1
|
Chernosky NM, Tamagno I, Polak KL, Chan ER, Yuan X, Jackson MW. Toll-Like receptor 3-mediated interferon-β production is suppressed by oncostatin m and a broader epithelial-mesenchymal transition program. Breast Cancer Res 2024; 26:167. [PMID: 39593161 PMCID: PMC11590466 DOI: 10.1186/s13058-024-01918-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Patients with Triple Negative Breast Cancer (TNBC) currently lack targeted therapies, and consequently face higher mortality rates when compared to patients with other breast cancer subtypes. The tumor microenvironment (TME) cytokine Oncostatin M (OSM) reprograms TNBC cells to a more stem-like/mesenchymal state, conferring aggressive cancer cell properties such as enhanced migration and invasion, increased tumor-initiating capacity, and intrinsic resistance to the current standards of care. In contrast to OSM, Interferon-β (IFN-β) promotes a more differentiated, epithelial cell phenotype in addition to its role as an activator of anti-tumor immunity. Importantly, OSM suppresses the production of IFN-β, although the mechanism of IFN-β suppression has not yet been elucidated. METHODS IFN-β production and downstream autocrine signaling were assessed via quantitative real-time PCR (qRT-PCR) and Western blotting in TNBC cells following exposure to OSM. RNA-sequencing (RNA-seq) was used to assess an IFN-β metagene signature, and to assess the expression of innate immune sensors, which are upstream activators of IFN-β. Cell migration was assessed using an in vitro chemotaxis assay. Additionally, TNBC cells were exposed to TGF-β1, Snail, and Zeb1, and IFN-β production and downstream autocrine signaling were assessed via RNA-seq, qRT-PCR, and Western blotting. RESULTS Here, we identify the repression of Toll-like Receptor 3 (TLR3), an innate immune sensor, as the key molecular event linking OSM signaling and the repression of IFN-β transcription, production, and autocrine IFN signaling. Moreover, we demonstrate that additional epithelial-mesenchymal transition-inducing factors, such as TGF-β1, Snail, and Zeb1, similarly suppress TLR3-mediated IFN-β production and signaling. CONCLUSIONS Our findings provide a novel insight into the regulation of TLR3 and IFN-β production in TNBC cells, which are known indicators of treatment responses to DNA-damaging therapies. Furthermore, strategies to stimulate TLR3 in order to increase IFN-β within the TME may be ineffective in stem-like/mesenchymal cells, as TLR3 is strongly repressed. Rather, we propose that therapies targeting OSM or OSM receptor would reverse the stem-like/mesenchymal program and restore TLR3-mediated IFN-β production within the TME, facilitating improved responses to current therapies.
Collapse
Affiliation(s)
- Noah M Chernosky
- Department of Pathology Case, Western Reserve University, Cleveland, OH, 44106, USA
- Case Comprehensive Cancer Center, Cleveland, OH, 44106, USA
| | - Ilaria Tamagno
- Department of Pathology Case, Western Reserve University, Cleveland, OH, 44106, USA
- Case Comprehensive Cancer Center, Cleveland, OH, 44106, USA
| | - Kelsey L Polak
- Department of Pathology Case, Western Reserve University, Cleveland, OH, 44106, USA
- Case Comprehensive Cancer Center, Cleveland, OH, 44106, USA
| | - E Ricky Chan
- Case Comprehensive Cancer Center, Cleveland, OH, 44106, USA
- Cleveland Institute for Computational Biology, Cleveland, OH, 44106, USA
| | - Xueer Yuan
- Department of Pathology Case, Western Reserve University, Cleveland, OH, 44106, USA
- Case Comprehensive Cancer Center, Cleveland, OH, 44106, USA
| | - Mark W Jackson
- Department of Pathology Case, Western Reserve University, Cleveland, OH, 44106, USA.
- Case Comprehensive Cancer Center, Cleveland, OH, 44106, USA.
| |
Collapse
|
2
|
Kathad U, Biyani N, Peru y Colón De Portugal RL, Zhou J, Kochat H, Bhatia K. Expanding the repertoire of Antibody Drug Conjugate (ADC) targets with improved tumor selectivity and range of potent payloads through in-silico analysis. PLoS One 2024; 19:e0308604. [PMID: 39186767 PMCID: PMC11346940 DOI: 10.1371/journal.pone.0308604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/28/2024] [Indexed: 08/28/2024] Open
Abstract
Antibody-Drug Conjugates (ADCs) have emerged as a promising class of targeted cancer therapeutics. Further refinements are essential to unlock their full potential, which is currently limited by a lack of validated targets and payloads. Essential aspects of developing effective ADCs involve the identification of surface antigens, ideally distinguishing target tumor cells from healthy types, uniformly expressed, accompanied by a high potency payload capable of selective targeting. In this study, we integrated transcriptomics, proteomics, immunohistochemistry and cell surface membrane datasets from Human Protein Atlas, Xenabrowser and Gene Expression Omnibus utilizing Lantern Pharma's proprietary AI platform Response Algorithm for Drug positioning and Rescue (RADR®). We used this in combination with evidence based filtering to identify ADC targets with improved tumor selectivity. Our analysis identified a set of 82 targets and a total of 290 target indication combinations for effective tumor targeting. We evaluated the impact of tumor mutations on target expression levels by querying 416 genes in the TCGA mutation database against 22 tumor subtypes. Additionally, we assembled a catalog of compounds to identify potential payloads using the NCI-Developmental Therapeutics Program. Our payload mining strategy classified 729 compounds into three subclasses based on GI50 values spanning from pM to 10 nM range, in combination with sensitivity patterns across 9 different cancer indications. Our results identified a diverse range of both targets and payloads, that can serve to facilitate multiple choices for precise ADC targeting. We propose an initial approach to identify suitable target-indication-payload combinations, serving as a valuable starting point for development of future ADC candidates.
