1
|
Park KH, Kim HC, Won YS, Yoon WK, Choi I, Han SB, Kang JS. Vitamin D 3 Upregulated Protein 1 Deficiency Promotes Azoxymethane/Dextran Sulfate Sodium-Induced Colorectal Carcinogenesis in Mice. Cancers (Basel) 2024; 16:2934. [PMID: 39272794 PMCID: PMC11394134 DOI: 10.3390/cancers16172934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/24/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
VDUP1 acts as a tumor suppressor gene in various cancers. VDUP1 is expressed at low levels in sporadic and ulcerative-colitis-associated colorectal cancer. However, the effects of VDUP1 deficiency on CAC remain unclear. In this study, we found that VDUP1 deficiency promoted CAC development in mice. Wild-type (WT) and VDUP1 KO mice were used to investigate the role of VDUP1 in the development of azoxymethane (AOM)- and dextran sulfate sodium (DSS)-induced CAC. VDUP1 levels significantly decreased in the colonic tumor and adjacent nontumoral tissues of WT mice after AOM/DSS treatment. Moreover, AOM/DSS-treated VDUP1 KO mice exhibited a worse survival rate, disease activity index, and tumor burden than WT mice. VDUP1 deficiency significantly induced cell proliferation and anti-apoptosis in tumor tissues of VDUP1 KO mice compared to WT littermates. Additionally, mRNA levels of interleukin-6 and tumor necrosis factor-alpha and active forms of signal transducer and activator of transcription 3 and nuclear factor-kappa B p65 were significantly increased in the tumor tissues of VDUP1 KO mice. Overall, this study demonstrated that the loss of VDUP1 promoted AOM/DSS-induced colon tumorigenesis in mice, highlighting the potential of VDUP1-targeting strategies for colon cancer prevention and treatment.
Collapse
Affiliation(s)
- Ki Hwan Park
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Cheongwon-gu, Cheongju-si 28116, Chungcheongbuk-do, Republic of Korea
| | - Hyoung-Chin Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Cheongwon-gu, Cheongju-si 28116, Chungcheongbuk-do, Republic of Korea
| | - Young-Suk Won
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Cheongwon-gu, Cheongju-si 28116, Chungcheongbuk-do, Republic of Korea
| | - Won Kee Yoon
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Cheongwon-gu, Cheongju-si 28116, Chungcheongbuk-do, Republic of Korea
| | - Inpyo Choi
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseoung-gu, Daejeon-si 34141, Republic of Korea
| | - Sang-Bae Han
- College of Pharmacy, Chungbuk National University, 194-21 Osongsaemgmyung-1-ro, Heungdeok-gu, Cheongju-si 28160, Chungcheongbuk-do, Republic of Korea
| | - Jong Soon Kang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Cheongwon-gu, Cheongju-si 28116, Chungcheongbuk-do, Republic of Korea
| |
Collapse
|
2
|
Teocchi M, de Andrade Eugênio T, Furlaneto Marega L, Quinti I, dos Santos Vilela MM. Dysregulation of Toll-Like Receptor Signaling-Associated Gene Expression in X-Linked Agammaglobulinemia: Implications for Correlations Genotype-Phenotype and Disease Expression. J Innate Immun 2024; 16:425-439. [PMID: 39116841 PMCID: PMC11521414 DOI: 10.1159/000540082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/26/2024] [Indexed: 08/10/2024] Open
Abstract
INTRODUCTION In X-linked agammaglobulinemia (XLA), the diversity of BTK variants complicates the study of genotype-phenotype correlations. Since BTK negatively regulates toll-like receptors (TLRs), we investigated if distinct BTK mutation types selectively modulate TLR pathways, affecting disease expression. METHODS Using reverse transcription-quantitative polymerase chain reaction, we quantified ten TLR signaling-related genes in XLA patients with missense (n = 3) and nonsense (n = 5) BTK mutations and healthy controls (n = 17). RESULTS BTK, IRAK2, PIK3R4, REL, TFRC, and UBE2N were predominantly downregulated, while RIPK2, TLR3, TLR10, and TLR6 showed variable regulation. The missense XLA group exhibited significant downregulation of IRAK2, PIK3R4, REL, and TFRC and upregulation of TLR3 and/or TLR6. CONCLUSION Hypo-expression of TLR3, TLR6, and TLR10 may increase susceptibility to infections, while hyper-expression might contribute to chronic inflammatory conditions like arthritis or inflammatory bowel disease. Our findings shed light on the important inflammatory component characteristic of some XLA patients, even under optimal therapeutic conditions.
Collapse
Affiliation(s)
- Marcelo Teocchi
- Laboratory of Pediatric Immunology, Center for Investigation in Pediatrics, University of Campinas Medical School (FCM-UNICAMP), Campinas, Brazil
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Thaís de Andrade Eugênio
- Laboratory of Pediatric Immunology, Center for Investigation in Pediatrics, University of Campinas Medical School (FCM-UNICAMP), Campinas, Brazil
| | - Lia Furlaneto Marega
- Laboratory of Pediatric Immunology, Center for Investigation in Pediatrics, University of Campinas Medical School (FCM-UNICAMP), Campinas, Brazil
| | - Isabella Quinti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Maria Marluce dos Santos Vilela
- Laboratory of Pediatric Immunology, Center for Investigation in Pediatrics, University of Campinas Medical School (FCM-UNICAMP), Campinas, Brazil
| |
Collapse
|
3
|
Luo R, Liu Q, Hu Z, Dai W, Huang S, Xie J, Wei S, Lin C. c-Rel is a Novel Oncogene in Lung Squamous Cell Carcinoma Regulating Cell Proliferation and Migration. J Cancer 2024; 15:2329-2339. [PMID: 38495491 PMCID: PMC10937284 DOI: 10.7150/jca.93766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/12/2024] [Indexed: 03/19/2024] Open
Abstract
Lung squamous cell carcinoma (LUSC) accounts for approximately 25% to 30% of lung cancers, but largely no targeted therapy is available against it, calling for identification of new oncogenes in LUSC growth for new therapeutic targets. In this study, REL was identified through a screening for oncogenes that are highly amplified in human LUSC. Its expression was associated with poor prognosis in LUSC patients. Furthermore, knockdown of c-Rel in LUSC cell lines lead to significant decrease in cell proliferation and migration. Mechanistically, c-Rel knockdown suppressed NFκB pathway by blocking phosphorylation of IκB. Consistently, pharmaceutic inhibition of c-Rel also. In orthotopic xenograft lung cancer mouse model, c-Rel knockdown inhibited the tumor growth. Cancer cell proliferation and epithelial-mesenchymal-transition (EMT) of the tumors were impaired by c-Rel knockdown. Finally, it's confirmed in precision-cut tumor slices of LUSC that deletion of c-Rel inhibits the NFκB pathway and cancer cell growth. Accordingly, we hypothesize that c-Rel promotes the activation of the NFκB pathway by promoting the phosphorylation of IκB in LUSC. Our study reveals REL as a novel LUSC oncogene and provides new insights into the molecular regulation of LUSC, which will provide new therapeutic targets for the treatment of squamous lung cancer.
Collapse
Affiliation(s)
- Renru Luo
- Department of histology and embryology, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Qiongyu Liu
- Department of histology and embryology, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Zheyu Hu
- Department of histology and embryology, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Wanqin Dai
- Department of histology and embryology, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Shuwei Huang
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianjiang Xie
- Department of Pulmonary and Critical Care Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Shuquan Wei
- Department of Pulmonary and Critical Care Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Chuwen Lin
- Department of histology and embryology, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
| |
Collapse
|
4
|
Mukherjee T, Kumar N, Chawla M, Philpott DJ, Basak S. The NF-κB signaling system in the immunopathogenesis of inflammatory bowel disease. Sci Signal 2024; 17:eadh1641. [PMID: 38194476 DOI: 10.1126/scisignal.adh1641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024]
Abstract
Inflammatory bowel disease (IBD) is an idiopathic, chronic condition characterized by episodes of inflammation in the gastrointestinal tract. The nuclear factor κB (NF-κB) system describes a family of dimeric transcription factors. Canonical NF-κB signaling is stimulated by and enhances inflammation, whereas noncanonical NF-κB signaling contributes to immune organogenesis. Dysregulation of NF-κB factors drives various inflammatory pathologies, including IBD. Signals from many immune sensors activate NF-κB subunits in the intestine, which maintain an equilibrium between local microbiota and host responses. Genetic association studies of patients with IBD and preclinical mouse models confirm the importance of the NF-κB system in host defense in the gut. Other studies have investigated the roles of these factors in intestinal barrier function and in inflammatory gut pathologies associated with IBD. NF-κB signaling modulates innate and adaptive immune responses and the production of immunoregulatory proteins, anti-inflammatory cytokines, antimicrobial peptides, and other tolerogenic factors in the intestine. Furthermore, genetic studies have revealed critical cell type-specific roles for NF-κB proteins in intestinal immune homeostasis, inflammation, and restitution that contribute to the etiopathology of IBD-associated manifestations. Here, we summarize our knowledge of the roles of these NF-κB pathways, which are activated in different intestinal cell types by specific ligands, and their cross-talk, in fueling aberrant intestinal inflammation. We argue that an in-depth understanding of aberrant immune signaling mechanisms may hold the key to identifying predictive or prognostic biomarkers and developing better therapeutics against inflammatory gut pathologies.
Collapse
Affiliation(s)
- Tapas Mukherjee
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Naveen Kumar
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Meenakshi Chawla
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Dana J Philpott
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Soumen Basak
- Systems Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
5
|
Leslie J, Hunter JE, Collins A, Rushton A, Russell LG, Ramon‐Gil E, Laszczewska M, McCain M, Zaki MYW, Knox A, Seow Y, Sabater L, Geh D, Perkins ND, Reeves HL, Tiniakos D, Mann DA, Oakley F. c-Rel-dependent Chk2 signaling regulates the DNA damage response limiting hepatocarcinogenesis. Hepatology 2023; 78:1050-1063. [PMID: 36089330 PMCID: PMC10521790 DOI: 10.1002/hep.32781] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND AIMS Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death. The NF-κB transcription factor family subunit c-Rel is typically protumorigenic; however, it has recently been reported as a tumor suppressor. Here, we investigated the role of c-Rel in HCC. APPROACH AND RESULTS Histological and transcriptional studies confirmed expression of c-Rel in human patients with HCC, but low c-Rel expression correlated with increased tumor cell proliferation and mutational burden and was associated with advanced disease. In vivo , global ( Rel-/- ) and epithelial specific ( RelAlb ) c-Rel knockout mice develop more tumors, with a higher proliferative rate and increased DNA damage, than wild-type (WT) controls 30 weeks after N-diethylnitrosamine injury. However, tumor burden was comparable when c-Rel was deleted in hepatocytes once tumors were established, suggesting c-Rel signaling is important for preventing HCC initiation after genotoxic injury, rather than for HCC progression. In vitro , Rel-/- hepatocytes were more susceptible to genotoxic injury than WT controls. ATM-CHK2 DNA damage response pathway proteins were suppressed in Rel-/- hepatocytes following genotoxic injury, suggesting that c-Rel is required for effective DNA repair. To determine if c-Rel inhibition sensitizes cancer cells to chemotherapy, by preventing repair of chemotherapy-induced DNA damage, thus increasing tumor cell death, we administered single or combination doxorubicin and IT-603 (c-Rel inhibitor) therapy in an orthotopic HCC model. Indeed, combination therapy was more efficacious than doxorubicin alone. CONCLUSION Hepatocyte c-Rel signaling limits genotoxic injury and subsequent HCC burden. Inhibiting c-Rel as an adjuvant therapy increased the effectiveness of DNA damaging agents and reduced HCC growth.
