clinical practice, we commonly face adversity when encountering dysfunction of the cough reflex. Similar to ancient Roman deity Janus, it often presents with one of two opposing "faces". Continual aberrant activation of the cough reflex, also known as chronic cough, can cause great detriment to quality of life and many of these patients are left misdiagnosed and undertreated. In contrast, loss of normal functioning of the cough reflex is the cause of a significant proportion of mortality in the elderly, primarily through the development of aspiration pneumonia. In this review we discuss both hyper- and hypo-activation of the cough reflex and how airway reflux and chronic aspiration may be involved in the aetiology and sequalae of both disease states. We detail the physiological and pharmacological mechanisms involved in cough, and how the recent development of P2X3 receptor antagonists may lead to the first pharmaceutical agent licensed for chronic cough. The treatment and prevention of loss of the cough reflex, which has been largely neglected, is also discussed as novel low-cost interventions could help prevent a number of hospital and domiciliary deaths from both acute and chronic aspiration.
Collapse
Affiliation(s)
- Dominic L. Sykes
- Hull University Teaching Hospitals NHS Trust, Hull, United Kingdom
| | - Alyn H. Morice
- Hull York Medical School, University of York, York, United Kingdom
| |
Collapse
|
28
|
Zhang J, Cui J, Li X, Hao X, Guo L, Wang H, Liu H. Increased secretion of VEGF-C from SiO 2-induced pulmonary macrophages promotes lymphangiogenesis through the Src/eNOS pathway in silicosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 218:112257. [PMID: 33933809 DOI: 10.1016/j.ecoenv.2021.112257] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/20/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Silicosis, a type of lung inflammation and fibrosis caused by long-term inhalation of SiO2 particles, lacks effective treatment currently. Based on the results of our previous animal experiments, in lungs of SiO2-induced silicosis rats, a large number of lymphatic vessels are generated in the early stage of inflammation, which is of great significance for the removal of dust and inflammatory mediators. Here, the molecular mechanism of lymphangiogenesis is further studied. Vascular endothelial growth factor (VEGF-C) is a key pro-lymphangiogenic factor, and its elevated expression is closely related to lymphangiogenesis. In this investigation, we demonstrated that the protein level of VEGF-C was differentially expressed in bronchoalveolar lavage fluid (BALF) and alveolar macrophages (AM) in silicosis patients and healthy controls. We further stimulated human monocyte-macrophage line U937 with SiO2, collected the culture supernatants as conditioned medium (CM) for culturing lymphatic endothelial cells (LECs) in vitro, and observed the expression of VEGF-C in the supernatant and its effect on LEC tube formation. The results showed that both CM and single VEGF-C recombinant protein stimulation significantly enhanced LEC proliferation [(1.80 ± 0.18), (1.73 ± 0.16)], chemotaxis [chemotactic cell number (101.40 ± 13.83), (93.40 ± 9.61)], and tube formation [tube number (32.20 ± 7.26), (25.00 ± 6.25); branch number (77.20 ± 6.80), (84.60 ± 7.90)], whereas CM treated with VEGF-CmAb inhibited the proliferation (1.37 ± 0.17), chemotaxis [chemotactic cell number (57.40 ± 8.62)], and tube formation [tube number (7.40 ± 1.85); branch number (47.20 ± 13.44)] of LECs. In addition, CM and VEGF-C can promote the expression of vascular endothelial growth factor receptor 3 (VEGFR-3) and lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1) in LECs, which may further mediate lymphangiogenesis by up-regulating the Src/eNOS downstream signaling molecular pathway. This study is the first to clarify the molecular mechanism of pulmonary lymphangiogenesis in silicosis and may point in the direction of eventual treatments, surveillance, and regulation at a molecular level.