Collapse
Affiliation(s)
- Umesh Kathad
- Lantern Pharma Inc., Dallas, TX, United States of America
| | - Neha Biyani
- Lantern Pharma Inc., Dallas, TX, United States of America
| | | | - Jianli Zhou
- Lantern Pharma Inc., Dallas, TX, United States of America
| | - Harry Kochat
- The University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Kishor Bhatia
- Lantern Pharma Inc., Dallas, TX, United States of America
| |
Collapse
|
3
|
Negrini KA, Lin D, Shah D, Wu H, Wehrung KM, Thompson HJ, Whitcomb T, Sturgeon KM. Role of Oncostatin M in Exercise-Induced Breast Cancer Prevention. Cancers (Basel) 2024; 16:2716. [PMID: 39123444 PMCID: PMC11311664 DOI: 10.3390/cancers16152716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Moderate-to-vigorous-intensity physical activity decreases the risk of breast cancer. The muscle-derived cytokine (myokine), oncostatin M (OSM), has been shown to decrease breast cancer cell proliferation. We hypothesized that OSM is involved in physical activity-induced breast cancer prevention, and that OSM antibody (Anti-OSM) administration would mitigate the effect of physical activity in a rat model of mammary carcinoma. Female Sprague Dawley rats were injected with 50 mg/kg N-methyl-N-nitrosourea to induce mammary carcinogenesis. During the 20-week study, rats were exercise trained (EX) or remained sedentary (SED). Additional groups were treated with Anti-OSM antibody (SED + Anti-OSM and EX + Anti-OSM) to explore the impact of OSM blockade on tumor latency. Exercise training consisted of treadmill acclimation and progressive increases in session duration, speed, and grade, until reaching 30 min/day, 20 m/min at 15% incline. Experimentally naïve, age-matched, female rats also completed an acute exercise test (AET) with time course blood draws to evaluate OSM plasma concentrations. Relative tumor-free survival time was significantly longer in EX animals (1.36 ± 0.39) compared to SED animals (1.00 ± 0.17; p = 0.009), SED + Anti-OSM animals (0.90 ± 0.23; p = 0.019), and EX + Anti-OSM animals (0.93 ± 0.74; p = 0.004). There were no significant differences in relative tumor latency between SED, SED + Anti-OSM, or EX + Anti-OSM animals. Following the AET, OSM plasma levels trended higher compared to baseline OSM levels (p = 0.080). In conclusion, we observed that exercise-induced delay of mammary tumor development was mitigated through Anti-OSM administration. Thus, future studies of the OSM mechanism are required to lay the groundwork for developing novel chemo-prevention strategies in women who are unable or unwilling to exercise.
Collapse
Affiliation(s)
- Kara A. Negrini
- Department of Comparative Medicine, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA;
| | - Dan Lin
- Public Health Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA (K.M.S.)
| | - Dhruvil Shah
- Department of Medicine, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
| | - Hongke Wu
- Public Health Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA (K.M.S.)
| | - Katherine M. Wehrung
- Department of Medicine, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
| | - Henry J. Thompson
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO 80523, USA;
| | - Tiffany Whitcomb
- Department of Comparative Medicine, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA;
| | - Kathleen M. Sturgeon
- Public Health Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA (K.M.S.)
| |
Collapse
|
4
|
Sims NA, Lévesque JP. Oncostatin M: Dual Regulator of the Skeletal and Hematopoietic Systems. Curr Osteoporos Rep 2024; 22:80-95. [PMID: 38198032 PMCID: PMC10912291 DOI: 10.1007/s11914-023-00837-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/30/2023] [Indexed: 01/11/2024]
Abstract
PURPOSE OF THE REVIEW The bone and hematopoietic tissues coemerge during development and are functionally intertwined throughout mammalian life. Oncostatin M (OSM) is an inflammatory cytokine of the interleukin-6 family produced by osteoblasts, bone marrow macrophages, and neutrophils. OSM acts via two heterodimeric receptors comprising GP130 with either an OSM receptor (OSMR) or a leukemia inhibitory factor receptor (LIFR). OSMR is expressed on osteoblasts, mesenchymal, and endothelial cells and mice deficient for the Osm or Osmr genes have both bone and blood phenotypes illustrating the importance of OSM and OSMR in regulating these two intertwined tissues. RECENT FINDINGS OSM regulates bone mass through signaling via OSMR, adaptor protein SHC1, and transducer STAT3 to both stimulate osteoclast formation and promote osteoblast commitment; the effect on bone formation is also supported by action through LIFR. OSM produced by macrophages is an important inducer of neurogenic heterotopic ossifications in peri-articular muscles following spinal cord injury. OSM produced by neutrophils in the bone marrow induces hematopoietic stem and progenitor cell proliferation in an indirect manner via OSMR expressed by bone marrow stromal and endothelial cells that form hematopoietic stem cell niches. OSM acts as a brake to therapeutic hematopoietic stem cell mobilization in response to G-CSF and CXCR4 antagonist plerixafor. Excessive OSM production by macrophages in the bone marrow is a key contributor to poor hematopoietic stem cell mobilization (mobilopathy) in people with diabetes. OSM and OSMR may also play important roles in the progression of several cancers. It is increasingly clear that OSM plays unique roles in regulating the maintenance and regeneration of bone, hematopoietic stem and progenitor cells, inflammation, and skeletal muscles. Dysregulated OSM production can lead to bone pathologies, defective muscle repair and formation of heterotopic ossifications in injured muscles, suboptimal mobilization of hematopoietic stem cells, exacerbated inflammatory responses, and anti-tumoral immunity. Ongoing research will establish whether neutralizing antibodies or cytokine traps may be useful to correct pathologies associated with excessive OSM production.
Collapse
Affiliation(s)
- Natalie A Sims
- St. Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, VIC, Australia
- Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia
| | - Jean-Pierre Lévesque
- Translational Research Institute, Mater Research Institute - The University of Queensland, 37 Kent Street, Woolloongabba, QLD, Australia.
| |
Collapse
|
5
|
Soler MF, Abaurrea A, Azcoaga P, Araujo AM, Caffarel MM. New perspectives in cancer immunotherapy: targeting IL-6 cytokine family. J Immunother Cancer 2023; 11:e007530. [PMID: 37945321 PMCID: PMC10649711 DOI: 10.1136/jitc-2023-007530] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2023] [Indexed: 11/12/2023] Open
Abstract
Chronic inflammation has been recognized as a canonical cancer hallmark. It is orchestrated by cytokines, which are master regulators of the tumor microenvironment (TME) as they represent the main communication bridge between cancer cells, the tumor stroma, and the immune system. Interleukin (IL)-6 represents a keystone cytokine in the link between inflammation and cancer. Many cytokines from the IL-6 family, which includes IL-6, oncostatin M, leukemia inhibitory factor, IL-11, IL-27, IL-31, ciliary neurotrophic factor, cardiotrophin 1, and cardiotrophin-like cytokine factor 1, have been shown to elicit tumor-promoting roles by modulating the TME, making them attractive therapeutic targets for cancer treatment.The development of immune checkpoint blockade (ICB) immunotherapies has radically changed the outcome of some cancers including melanoma, lung, and renal, although not without hurdles. However, ICB shows limited efficacy in other solid tumors. Recent reports support that chronic inflammation and IL-6 cytokine signaling are involved in resistance to immunotherapy. This review summarizes the available preclinical and clinical data regarding the implication of IL-6-related cytokines in regulating the immune TME and the response to ICB. Moreover, the potential clinical benefit of combining ICB with therapies targeting IL-6 cytokine members for cancer treatment is discussed.