Collapse
Affiliation(s)
- Jack Leslie
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle‐upon‐Tyne, UK
| | - Jill E. Hunter
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle‐upon‐Tyne, UK
| | - Amy Collins
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle‐upon‐Tyne, UK
| | - Amelia Rushton
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle‐upon‐Tyne, UK
| | - Lauren G. Russell
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle‐upon‐Tyne, UK
| | - Erik Ramon‐Gil
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle‐upon‐Tyne, UK
| | - Maja Laszczewska
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle‐upon‐Tyne, UK
| | - Misti McCain
- Newcastle University Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle‐upon‐Tyne, UK
| | - Marco Y. W. Zaki
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle‐upon‐Tyne, UK
- Biochemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Amber Knox
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle‐upon‐Tyne, UK
| | - Yixin Seow
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle‐upon‐Tyne, UK
| | - Laura Sabater
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle‐upon‐Tyne, UK
| | - Daniel Geh
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle‐upon‐Tyne, UK
- Department of Medicine, Freeman Hospital, Newcastle‐upon‐Tyne Hospitals NHS Foundation Trust, Newcastle‐upon‐Tyne, UK
| | - Neil D. Perkins
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle‐upon‐Tyne, UK
| | - Helen L. Reeves
- Newcastle University Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle‐upon‐Tyne, UK
- Department of Medicine, Freeman Hospital, Newcastle‐upon‐Tyne Hospitals NHS Foundation Trust, Newcastle‐upon‐Tyne, UK
| | - Dina Tiniakos
- Newcastle University Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle‐upon‐Tyne, UK
- Department of Pathology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Derek A. Mann
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle‐upon‐Tyne, UK
| | - Fiona Oakley
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle‐upon‐Tyne, UK
| |
Collapse
|
6
|
Oey O, Sunjaya AF, Khan Y, Redfern A. Stromal inflammation, fibrosis and cancer: An old intuition with promising potential. World J Clin Oncol 2023; 14:230-246. [PMID: 37583950 PMCID: PMC10424089 DOI: 10.5306/wjco.v14.i7.230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/07/2023] [Accepted: 06/21/2023] [Indexed: 07/19/2023] Open
Abstract
It is now well established that the biology of cancer is influenced by not only malignant cells but also other components of the tumour microenvironment. Chronic inflammation and fibrosis have long been postulated to be involved in carcinogenesis. Chronic inflammation can promote tumorigenesis via growth factor/cytokine-mediated cellular proliferation, apoptotic resistance, immunosuppression; and free-radical-induced oxidative deoxyribonucleic acid damage. Fibrosis could cause a perturbation in the dynamics of the tumour microenvironment, potentially damaging the genome surveillance machinery of normal epithelial cells. In this review, we will provide an in-depth discussion of various diseases characterised by inflammation and fibrosis that have been associated with an increased risk of malignancy. In particular, we will present a comprehensive overview of the impact of alterations in stromal composition on tumorigenesis, induced as a consequence of inflammation and/or fibrosis. Strategies including the application of various therapeutic agents with stromal manipulation potential and targeted cancer screening for certain inflammatory diseases which can reduce the risk of cancer will also be discussed.
Collapse
Affiliation(s)
- Oliver Oey
- Faculty of Medicine, University of Western Australia, Perth 6009, Crawley NA, Australia
- Department of Medical Oncology, Sir Charles Gardner Hospital, Nedlands 6009, Australia
| | - Angela Felicia Sunjaya
- Institute of Cardiovascular Science, University College London, London WC1E 6DD, United Kingdom
| | - Yasir Khan
- Department of Medical Oncology, St John of God Midland Public and Private Hospital, Midland 6056, WA, Australia
| | - Andrew Redfern
- Department of Medical Oncology, Fiona Stanley Hospital, Murdoch 6150, WA, Australia
| |
Collapse
|
7
|
Zheng J, Wang S, Zhang T, Li H, Zhu M, Wei X, Ge Y, Yang X, Zhang S, Xu H, Duan Y, Liu L, Chen Y. Nogo-B inhibition restricts ulcerative colitis via inhibiting p68/miR-155 signaling pathway. Int Immunopharmacol 2023; 120:110378. [PMID: 37244119 DOI: 10.1016/j.intimp.2023.110378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/10/2023] [Accepted: 05/19/2023] [Indexed: 05/29/2023]
Abstract
BACKGROUND & AIMS Ulcerative colitis (UC) is a main type of inflammatory bowel diseases which spreads globally during the westernization of lifestyle over the past few decades. However, the cause of UC is still not fully understood. We aimed to disclose the role of Nogo-B in the development of UC. METHODS Nogo-deficiency (Nogo-/-) and wild-type male mice were treated with dextran sodium sulfate (DSS) to conduct a UC model, followed by determination of colon and serum inflammatory cytokines level. RAW264.7, THP1 and NCM460 cells were used to determine macrophage inflammation as well as proliferation and migration of NCM460 cells under Nogo-B or miR-155 intervention. RESULTS Nogo deficiency significantly reduced DSS-induced weight loss, colon length and weight reduction, and inflammatory cells accumulation in the intestinal villus, while increased the expression of tight junctions (TJs) proteins (Zonula occludens-1, Occludin) and adherent junctions (AJs) proteins (E-cadherin, α-catenin), implying that Nogo deficiency attenuated DSS-induced UC. Mechanistically, Nogo-B deficiency reduced TNFα, IL-1β and IL-6 levels in the colon, serum, RAW264.7 cells and THP1-derived macrophages. Furthermore, we identified that Nogo-B inhibition can reduce the maturation of miR-155, which is essential for Nogo-B-affected inflammatory cytokines expression. Interestingly, we determined that Nogo-B and p68 can interact with each other to promote the expression and activation of Nogo-B and p68, thus facilitating miR-155 maturation to induce macrophage inflammation. Blocking p68 inhibited Nogo-B, miR-155, TNFα, IL-1β and IL-6 expression. Moreover, the culture medium collected from Nogo-B overexpressed macrophages can inhibit enterocytes NCM460 cells proliferation and migration. CONCLUSION We disclose that Nogo deficiency reduced DSS-induced UC via inhibiting p68-miR-155-activated inflammation. Our results indicate that Nogo-B inhibition serves as a new potential therapeutic candidate for the prevention and treatment of UC.
Collapse
Affiliation(s)
- Juan Zheng
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Shengnan Wang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Tingting Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Huaxin Li
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Mengmeng Zhu
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xiaoning Wei
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yu Ge
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xiaoxiao Yang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Shuang Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Hongmei Xu
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yajun Duan
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lipei Liu
- College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Yuanli Chen
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| |
Collapse
|
8
|
NF-kappa B expression in resected specimen of colonic cancer is higher compared to its expression in inflammatory bowel diseases and polyps. Sci Rep 2022; 12:16645. [PMID: 36198850 PMCID: PMC9534908 DOI: 10.1038/s41598-022-21078-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 09/22/2022] [Indexed: 11/25/2022] Open
Abstract
NF-Kappa B has a significant role in inflammatory processes as well as in colorectal cancer. The aim of this study was to compare the expression of NF-kappa B in colonic adenocarcinoma specimen, colonic adenomas and inflammatory colonic tissues. Patients with colorectal cancer (CRC), colonic adenomas and inflammatory processes undergoing surgery were recruited. Following a routine pathological evaluation tissue samples were stained using anti NF-κB monoclonal antibodies. Expression of NF-κB was quantified using IMAGEJ program for immunohistochemistry staining. Samples were also stained and quantified for CEA expression. Fifty-six patients were included. 30 cancers, 6 polyps and 20 inflammatory processes. Expression of NF-κB was similar between polypoid and inflammation etiologies. However, it was significantly higher in CRC compared to both (p < 0.05). In cancer patients, NF-κB expression in the resection margins was correlated with positive node status. CEA expression was higher in the cancer group, less in the IBD group and the lowest in the colonic non diseased margins. Our results provide a supportive evidence that NF-κB pathway is strongly involved in colon cancer development and metastasis. Interestingly, expression of NF-κB in benign polypoid lesions was as high as in inflammatory etiologies. This support the role of NF-κB early in the adenoma to carcinoma sequence. Further research is needed to evaluate the exact role of NF-κB in tumor progression in order to look for diagnostic and therapeutic possibilities.
Collapse
|
9
|
Papoutsopoulou S, Tang J, Elramli AH, Williams JM, Gupta N, Ikuomola FI, Sheibani-Tezerji R, Alam MT, Hernández-Fernaud JR, Caamaño JH, Probert CS, Muller W, Duckworth CA, Pritchard DM. Nfkb2 deficiency and its impact on plasma cells and immunoglobulin expression in murine small intestinal mucosa. Am J Physiol Gastrointest Liver Physiol 2022; 323:G306-G317. [PMID: 35916405 PMCID: PMC9485003 DOI: 10.1152/ajpgi.00037.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The alternative (noncanonical) nuclear factor-κB (NF-κB) signaling pathway predominantly regulates the function of the p52/RelB heterodimer. Germline Nfkb2 deficiency in mice leads to loss of p100/p52 protein and offers protection against a variety of gastrointestinal conditions, including azoxymethane/dextran sulfate sodium (DSS)-induced colitis-associated cancer and lipopolysaccharide (LPS)-induced small intestinal epithelial apoptosis. However, the common underlying protective mechanisms have not yet been fully elucidated. We applied high-throughput RNA-Seq and proteomic analyses to characterize the transcriptional and protein signatures of the small intestinal mucosa of naïve adult Nfkb2-/- mice. Those data were validated by immunohistochemistry and quantitative ELISA using both small intestinal tissue lysates and serum. We identified a B-lymphocyte defect as a major transcriptional signature in the small intestinal mucosa and immunoglobulin A as the most downregulated protein by proteomic analysis in Nfkb2-/- mice. Small intestinal immunoglobulins were dramatically dysregulated, with undetectable levels of immunoglobulin A and greatly increased amounts of immunoglobulin M being detected. The numbers of IgA-producing, cluster of differentiation (CD)138-positive plasma cells were also reduced in the lamina propria of the small intestinal villi of Nfkb2-/- mice. This phenotype was even more striking in the small intestinal mucosa of RelB-/- mice, although these mice were equally sensitive to LPS-induced intestinal apoptosis as their RelB+/+ wild-type counterparts. NF-κB2/p52 deficiency confers resistance to LPS-induced small intestinal apoptosis and also appears to regulate the plasma cell population and immunoglobulin levels within the gut.NEW & NOTEWORTHY Novel transcriptomic analysis of murine proximal intestinal mucosa revealed an unexpected B cell signature in Nfkb2-/- mice. In-depth analysis revealed a defect in the CD38+ B cell population and a gut-specific dysregulation of immunoglobulin levels.