Collapse
Affiliation(s)
- Jinsong Zhang
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Jie Cui
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Xinying Li
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Xiaohui Hao
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, China; Hebei Key Laboratory of Organ Fibrosis, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Lingli Guo
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, China; Hebei Key Laboratory of Organ Fibrosis, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Hongli Wang
- Hebei Key Laboratory of Organ Fibrosis, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Heliang Liu
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, China; Hebei Key Laboratory of Organ Fibrosis, North China University of Science and Technology, Tangshan, Hebei 063210, China.
| |
Collapse
|
29
|
Weisberg E, Parent A, Yang PL, Sattler M, Liu Q, Liu Q, Wang J, Meng C, Buhrlage SJ, Gray N, Griffin JD. Repurposing of Kinase Inhibitors for Treatment of COVID-19. Pharm Res 2020; 37:167. [PMID: 32778962 PMCID: PMC7417114 DOI: 10.1007/s11095-020-02851-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/03/2020] [Indexed: 12/15/2022]
Abstract
The outbreak of COVID-19, the pandemic disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spurred an intense search for treatments by the scientific community. In the absence of a vaccine, the goal is to target the viral life cycle and alleviate the lung-damaging symptoms of infection, which can be life-threatening. There are numerous protein kinases associated with these processes that can be inhibited by FDA-approved drugs, the repurposing of which presents an alluring option as they have been thoroughly vetted for safety and are more readily available for treatment of patients and testing in clinical trials. Here, we characterize more than 30 approved kinase inhibitors in terms of their antiviral potential, due to their measured potency against key kinases required for viral entry, metabolism, or reproduction. We also highlight inhibitors with potential to reverse pulmonary insufficiency because of their anti-inflammatory activity, cytokine suppression, or antifibrotic activity. Certain agents are projected to be dual-purpose drugs in terms of antiviral activity and alleviation of disease symptoms, however drug combination is also an option for inhibitors with optimal pharmacokinetic properties that allow safe and efficacious co-administration with other drugs, such as antiviral agents, IL-6 blocking agents, or other kinase inhibitors.
Collapse
Affiliation(s)
- Ellen Weisberg
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA. .,Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Alexander Parent
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Priscilla L Yang
- Department of Cancer Cell Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Martin Sattler
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA.,Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Qingsong Liu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Qingwang Liu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Jinhua Wang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Chengcheng Meng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sara J Buhrlage
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Nathanael Gray
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - James D Griffin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
30
|
Okazaki T, Ebihara S, Mori T, Izumi S, Ebihara T. Association between sarcopenia and pneumonia in older people. Geriatr Gerontol Int 2019; 20:7-13. [DOI: 10.1111/ggi.13839] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 11/13/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Tatsuma Okazaki
- Department of Physical Medicine and RehabilitationTohoku University graduate School of Medicine Sendai Japan
| | - Satoru Ebihara
- Department of Rehabilitation MedicineToho University Graduate School of Medicine Tokyo Japan
| | - Takashi Mori
- Department of Physical Medicine and RehabilitationTohoku University graduate School of Medicine Sendai Japan
- Department of Oral and Maxillofacial SurgeryDysphagia Rehabilitation Center, Southern Tohoku General Hospital Koriyama Japan
| | - Shinichi Izumi
- Department of Physical Medicine and RehabilitationTohoku University graduate School of Medicine Sendai Japan
- Department of Physical Medicine and RehabilitationTohoku University Graduate School of Biomedical Engineering Sendai Japan
| | - Takae Ebihara
- Department of Geriatric MedicineKyorin University School of Medicine Tokyo Japan
| |
Collapse
|
31
|
Tsukita Y, Okazaki T, Ebihara S, Komatsu R, Nihei M, Kobayashi M, Hirano T, Sugiura H, Tamada T, Tanaka N, Sato Y, Yagita H, Ichinose M. Beneficial effects of sunitinib on tumor microenvironment and immunotherapy targeting death receptor5. Oncoimmunology 2018; 8:e1543526. [PMID: 30713805 DOI: 10.1080/2162402x.2018.1543526] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/18/2018] [Accepted: 10/25/2018] [Indexed: 01/08/2023] Open
Abstract
Tumor-associated blood vessels and lymphatics are abnormal and dysfunctional. These are hallmarks of the tumor microenvironment, which has an immunosuppressive nature, such as through hypoxia. Treatment with anti-death receptor5 (DR5) monoclonal antibody MD5-1, which induces tumor cell death, is a potent anti-tumor immunotherapy. Generally, MD5-1 induces cell death mainly via antigen presenting cells (APCs) and generates tumor-specific effector T cells. To date, the effects of a simultaneous functional improvement of abnormal blood vessels and lymphatics on the immune microenvironment are largely unknown. A combination therapy using sunitinib, vascular endothelial growth factor (VEGF) and platelet-derived growth factor receptor inhibitor, and MD5-1 substantially inhibited tumor growth. Sunitinib improved pericyte coverage on endothelial cells and the expression levels of regulator of G-protein signaling 5, suggesting blood vessel normalization. Sunitinib also increased lymph flow from tumors to central lymph nodes, suggesting improved lymphatic function. In concordance with improved vasculature functions, sunitinib alleviated the tumor hypoxia, suggesting an improved tumor microenvironment. Indeed, the combination therapy induced strong activation of CD8+ T cells and dendritic cells in draining lymph nodes. The combination therapy reduced the ratio of immune-suppressive T regulatory cells in the tumors and draining lymph nodes. The combination therapy enhanced the numbers and activation of tumor-infiltrating CD8+ T cells. CD4 and/or CD8 depletion, or APC inhibiting experiments showed the contribution of CD8+ T cells and APCs to the combination therapy. These findings suggest that targeting blood vessels and lymphatics may have potential benefits for immunotherapy mediated by CD8+ T cells and APCs.