Collapse
Affiliation(s)
- Maria Florencia Soler
- Biogipuzkoa (previously known as Biodonostia) Health Research Institute, Donostia-San Sebastian, Spain
| | - Andrea Abaurrea
- Biogipuzkoa (previously known as Biodonostia) Health Research Institute, Donostia-San Sebastian, Spain
| | - Peio Azcoaga
- Biogipuzkoa (previously known as Biodonostia) Health Research Institute, Donostia-San Sebastian, Spain
| | - Angela M Araujo
- Biogipuzkoa (previously known as Biodonostia) Health Research Institute, Donostia-San Sebastian, Spain
| | - Maria M Caffarel
- Biogipuzkoa (previously known as Biodonostia) Health Research Institute, Donostia-San Sebastian, Spain
- Ikerbasque Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
6
|
Polak KL, Tamagno I, Parameswaran N, Smigiel J, Chan ER, Yuan X, Rios B, Jackson MW. Oncostatin-M and OSM-Receptor Feed-Forward Activation of MAPK Induces Separable Stem-like and Mesenchymal Programs. Mol Cancer Res 2023; 21:975-990. [PMID: 37310811 PMCID: PMC10527478 DOI: 10.1158/1541-7786.mcr-22-0715] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 04/19/2023] [Accepted: 06/08/2023] [Indexed: 06/15/2023]
Abstract
Patients diagnosed with pancreatic ductal adenocarcinoma (PDAC) frequently present with advanced metastatic disease and exhibit a poor response to therapy, resulting in poor outcomes. The tumor microenvironment cytokine Oncostatin-M (OSM) initiates PDAC plasticity, inducing the reprogramming to a stem-like/mesenchymal state, which enhances metastasis and therapy resistance. Using a panel of PDAC cells driven through epithelial-mesenchymal transition (EMT) by OSM or the transcription factors ZEB1 or SNAI1, we find that OSM uniquely induces tumor initiation and gemcitabine resistance independently of its ability to induce a CD44HI/mesenchymal phenotype. In contrast, while ZEB1 and SNAI1 induce a CD44HI/mesenchymal phenotype and migration comparable with OSM, they are unable to promote tumor initiation or robust gemcitabine resistance. Transcriptomic analysis identified that OSM-mediated stemness requires MAPK activation and sustained, feed-forward transcription of OSMR. MEK and ERK inhibitors prevented OSM-driven transcription of select target genes and stem-like/mesenchymal reprogramming, resulting in reduced tumor growth and resensitization to gemcitabine. We propose that the unique properties of OSMR, which hyperactivates MAPK signaling when compared with other IL6 family receptors, make it an attractive therapeutic target, and that disrupting the OSM-OSMR-MAPK feed-forward loop may be a novel way to therapeutically target the stem-like behaviors common to aggressive PDAC. IMPLICATIONS Small-molecule MAPK inhibitors may effectively target the OSM/OSMR-axis that leads to EMT and tumor initiating properties that promote aggressive PDAC.
Collapse
Affiliation(s)
- Kelsey L Polak
- Department of Pathology and Case Comprehensive Cancer Center, Case Western Reserve University Cleveland, OH, USA
| | - Ilaria Tamagno
- Department of Pathology and Case Comprehensive Cancer Center, Case Western Reserve University Cleveland, OH, USA
| | - Neetha Parameswaran
- Department of Pathology and Case Comprehensive Cancer Center, Case Western Reserve University Cleveland, OH, USA
| | - Jacob Smigiel
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - E. Ricky Chan
- Department of Pathology and Case Comprehensive Cancer Center, Case Western Reserve University Cleveland, OH, USA
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Xueer Yuan
- Department of Pathology and Case Comprehensive Cancer Center, Case Western Reserve University Cleveland, OH, USA
| | - Brenda Rios
- Cancer Biology Program, Vanderbilt School of Medicine, Nashville, Tennessee, USA
| | - Mark W. Jackson
- Department of Pathology and Case Comprehensive Cancer Center, Case Western Reserve University Cleveland, OH, USA
| |
Collapse
|
7
|
Geng Q, Wang J, Zhang W, Zhou W, Tang G, Gu M. Oncostatin M receptor is overexpressed in oral squamous cell carcinoma and connected to poor prognosis. J Oral Pathol Med 2023; 52:136-144. [PMID: 36207791 DOI: 10.1111/jop.13371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Oncostatin M receptor is an interleukin 6 receptor with great influence on inflammation and cancer progression. However, the function of oncostatin M receptor in oral squamous cell carcinoma remains unknown. METHODS Oncostatin M receptor expression was explored with TIMER and TCGA databases. The mRNA and protein expressions of oncostatin M receptor were detected in oral tissues. The association between oncostatin M receptor expression and clinicopathological characteristics was analyzed, and the prognostic value of oncostatin M receptor was determined. Immune statues of oncostatin M receptor were analyzed by TIMER and TISIDB. The underlying mechanisms of oncostatin M receptor in oral squamous cell carcinoma was also explored preliminarily. RESULTS Oncostatin M receptor was dysregulated in many cancers. Both mRNA and protein levels of oncostatin M receptor in oral squamous cell carcinoma tissues were significantly higher than that in normal oral tissues. Oncostatin M receptor expression was connected to differentiation, lymph node metastasis, tumor node metastasis (TNM) stage, perineural invasion and vascular invasion. Oncostatin M receptor expression was an independent prognostic factor associated with overall survivals. Oncostatin M receptor expression was significantly related to CD8+ T cell and interleukin 6 receptor. High oncostatin M receptor expression was associated with focal adhesion, extracellular matrix (ECM) receptor interaction, and JAK/STAT signaling pathway. CONCLUSION Oncostatin M receptor was overexpressed in oral squamous cell carcinoma and related to overall survival. Oncostatin M receptor expression has potential to become an effective prognostic biomarker for oral squamous cell carcinoma patients.
Collapse
Affiliation(s)
- Qifeng Geng
- The Fifth Outpatient Department, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Jing Wang
- The Fifth Outpatient Department, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Wei Zhang
- Department of Oral Pathology, Affiliated Stomatological Hospital, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Wei Zhou
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Genxiong Tang
- Department of Stomatology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Mingyan Gu
- Department of Stomatology, Nanjing Maternity and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
8
|
Activation of OSM-STAT3 Epigenetically Regulates Tumor-Promoting Transcriptional Programs in Cervical Cancer. Cancers (Basel) 2022; 14:cancers14246090. [PMID: 36551576 PMCID: PMC9775986 DOI: 10.3390/cancers14246090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Despite improvements in preventative strategies, such as regular screenings with Pap tests and human papillomavirus (HPV) tests as well as HPV vaccinations, effective treatment for advanced cervical cancer remains poor. Deregulation of STAT3 is an oncogenic factor that promotes tumorigenesis and epithelial-to-mesenchymal transition (EMT) in various cancers. Oncostatin M (OSM), a pleiotropic cytokine, induces STAT3 activation, exacerbating cervical cancer. However, the mechanism by which the OSM-STAT3 axis epigenetically regulates tumor-progression-related genes in cervical cancer is not well understood. Here, we show that OSM-mediated STAT3 activation promotes pro-tumorigenic gene expression programs, with chromatin remodeling in cervical cancer. Reanalysis of scRNA-seq data performed in cervical cancer uncovered an interaction between the oncostatin M receptor (OSMR) on tumor cells and OSM induced by tumor-associated macrophages (TAMs). Our gene expression profiling (bulk RNA-seq) shows that OSM-induced genes were involved in hypoxia, wound healing, and angiogenesis, which were significantly inhibited by SD-36, a STAT3-selective degrader. Additionally, ATAC-seq experiments revealed that STAT3 binding motifs were preferentially enriched in open chromatin regions of the OSM-STAT3-regulated genes. Among the 50 candidate genes that were regulated epigenetically through the OSM-STAT3 axis, we found that the expression levels of NDRG1, HK2, PLOD2, and NPC1 were significantly correlated with those of OSMR and STAT3 in three independent cervical cancer cohorts. Also, higher expression levels of these genes are significantly associated with poor prognosis in cervical cancer patients. Collectively, our findings demonstrate that the OSM-STAT3 signaling pathway regulates crucial transcriptomic programs through epigenetic changes and that selective inhibition of STAT3 may be a novel therapeutic strategy for patients with advanced cervical cancer.