Collapse
Affiliation(s)
- Stamatia Papoutsopoulou
- 1Institute of Systems, Molecular and Integrative Biology, Faculty of Health & Life Sciences, grid.10025.36University of Liverpool, Liverpool, United Kingdom,2Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Joseph Tang
- 1Institute of Systems, Molecular and Integrative Biology, Faculty of Health & Life Sciences, grid.10025.36University of Liverpool, Liverpool, United Kingdom
| | - Ahmed H. Elramli
- 1Institute of Systems, Molecular and Integrative Biology, Faculty of Health & Life Sciences, grid.10025.36University of Liverpool, Liverpool, United Kingdom,3Department of Basic Medical Sciences, Faculty of Dentistry, University of Benghazi, Benghazi, Libya
| | - Jonathan M. Williams
- 1Institute of Systems, Molecular and Integrative Biology, Faculty of Health & Life Sciences, grid.10025.36University of Liverpool, Liverpool, United Kingdom,4Pathobiology and Population Sciences, The Royal
Veterinary College, Hatfield, United Kingdom
| | - Nitika Gupta
- 1Institute of Systems, Molecular and Integrative Biology, Faculty of Health & Life Sciences, grid.10025.36University of Liverpool, Liverpool, United Kingdom
| | - Felix I. Ikuomola
- 1Institute of Systems, Molecular and Integrative Biology, Faculty of Health & Life Sciences, grid.10025.36University of Liverpool, Liverpool, United Kingdom
| | | | - Mohammad T. Alam
- 6Warwick Medical School, Bioinformatics RTP, University of Warwick, Coventry, United Kingdom,7Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Juan R. Hernández-Fernaud
- 6Warwick Medical School, Bioinformatics RTP, University of Warwick, Coventry, United Kingdom,8Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Tecnologías Biomédicas, La Laguna, Spain
| | - Jorge H. Caamaño
- 9College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Chris S. Probert
- 1Institute of Systems, Molecular and Integrative Biology, Faculty of Health & Life Sciences, grid.10025.36University of Liverpool, Liverpool, United Kingdom
| | - Werner Muller
- 10Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Carrie A. Duckworth
- 1Institute of Systems, Molecular and Integrative Biology, Faculty of Health & Life Sciences, grid.10025.36University of Liverpool, Liverpool, United Kingdom
| | - D. Mark Pritchard
- 1Institute of Systems, Molecular and Integrative Biology, Faculty of Health & Life Sciences, grid.10025.36University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
10
|
Lu C, Klement JD, Smith AD, Yang D, Waller JL, Browning DD, Munn DH, Liu K. p50 suppresses cytotoxic T lymphocyte effector function to regulate tumor immune escape and response to immunotherapy. J Immunother Cancer 2021; 8:jitc-2020-001365. [PMID: 33051343 PMCID: PMC7555101 DOI: 10.1136/jitc-2020-001365] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2020] [Indexed: 12/15/2022] Open
Abstract
Background NF-κB is a key link between inflammation and cancer. Previous studies of NF-κB have largely focused on tumor cells, and the intrinsic function of NF-κB in T cells in tumor development and response to immunotherapy is largely unknown. We aimed at testing the hypothesis that NF-κB1 (p50) activation in T cells underlies human colon cancer immune escape and human cancer non-response to anti-PD-1 immunotherapy. Methods We screened NF-κB activation in human colon carcinoma and used mouse models to determine p50 function in tumor cells and immune cells. RNA-Seq was used to identify p50 target genes. p50 binding to target gene promoters were determined by electrophoresis mobility shift assay and chromatin immunoprecipitation. A p50 activation score was generated from gene expression profiling and used to link p50 activation to T-cell activation and function pre-nivolumab and post-nivolumab immunotherapy in human patients with cancer. Results p50 is the dominant form of NF-κB that is highly activated in immune cells in the human colorectal carcinoma microenvironment and neighboring non-neoplastic colon epithelial cells. Tumor cell intrinsic p50 signaling and T-cell intrinsic p50 signaling exert opposing functions in tumor growth control in vivo. Deleting Nfkb1 in tumor cells increased whereas in T cells decreased tumor growth in preclinical mouse models. Gene expression profiling identified Gzmb as a p50 target in T cells. p50 binds directly to a previously uncharacterized κB sequence at the Gzmb promoter in T cells, resulting in repression of Gzmb expression in tumor-infiltrating cytotoxic T lymphocytes (CTLs) to induce a dysfunctional CTL phenotype to promote tumor immune escape. p50 activation is inversely correlated with both GZMB expression and T-cell tumor infiltration in human colorectal carcinoma. Furthermore, nivolumab immunotherapy decreased p50 activation and increased GZMB expression in human patients with melanoma. Conclusions Inflammation activates p50 that binds to the Gzmb promoter to repress granzyme B expression in T cells, resulting in CTL dysfunction to confer tumor immune escape and decreased response to anti-PD-1 immunotherapy.
Collapse
Affiliation(s)
- Chunwan Lu
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia, United States .,Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, United States.,Charlie Norwood VA Medical Center, Augusta, Georgia, United States
| | - John D Klement
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia, United States.,Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, United States.,Charlie Norwood VA Medical Center, Augusta, Georgia, United States
| | - Alyssa D Smith
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia, United States.,Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, United States.,Charlie Norwood VA Medical Center, Augusta, Georgia, United States
| | - Dafeng Yang
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia, United States.,Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, United States.,Charlie Norwood VA Medical Center, Augusta, Georgia, United States
| | - Jennifer L Waller
- Department of Population Health Sciences, Augusta University, Augusta, Georgia, United States
| | - Darren D Browning
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia, United States.,Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - David H Munn
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia, United States .,Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, Georgia, United States.,Charlie Norwood VA Medical Center, Augusta, Georgia, United States
| |
Collapse
|
11
|
Chawla M, Mukherjee T, Deka A, Chatterjee B, Sarkar UA, Singh AK, Kedia S, Lum J, Dhillon MK, Banoth B, Biswas SK, Ahuja V, Basak S. An epithelial Nfkb2 pathway exacerbates intestinal inflammation by supplementing latent RelA dimers to the canonical NF-κB module. Proc Natl Acad Sci U S A 2021; 118:e2024828118. [PMID: 34155144 PMCID: PMC8237674 DOI: 10.1073/pnas.2024828118] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aberrant inflammation, such as that associated with inflammatory bowel disease (IBD), is fueled by the inordinate activity of RelA/NF-κB factors. As such, the canonical NF-κB module mediates controlled nuclear activation of RelA dimers from the latent cytoplasmic complexes. What provokes pathological RelA activity in the colitogenic gut remains unclear. The noncanonical NF-κB pathway typically promotes immune organogenesis involving Nfkb2 gene products. Because NF-κB pathways are intertwined, we asked whether noncanonical signaling aggravated inflammatory RelA activity. Our investigation revealed frequent engagement of the noncanonical pathway in human IBD. In a mouse model of experimental colitis, we established that Nfkb2-mediated regulations escalated the RelA-driven proinflammatory gene response in intestinal epithelial cells, exacerbating the infiltration of inflammatory cells and colon pathologies. Our mechanistic studies clarified that cell-autonomous Nfkb2 signaling supplemented latent NF-κB dimers, leading to a hyperactive canonical RelA response in the inflamed colon. In sum, the regulation of latent NF-κB dimers appears to link noncanonical Nfkb2 signaling to RelA-driven inflammatory pathologies and may provide for therapeutic targets.
Collapse
Affiliation(s)
- Meenakshi Chawla
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi 110067, India
| | - Tapas Mukherjee
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi 110067, India
| | - Alvina Deka
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi 110067, India
| | - Budhaditya Chatterjee
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi 110067, India
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Uday Aditya Sarkar
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi 110067, India
| | - Amit K Singh
- Department of Gastroenterology, All India Institute of Medical Science, New Delhi 110029, India
| | - Saurabh Kedia
- Department of Gastroenterology, All India Institute of Medical Science, New Delhi 110029, India
| | - Josephine Lum
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138632
| | - Manprit Kaur Dhillon
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138632
| | - Balaji Banoth
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi 110067, India
| | - Subhra K Biswas
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore 138632
| | - Vineet Ahuja
- Department of Gastroenterology, All India Institute of Medical Science, New Delhi 110029, India
| | - Soumen Basak
- Systems Immunology Laboratory, National Institute of Immunology, New Delhi 110067, India;
| |
Collapse
|
12
|
Qian K, Yuan L, Wang S, Kuang Y, Jin Q, Long D, Jiang Y, Zhao H, Liu K, Yao H. Inhibitor of apoptosis-stimulating p53 protein protects against inflammatory bowel disease in mice models by inhibiting the nuclear factor kappa B signaling. Clin Exp Immunol 2021; 205:246-256. [PMID: 33942299 DOI: 10.1111/cei.13613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/30/2021] [Accepted: 04/14/2021] [Indexed: 11/30/2022] Open
Abstract
Drugs and therapies available for the treatment of inflammatory bowel disease (IBD) are not satisfactory. Our previous study has established the inhibitor of apoptosis-stimulating p53 protein (iASPP) as an oncogenic regulator in colorectal cancer by forming a regulatory axis or feedback loop with miR-124, p53, or p63. As iASPP could target and inhibit nuclear factor kappa B (NF-κB) activation, in this study the role and mechanism of iASPP in IBD was investigated. The aberrant up-regulation of iASPP in IBD was subsequently confirmed, based on online data sets, clinical sample examinations and 2,4,6-trinitrobenzene sulfonic acid (TNBS)- and dextran sulfate sodium (DSS)-induced colitis mice models. TNBS or DSS stimulation successfully induced colon shortness, body weight loss, mice colon oxidative stress and inflammation. In both types of colitis mice models, iASPP over-expression improved, whereas iASPP knockdown aggravated TNBS or DSS stimulation-caused colon shortness, body weight loss and mice colon oxidative stress and inflammation. Meanwhile, in both types of colitis mice models, iASPP over-expression inhibited p65 phosphorylation and decreased the levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, C-X-C motif chemokine ligand (CXCL)1 and CXCL2 in mice colons, whereas iASPP knockdown exerted opposite effects.