Collapse
Affiliation(s)
- Yoko Tsukita
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tatsuma Okazaki
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan.,Present address; Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Satoru Ebihara
- Department of Rehabilitation Medicine, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Riyo Komatsu
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mayumi Nihei
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Makoto Kobayashi
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Taizou Hirano
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hisatoshi Sugiura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tsutomu Tamada
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nobuyuki Tanaka
- Division of Tumor Immunobiology, Department of Cancer Medical Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasufumi Sato
- Department of Vascular Biology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Masakazu Ichinose
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
32
|
Zheng Z, Ren K, Peng X, Zhu X, Yi G. Lymphatic Vessels: A Potential Approach to the Treatment of Atherosclerosis? Lymphat Res Biol 2018; 16:498-506. [PMID: 30272526 DOI: 10.1089/lrb.2018.0015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Many basic and clinical studies have demonstrated that atherosclerosis is a chronic inflammatory disease. Although there are many factors affecting atherosclerosis, the role of lymphatic vessels in this disease has been neglected. Traditionally, lymphatic vessels have been considered to be passages for transporting interstitial fluid to the blood circulation. However, as early as the last century, researchers found that there are numerous lymphatic vessels surrounding sites of atherosclerosis; however, the relationship between lymphatic vessels and atherosclerosis is not clear. With further research, lymphatic vessels were determined to be involved in the induction and resolution of arterial inflammation and also to play a positive role in plaque cholesterol transport. There are abundant immune cells around atherosclerosis, and these immune cells not only have a significant impact on plaque formation but also affect local lymphangiogenesis (IAL). This promotion of IAL seems to relieve the progression of atherosclerosis. Therefore, research into the relationship between lymphatic vessels and atherosclerosis is of great importance for improving atherosclerosis treatment. This review highlights what is known about the relationship between lymphatic vessels and atherosclerosis, including the effect of immune cells on IAL, and reverse cholesterol transport. In addition, we present some of our views on the improvement of atherosclerosis treatment, which have significant clinical value in research.
Collapse
Affiliation(s)
- Zhi Zheng
- Key Lab for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang City, China
| | - Kun Ren
- Key Lab for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang City, China
| | - Xiaoshan Peng
- Key Lab for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang City, China
| | - Xiao Zhu
- Key Lab for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang City, China
| | - Guanghui Yi
- Key Lab for Arteriosclerology of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang City, China
| |
Collapse
|
33
|
Komatsu R, Okazaki T, Ebihara S, Kobayashi M, Tsukita Y, Nihei M, Sugiura H, Niu K, Ebihara T, Ichinose M. Aspiration pneumonia induces muscle atrophy in the respiratory, skeletal, and swallowing systems. J Cachexia Sarcopenia Muscle 2018; 9:643-653. [PMID: 29790300 PMCID: PMC6104110 DOI: 10.1002/jcsm.12297] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 01/31/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Repetition of the onset of aspiration pneumonia in aged patients is common and causes chronic inflammation. The inflammation induces proinflammatory cytokine production and atrophy in the muscles. The proinflammatory cytokines induce muscle proteolysis by activating calpains and caspase-3, followed by further degradation by the ubiquitin-proteasome system. Autophagy is another pathway of muscle atrophy. However, little is known about the relationship between aspiration pneumonia and muscle. For