Collapse
|
9
|
Lantieri F, Bachetti T. OSM/OSMR and Interleukin 6 Family Cytokines in Physiological and Pathological Condition. Int J Mol Sci 2022; 23:ijms231911096. [PMID: 36232392 PMCID: PMC9569747 DOI: 10.3390/ijms231911096] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Francesca Lantieri
- Health Science Department (DISSAL), University of Genoa, Via Pastore 1, 16132 Genova, Italy
- Correspondence:
| | - Tiziana Bachetti
- IRCCS Ospedale Policlinico San Martino, U.O. Proteomica e Spettrometria di Massa, Largo R. Benzi, 10, 16132 Genova, Italy
| |
Collapse
|
10
|
Caligiuri A, Gitto S, Lori G, Marra F, Parola M, Cannito S, Gentilini A. Oncostatin M: From Intracellular Signaling to Therapeutic Targets in Liver Cancer. Cancers (Basel) 2022; 14:4211. [PMID: 36077744 PMCID: PMC9454586 DOI: 10.3390/cancers14174211] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Primary liver cancers represent the third-most-common cause of cancer-related mortality worldwide, with an incidence of 80-90% for hepatocellular carcinoma (HCC) and 10-15% for cholangiocarcinoma (CCA), and an increasing morbidity and mortality rate. Although HCC and CCA originate from independent cell populations (hepatocytes and biliary epithelial cells, respectively), they develop in chronically inflamed livers. Evidence obtained in the last decade has revealed a role for cytokines of the IL-6 family in the development of primary liver cancers. These cytokines operate through the receptor subunit gp130 and the downstream Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathways. Oncostatin M (OSM), a member of the IL-6 family, plays a significant role in inflammation, autoimmunity, and cancer, including liver tumors. Although, in recent years, therapeutic approaches for the treatment of HCC and CCA have been implemented, limited treatment options with marginal clinical benefits are available. We discuss how OSM-related pathways can be selectively inhibited and therapeutically exploited for the treatment of liver malignancies.
Collapse
Affiliation(s)
- Alessandra Caligiuri
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy
| | - Stefano Gitto
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy
| | - Giulia Lori
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy
| | - Fabio Marra
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy
| | - Maurizio Parola
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine & Clinical Pathology, University of Torino, 10125 Torino, Italy
| | - Stefania Cannito
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine & Clinical Pathology, University of Torino, 10125 Torino, Italy
| | - Alessandra Gentilini
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy
| |
Collapse
|
11
|
Hurst CD, Cheng G, Platt FM, Alder O, Black EV, Burns JE, Brown J, Jain S, Roulson JA, Knowles MA. Molecular profile of pure squamous cell carcinoma of the bladder identifies major roles for OSMR and YAP signalling. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2022; 8:279-293. [PMID: 35289095 PMCID: PMC8977277 DOI: 10.1002/cjp2.261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 11/20/2022]
Abstract
Pure squamous cell carcinoma (SCC) is the most common pure variant form of bladder cancer, found in 2–5% of cases. It often presents late and is unresponsive to cisplatin‐based chemotherapy. The molecular features of these tumours have not been elucidated in detail. We carried out whole‐exome sequencing (WES), copy number, and transcriptome analysis of bladder SCC. Muscle‐invasive bladder cancer (MIBC) samples with no evidence of squamous differentiation (non‐SD) were used for comparison. To assess commonality of features with urothelial carcinoma with SD, we examined data from SD samples in The Cancer Genome Atlas (TCGA) study of MIBC. TP53 was the most commonly mutated gene in SCC (64%) followed by FAT1 (45%). Copy number analysis revealed complex changes in SCC, many differing from those in samples with SD. Gain of 5p and 7p was the most common feature, and focal regions on 5p included OSMR and RICTOR. In addition to 9p deletions, we found some samples with focal gain of 9p24 containing CD274 (PD‐L1). Loss of 4q35 containing FAT1 was found in many samples such that all but one sample analysed by WES had FAT1 mutation or deletion. Expression features included upregulation of oncostatin M receptor (OSMR), metalloproteinases, metallothioneins, keratinisation genes, extracellular matrix components, inflammatory response genes, stem cell markers, and immune response modulators. Exploration of differentially expressed transcription factors identified BNC1 and TFAP2A, a gene repressed by PPARG, as the most upregulated factors. Known urothelial differentiation factors were downregulated along with 72 Kruppel‐associated (KRAB) domain‐containing zinc finger family protein (KZFP) genes. Novel therapies are urgently needed for these tumours. In addition to upregulated expression of EGFR, which has been suggested as a therapeutic target in basal/squamous bladder cancer, we identified expression signatures that indicate upregulated OSMR and YAP/TAZ signalling. Preclinical evaluation of the effects of inhibition of these pathways alone or in combination is merited.
Collapse
Affiliation(s)
- Carolyn D Hurst
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James's, St James's University Hospital, Leeds, UK
| | - Guo Cheng
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James's, St James's University Hospital, Leeds, UK
| | - Fiona M Platt
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James's, St James's University Hospital, Leeds, UK
| | - Olivia Alder
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James's, St James's University Hospital, Leeds, UK
| | - Emma Vi Black
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James's, St James's University Hospital, Leeds, UK
| | - Julie E Burns
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James's, St James's University Hospital, Leeds, UK
| | - Joanne Brown
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James's, St James's University Hospital, Leeds, UK
| | - Sunjay Jain
- Pyrah Department of Urology, St James's University Hospital, Leeds, UK
| | - Jo-An Roulson
- Department of Histopathology, St James's University Hospital, Leeds, UK
| | - Margaret A Knowles
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James's, St James's University Hospital, Leeds, UK
| |
Collapse
|
12
|
Araujo AM, Abaurrea A, Azcoaga P, López-Velazco JI, Manzano S, Rodriguez J, Rezola R, Egia-Mendikute L, Valdés-Mora F, Flores JM, Jenkins L, Pulido L, Osorio-Querejeta I, Fernández-Nogueira P, Ferrari N, Viera C, Martín-Martín N, Tzankov A, Eppenberger-Castori S, Alvarez-Lopez I, Urruticoechea A, Bragado P, Coleman N, Palazón A, Carracedo A, Gallego-Ortega D, Calvo F, Isacke CM, Caffarel MM, Lawrie CH. Stromal oncostatin M cytokine promotes breast cancer progression by reprogramming the tumor microenvironment. J Clin Invest 2022; 132:e148667. [PMID: 35192545 PMCID: PMC8970678 DOI: 10.1172/jci148667] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 02/16/2022] [Indexed: 11/17/2022] Open
Abstract
The tumor microenvironment (TME) is reprogrammed by cancer cells and participates in all stages of tumor progression. The contribution of stromal cells to the reprogramming of the TME is not well understood. Here, we provide evidence of the role of the cytokine oncostatin M (OSM) as central node for multicellular interactions between immune and nonimmune stromal cells and the epithelial cancer cell compartment. OSM receptor (OSMR) deletion in a multistage breast cancer model halted tumor progression. We ascribed causality to the stromal function of the OSM axis by demonstrating reduced tumor burden of syngeneic tumors implanted in mice lacking OSMR. Single-cell and bioinformatic analysis of murine and human breast tumors revealed that OSM expression was restricted to myeloid cells, whereas OSMR was detected predominantly in fibroblasts and, to a lower extent, cancer cells. Myeloid-derived OSM reprogrammed fibroblasts to a more contractile and tumorigenic phenotype and elicited the secretion of VEGF and proinflammatory chemokines CXCL1 and CXCL16, leading to increased myeloid cell recruitment. Collectively, our data support the notion that the stromal OSM/OSMR axis reprograms the immune and nonimmune microenvironment and plays a key role in breast cancer progression.