Collapse
Affiliation(s)
- Ke Qian
- Department of Gastroenterology, the Second Xiangya Hospital, Central South University, Changsha, China.,Department of Breast Surgery, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Lianwen Yuan
- Department of Geriatric Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shalong Wang
- Department of Geriatric Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yong Kuang
- Department of Gastroenterology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Qianqian Jin
- Department of Gastroenterology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Dongju Long
- Department of Gastroenterology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Yuhong Jiang
- Department of Gastroenterology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Hua Zhao
- Department of Gastroenterology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Kuijie Liu
- Department of Gastroenterology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Hongliang Yao
- Department of Gastroenterology, the Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
13
|
de Jesus LCL, Drumond MM, Aburjaile FF, Sousa TDJ, Coelho-Rocha ND, Profeta R, Brenig B, Mancha-Agresti P, Azevedo V. Probiogenomics of Lactobacillus delbrueckii subsp. lactis CIDCA 133: In Silico, In Vitro, and In Vivo Approaches. Microorganisms 2021; 9:microorganisms9040829. [PMID: 33919849 PMCID: PMC8070793 DOI: 10.3390/microorganisms9040829] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 11/16/2022] Open
Abstract
Lactobacillus delbrueckii subsp. lactis CIDCA 133 (CIDCA 133) has been reported as a potential probiotic strain, presenting immunomodulatory properties. This study investigated the possible genes and molecular mechanism involved with a probiotic profile of CIDCA 133 through a genomic approach associated with in vitro and in vivo analysis. Genomic analysis corroborates the species identification carried out by the classical microbiological method. Phenotypic assays demonstrated that the CIDCA 133 strain could survive acidic, osmotic, and thermic stresses. In addition, this strain shows antibacterial activity against Salmonella Typhimurium and presents immunostimulatory properties capable of upregulating anti-inflammatory cytokines Il10 and Tgfb1 gene expression through inhibition of Nfkb1 gene expression. These reported effects can be associated with secreted, membrane/exposed to the surface and cytoplasmic proteins, and bacteriocins-encoding genes predicted in silico. Furthermore, our results showed the genes and the possible mechanisms used by CIDCA 133 to produce their beneficial host effects and highlight its use as a probiotic microorganism.
Collapse
Affiliation(s)
- Luís Cláudio Lima de Jesus
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (L.C.L.d.J.); (F.F.A.); (T.d.J.S.); (N.D.C.-R.); (R.P.)
| | - Mariana Martins Drumond
- Centro Federal de Educação Tecnológica de Minas Gerais (CEFET/MG), Departamento de Ciências Biológicas, Belo Horizonte 31421-169, Brazil;
| | - Flávia Figueira Aburjaile
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (L.C.L.d.J.); (F.F.A.); (T.d.J.S.); (N.D.C.-R.); (R.P.)
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
| | - Thiago de Jesus Sousa
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (L.C.L.d.J.); (F.F.A.); (T.d.J.S.); (N.D.C.-R.); (R.P.)
| | - Nina Dias Coelho-Rocha
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (L.C.L.d.J.); (F.F.A.); (T.d.J.S.); (N.D.C.-R.); (R.P.)
| | - Rodrigo Profeta
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (L.C.L.d.J.); (F.F.A.); (T.d.J.S.); (N.D.C.-R.); (R.P.)
| | - Bertram Brenig
- Institute of Veterinary Medicine, University of Göttingen, D-37077 Göttingen, Germany;
| | | | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (L.C.L.d.J.); (F.F.A.); (T.d.J.S.); (N.D.C.-R.); (R.P.)
- Correspondence:
| |
Collapse
|
14
|
Antonacopoulou A, Kottorou AE, Dimitrakopoulos FI, Marousi S, Kalofonou F, Koutras A, Makatsoris T, Tzelepi V, Kalofonos HP. NF-κB2 and RELB offer prognostic information in colorectal cancer and NFKB2 rs7897947 represents a genetic risk factor for disease development. Transl Oncol 2021; 14:100912. [PMID: 33074124 PMCID: PMC7568186 DOI: 10.1016/j.tranon.2020.100912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/16/2020] [Accepted: 10/06/2020] [Indexed: 10/25/2022] Open
Abstract
The Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) family of transcription factors plays an important role in immune responses and cancer development and progression. We have focused on NF-κB2 and RELB of the alternative pathway of NF-κB, which remains largely underexplored in colorectal cancer (CRC). We found that NF-κB2 and RELB protein levels were upregulated in tumour and surrounding stromal tissue compared to distant non-neoplastic tissue (NN) and associated stroma (p<0.001 in all associations). Moreover, low RELB protein expression was associated with decreased overall survival (p = 0.032). Lower RELB gene expression levels were observed in tumour compared to NN tissue (p = 0.003) and were associated with shorter time to progression (TTP) (p = 0.025). NF-κB2 gene expression levels were similar in tumour and NN tissue, but higher tumour levels were prognostic for improved survival (p = 0.038) and TTP (p<0.001). We also assessed the significance of two NF-κB2 genetic polymorphisms, rs12769316 and rs7897947. Both polymorphisms were associated with lymph node infiltration (p = 0.045 and p = 0.009, respectively). In addition, rs12769316 AA homozygotes relapsed less often compared to G allele carriers (p = 0.029). Moreover, rs7897947 allele frequencies differed significantly between CRC patients and healthy controls (p<0.001) and the minor allele (G) was associated with reduced risk for developing CRC (p<0.001, OR: 0.527, 95% CI: 0.387-0.717). In conclusion, the alternative NF-κB pathway appears deregulated in CRC. Moreover, NF-κB2 and RELB expression levels seem to be significant for the clinical outcome of CRC patients and rs7897947 appears to be a risk factor for CRC development.
Collapse
Affiliation(s)
- Anna Antonacopoulou
- Clinical and Molecular Oncology Laboratory, Division of Oncology, Department of Medicine, Medical School, University of Patras, Patras, Greece.
| | - Anastasia E Kottorou
- Clinical and Molecular Oncology Laboratory, Division of Oncology, Department of Medicine, Medical School, University of Patras, Patras, Greece
| | - Foteinos-Ioannis Dimitrakopoulos
- Clinical and Molecular Oncology Laboratory, Division of Oncology, Department of Medicine, Medical School, University of Patras, Patras, Greece
| | - Stella Marousi
- "G. Gennimatas" General Hospital of Athens, Neurology Department, Athens, Greece
| | | | - Angelos Koutras
- Clinical and Molecular Oncology Laboratory, Division of Oncology, Department of Medicine, Medical School, University of Patras, Patras, Greece
| | - Thomas Makatsoris
- Clinical and Molecular Oncology Laboratory, Division of Oncology, Department of Medicine, Medical School, University of Patras, Patras, Greece
| | - Vassiliki Tzelepi
- Department of Pathology, Medical School, University of Patras, Patras, Greece
| | - Haralabos P Kalofonos
- Clinical and Molecular Oncology Laboratory, Division of Oncology, Department of Medicine, Medical School, University of Patras, Patras, Greece.
| |
Collapse
|
15
|
Lloyd K, Papoutsopoulou S, Smith E, Stegmaier P, Bergey F, Morris L, Kittner M, England H, Spiller D, White MHR, Duckworth CA, Campbell BJ, Poroikov V, Martins Dos Santos VAP, Kel A, Muller W, Pritchard DM, Probert C, Burkitt MD. Using systems medicine to identify a therapeutic agent with potential for repurposing in inflammatory bowel disease. Dis Model Mech 2020; 13:dmm044040. [PMID: 32958515 PMCID: PMC7710021 DOI: 10.1242/dmm.044040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 09/08/2020] [Indexed: 12/11/2022] Open
Abstract
Inflammatory bowel diseases (IBDs) cause significant morbidity and mortality. Aberrant NF-κB signalling is strongly associated with these conditions, and several established drugs influence the NF-κB signalling network to exert their effect. This study aimed to identify drugs that alter NF-κB signalling and could be repositioned for use in IBD. The SysmedIBD Consortium established a novel drug-repurposing pipeline based on a combination of in silico drug discovery and biological assays targeted at demonstrating an impact on NF-κB signalling, and a murine model of IBD. The drug discovery algorithm identified several drugs already established in IBD, including corticosteroids. The highest-ranked drug was the macrolide antibiotic clarithromycin, which has previously been reported to have anti-inflammatory effects in aseptic conditions. The effects of clarithromycin effects were validated in several experiments: it influenced NF-κB-mediated transcription in murine peritoneal macrophages and intestinal enteroids; it suppressed NF-κB protein shuttling in murine reporter enteroids; it suppressed NF-κB (p65) DNA binding in the small intestine of mice exposed to lipopolysaccharide; and it reduced the severity of dextran sulphate sodium-induced colitis in C57BL/6 mice. Clarithromycin also suppressed NF-κB (p65) nuclear translocation in human intestinal enteroids. These findings demonstrate that in silico drug repositioning algorithms can viably be allied to laboratory validation assays in the context of IBD, and that further clinical assessment of clarithromycin in the management of IBD is required.This article has an associated First Person interview with the joint first authors of the paper.
