1
|
Cai Y, Chen Z, Liu J, Yu L, Wang Z, Zhu S, Shi W, Pan C, Wu Y, Li Y, Ji H, Huang N, Zhang X, Gao P, Xiao N, Zuo S, Li A. Genetic improvement of eating and cooking quality of rice cultivars in southern China. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:518-531. [PMID: 39546400 DOI: 10.1111/pbi.14517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/16/2024] [Accepted: 10/27/2024] [Indexed: 11/17/2024]
Abstract
The genetic improvement of rice eating and cooking quality (ECQ) is an important goal in rice breeding. It is important to understand the genetic regulation of ECQ at the genomic level for effective breeding to improve ECQ. However, the mechanisms underlying the improvement of ECQ of indica and japonica cultivars in southern China remain unclear. In this study, 290 rice cultivars (155 indica and 135 japonica cultivars) bred in southern China in the past 30 years were collected. Physicochemical indicators, namely, apparent amylose content (AAC), protein content (PC), lipid content and taste value, were measured and correlation analysis was performed. A decrease in AAC and PC was a crucial factor for the ECQ improvement of the rice cultivars in southern China. Genome-wide association analysis and selective domestication analysis preliminarily clarified that the comprehensive utilization of major and minor genes was an important genetic basis for improvement of ECQ. An elite allele, RAmy1AA, with potential application in breeding to improve starch viscosity characteristics and ECQ, was mined. The Wxb/OsmtSSB1LT/OsDML4G/RPBFT/Du3T and Wxb/OsEro1T/Glup3G/OsNAC25G/OsBEIIbC/RAmy1AA/FLO12A gene modules, neither of which have been widely used, are proposed as the optimal allele combinations for ECQ improvement of indica and japonica cultivars in southern China. The results clarify the genetic regulation of rice ECQ improvement in southern China and provide novel genetic resources and breeding strategies for ECQ improvement in rice.
Collapse
Affiliation(s)
- Yue Cai
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou, China
- Zhongshan Biological Breeding Laboratory, Nanjing, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agriculture College of Yangzhou University, Yangzhou, China
| | - Zichun Chen
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou, China
- Zhongshan Biological Breeding Laboratory, Nanjing, China
| | - Jianju Liu
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou, China
- Zhongshan Biological Breeding Laboratory, Nanjing, China
| | - Ling Yu
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou, China
| | - Zhiping Wang
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou, China
| | - Shuhao Zhu
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou, China
| | - Wei Shi
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou, China
| | - Cunhong Pan
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou, China
- Zhongshan Biological Breeding Laboratory, Nanjing, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agriculture College of Yangzhou University, Yangzhou, China
- Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry, Nanjing, China
| | - Yunyu Wu
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou, China
- Zhongshan Biological Breeding Laboratory, Nanjing, China
| | - Yuhong Li
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou, China
- Zhongshan Biological Breeding Laboratory, Nanjing, China
| | - Hongjuan Ji
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou, China
| | - Niansheng Huang
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou, China
| | - Xiaoxiang Zhang
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou, China
- Zhongshan Biological Breeding Laboratory, Nanjing, China
| | - Peng Gao
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou, China
- Zhongshan Biological Breeding Laboratory, Nanjing, China
| | - Ning Xiao
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou, China
- Zhongshan Biological Breeding Laboratory, Nanjing, China
- Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry, Nanjing, China
| | - Shimin Zuo
- Zhongshan Biological Breeding Laboratory, Nanjing, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agriculture College of Yangzhou University, Yangzhou, China
| | - Aihong Li
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou, China
- Zhongshan Biological Breeding Laboratory, Nanjing, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agriculture College of Yangzhou University, Yangzhou, China
- Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry, Nanjing, China
| |
Collapse
|
2
|
Li X, Sun M, Cui Z, Jiang Y, Yang L, Jiang Y. Transcription factor ZmNAC19 promotes embryo development in Arabidopsis thaliana. PLANT CELL REPORTS 2024; 43:244. [PMID: 39340665 DOI: 10.1007/s00299-024-03335-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024]
Abstract
KEY MESSAGE Overexpression of ZmNAC19, a NAC transcription factor gene from maize, improves embryo development in transgenic Arabidopsis. NAC proteins are plant-specific transcription factors that are involved in multiple aspects of plant growth, development and stress response. Although functions of many NAC transcription factors have been elucidated, little is known about their roles in seed development. In this study, we report the function of a maize NAC transcription factor ZmNAC19 in seed development. ZmNAC19 is highly expressed in embryos of developing maize seeds. ZmNAC19 localizes to nucleus and exhibits transactivation activity in yeast cells. Overexpression of ZmNAC19 in Arabidopsis significantly increases seed size and seed yield. During 3 to 7 days after flowering, embryos of ZmNAC19-overexpression Arabidopsis lines developed faster compared to Col-0, while no visible differences were detected for their endosperms. Furthermore, overexpression of ZmNAC19 in Arabidopsis leads to increased transcription levels of two embryo development-related genes YUC1 and RGE1, and several elements proven to be binding sites of NAC transcription factors were observed in promoters of these two genes. Taken together, these results suggest that ZmNAC19 acts as a positive regulator in plant embryo development.