swallowing muscles, it is not clear whether they produce cytokines. The main objective of this study was to determine whether aspiration pneumonia induces muscle atrophy in the respiratory (the diaphragm), skeletal (the tibialis anterior, TA), and swallowing (the tongue) systems, and their possible mechanisms. METHODS We employed a mouse aspiration pneumonia model and computed tomography (CT) scans of aged pneumonia patients. To induce aspiration pneumonia, mice were inoculated with low dose pepsin and lipopolysaccharide solution intra-nasally 5 days a week. The diaphragm, TA, and tongue were isolated, and total RNA, proteins, and frozen sections were stored. Quantitative real-time polymerase chain reaction determined the expression levels of proinflammatory cytokines, muscle E3 ubiquitin ligases, and autophagy related genes. Western blot analysis determined the activation of the muscle proteolysis pathway. Frozen sections determined the presence of muscle atrophy. CT scans were used to evaluate the muscle atrophy in aged aspiration pneumonia patients. RESULTS The aspiration challenge enhanced the expression levels of proinflammatory cytokines in the diaphragm, TA, and tongue. Among muscle proteolysis pathways, the aspiration challenge activated caspase-3 in all the three muscles examined, whereas calpains were activated in the diaphragm and the TA but not in the tongue. Activation of the ubiquitin-proteasome system was detected in all the three muscles examined. The aspiration challenge activated autophagy in the TA and the tongue, whereas weak or little activation was detected in the diaphragm. The aspiration challenge resulted in a greater proportion of smaller myofibers than in controls in the diaphragm, TA, and tongue, suggesting muscle atrophy. CT scans clearly showed that aspiration pneumonia was followed by muscle atrophy in aged patients. CONCLUSIONS Aspiration pneumonia induced muscle atrophy in the respiratory, skeletal, and swallowing systems in a preclinical animal model and in human patients. Diaphragmatic atrophy may weaken the force of cough to expectorate sputum or mis-swallowed contents. Skeletal muscle atrophy may cause secondary sarcopenia. The atrophy of swallowing muscles may weaken the swallowing function. Thus, muscle atrophy could become a new therapeutic target of aspiration pneumonia.
Collapse
Affiliation(s)
- Riyo Komatsu
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tatsuma Okazaki
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Satoru Ebihara
- Department of Rehabilitation Medicine, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Makoto Kobayashi
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoko Tsukita
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mayumi Nihei
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hisatoshi Sugiura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kaijun Niu
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, People's Republic of China
| | - Takae Ebihara
- Department of Geriatric Medicine, Kyorin University School of Medicine, Tokyo, Japan
| | - Masakazu Ichinose
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
34
|
Sáinz-Jaspeado M, Claesson-Welsh L. Cytokines regulating lymphangiogenesis. Curr Opin Immunol 2018; 53:58-63. [PMID: 29680577 DOI: 10.1016/j.coi.2018.04.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/24/2018] [Accepted: 04/03/2018] [Indexed: 12/15/2022]
Abstract
Lymphatic vessels are established by differentiation of lymphendothelial progenitors during embryogenesis. Lymphangiogenesis, the formation of new lymphatic vessels from pre-existing ones is rare in the healthy adult but takes place during pathological conditions such as inflammation, tissue repair and tumor growth. Conditions of dysfunctional lymphatics exist after surgical interventions or in certain genetic diseases. A key lymphangiogenic stimulator is vascular endothelial growth factor-C (VEGFC) acting on VEGF receptor-3 (VEGFR3) expressed on lymphendothelial cells. Other cytokines may act directly to regulate lymphangiogenesis positively or negatively, or indirectly by inducing expression of VEGFC. This review describes different known lymphangiogenic cytokines, their mechanism of action and role in lymphangiogenesis in health and disease.