Collapse
Affiliation(s)
- Katie Lloyd
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool L69 3GE, UK
| | - Stamatia Papoutsopoulou
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool L69 3GE, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Emily Smith
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | | | | | | | | | - Hazel England
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Dave Spiller
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Mike H R White
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Carrie A Duckworth
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool L69 3GE, UK
| | - Barry J Campbell
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool L69 3GE, UK
| | | | | | | | - Werner Muller
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - D Mark Pritchard
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool L69 3GE, UK
| | - Chris Probert
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool L69 3GE, UK
| | - Michael D Burkitt
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool L69 3GE, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
16
|
Kempski J, Giannou AD, Riecken K, Zhao L, Steglich B, Lücke J, Garcia-Perez L, Karstens KF, Wöstemeier A, Nawrocki M, Pelczar P, Witkowski M, Nilsson S, Konczalla L, Shiri AM, Kempska J, Wahib R, Brockmann L, Huber P, Gnirck AC, Turner JE, Zazara DE, Arck PC, Stein A, Simon R, Daubmann A, Meiners J, Perez D, Strowig T, Koni P, Kruglov AA, Sauter G, Izbicki JR, Guse AH, Rösch T, Lohse AW, Flavell RA, Gagliani N, Huber S. IL22BP Mediates the Antitumor Effects of Lymphotoxin Against Colorectal Tumors in Mice and Humans. Gastroenterology 2020; 159:1417-1430.e3. [PMID: 32585307 PMCID: PMC7607422 DOI: 10.1053/j.gastro.2020.06.033] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 05/13/2020] [Accepted: 06/10/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Unregulated activity of interleukin (IL) 22 promotes intestinal tumorigenesis in mice. IL22 binds the antagonist IL22 subunit alpha 2 (IL22RA2, also called IL22BP). We studied whether alterations in IL22BP contribute to colorectal carcinogenesis in humans and mice. METHODS We obtained tumor and nontumor tissues from patients with colorectal cancer (CRC) and measured levels of cytokines by quantitative polymerase chain reaction, flow cytometry, and immunohistochemistry. We measured levels of Il22bp messenger RNA in colon tissues from wild-type, Tnf-/-, Lta-/-, and Ltb-/- mice. Mice were given azoxymethane and dextran sodium sulfate to induce colitis and associated cancer or intracecal injections of MC38 tumor cells. Some mice were given inhibitors of lymphotoxin beta receptor (LTBR). Intestine tissues were analyzed by single-cell sequencing to identify cell sources of lymphotoxin. We performed immunohistochemistry analysis of colon tissue microarrays from patients with CRC (1475 tissue cores, contained tumor and nontumor tissues) and correlated levels of IL22BP with patient survival times. RESULTS Levels of IL22BP were decreased in human colorectal tumors, compared with nontumor tissues, and correlated with levels of lymphotoxin. LTBR signaling was required for expression of IL22BP in colon tissues of mice. Wild-type mice given LTBR inhibitors had an increased tumor burden in both models, but LTBR inhibitors did not increase tumor growth in Il22bp-/- mice. Lymphotoxin directly induced expression of IL22BP in cultured human monocyte-derived dendritic cells via activation of nuclear factor κB. Reduced levels of IL22BP in colorectal tumor tissues were associated with shorter survival times of patients with CRC. CONCLUSIONS Lymphotoxin signaling regulates expression of IL22BP in colon; levels of IL22BP are reduced in human colorectal tumors, associated with shorter survival times. LTBR signaling regulates expression of IL22BP in colon tumors in mice and cultured human dendritic cells. Patients with colorectal tumors that express low levels of IL22BP might benefit from treatment with an IL22 antagonist.
Collapse
Affiliation(s)
- Jan Kempski
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,The Calcium Signaling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anastasios D. Giannou
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kristoffer Riecken
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lilan Zhao
- Department of General, Visceral, and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,Department of General Thoracic Surgery, Fujian Provincial Hospital, Fujian Medical University, Fuzhou 350003, People’s Republic of China
| | - Babett Steglich
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jöran Lücke
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Laura Garcia-Perez
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Karl-Frederick Karstens
- Department of General, Visceral, and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Wöstemeier
- Department of General, Visceral, and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mikolaj Nawrocki
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Penelope Pelczar
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mario Witkowski
- Institut für Mikrobiologie und Infektionsimmunologie, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Sven Nilsson
- II. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Leonie Konczalla
- Department of General, Visceral, and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ahmad Mustafa Shiri
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joanna Kempska
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ramez Wahib
- Department of General, Visceral, and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Leonie Brockmann
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Philipp Huber
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ann-Christin Gnirck
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan-Eric Turner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dimitra E. Zazara
- Laboratory for Experimental Feto-Maternal Medicine, Department of Obstetrics and Prenatal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Petra C. Arck
- Laboratory for Experimental Feto-Maternal Medicine, Department of Obstetrics and Prenatal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander Stein
- II. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anne Daubmann
- Department of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Meiners
- Department of General, Visceral, and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Daniel Perez
- Department of General, Visceral, and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till Strowig
- Helmholtz Center for Infection Research, Braunschweig, Germany
| | | | - Andrey A. Kruglov
- German Rheumatism Research Center, a Leibniz Institute, Berlin, Germany,Belozersky Institute of Physico-Chemical Biology and Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jakob R. Izbicki
- Department of General, Visceral, and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas H. Guse
- The Calcium Signaling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Rösch
- Department of Interdisciplinary Endoscopy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ansgar W. Lohse
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Richard A. Flavell
- Department of Immunobiology, School of Medicine, Yale University, New Haven, Connecticut,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut
| | - Nicola Gagliani
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of General, Visceral, and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Samuel Huber
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
17
|
Zhang GY, Ma ZJ, Wang L, Sun RF, Jiang XY, Yang XJ, Long B, Ye HL, Zhang SZ, Yu ZY, Shi WG, Jiao ZY. The Role of Shcbp1 in Signaling and Disease. Curr Cancer Drug Targets 2020; 19:854-862. [PMID: 31250756 DOI: 10.2174/1568009619666190620114928] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/19/2019] [Accepted: 05/16/2019] [Indexed: 12/21/2022]
Abstract
Src homolog and collagen homolog (Shc) proteins have been identified as adapter proteins associated with cell surface receptors and have been shown to play important roles in signaling and disease. Shcbp1 acts as a Shc SH2-domain binding protein 1 and is involved in the regulation of signaling pathways, such as FGF, NF-κB, MAPK/ERK, PI3K/AKT, TGF-β1/Smad and β -catenin signaling. Shcbp1 participates in T cell development, the regulation of downstream signal transduction pathways, and cytokinesis during mitosis and meiosis. In addition, Shcbp1 has been demonstrated to correlate with Burkitt-like lymphoma, breast cancer, lung cancer, gliomas, synovial sarcoma, human hepatocellular carcinoma and other diseases. Shcbp1 may play an important role in tumorigenesis and progression. Accordingly, recent studies are reviewed herein to discuss and interpret the role of Shcbp1 in normal cell proliferation and differentiation, tumorigenesis and progression, as well as its interactions with proteins.
Collapse
Affiliation(s)
- Geng-Yuan Zhang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Zhi-Jian Ma
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Long Wang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Ruo-Fei Sun
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | | | - Xu-Juan Yang
- Lanzhou University Second Hospital, Lanzhou, China
| | - Bo Long
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Hui-Li Ye
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Shu-Ze Zhang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Ze-Yuan Yu
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Wen-Gui Shi
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Zuo-Yi Jiao
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
18
|
Ni Y, Yap T, Silke N, Silke J, McCullough M, Celentano A, O'Reilly LA. Loss of NF-kB1 and c-Rel accelerates oral carcinogenesis in mice. Oral Dis 2020; 27:168-172. [PMID: 32568418 DOI: 10.1111/odi.13508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Yanhong Ni
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Tami Yap
- Melbourne Dental School, The University of Melbourne, Carlton, Vic., Australia
| | - Natasha Silke
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia
| | - John Silke
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Vic., Australia
| | - Michael McCullough
- Melbourne Dental School, The University of Melbourne, Carlton, Vic., Australia
| | - Antonio Celentano
- Melbourne Dental School, The University of Melbourne, Carlton, Vic., Australia
| | - Lorraine A O'Reilly
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Vic., Australia
| |
Collapse
|
19
|
Chen M, Zhao Z, Meng Q, Liang P, Su Z, Wu Y, Huang J, Cui J. TRIM14 Promotes Noncanonical NF-κB Activation by Modulating p100/p52 Stability via Selective Autophagy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1901261. [PMID: 31921549 PMCID: PMC6947505 DOI: 10.1002/advs.201901261] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/29/2019] [Indexed: 05/15/2023]
Abstract
The noncanonical NF-κB signaling pathway plays a critical role in a variety of biological functions including chronic inflammation and tumorigenesis. Activation of noncanonical NF-κB signaling largely relies on the abundance as well as the processing of the NF-κB family member p100/p52. Here, TRIM14 is identified as a novel positive regulator of the noncanonical NF-κB signaling pathway. TRIM14 promotes noncanonical NF-κB activation by targeting p100/p52 in vitro and in vivo. Furthermore, a mechanistic study shows that TRIM14 recruits deubiquitinase USP14 to cleave the K63-linked ubiquitin chains of p100/p52 at multiple sites, thereby preventing p100/p52 from cargo receptor p62-mediated autophagic degradation. TRIM14 deficiency in mice significantly impairs noncanonical NF-κB-mediated inflammatory responses as well as acute colitis and colitis-associated colon cancer development. Taken together, these findings establish the TRIM14-USP14 axis as a crucial checkpoint that controls noncanonical NF-κB signaling and highlight the crosstalk between autophagy and innate immunity.
Collapse
Affiliation(s)
- Meixin Chen
- State Key Laboratory of Oncology in South ChinaMOE Key Laboratory of Gene Function and RegulationSchool of Life SciencesSun Yat‐Sen UniversityGuangzhouGuangdong510006China
| | - Zhiyao Zhao
- State Key Laboratory of Oncology in South ChinaMOE Key Laboratory of Gene Function and RegulationSchool of Life SciencesSun Yat‐Sen UniversityGuangzhouGuangdong510006China
- Department of Internal MedicineGuangzhou Institute of PediatricsGuangzhou Women and Children's Medical CenterGuangzhouGuangdong510623China
| | - Qingcai Meng
- State Key Laboratory of Oncology in South ChinaMOE Key Laboratory of Gene Function and RegulationSchool of Life SciencesSun Yat‐Sen UniversityGuangzhouGuangdong510006China
| | - Puping Liang
- State Key Laboratory of Oncology in South ChinaMOE Key Laboratory of Gene Function and RegulationSchool of Life SciencesSun Yat‐Sen UniversityGuangzhouGuangdong510006China
| | - Zexiong Su
- State Key Laboratory of Oncology in South ChinaMOE Key Laboratory of Gene Function and RegulationSchool of Life SciencesSun Yat‐Sen UniversityGuangzhouGuangdong510006China
| | - Yaoxing Wu
- State Key Laboratory of Oncology in South ChinaMOE Key Laboratory of Gene Function and RegulationSchool of Life SciencesSun Yat‐Sen UniversityGuangzhouGuangdong510006China
| | - Junjiu Huang
- State Key Laboratory of Oncology in South ChinaMOE Key Laboratory of Gene Function and RegulationSchool of Life SciencesSun Yat‐Sen UniversityGuangzhouGuangdong510006China
| | - Jun Cui
- State Key Laboratory of Oncology in South ChinaMOE Key Laboratory of Gene Function and RegulationSchool of Life SciencesSun Yat‐Sen UniversityGuangzhouGuangdong510006China
| |
Collapse
|
20
|
NF-κB2 signalling in enteroids modulates enterocyte responses to secreted factors from bone marrow-derived dendritic cells. Cell Death Dis 2019; 10:896. [PMID: 31772152 PMCID: PMC6879761 DOI: 10.1038/s41419-019-2129-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/23/2019] [Accepted: 11/11/2019] [Indexed: 12/15/2022]
Abstract
Alternative pathway NF-κB signalling regulates susceptibility towards developing inflammatory bowel disease (IBD), colitis-associated cancer and sepsis-associated intestinal epithelial cell apoptosis and shedding. However, the cell populations responsible for the perturbed alternative pathway NF-κB signalling in intestinal mucosal pathology remain unclear. In order to investigate the contribution of the epithelial compartment, we have tested whether NF-κB2 regulated transcription in intestinal epithelial cells controls the intestinal epithelial response to cytokines that are known to disrupt intestinal barrier permeability. Enteroids were generated from the proximal, middle and distal regions of small intestine (SI) from C57BL/6J wild-type mice and displayed region-specific morphology that was maintained during sub-culture. Enteroids treated with 100 ng/mL TNF were compared with corresponding regions of SI from C57BL/6J mice treated systemically with 0.33 mg/kg TNF for 1.5 h. TNF-induced apoptosis in all regions of the intestine in vitro and in vivo but resulted in Paneth cell degranulation only in proximal tissue-derived SI and enteroids. TNF also resulted in increased enteroid sphericity (quantified as circularity from two-dimensional bright field images). This response was dose and time-dependent and correlated with active caspase-3 immunopositivity. Proximal tissue-derived enteroids generated from Nfκb2−/− mice showed a significantly blunted circularity response following the addition of TNF, IFNγ, lipopolysaccharide (LPS) activated C57BL/6J-derived bone marrow-derived dendritic cells (BMDC) and secreted factors from LPS-activated BMDCs. However, Nfκb1−/− mouse-derived enteroids showed no significant changes in response to these stimuli. In conclusion, the selection of SI region is important when designing enteroid studies as region-specific identity and response to stimuli such as TNF are maintained in culture. Intestinal epithelial cells are at least partially responsible for regulating their own fate by modulating NF-κB2 signalling in response to stimuli known to be involved in multiple intestinal and systemic diseases. Future studies are warranted to investigate the therapeutic potential of intestinal epithelial NF-κB2 inhibition.