Collapse
Affiliation(s)
| | | | - Peio Azcoaga
- Biodonostia Health Research Institute, San Sebastian, Spain
| | | | - Sara Manzano
- Biodonostia Health Research Institute, San Sebastian, Spain
| | - Javier Rodriguez
- Instituto de Biomedicina y Biotecnología de Cantabria, Santander, Spain
| | - Ricardo Rezola
- Gipuzkoa Cancer Unit, OSI Donostialdea - Onkologikoa Foundation, San Sebastian, Spain
| | - Leire Egia-Mendikute
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Fátima Valdés-Mora
- Cancer Epigenetic Biology and Therapeutics Laboratory, Children’s Cancer Institute, Sydney, New South Wales, Australia
- School of Women’s and Children’s Health, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Juana M. Flores
- Department of Animal Medicine and Surgery, Complutense University of Madrid, Madrid, Spain
| | - Liam Jenkins
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Laura Pulido
- Biodonostia Health Research Institute, San Sebastian, Spain
| | | | - Patricia Fernández-Nogueira
- Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine and
- Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Nicola Ferrari
- Tumour Microenvironment Lab, The Institute of Cancer Research, London, United Kingdom
| | - Cristina Viera
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
- CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), Madrid, Spain
| | - Natalia Martín-Martín
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
- CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), Madrid, Spain
- Traslational Prostate Cancer Research Lab, CIC bioGUNE-Basurto, Biocruces Bizkaia Health Research Institute, Bizkaia, Spain
| | - Alexandar Tzankov
- Institute of Medical Genetics and Pathology, University Hospital, Basel, Switzerland
| | | | - Isabel Alvarez-Lopez
- Biodonostia Health Research Institute, San Sebastian, Spain
- Gipuzkoa Cancer Unit, OSI Donostialdea - Onkologikoa Foundation, San Sebastian, Spain
| | - Ander Urruticoechea
- Biodonostia Health Research Institute, San Sebastian, Spain
- Gipuzkoa Cancer Unit, OSI Donostialdea - Onkologikoa Foundation, San Sebastian, Spain
| | - Paloma Bragado
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos, Madrid, Spain
| | - Nicholas Coleman
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Asís Palazón
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Arkaitz Carracedo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
- CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), Madrid, Spain
- Traslational Prostate Cancer Research Lab, CIC bioGUNE-Basurto, Biocruces Bizkaia Health Research Institute, Bizkaia, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, Bilbao, Spain
| | - David Gallego-Ortega
- Tumour Development Laboratory, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, New South Wales, Sydney, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Fernando Calvo
- Instituto de Biomedicina y Biotecnología de Cantabria, Santander, Spain
- Tumour Microenvironment Lab, The Institute of Cancer Research, London, United Kingdom
| | - Clare M. Isacke
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - María M. Caffarel
- Biodonostia Health Research Institute, San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Charles H. Lawrie
- Biodonostia Health Research Institute, San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
13
|
Li Q, Wang Y, Li Z, Su M, Song Y, Hu Q, Zhou B, Zhang L. Association of oncostatin M receptor polymorphisms with clinical recurrence of ovarian cancer in the Chinese Han population. Biomark Med 2022; 16:461-471. [PMID: 35321549 DOI: 10.2217/bmm-2021-0989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: Ovarian cancer (OC) is a gynecological malignancy with a challenging judgment of prognosis due to complicated etiology and high recurrence rate. The oncostatin M receptor (OSMR) from members of the IL-6 receptor family is associated with tumor development. This study aims to explore the correlations between OSMR gene polymorphisms (rs2278329 [G/A, missense, Asp553Asn], rs2292016 [G/T, promoter, -100G/T]) and OC. Methods: This study enrolled 160 OC patients and 397 healthy controls. Genotypes of two single-nucleotide polymorphisms were distinguished using TaqMan SNP Genotyping Assay, and statistical analysis was performed using SPSS software. Results: A significantly decreased overall survival rate was found in serous OC patients carrying rs2278329 GA/AA genotypes. Meanwhile, TT genotype carriers of rs2292016 had an improved relapse rate, and the GT genotype showed a definitive correlation with a lower relapse rate. Conclusion: OSMR gene polymorphisms may be related to recurrence and overall survival of serous OC patients.
Collapse
Affiliation(s)
- Qin Li
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects & Related Diseases of Women & Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, PR, 610041, China
| | - Yanyun Wang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects & Related Diseases of Women & Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, PR, 610041, China
| | - Zhilong Li
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects & Related Diseases of Women & Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, PR, 610041, China
| | - Min Su
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects & Related Diseases of Women & Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, PR, 610041, China
| | - Yaping Song
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects & Related Diseases of Women & Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, PR, 610041, China
| | - Qian Hu
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects & Related Diseases of Women & Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, PR, 610041, China
| | - Bin Zhou
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects & Related Diseases of Women & Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, PR, 610041, China
| | - Lin Zhang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects & Related Diseases of Women & Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, PR, 610041, China
| |
Collapse
|
14
|
lncRNA MSTRG.29039.1 Promotes Proliferation by Sponging hsa-miR-12119 via JAK2/STAT3 Pathway in Multiple Myeloma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9969449. [PMID: 34422217 PMCID: PMC8376436 DOI: 10.1155/2021/9969449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/12/2021] [Indexed: 12/27/2022]
Abstract
Noncoding RNA (ncRNA) is involved in the occurrence, development, metastasis, and drug resistance of tumors and involves a variety of biological functions. In addition, miRNA can regulate proliferation and migration and even regulate epigenetics to promote the development of multiple myeloma (MM). However, the mechanism of ncRNA involved in MM is still unclear, and there are many unknown ncRNAs to be explored. This research is aimed at discovering the unknown lncRNA in MM through high-throughput sequencing and to study the mechanism and role of competitive endogenous RNA (ceRNA) involved in the pathogenesis of MM for the development of novel molecular markers and potential new targeted drugs. We screened out 262 new lncRNAs with statistical differences by RNA sequencing and selected the lncRNA MSTRG.29039.1 according to the expression and function of lncRNAs and their target genes in MM. We verified that MSTRG.29039.1 and its target gene OSMR were highly expressed in MM. After knockdown of MSTRG.29039.1 in MM cell lines, the expression of OSMR was decreased, and the expression of hsa-miR-12119 was upregulated which can also promote cell apoptosis and inhibit proliferation. Then, we knocked down hsa-miR-12119 and MSTRG.29039.1, we found that apoptosis of MM cells was reduced, and cell proliferation was increased compared with just knocking down hsa-miR-12119. We further verified the direct binding relationship between MSTRG.29039.1 and OSMR by the dual-luciferase reporter assay system. Thus, MSTRG.29039.1 can competitively bind with miRNA to counteract the inhibitory effect of miRNA on OSMR, which regulates cell proliferation and apoptosis through the JAK2/STAT3 pathway. In a conclusion, lncRNA MSTRG.29039.1 could promote proliferation by sponging hsa-miR-12119 via the JAK2/STAT3 pathway in multiple myeloma. This may be a molecular marker and a potential therapeutic target for MM.