Collapse
Affiliation(s)
- Miguel Sáinz-Jaspeado
- Uppsala University, Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Dag Hammarskjöldsv. 20, 751 85 Uppsala, Sweden
| | - Lena Claesson-Welsh
- Uppsala University, Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Dag Hammarskjöldsv. 20, 751 85 Uppsala, Sweden.
| |
Collapse
|
35
|
Zhu G, Huang Q, Huang Y, Zheng W, Hua J, Yang S, Zhuang J, Wang J, Ye J. Lipopolysaccharide increases the release of VEGF-C that enhances cell motility and promotes lymphangiogenesis and lymphatic metastasis through the TLR4- NF-κB/JNK pathways in colorectal cancer. Oncotarget 2018; 7:73711-73724. [PMID: 27713159 PMCID: PMC5342009 DOI: 10.18632/oncotarget.12449] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 09/21/2016] [Indexed: 12/20/2022] Open
Abstract
Lipopolysaccharide (LPS) exists in the outer membrane of Gram-negative bacteria. Colorectal normal epithelium and colorectal cancer cells in situ are continuously exposed to LPS from intestinal bacteria, while little is known about the influence of LPS on colorectal cancer progression and metastasis. In this study, we investigated the potential role of LPS on colorectal cancer progression and metastasis as well as the underlying mechanisms. We measured higher LPS concentration in colorectal cancer tissues and even higher LPS concentration in colorectal cancer tissues with lymph node metastasis. LPS significantly enhanced cancer cell motility and promoted human dermal lymphatic endothelial cells' (HDLECs') capacity of tube-like formation in vitro, as well as accelerates lymphangiogenesis and lymph node metastasis in nude mice. Furthermore, we demonstrated LPS notably increased the expression of VEGF-C in a time-dependent and concentration-dependent manner. VEGF-C is a key regulator for lymphangiogenesis and lymph node metastasis. By constructing lentivirus-mediated shVEGF-C cells, VEGF-C down-regulation suppressed LPS' promotive effect on cancer cell motility and HDLEC tube-like formation capacity. In addition, we found TLR4- NF-κB/JNK signal pathways were important for LPS to increase VEGF-C expression. All these result suggested a critical role for LPS in migration, invasion, lymphangiogenesis and lymph node metastasis of colorectal cancer, providing evidence that LPS increased VEGF-C secretion to promote cell motility and lymphangiogenesis via TLR4- NF-κB/JNK signaling.
Collapse
Affiliation(s)
- Guangwei Zhu
- Department of Gastrointestinal Surgery 2 Section, The First Hospital Affiliated to Fujian Medical University, Fuzhou, Fujian, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, China
| | - Qiang Huang
- Department of Gastrointestinal Surgery 2 Section, The First Hospital Affiliated to Fujian Medical University, Fuzhou, Fujian, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, China
| | - Yongjian Huang
- Department of Gastrointestinal Surgery 2 Section, The First Hospital Affiliated to Fujian Medical University, Fuzhou, Fujian, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, China
| | - Wei Zheng
- Department of Gastrointestinal Surgery 2 Section, The First Hospital Affiliated to Fujian Medical University, Fuzhou, Fujian, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, China
| | - Jin Hua
- Department of Gastrointestinal Surgery 2 Section, The First Hospital Affiliated to Fujian Medical University, Fuzhou, Fujian, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, China
| | - Shugang Yang
- Department of Gastrointestinal Surgery 2 Section, The First Hospital Affiliated to Fujian Medical University, Fuzhou, Fujian, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, China
| | - Jinfu Zhuang
- Department of Gastrointestinal Surgery 2 Section, The First Hospital Affiliated to Fujian Medical University, Fuzhou, Fujian, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, China
| | - Jinzhou Wang
- Department of Gastrointestinal Surgery 2 Section, The First Hospital Affiliated to Fujian Medical University, Fuzhou, Fujian, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, China
| | - Jianxin Ye
- Department of Gastrointestinal Surgery 2 Section, The First Hospital Affiliated to Fujian Medical University, Fuzhou, Fujian, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
36
|
Connective tissue growth factor regulates fibrosis-associated renal lymphangiogenesis. Kidney Int 2017; 92:850-863. [PMID: 28545716 DOI: 10.1016/j.kint.2017.03.029] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 03/10/2017] [Accepted: 03/16/2017] [Indexed: 11/20/2022]
Abstract
Lymphangiogenesis is correlated with the degree of renal interstitial fibrosis. Pro-fibrotic transforming growth factor β induces VEGF-C production, the main driver of lymphangiogenesis. Connective tissue growth factor (CTGF) is an important determinant of fibrotic tissue remodeling, but its possible involvement in lymphangiogenesis has not been explored. We found prominent lymphangiogenesis during tubulointerstitial fibrosis to be associated with increased expression of CTGF and VEGF-C in human obstructed nephropathy as well as in diabetic kidney disease. Using CTGF knockout mice, we investigated the involvement of CTGF in development of fibrosis and associated lymphangiogenesis in obstructive nephropathy. The increase of lymphatic vessels and VEGF-C in obstructed kidneys was significantly reduced in CTGF knockout compared to wild-type mice. Also in mouse kidneys subjected to ischemia-reperfusion injury, CTGF knockdown was associated with reduced lymphangiogenesis. In vitro, CTGF induced VEGF-C production in HK-2 cells, while CTGF siRNA suppressed transforming growth factor β1-induced VEGF-C upregulation. Furthermore, surface plasmon resonance analysis showed that CTGF and VEGF-C directly interact. Interestingly, VEGF-C-induced capillary-like tube formation by human lymphatic endothelial cells was suppressed by full-length CTGF but not by naturally occurring proteolytic CTGF fragments. Thus, CTGF is significantly involved in fibrosis-associated renal lymphangiogenesis through regulation of, and direct interaction with, VEGF-C.