Collapse
|
21
|
Tan S, Xu M, Ke B, Lu Y, Liu H, Jiang J, Wu B. IL-6-driven FasL promotes NF-κBp65/PUMA-mediated apoptosis in portal hypertensive gastropathy. Cell Death Dis 2019; 10:748. [PMID: 31582729 PMCID: PMC6776649 DOI: 10.1038/s41419-019-1954-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 02/07/2023]
Abstract
Mucosal epithelial apoptosis with non-specific inflammation is an essential pathological characteristic in portal hypertensive gastropathy (PHG). However, whether a coordinated crosstalk between myeloid cells and epithelial cells involved in PHG remains unclear. IL-6, which is induced in the mucosa of PHG patients and mice, promotes FasL production via enhancing NF-κBp65 activation in myeloid cells, while blockage of IL-6 signaling by Tocilizumab or deletion of NF-κBp65 in myeloid cells attenuates the inflammatory response and Fas/FasL-mediated epithelial apoptosis in PHG. IL-6-driven FasL from myeloid cells combines with epithelial Fas receptor to encourage NF-κBp65/PUMA-mediated epithelial apoptosis in PHG, and inhibition of NF-κBp65 or knockout of PUMA alleviates Fas/FasL-mediated epithelial apoptosis in PHG. These results indicate that IL-6 drives FasL generation via NF-κBp65 in myeloid cells to promote Fas/NF-κBp65/PUMA-mediated epithelial apoptosis in PHG, and this coordinated crosstalk between myeloid cells and epithelial cells may provide a potential therapeutic target for PHG.
Collapse
Affiliation(s)
- Siwei Tan
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, Guangzhou, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, 510630, Guangzhou, China
| | - Minyi Xu
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, Guangzhou, China
| | - Bilun Ke
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, Guangzhou, China
| | - Yu Lu
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, Guangzhou, China
| | - Huiling Liu
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, Guangzhou, China
| | - Jie Jiang
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, Guangzhou, China
| | - Bin Wu
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Liver Disease Research, 510630, Guangzhou, China.
| |
Collapse
|
22
|
Papoutsopoulou S, Burkitt MD, Bergey F, England H, Hough R, Schmidt L, Spiller DG, White MHR, Paszek P, Jackson DA, Martins Dos Santos VAP, Sellge G, Pritchard DM, Campbell BJ, Müller W, Probert CS. Macrophage-Specific NF-κB Activation Dynamics Can Segregate Inflammatory Bowel Disease Patients. Front Immunol 2019; 10:2168. [PMID: 31572379 PMCID: PMC6749845 DOI: 10.3389/fimmu.2019.02168] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/28/2019] [Indexed: 01/14/2023] Open
Abstract
The heterogeneous nature of inflammatory bowel disease (IBD) presents challenges, particularly when choosing therapy. Activation of the NF-κB transcription factor is a highly regulated, dynamic event in IBD pathogenesis. Using a lentivirus approach, NF-κB-regulated luciferase was expressed in patient macrophages, isolated from frozen peripheral blood mononuclear cell samples. Following activation, samples could be segregated into three clusters based on the NF-κB-regulated luciferase response. The ulcerative colitis (UC) samples appeared only in the hypo-responsive Cluster 1, and in Cluster 2. Conversely, Crohn's disease (CD) patients appeared in all Clusters with their percentage being higher in the hyper-responsive Cluster 3. A positive correlation was seen between NF-κB-induced luciferase activity and the concentrations of cytokines released into medium from stimulated macrophages, but not with serum or biopsy cytokine levels. Confocal imaging of lentivirally-expressed p65 activation revealed that a higher proportion of macrophages from CD patients responded to endotoxin lipid A compared to controls. In contrast, cells from UC patients exhibited a shorter duration of NF-κB p65 subunit nuclear localization compared to healthy controls, and CD donors. Analysis of macrophage cytokine responses and patient metadata revealed a strong correlation between CD patients who smoked and hyper-activation of p65. These in vitro dynamic assays of NF-κB activation in blood-derived macrophages have the potential to segregate IBD patients into groups with different phenotypes and may therefore help determine response to therapy.
Collapse
Affiliation(s)
- Stamatia Papoutsopoulou
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom.,Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Michael D Burkitt
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | | | - Hazel England
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Rachael Hough
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Lorraine Schmidt
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - David G Spiller
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Michael H R White
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Pawel Paszek
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Dean A Jackson
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Vitor A P Martins Dos Santos
- LifeGlimmer GmbH, Berlin, Germany.,Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, Netherlands
| | | | - D Mark Pritchard
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Barry J Campbell
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Werner Müller
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Chris S Probert
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
23
|
Reactive Oxygen Species Are Involved in the Development of Gastric Cancer and Gastric Cancer-Related Depression through ABL1-Mediated Inflammation Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5813985. [PMID: 31396300 PMCID: PMC6664690 DOI: 10.1155/2019/5813985] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 05/30/2019] [Indexed: 12/19/2022]
Abstract
Background The mechanisms of crosstalk between depression and gastric cancer (GC) remain ill defined. Given that reactive oxygen species (ROS) is involved in the pathophysiology of both GC and depression, we try to explore the activities of ROS in the development of GC and GC-related depression. Methods 110 patients with newly diagnosed GC were recruited in our study. The clinical characteristics of these patients were recorded. Inflammation and oxidative stress markers were detected by ELISA. The depression status of patients with GC was assessed during follow-up. The association between ROS, ABL1, and inflammation factors was evaluated in H2O2-treated GC cell lines and The Cancer Genome Atlas (TCGA) database. The effect of ABL1 on inflammation was detected with Imatinib/Nilotinib-treated GC cell lines. A chronic mild stress- (CMS-) induced patient-derived xenograft (PDX) mice model was established to assess the crosstalk between depression and GC. Results Depression was correlated with poor prognosis of patients with GC. GC patients with depression were under a high level of oxidative status as well as dysregulated inflammation. In the CMS-induced GC PDX mice model, CMS could facilitate the development of GC. Additionally, tumor bearing could induce depressive-like behaviors of mice. With the treatment of ROS, the activities of ABL1 and inflammatory signaling were enhanced both in vitro and in vivo, and blocking the activities of ABL1 inhibited inflammatory signaling. Conclusions ROS-activated ABL1 mediates inflammation through regulating NF-κB1 and STAT3, which subsequently leads to the development of GC and GC-related depression.
Collapse
|
24
|
King KE, George AL, Sakakibara N, Mahmood K, Moses MA, Weinberg WC. Intersection of the p63 and NF-κB pathways in epithelial homeostasis and disease. Mol Carcinog 2019; 58:1571-1580. [PMID: 31286584 DOI: 10.1002/mc.23081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/12/2022]
Abstract
Overexpression of ΔNp63α, a member of the p53/p63/p73 family of transcription factors, is a molecular attribute of human squamous cancers of the head and neck, lung and skin. The TP63 gene plays important roles in epidermal morphogenesis and homeostasis, regulating diverse biological processes including epidermal fate decisions and keratinocyte proliferation and survival. When overexpressed experimentally in primary mouse keratinocytes, ΔNp63α maintains a basal cell phenotype including the loss of normal calcium-mediated growth arrest, at least in part through the activation and enhanced nuclear accumulation of the c-rel subunit of NF-κB (Nuclear Factor-kappa B). Initially identified for its role in the immune system and hematopoietic cancers, c-Rel has increasingly been associated with solid tumors and other pathologies. ΔNp63α and c-Rel have been shown to be associated in the nuclei of ΔNp63α overexpressing human squamous carcinoma cells. Together, these transcription factors cooperate in the transcription of genes regulating intrinsic keratinocyte functions, as well as the elaboration of factors that influence the tumor microenvironment (TME). This review provides an overview of the roles of ΔNp63α and c-Rel in normal epidermal homeostasis and elaborates on how these pathways may intersect in pathological conditions such as cancer and the associated TME.