Collapse
|
15
|
Mass OA, Tuccinardi J, Woodbury L, Wolf CL, Grantham B, Holdaway K, Pu X, King MD, Warner DL, Jorcyk CL, Warner LR. Bioactive recombinant human oncostatin M for NMR-based screening in drug discovery. Sci Rep 2021; 11:16174. [PMID: 34376712 PMCID: PMC8355150 DOI: 10.1038/s41598-021-95424-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 07/05/2021] [Indexed: 02/07/2023] Open
Abstract
Oncostatin M (OSM) is a pleiotropic, interleukin-6 family inflammatory cytokine that plays an important role in inflammatory diseases, including inflammatory bowel disease, rheumatoid arthritis, and cancer progression and metastasis. Recently, elevated OSM levels have been found in the serum of COVID-19 patients in intensive care units. Multiple anti-OSM therapeutics have been investigated, but to date no OSM small molecule inhibitors are clinically available. To pursue a high-throughput screening and structure-based drug discovery strategy to design a small molecule inhibitor of OSM, milligram quantities of highly pure, bioactive OSM are required. Here, we developed a reliable protocol to produce highly pure unlabeled and isotope enriched OSM from E. coli for biochemical and NMR studies. High yields (ca. 10 mg/L culture) were obtained in rich and minimal defined media cultures. Purified OSM was characterized by mass spectrometry and circular dichroism. The bioactivity was confirmed by induction of OSM/OSM receptor signaling through STAT3 phosphorylation in human breast cancer cells. Optimized buffer conditions yielded 1H, 15N HSQC NMR spectra with intense, well-dispersed peaks. Titration of 15N OSM with a small molecule inhibitor showed chemical shift perturbations for several key residues with a binding affinity of 12.2 ± 3.9 μM. These results demonstrate the value of bioactive recombinant human OSM for NMR-based small molecule screening.
Collapse
Affiliation(s)
- Olga A. Mass
- grid.184764.80000 0001 0670 228XBiomoleculer Research Center, Boise State University, Boise, ID 83725 USA
| | - Joseph Tuccinardi
- grid.184764.80000 0001 0670 228XDepartment of Chemistry and Biochemistry, Boise State University, 1910 University Dr., Boise, ID 83725 USA
| | - Luke Woodbury
- grid.184764.80000 0001 0670 228XBiomoleculer Research Center, Boise State University, Boise, ID 83725 USA
| | - Cody L. Wolf
- grid.184764.80000 0001 0670 228XBiomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725 USA ,grid.184764.80000 0001 0670 228XDepartment of Biological Sciences, Boise State University, Boise, ID 83725 USA
| | - Bri Grantham
- grid.184764.80000 0001 0670 228XBiomoleculer Research Center, Boise State University, Boise, ID 83725 USA
| | - Kelsey Holdaway
- grid.184764.80000 0001 0670 228XDepartment of Chemistry and Biochemistry, Boise State University, 1910 University Dr., Boise, ID 83725 USA
| | - Xinzhu Pu
- grid.184764.80000 0001 0670 228XBiomoleculer Research Center, Boise State University, Boise, ID 83725 USA ,grid.184764.80000 0001 0670 228XBiomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725 USA
| | - Matthew D. King
- grid.184764.80000 0001 0670 228XDepartment of Chemistry and Biochemistry, Boise State University, 1910 University Dr., Boise, ID 83725 USA ,grid.184764.80000 0001 0670 228XBiomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725 USA
| | - Don L. Warner
- grid.184764.80000 0001 0670 228XDepartment of Chemistry and Biochemistry, Boise State University, 1910 University Dr., Boise, ID 83725 USA ,grid.184764.80000 0001 0670 228XBiomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725 USA
| | - Cheryl L. Jorcyk
- grid.184764.80000 0001 0670 228XBiomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725 USA ,grid.184764.80000 0001 0670 228XDepartment of Biological Sciences, Boise State University, Boise, ID 83725 USA
| | - Lisa R. Warner
- grid.184764.80000 0001 0670 228XBiomoleculer Research Center, Boise State University, Boise, ID 83725 USA ,grid.184764.80000 0001 0670 228XDepartment of Chemistry and Biochemistry, Boise State University, 1910 University Dr., Boise, ID 83725 USA ,grid.184764.80000 0001 0670 228XBiomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725 USA
| |
Collapse
|
16
|
Oncostatin M: A mysterious cytokine in cancers. Int Immunopharmacol 2020; 90:107158. [PMID: 33187910 DOI: 10.1016/j.intimp.2020.107158] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/04/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023]
Abstract
Oncostatin M (OSM), as a member of the Interleukin-6 family cytokines, plays a significant role in inflammation, autoimmunity, and cancers. It is mainly secreted by T lymphocytes, neutrophils, and macrophages and was initially introduced as anti-cancer agent. However, in some cases, it promotes cancer progression. Overexpression of OSM and OSM receptor has been detected in various cancers including colon cancer, breast cancer, pancreatic cancer, myeloma, brain tumors, chronic lymphocytic leukemia, and hepatoblastoma. STAT3 is the main downstream signaling molecule of OSM, which operates the leading role in modifications of cancer cells and enhancing cell growth, invasion, survival, and all other hallmarks of cancer cells. However, due to the presence of multiple signaling pathways, it can act contradictory in some cancers. In this review, we will discuss the emerging roles of OSM in cancer and elucidate its function in tumor control or progression and finally discuss therapeutic approaches designed to manipulate this cytokine in cancer.