Collapse
|
37
|
Yamashita M, Niisato M, Hanasaka T, Iwama N, Takahashi T, Sugai T, Ono M, Yamauchi K. Development of Lymphatic Capillary Network Along the Alveolar Walls of Autopsied Human Lungs with Pneumonia. Lymphat Res Biol 2016; 14:210-219. [PMID: 27617628 DOI: 10.1089/lrb.2015.0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Limited information is available regarding the lymphatic vasculature during pneumonia. OBJECTIVE To characterize lymphatic vasculatures in autopsied cadavers with pneumonia. METHODS Paraffin-embedded lung tissues obtained from 20 autopsied cadavers with complicated pneumonia and 10 control cadavers without pneumonia were used for immunohistochemical analyses using primary antibodies against podoplanin, vascular endothelial growth factor receptor-3 (VEGFR-3), CD34, vascular endothelial growth factor (VEGF)-C, VEGF-D, CD73, and CD163. RESULTS There was no difference in the vascular density of podoplanin+ usual lymphatics between the individuals with and without pneumonia. In half of the cadavers with pneumonia, however, a network of podoplanin+ cells lying together in a side-by-side bead-like arrangement appeared along the alveolar septa; however, this was absent in the control cadavers. The podoplanin+ cells in the network were characterized by a weaker expression of podoplanin, relative to usual lymphatics, and the occasional presence of ductal structures. Although podoplanin+ cells were not coexpressed with VEGFR-3, a part of the network was connected to CD73+ afferent lymphatics. The network showed an intertwined relationship with CD34+ capillaries, suggesting that the network represents lymphatic capillaries. The number of CD163+ macrophages was significantly increased in individuals with the network than those without the network, while a significant decrease in neutrophils was observed. VEGF-C expressed in CD163+ macrophages and type II epithelial cells was observed in the cadavers with the network. CONCLUSION The development of lymphatic capillary networks along the alveolar septa rather than the usual lymphangiogenesis was noted in autopsied individuals with pneumonia.
Collapse
Affiliation(s)
- Masahiro Yamashita
- 1 Department of Pulmonary Medicine, Allergy and Rheumatology, Iwate Medical University School of Medicine , Morioka, Japan .,2 Department of Pathology, Tohoku University Graduate School of Medicine , Sendai, Japan
| | - Miyuki Niisato
- 1 Department of Pulmonary Medicine, Allergy and Rheumatology, Iwate Medical University School of Medicine , Morioka, Japan
| | - Tomohito Hanasaka
- 3 Technical Support Center for Life Science Research, Iwate Medical University , Iwate, Japan
| | - Noriyuki Iwama
- 4 Department of Pathology, Tohoku Rosai Hospital , Sendai, Japan
| | - Tohru Takahashi
- 5 Department of Pathology, Ishinomaki Red Cross Hospital , Ishinomaki, Japan
| | - Tamotsu Sugai
- 6 Department of Pathology, Iwate Medical University School of Medicine , Morioka, Japan
| | - Masao Ono
- 2 Department of Pathology, Tohoku University Graduate School of Medicine , Sendai, Japan
| | - Kohei Yamauchi
- 1 Department of Pulmonary Medicine, Allergy and Rheumatology, Iwate Medical University School of Medicine , Morioka, Japan
| |
Collapse
|
38
|
Ginsenoside Rg1 enhances lymphatic transport of intrapulmonary silica via VEGF-C/VEGFR-3 signaling in silicotic rats. Biochem Biophys Res Commun 2016; 472:182-8. [DOI: 10.1016/j.bbrc.2016.02.091] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 02/22/2016] [Indexed: 01/25/2023]
|
39
|
Ebihara S, Sekiya H, Miyagi M, Ebihara T, Okazaki T. Dysphagia, dystussia, and aspiration pneumonia in elderly people. J Thorac Dis 2016; 8:632-9. [PMID: 27076964 PMCID: PMC4805832 DOI: 10.21037/jtd.2016.02.60] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 01/26/2016] [Indexed: 12/31/2022]