Collapse
Affiliation(s)
- Kathryn E King
- Laboratory of M olecular Oncology, Division of Biotechnology Review and Research 1, Office of Biotechnology Products, FDA Center for Drug Evaluation and Research, Silver Spring, Maryland
| | - Andrea L George
- Laboratory of M olecular Oncology, Division of Biotechnology Review and Research 1, Office of Biotechnology Products, FDA Center for Drug Evaluation and Research, Silver Spring, Maryland
| | - Nozomi Sakakibara
- Laboratory of M olecular Oncology, Division of Biotechnology Review and Research 1, Office of Biotechnology Products, FDA Center for Drug Evaluation and Research, Silver Spring, Maryland
| | - Kanwal Mahmood
- Laboratory of M olecular Oncology, Division of Biotechnology Review and Research 1, Office of Biotechnology Products, FDA Center for Drug Evaluation and Research, Silver Spring, Maryland
| | - Michael A Moses
- Laboratory of M olecular Oncology, Division of Biotechnology Review and Research 1, Office of Biotechnology Products, FDA Center for Drug Evaluation and Research, Silver Spring, Maryland
| | - Wendy C Weinberg
- Laboratory of M olecular Oncology, Division of Biotechnology Review and Research 1, Office of Biotechnology Products, FDA Center for Drug Evaluation and Research, Silver Spring, Maryland
| |
Collapse
|
25
|
MicroRNA-365a-3p inhibits c-Rel-mediated NF-κB signaling and the progression of pancreatic cancer. Cancer Lett 2019; 452:203-212. [DOI: 10.1016/j.canlet.2019.03.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/19/2019] [Accepted: 03/19/2019] [Indexed: 01/08/2023]
|
26
|
Shi W, Zou R, Yang M, Mai L, Ren J, Wen J, Liu Z, Lai R. Analysis of Genes Involved in Ulcerative Colitis Activity and Tumorigenesis Through Systematic Mining of Gene Co-expression Networks. Front Physiol 2019; 10:662. [PMID: 31214045 PMCID: PMC6554330 DOI: 10.3389/fphys.2019.00662] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 05/09/2019] [Indexed: 12/12/2022] Open
Abstract
Ulcerative colitis (UC) is an idiopathic, chronic inflammatory disorder of the colon, characterized by continuous mucosal inflammation. Recently, some studies have considered it as part of an inflammatory bowel disease-based global network. Herein, with the aim of identifying the underlying potential genetic mechanisms involved in the development of UC, multiple algorithms for weighted correlation network analysis (WGCNA), principal component analysis (PCA), and linear models for microarray data algorithm (LIMMA) were used to identify the hub genes. The map of platelet activation, ligand-receptor interaction, calcium signaling pathway, and cAMP signaling pathway showed significant links with UC development, and the hub genes CCR7, CXCL10, CXCL9, IDO1, MMP9, and VCAM1, which are associated with immune dysregulation and tumorigenesis in biological function, were found by multiple powerful bioinformatics methods. Analysis of The Cancer Genome Atlas (TCGA) also showed that the low expression of CCR7, CXCL10, CXCL9, and MMP9 may be correlated with a poor prognosis of overall survival (OS) in colorectal cancer (CRC) patients (all p < 0.05), while no significance detected in both of IDO1 and VCAM1. In addition, low expression of CCR7, CXCL10, CXCL9, MMP9, and IDO1 may be associated with a poor prognosis in recurrence free survival (RFS) time (all p < 0.05), but no significant difference was identified in VCAM1. Moreover, the NFKB1, FLI1, and STAT1 with the highest enrichment score were detected as the master regulators of hub genes. In summary, these results indicated the central role of the hub genes of CCR7, CXCL10, CXCL9, IDO1, VCAM1, and MMP9, in response to UC progression, as well as the development of UC to CRC, thus shedding light on the molecular mechanisms involved and assisting with drug target validation.
Collapse
Affiliation(s)
- Wanting Shi
- Department of Gastroenterology, Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China.,Digestive Endoscopy Center, Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Rongjun Zou
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Minglei Yang
- Department of Genetics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Lei Mai
- Department of Gastroenterology, Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Jiangnan Ren
- Digestive Endoscopy Center, Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Jialing Wen
- Guangdong Institute of Gastroenterology, Guangdong, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhaoshi Liu
- Department of Gastroenterology, Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China.,Digestive Endoscopy Center, Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Renxu Lai
- Department of Gastroenterology, Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China.,Digestive Endoscopy Center, Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
27
|
Ramakrishnan SK, Zhang H, Ma X, Jung I, Schwartz AJ, Triner D, Devenport SN, Das NK, Xue X, Zeng MY, Hu Y, Mortensen RM, Greenson JK, Cascalho M, Wobus CE, Colacino JA, Nunez G, Rui L, Shah YM. Intestinal non-canonical NFκB signaling shapes the local and systemic immune response. Nat Commun 2019; 10:660. [PMID: 30737385 PMCID: PMC6368617 DOI: 10.1038/s41467-019-08581-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 01/21/2019] [Indexed: 12/13/2022] Open
Abstract
Microfold cells (M-cells) are specialized cells of the intestine that sample luminal microbiota and dietary antigens to educate the immune cells of the intestinal lymphoid follicles. The function of M-cells in systemic inflammatory responses are still unclear. Here we show that epithelial non-canonical NFkB signaling mediated by NFkB-inducing kinase (NIK) is highly active in intestinal lymphoid follicles, and is required for M-cell maintenance. Intestinal NIK signaling modulates M-cell differentiation and elicits both local and systemic IL-17A and IgA production. Importantly, intestinal NIK signaling is active in mouse models of colitis and patients with inflammatory bowel diseases; meanwhile, constitutive NIK signaling increases the susceptibility to inflammatory injury by inducing ectopic M-cell differentiation and a chronic increase of IL-17A. Our work thus defines an important function of non-canonical NFkB and M-cells in immune homeostasis, inflammation and polymicrobial sepsis.
Collapse
Affiliation(s)
| | - Huabing Zhang
- Department of Molecular & Integrative Physiology, University of Michigan, Michigan, MI, 48109, USA
| | - Xiaoya Ma
- Department of Molecular & Integrative Physiology, University of Michigan, Michigan, MI, 48109, USA
| | - Inkyung Jung
- Department of Molecular & Integrative Physiology, University of Michigan, Michigan, MI, 48109, USA
| | - Andrew J Schwartz
- Department of Molecular & Integrative Physiology, University of Michigan, Michigan, MI, 48109, USA
| | - Daniel Triner
- Department of Molecular & Integrative Physiology, University of Michigan, Michigan, MI, 48109, USA
| | - Samantha N Devenport
- Department of Molecular & Integrative Physiology, University of Michigan, Michigan, MI, 48109, USA
| | - Nupur K Das
- Department of Molecular & Integrative Physiology, University of Michigan, Michigan, MI, 48109, USA
| | - Xiang Xue
- Department of Molecular & Integrative Physiology, University of Michigan, Michigan, MI, 48109, USA
| | - Melody Y Zeng
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yinling Hu
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Richard M Mortensen
- Department of Molecular & Integrative Physiology, University of Michigan, Michigan, MI, 48109, USA
| | - Joel K Greenson
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Marilia Cascalho
- Transplantation Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Surgery, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Christiane E Wobus
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Justin A Colacino
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Gabriel Nunez
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Liangyou Rui
- Department of Molecular & Integrative Physiology, University of Michigan, Michigan, MI, 48109, USA
- Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yatrik M Shah
- Department of Molecular & Integrative Physiology, University of Michigan, Michigan, MI, 48109, USA.
- Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
28
|
Zhou D, Li X, Zhao H, Sun B, Liu A, Han X, Cui Z, Yuan L. Combining multi-dimensional data to identify a key signature (gene and miRNA) of cisplatin-resistant gastric cancer. J Cell Biochem 2018; 119:6997-7008. [PMID: 29693274 DOI: 10.1002/jcb.26908] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/28/2018] [Indexed: 12/12/2022]
Abstract
Gastric cancer (GC) is one of the most lethal malignant tumors; the resistance of this type of tumor is the main source of GC treatment failure. In this study, we used bioinformatics analysis to verify differences in resistant GCs and identify an effective method for reversing drug resistance in GC. Microarray data [gene and microRNA (miRNA)] were analyzed using GEO2R software, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were applied to further enrich the genetic data. miRNA-gene interactions were determined using Cytoscape (v.3.5.1). Online software was used to analyze protein interactions and predict network structure. The Cancer Genome Atlas (TCGA) database was used to verify the expression levels of genes in GC resistance. miR-604 expression levels were verified by real-time PCR in GC cell lines. We screened 3981 GC resistance-associated genes and 244 miRNAs using bioinformatics methods. Six hub genes were identified and verified in the TCGA database, including five up-regulated genes, POLR2L, POLR2C, POLR2F, APRT, and LMAN2, and a down-regulated gene, NFKB2. The up-regulated genes POLR2L, POLR2C, APRT, and LMAN2 interact with miR-604; therefore, we focused on miR-604, which has low expression in drug-resistant GC. The results of this study indicate that through bioinformatics technologies, we have determined the hub genes and hub miRNAs related to drug resistance in GC. Among them, miR-604 could become a new indicator in the diagnosis of drug-resistant GC and may be used to investigate the pathogenesis of resistance in GC.
Collapse
Affiliation(s)
- Danyang Zhou
- Department of Biochemistry and Molecular Biology, Daqing Campus, Harbin Medical University, Daqing, Heilongjiang, P. R. China
| | - Xing Li
- Department of Nephrology, Daqing People Hospital, Daqing, P. R. China
| | - Hengyu Zhao
- Daqing Oilfield General Hospital, Daqing, P. R. China
| | - Banghao Sun
- Department of Biochemistry and Molecular Biology, Daqing Campus, Harbin Medical University, Daqing, Heilongjiang, P. R. China
| | - Anqi Liu
- Department of Biochemistry and Molecular Biology, Daqing Campus, Harbin Medical University, Daqing, Heilongjiang, P. R. China
| | - Xue Han
- Department of Biochemistry and Molecular Biology, Daqing Campus, Harbin Medical University, Daqing, Heilongjiang, P. R. China
| | - Zhongqi Cui
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, P. R. China
| | - Lijie Yuan
- Department of Biochemistry and Molecular Biology, Daqing Campus, Harbin Medical University, Daqing, Heilongjiang, P. R. China
| |
Collapse
|
29
|
The non-canonical NF-κB pathway in immunity and inflammation. NATURE REVIEWS. IMMUNOLOGY 2017. [PMID: 28580957 DOI: 10.1038/nri.2017.52)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The nuclear factor-κB (NF-κB) family of transcription factors is activated by canonical and non-canonical signalling pathways, which differ in both signalling components and biological functions. Recent studies have revealed important roles for the non-canonical NF-κB pathway in regulating different aspects of immune functions. Defects in non-canonical NF-κB signalling are associated with severe immune deficiencies, whereas dysregulated activation of this pathway contributes to the pathogenesis of various autoimmune and inflammatory diseases. Here we review the signalling mechanisms and the biological function of the non-canonical NF-κB pathway. We also discuss recent progress in elucidating the molecular mechanisms regulating non-canonical NF-κB pathway activation, which may provide new opportunities for therapeutic strategies.