Collapse
|
17
|
Nguyen TN, Rajapakshe K, Nicholas C, Tordesillas L, Ehli EA, Davis CM, Coarfa C, Flores ER, Dickinson SE, Curiel-Lewandrowski C, Tsai KY. Integrative transcriptomic analysis for linking acute stress responses to squamous cell carcinoma development. Sci Rep 2020; 10:17209. [PMID: 33057049 PMCID: PMC7560606 DOI: 10.1038/s41598-020-74051-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 09/22/2020] [Indexed: 12/04/2022] Open
Abstract
Cutaneous squamous cell carcinoma (cuSCC) is the second most common skin cancer and commonly arises in chronically UV-exposed skin or chronic wounds. Since UV exposure and chronic wounds are the two most prominent environmental factors that lead to cuSCC initiation, we undertook this study to test whether more acute molecular responses to UV and wounding overlapped with molecular signatures of cuSCC. We reasoned that transcriptional signatures in common between acutely UV-exposed skin, wounded skin, and cuSCC tumors, might enable us to identify important pathways contributing to cuSCC. We performed transcriptomic analysis on acutely UV-exposed human skin and integrated those findings with datasets from wounded skin and our transcriptomic data on cuSCC using functional pair analysis, GSEA, and pathway analysis. Integrated analyses revealed significant overlap between these three datasets, thus highlighting deep molecular similarities these biological processes, and we identified Oncostatin M (OSM) as a potential common upstream driver. Expression of OSM and its downstream targets correlated with poorer overall survival in head and neck SCC patients. In vitro, OSM promoted invasiveness of keratinocytes and cuSCC cells and suppressed apoptosis of irradiated keratinocytes. Together, these results support the concept of using an integrated, biologically-informed approach to identify potential promoters of tumorigenesis.
Collapse
Affiliation(s)
- Tran N Nguyen
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
- Department of Computational Biomedicine, Vingroup Big Data Institute, Hanoi, Vietnam
| | - Kimal Rajapakshe
- Department of Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Courtney Nicholas
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Leticia Tordesillas
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Erik A Ehli
- Avera Institute for Human Genetics, Sioux Falls, SD, 57108, USA
| | | | - Cristian Coarfa
- Department of Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Elsa R Flores
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
- Donald A. Adam Melanoma and Skin Cancer Center of Excellence, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Sally E Dickinson
- Department of Pharmacology, University of Arizona Cancer Center, Tucson, AZ, USA
| | | | - Kenneth Y Tsai
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
- Donald A. Adam Melanoma and Skin Cancer Center of Excellence, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr, SRB-4, Tampa, FL, 33612, USA.
| |
Collapse
|
18
|
miRNA551b-3p Activates an Oncostatin Signaling Module for the Progression of Triple-Negative Breast Cancer. Cell Rep 2020; 29:4389-4406.e10. [PMID: 31875548 DOI: 10.1016/j.celrep.2019.11.085] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 06/16/2019] [Accepted: 11/20/2019] [Indexed: 12/23/2022] Open
Abstract
Genomic amplification of 3q26.2 locus leads to the increased expression of microRNA 551b-3p (miR551b-3p) in triple-negative breast cancer (TNBC). Our results demonstrate that miR551b-3p translocates to the nucleus with the aid of importin-8 (IPO8) and activates STAT3 transcription. As a consequence, miR551b upregulates the expression of oncostatin M receptor (OSMR) and interleukin-31 receptor-α (IL-31RA) as well as their ligands OSM and IL-31 through STAT3 transcription. We defined this set of genes induced by miR551b-3p as the "oncostatin signaling module," which provides oncogenic addictions in cancer cells. Notably, OSM is highly expressed in TNBC, and the elevated expression of OSM associates with poor outcome in estrogen-receptor-negative breast cancer patients. Conversely, targeting miR551b with anti-miR551b-3p reduced the expression of the OSM signaling module and reduced tumor growth, as well as migration and invasion of breast cancer cells.
Collapse
|
19
|
Matsumoto Y, Ichikawa T, Kurozumi K, Otani Y, Fujimura A, Fujii K, Tomita Y, Hattori Y, Uneda A, Tsuboi N, Kaneda K, Makino K, Date I. Annexin A2-STAT3-Oncostatin M receptor axis drives phenotypic and mesenchymal changes in glioblastoma. Acta Neuropathol Commun 2020; 8:42. [PMID: 32248843 PMCID: PMC7132881 DOI: 10.1186/s40478-020-00916-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/13/2020] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma (GBM) is characterized by extensive tumor cell invasion, angiogenesis, and proliferation. We previously established subclones of GBM cells with distinct invasive phenotypes and identified annexin A2 (ANXA2) as an activator of angiogenesis and perivascular invasion. Here, we further explored the role of ANXA2 in regulating phenotypic transition in GBM. We identified oncostatin M receptor (OSMR) as a key ANXA2 target gene in GBM utilizing microarray analysis and hierarchical clustering analysis of the Ivy Glioblastoma Atlas Project and The Cancer Genome Atlas datasets. Overexpression of ANXA2 in GBM cells increased the expression of OSMR and phosphorylated signal transducer and activator of transcription 3 (STAT3) and enhanced cell invasion, angiogenesis, proliferation, and mesenchymal transition. Silencing of OSMR reversed the ANXA2-induced phenotype, and STAT3 knockdown reduced OSMR protein expression. Exposure of GBM cells to hypoxic conditions activated the ANXA2–STAT3–OSMR signaling axis. Mice bearing ANXA2-overexpressing GBM exhibited shorter survival times compared with control tumor-bearing mice, whereas OSMR knockdown increased the survival time and diminished ANXA2-mediated tumor invasion, angiogenesis, and growth. Further, we uncovered a significant relationship between ANXA2 and OSMR expression in clinical GBM specimens, and demonstrated their correlation with tumor histopathology and patient prognosis. Our results indicate that the ANXA2–STAT3–OSMR axis regulates malignant phenotypic changes and mesenchymal transition in GBM, suggesting that this axis is a promising therapeutic target to treat GBM aggressiveness.
Collapse
|
20
|
Polak KL, Chernosky NM, Smigiel JM, Tamagno I, Jackson MW. Balancing STAT Activity as a Therapeutic Strategy. Cancers (Basel) 2019; 11:cancers11111716. [PMID: 31684144 PMCID: PMC6895889 DOI: 10.3390/cancers11111716] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/23/2019] [Accepted: 10/31/2019] [Indexed: 12/13/2022] Open
Abstract
Driven by dysregulated IL-6 family member cytokine signaling in the tumor microenvironment (TME), aberrant signal transducer and activator of transcription (STAT3) and (STAT5) activation have been identified as key contributors to tumorigenesis. Following transformation, persistent STAT3 activation drives the emergence of mesenchymal/cancer-stem cell (CSC) properties, important determinants of metastatic potential and therapy failure. Moreover, STAT3 signaling within tumor-associated macrophages and neutrophils drives secretion of factors that facilitate metastasis and suppress immune cell function. Persistent STAT5 activation is responsible for cancer cell maintenance through suppression of apoptosis and tumor suppressor signaling. Furthermore, STAT5-mediated CD4+/CD25+ regulatory T cells (Tregs) have been implicated in suppression of immunosurveillance. We discuss these roles for STAT3 and STAT5, and weigh the attractiveness of different modes of targeting each cancer therapy. Moreover, we discuss how anti-tumorigenic STATs, including STAT1 and STAT2, may be leveraged to suppress the pro-tumorigenic functions of STAT3/STAT5 signaling.