Abstract
Despite the development and wide distribution of guidelines for pneumonia, death from pneumonia is increasing due to population aging. Conventionally, aspiration pneumonia was mainly thought to be one of the infectious diseases. However, we have proven that chronic repeated aspiration of a small amount of sterile material can cause the usual type of aspiration pneumonia in mouse lung. Moreover, chronic repeated aspiration of small amounts induced chronic inflammation in both frail elderly people and mouse lung. These observations suggest the need for a paradigm shift of the treatment for pneumonia in the elderly. Since aspiration pneumonia is fundamentally based on dysphagia, we should shift the therapy for aspiration pneumonia from pathogen-oriented therapy to function-oriented therapy. Function-oriented therapy in aspiration pneumonia means therapy focusing on slowing or reversing the functional decline that occurs as part of the aging process, such as "dementia → dysphagia → dystussia → atussia → silent aspiration". Atussia is ultimate dysfunction of cough physiology, and aspiration with atussia is called silent aspiration, which leads to the development of life-threatening aspiration pneumonia. Research pursuing effective strategies to restore function in the elderly is warranted in order to decrease pneumonia deaths in elderly people.
Collapse
|
40
|
Yamashita M. Lymphangiogenesis and Lesion Heterogeneity in Interstitial Lung Diseases. CLINICAL MEDICINE INSIGHTS-CIRCULATORY RESPIRATORY AND PULMONARY MEDICINE 2016; 9:111-21. [PMID: 26823655 PMCID: PMC4725607 DOI: 10.4137/ccrpm.s33856] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 11/03/2015] [Accepted: 11/23/2015] [Indexed: 01/26/2023]
Abstract
The lymphatic system has several physiological roles, including fluid homeostasis and the activation of adaptive immunity by fluid drainage and cell transport. Lymphangiogenesis occurs in adult tissues during various pathologic conditions. In addition, lymphangiogenesis is closely linked to capillary angiogenesis, and the balanced interrelationship between capillary angiogenesis and lymphangiogenesis is essential for maintaining homeostasis in tissues. Recently, an increasing body of information regarding the biology of lymphatic endothelial cells has allowed us to immunohistochemically characterize lymphangiogenesis in several lung diseases. Particular interest has been given to the interstitial lung diseases. Idiopathic interstitial pneumonias (IIPs) are characterized by heterogeneity in pathologic changes and lesions, as typified by idiopathic pulmonary fibrosis/usual interstitial pneumonia. In IIPs, lymphangiogenesis is likely to have different types of localized functions within each disorder, corresponding to the heterogeneity of lesions in terms of inflammation and fibrosis. These functions include inhibitory absorption of interstitial fluid and small molecules and maturation of fibrosis by excessive interstitial fluid drainage, caused by an unbalanced relationship between capillary angiogenesis and lymphangiogenesis and trafficking of antigen-presenting cells and induction of fibrogenesis via CCL21 and CCR7 signals. Better understanding for regional functions of lymphangiogenesis might provide new treatment strategies tailored to lesion heterogeneity in these complicated diseases.
Collapse
Affiliation(s)
- Masahiro Yamashita
- Department of Pulmonary Medicine, Allergy and Rheumatology, Iwate Medical University School of Medicine, Morioka, Japan
| |
Collapse
|
41
|
Ebihara S. [Frontiers in molecular therapy for aspiration pneumonia: from pharyngeal sensory receptor to lymphangiogenic factors
]. Nihon Yakurigaku Zasshi 2015; 145:283-7. [PMID: 26063149 DOI: 10.1254/fpj.145.283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|