Collapse
|
30
|
Burkitt MD, Williams JM, Townsend T, Hough R, Duckworth CA, Pritchard DM. Mice lacking NF-κB1 exhibit marked DNA damage responses and more severe gastric pathology in response to intraperitoneal tamoxifen administration. Cell Death Dis 2017; 8:e2939. [PMID: 28726772 PMCID: PMC5584614 DOI: 10.1038/cddis.2017.332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/14/2017] [Accepted: 06/15/2017] [Indexed: 01/15/2023]
Abstract
Tamoxifen (TAM) has recently been shown to cause acute gastric atrophy and metaplasia in mice. We have previously demonstrated that the outcome of Helicobacter felis infection, which induces similar gastric lesions in mice, is altered by deletion of specific NF-κB subunits. Nfkb1-/- mice developed more severe gastric atrophy than wild-type (WT) mice 6 weeks after H. felis infection. In contrast, Nfkb2-/- mice were protected from this pathology. We therefore hypothesized that gastric lesions induced by TAM may be similarly regulated by signaling via NF-κB subunits. Groups of five female C57BL/6 (WT), Nfkb1-/-, Nfkb2-/- and c-Rel-/- mice were administered 150 mg/kg TAM by IP injection. Seventy-two hours later, gastric corpus tissues were taken for quantitative histological assessment. In addition, groups of six female WT and Nfkb1-/- mice were exposed to 12 Gy γ-irradiation. Gastric epithelial apoptosis was quantified 6 and 48 h after irradiation. TAM induced gastric epithelial lesions in all strains of mice, but this was more severe in Nfkb1-/- mice than in WT mice. Nfkb1-/- mice exhibited more severe parietal cell loss than WT mice, had increased gastric epithelial expression of Ki67 and had an exaggerated gastric epithelial DNA damage response as quantified by γH2AX. To investigate whether the difference in gastric epithelial DNA damage response of Nfkb1-/- mice was unique to TAM-induced DNA damage or a generic consequence of DNA damage, we also assessed gastric epithelial apoptosis following γ-irradiation. Six hours after γ-irradiation, gastric epithelial apoptosis was increased in the gastric corpus and antrum of Nfkb1-/- mice. NF-κB1-mediated signaling regulates the development of gastric mucosal pathology following TAM administration. This is associated with an exaggerated gastric epithelial DNA damage response. This aberrant response appears to reflect a more generic sensitization of the gastric mucosa of Nfkb1-/- mice to DNA damage.
Collapse
Affiliation(s)
- Michael D Burkitt
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, The Henry Wellcome Laboratory, Liverpool, UK
| | | | - Tristan Townsend
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, The Henry Wellcome Laboratory, Liverpool, UK
| | - Rachael Hough
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, The Henry Wellcome Laboratory, Liverpool, UK
| | | | - D Mark Pritchard
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, The Henry Wellcome Laboratory, Liverpool, UK
| |
Collapse
|
31
|
Abstract
The nuclear factor-κB (NF-κB) family of transcription factors is activated by canonical and non-canonical signalling pathways, which differ in both signalling components and biological functions. Recent studies have revealed important roles for the non-canonical NF-κB pathway in regulating different aspects of immune functions. Defects in non-canonical NF-κB signalling are associated with severe immune deficiencies, whereas dysregulated activation of this pathway contributes to the pathogenesis of various autoimmune and inflammatory diseases. Here we review the signalling mechanisms and the biological function of the non-canonical NF-κB pathway. We also discuss recent progress in elucidating the molecular mechanisms regulating non-canonical NF-κB pathway activation, which may provide new opportunities for therapeutic strategies.
Collapse
Affiliation(s)
- Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, MD Anderson Cancer Center UT Heath Graduate School of Biomedical Sciences, 7455 Fannin Street, Box 902, Houston, Texas 77030, USA
| |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW Adipocytes have adapted to store energy in the form of lipid and also secrete circulating factors called adipokines that signal to other tissues to coordinate energy homeostasis. These functions are disrupted in the setting of obesity, promoting the development of diseases such as diabetes, cardiovascular disease, and cancer. RECENT FINDINGS Obesity is linked to an increased risk of many types of cancer and increased cancer-related mortality. The basis for the striking association between obesity and cancer is not well understood. Here, we review the cellular and molecular pathways that appear to be involved in obesity-driven cancer. We also describe possible therapeutic considerations and highlight important unanswered questions in the field.
Collapse
Affiliation(s)
- Sarah E Ackerman
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA
| | - Olivia A Blackburn
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
| | - François Marchildon
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA
| | - Paul Cohen
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA.
- The Rockefeller University, 1230 York Avenue, Box 223, New York, NY, 10065, USA.
| |
Collapse
|
33
|
The innate immune signaling in cancer and cardiometabolic diseases: Friends or foes? Cancer Lett 2017; 387:46-60. [DOI: 10.1016/j.canlet.2016.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 06/03/2016] [Accepted: 06/05/2016] [Indexed: 12/16/2022]
|
34
|
McDaniel DK, Eden K, Ringel VM, Allen IC. Emerging Roles for Noncanonical NF-κB Signaling in the Modulation of Inflammatory Bowel Disease Pathobiology. Inflamm Bowel Dis 2016; 22:2265-79. [PMID: 27508514 PMCID: PMC4992436 DOI: 10.1097/mib.0000000000000858] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Crohn's disease and ulcerative colitis are common and debilitating manifestations of inflammatory bowel disease (IBD). IBD is characterized by a radical imbalance in the activation of proinflammatory and anti-inflammatory signaling pathways in the gut. These pathways are controlled by NF-κB, which is a master regulator of gene transcription. In IBD patients, NF-κB signaling is often dysregulated resulting in overzealous inflammation. NF-κB activation occurs through 2 distinct pathways, defined as either canonical or noncanonical. Canonical NF-κB pathway activation is well studied in IBD and is associated with the rapid, acute production of diverse proinflammatory mediators, such as COX-2, IL-1β, and IL-6. In contrast to the canonical pathway, the noncanonical or "alternative" NF-κB signaling cascade is tightly regulated and is responsible for the production of highly specific chemokines that tend to be associated with less acute, chronic inflammation. There is a relative paucity of literature regarding all aspects of noncanonical NF-ĸB signaling. However, it is clear that this alternative signaling pathway plays a considerable role in maintaining immune system homeostasis and likely contributes significantly to the chronic inflammation underlying IBD. Noncanonical NF-κB signaling may represent a promising new direction in the search for therapeutic targets and biomarkers associated with IBD. However, significant mechanistic insight is still required to translate the current basic science findings into effective therapeutic strategies.
Collapse
Affiliation(s)
- Dylan K. McDaniel
- Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061
| | - Kristin Eden
- Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061
| | - Veronica M. Ringel
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24061
| | - Irving C. Allen
- Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24061
| |
Collapse
|
35
|
Intestinal Preparation Techniques for Histological Analysis in the Mouse. ACTA ACUST UNITED AC 2016; 6:148-168. [DOI: 10.1002/cpmo.2] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
36
|
Merga YJ, O'Hara A, Burkitt MD, Duckworth CA, Probert CS, Campbell BJ, Pritchard DM. Importance of the alternative NF-κB activation pathway in inflammation-associated gastrointestinal carcinogenesis. Am J Physiol Gastrointest Liver Physiol 2016; 310:G1081-90. [PMID: 27102559 DOI: 10.1152/ajpgi.00026.2016] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/17/2016] [Indexed: 02/07/2023]
Abstract
Chronic inflammation is a common factor in the development of many gastrointestinal malignancies. Examples include inflammatory bowel disease predisposing to colorectal cancer, Barrett's esophagus as a precursor of esophageal adenocarcinoma, and Helicobacter pylori-induced gastric cancer. The classical activation pathway of NF-κB signaling has been identified as regulating several sporadic and inflammation-associated gastrointestinal tract malignancies. Emerging evidence suggests that the alternative NF-κB signaling pathway also exerts a distinct influence on these processes. This review brings together current knowledge of the role of the alternative NF-κB signaling pathway in the gastrointestinal tract, with a particular emphasis on inflammation-associated cancer development.
Collapse
Affiliation(s)
- Yvette J Merga
- Gastroenterology Research Unit, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Adrian O'Hara
- Gastroenterology Research Unit, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Michael D Burkitt
- Gastroenterology Research Unit, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Carrie A Duckworth
- Gastroenterology Research Unit, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Christopher S Probert
- Gastroenterology Research Unit, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Barry J Campbell
- Gastroenterology Research Unit, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - D Mark Pritchard
- Gastroenterology Research Unit, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
37
|
Hunter JE, Leslie J, Perkins ND. c-Rel and its many roles in cancer: an old story with new twists. Br J Cancer 2016; 114:1-6. [PMID: 26757421 PMCID: PMC4716536 DOI: 10.1038/bjc.2015.410] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/22/2015] [Accepted: 10/05/2015] [Indexed: 01/19/2023] Open
Abstract
When the genes encoding NF-κB subunits were first isolated, their homology to the previously identified c-Rel proto-oncogene and its viral homologue v-Rel was clear. This provided the first indication that these transcription factors also had a role in cancer. Because of its homology to v-Rel, which transforms chicken B cells together with the important role c-Rel can have as a regulator of B- and T-cell proliferation, most attention has focussed on its role in B-cell lymphomas, where the REL gene is frequently amplified. However, a growing number of reports now indicate that c-Rel has important functions in many solid tumours, although studies in mice suggest it may not always function as an oncogene. Moreover, c-Rel is a critical regulator of fibrosis, which provides an environment for tumour development in many settings. Overall, c-Rel is emerging as a complex regulator of tumorigenesis, and there is still much to learn about its functions in human malignancies and the response to cancer therapies.
Collapse
Affiliation(s)
- Jill E Hunter
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
| | - Jack Leslie
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
| | - Neil D Perkins
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
| |
Collapse
|
38
|
Tang W, Wang H, Ha HL, Tassi I, Bhardwaj R, Claudio E, Siebenlist U. The B-cell tumor promoter Bcl-3 suppresses inflammation-associated colon tumorigenesis in epithelial cells. Oncogene 2016; 35:6203-6211. [PMID: 27132515 PMCID: PMC5093091 DOI: 10.1038/onc.2016.152] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 02/17/2016] [Accepted: 03/07/2016] [Indexed: 02/06/2023]
Abstract
Bcl-3 is an atypical member of the IκB family. It associates with p50/NF-κB1 and p52/NF-κB2 homodimers in nuclei where it modulates transcription in a context-dependent manner. A subset of B cell tumors exhibits recurrent translocations of Bcl-3, resulting in overexpression. Elevated expression without translocations is also observed in various B cell lymphomas and even some solid tumors. Here we investigated the role of Bcl-3 in AOM/DSS-induced colon tumors, a mouse model for colitis-associated colorectal cancers in humans. Contrary to expectations, Bcl-3 suppressed colorectal tumor formation: Bcl-3-deficient mice were relatively protected from DSS-induced epithelial damage and developed more polyps after AOM/DSS treatment, though polyp size was unaffected. DSS-challenged mutant mice exhibited increased recruitment of myeloid-derived suppressor cells (MDSCs), consistent with protection of the epithelium. Loss of Bcl-3 in intestinal epithelial cells was sufficient to increase tumorigenesis. The added tumor burden in mutant mice was dependent on TNFα, a tumorigenic, NF-κB-mediated signaling pathway that was dampened by Bcl-3. These findings reveal a tumor-suppressive role for Bcl-3 in this inflammation-associated cancer model. Bcl-3 thus functions as a tumor promoter or suppressor, depending on the cellular and environmental context.
Collapse
Affiliation(s)
- W Tang
- Laboratory of Molecular Immunology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - H Wang
- Laboratory of Molecular Immunology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - H L Ha
- Laboratory of Molecular Immunology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - I Tassi
- Laboratory of Molecular Immunology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - R Bhardwaj
- Laboratory of Molecular Immunology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - E Claudio
- Laboratory of Molecular Immunology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - U Siebenlist
- Laboratory of Molecular Immunology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|