Collapse
Affiliation(s)
- Kelsey L Polak
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.
| | - Noah M Chernosky
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.
| | - Jacob M Smigiel
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.
| | - Ilaria Tamagno
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.
| | - Mark W Jackson
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.
- Case Comprehensive Cancer Center, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
21
|
Tawara K, Bolin C, Koncinsky J, Kadaba S, Covert H, Sutherland C, Bond L, Kronz J, Garbow JR, Jorcyk CL. OSM potentiates preintravasation events, increases CTC counts, and promotes breast cancer metastasis to the lung. Breast Cancer Res 2018; 20:53. [PMID: 29898744 PMCID: PMC6001163 DOI: 10.1186/s13058-018-0971-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 04/21/2018] [Indexed: 02/08/2023] Open
Abstract
Background Systemic and chronic inflammatory conditions in patients with breast cancer have been associated with reduced patient survival and increased breast cancer aggressiveness. This paper characterizes the role of an inflammatory cytokine, oncostatin M (OSM), in the preintravasation aspects of breast cancer metastasis. Methods OSM expression levels in human breast cancer tissue samples were assessed using tissue microarrays, and expression patterns based on clinical stage were assessed. To determine the in vivo role of OSM in breast cancer metastasis to the lung, we used three orthotopic breast cancer mouse models, including a syngeneic 4T1.2 mouse mammary cancer model, the MDA-MB-231 human breast cancer xenograft model, and an OSM-knockout (OSM-KO) mouse model. Progression of metastatic disease was tracked by magnetic resonance imaging and bioluminescence imaging. Endpoint analysis included circulating tumor cell (CTC) counts, lung metastatic burden analysis by qPCR, and ex vivo bioluminescence imaging. Results Using tissue microarrays, we found that tumor cell OSM was expressed at the highest levels in ductal carcinoma in situ. This finding suggests that OSM may function during the earlier steps of breast cancer metastasis. In mice bearing MDA-MB-231-Luc2 xenograft tumors, peritumoral injection of recombinant human OSM not only increased metastases to the lung and decreased survival but also increased CTC numbers. To our knowledge, this is the first time that a gp130 family inflammatory cytokine has been shown to directly affect CTC numbers. Using a 4T1.2 syngeneic mouse model of breast cancer, we found that mice bearing 4T1.2-shOSM tumors with knocked down tumor expression of OSM had reduced CTCs, decreased lung metastatic burden, and increased survival compared with mice bearing control tumors. CTC numbers were further reduced in OSM-KO mice bearing the same tumors, demonstrating the importance of both paracrine- and autocrine-produced OSM in this process. In vitro studies further supported the hypothesis that OSM promotes preintravasation aspects of cancer metastasis, because OSM induced both 4T1.2 tumor cell detachment and migration. Conclusions Collectively, our findings suggest that OSM plays a crucial role in the early steps of metastatic breast cancer progression, resulting in increased CTCs and lung metastases as well as reduced survival. Therefore, early therapeutic inhibition of OSM in patients with breast cancer may prevent breast cancer metastasis. Electronic supplementary material The online version of this article (10.1186/s13058-018-0971-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ken Tawara
- Department of Biological Sciences, Biomolecular Sciences Program, Boise State University, 1910 University Drive, Boise, ID, 83725, USA
| | - Celeste Bolin
- Department of Biological Sciences, Biomolecular Sciences Program, Boise State University, 1910 University Drive, Boise, ID, 83725, USA
| | - Jordan Koncinsky
- Department of Biological Sciences, Biomolecular Sciences Program, Boise State University, 1910 University Drive, Boise, ID, 83725, USA
| | - Sujatha Kadaba
- Department of Biological Sciences, Biomolecular Sciences Program, Boise State University, 1910 University Drive, Boise, ID, 83725, USA
| | - Hunter Covert
- Department of Biological Sciences, Biomolecular Sciences Program, Boise State University, 1910 University Drive, Boise, ID, 83725, USA
| | - Caleb Sutherland
- Department of Biological Sciences, Biomolecular Sciences Program, Boise State University, 1910 University Drive, Boise, ID, 83725, USA
| | - Laura Bond
- Department of Biological Sciences, Biomolecular Sciences Program, Boise State University, 1910 University Drive, Boise, ID, 83725, USA
| | | | - Joel R Garbow
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO, 63110, USA
| | - Cheryl L Jorcyk
- Department of Biological Sciences, Biomolecular Sciences Program, Boise State University, 1910 University Drive, Boise, ID, 83725, USA.
| |
Collapse
|
22
|
Smigiel J, Parvani JG, Tamagno I, Polak K, Jackson MW. Breaking the oncostatin M feed-forward loop to suppress metastasis and therapy failure. J Pathol 2018; 245:6-8. [PMID: 29473175 DOI: 10.1002/path.5063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/08/2018] [Accepted: 02/20/2018] [Indexed: 01/07/2023]
Abstract
Deciphering the complex milieu that makes up the tumor microenvironment (TME) and the signaling engaged by TME cytokines continues to provide novel targets for therapeutic intervention. The IL-6 family member oncostatin M (OSM) has recently emerged as a potent driver of tumorigenesis, metastasis, and therapy failure, molecular programs most frequently attributed to IL-6 itself. In a recent issue of The Journal of Pathology, Kucia-Tran et al describe how elevated oncostatin M receptor (OSMR) expression results in a feed-forward loop involving the de novo production of both OSM and OSMR to facilitate aggressive properties in squamous cell carcinoma (SCC). Here, we discuss how new findings implicating OSM in conferring aggressive cancer cell properties can be leveraged to suppress metastatic outgrowth and therapy failure in SCC as well as other cancers. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jacob Smigiel
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jenny G Parvani
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Ilaria Tamagno
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Kelsey Polak
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Mark W Jackson
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
23
|
Oncostatin M induces tumorigenic properties in non-transformed human prostate epithelial cells, in part through activation of signal transducer and activator of transcription 3 (STAT3). Biochem Biophys Res Commun 2018. [PMID: 29526757 DOI: 10.1016/j.bbrc.2018.03.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Prostate cancer is one of the most common types of cancer in men in Western countries. Chronic inflammation in the prostate, regulated by a complex network of factors including inflammatory cytokines, is one of the established risk factors for development of prostate cancer. Interleukin-6 (IL-6) is a well-known promoter of inflammation-induced carcinogenesis and disease progression in prostate cancer. Presence in the prostate and possible roles in tumor development by other members of the IL-6 family of cytokines have, however, been less studied. Here we show that the IL-6-type cytokine oncostatin M (OSM) indeed induce cellular properties associated with tumorigenesis and disease progression in non-transformed human prostate epithelial cells, including morphological changes, epithelial-to-mesenchymal transition (EMT), enhanced migration and pro-invasive growth patterns. The effects by OSM were partly mediated by activation of signal transducer and activator of transcription 3 (STAT3), a transcription factor established as driver of cancer progression and treatment resistance in numerous types of cancer. The findings presented here further consolidate IL-6-type cytokines and STAT3 as promising future treatment targets for prostate cancer.
Collapse
|