Collapse
Affiliation(s)
- Xiulan Li
- School of Life Sciences, Qufu Normal University, Qufu, 273165, China.
| | - Mengdi Sun
- School of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Zhenhao Cui
- School of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Yuhan Jiang
- School of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Lingkun Yang
- School of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Yueshui Jiang
- School of Life Sciences, Qufu Normal University, Qufu, 273165, China.
| |
Collapse
|
3
|
Jain R, Dhaka N, Krishnan K, Yadav G, Priyam P, Sharma MK, Sharma RA. Temporal Gene Expression Profiles From Pollination to Seed Maturity in Sorghum Provide Core Candidates for Engineering Seed Traits. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39248611 DOI: 10.1111/pce.15134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024]
Abstract
Sorghum (Sorghum bicolor (L.) Moench) is a highly nutritional multipurpose millet crop. However, the genetic and molecular regulatory mechanisms governing sorghum grain development and the associated agronomic traits remain unexplored. In this study, we performed a comprehensive transcriptomic analysis of pistils collected 1-2 days before pollination, and developing seeds collected -2, 10, 20 and 30 days after pollination of S. bicolor variety M35-1. Out of 31 337 genes expressed in these stages, 12 804 were differentially expressed in the consecutive stages of seed development. These exhibited 10 dominant expression patterns correlated with the distinct pathways and gene functions. Functional analysis, based on the pathway mapping, transcription factor enrichment and orthology, delineated the key patterns associated with pollination, fertilization, early seed development, grain filling and seed maturation. Furthermore, colocalization with previously reported quantitative trait loci (QTLs) for grain weight/size revealed 48 differentially expressed genes mapping to these QTL regions. Comprehensive literature mining integrated with QTL mapping and expression data shortlisted 25, 17 and 8 core candidates for engineering grain size, starch and protein content, respectively.
Collapse
Affiliation(s)
- Rubi Jain
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Namrata Dhaka
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana, India
| | - Kushagra Krishnan
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Garima Yadav
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana, India
| | - Prachi Priyam
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana, India
| | | | - Rita A Sharma
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, Pilani, Rajasthan, India
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| |
Collapse
|
4
|
Long Y, Wang C, Liu C, Li H, Pu A, Dong Z, Wei X, Wan X. Molecular mechanisms controlling grain size and weight and their biotechnological breeding applications in maize and other cereal crops. J Adv Res 2024; 62:27-46. [PMID: 37739122 PMCID: PMC11331183 DOI: 10.1016/j.jare.2023.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/03/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND Cereal crops are a primary energy source for humans. Grain size and weight affect both evolutionary fitness and grain yield of cereals. Although studies on gene mining and molecular mechanisms controlling grain size and weight are constantly emerging in cereal crops, only a few systematic reviews on the underlying molecular mechanisms and their breeding applications are available so far. AIM OF REVIEW This review provides a general state-of-the-art overview of molecular mechanisms and targeted strategies for improving grain size and weight of cereals as well as insights for future yield-improving biotechnology-assisted breeding. KEY SCIENTIFIC CONCEPTS OF REVIEW In this review, the evolution of research on grain size and weight over the last 20 years is traced based on a bibliometric analysis of 1158 publications and the main signaling pathways and transcriptional factors involved are summarized. In addition, the roles of post-transcriptional regulation and photosynthetic product accumulation affecting grain size and weight in maize and rice are outlined. State-of-the-art strategies for discovering novel genes related to grain size and weight in maize and other cereal crops as well as advanced breeding biotechnology strategies being used for improving yield including marker-assisted selection, genomic selection, transgenic breeding, and genome editing are also discussed.
Collapse
Affiliation(s)
- Yan Long
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China; Industry Research Institute of Biotechnology Breeding, Yili Normal University, Yining 835000, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Cheng Wang
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Chang Liu
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Huangai Li
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Aqing Pu
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Zhenying Dong
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China; Industry Research Institute of Biotechnology Breeding, Yili Normal University, Yining 835000, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Xun Wei
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China; Industry Research Institute of Biotechnology Breeding, Yili Normal University, Yining 835000, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Xiangyuan Wan
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100083, China; Industry Research Institute of Biotechnology Breeding, Yili Normal University, Yining 835000, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China.
| |
Collapse
|
5
|
Tonosaki K, Susaki D, Morinaka H, Ono A, Nagata H, Furuumi H, Nonomura KI, Sato Y, Sugimoto K, Comai L, Hatakeyama K, Kawakatsu T, Kinoshita T. Multilayered epigenetic control of persistent and stage-specific imprinted genes in rice endosperm. NATURE PLANTS 2024; 10:1231-1245. [PMID: 39080502 DOI: 10.1038/s41477-024-01754-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 07/01/2024] [Indexed: 08/22/2024]
Abstract
In angiosperms, epigenetic profiles for genomic imprinting are established before fertilization. However, the causal relationships between epigenetic modifications and imprinted expression are not fully understood. In this study, we classified 'persistent' and 'stage-specific' imprinted genes on the basis of time-course transcriptome analysis in rice (Oryza sativa) endosperm and compared them to epigenetic modifications at a single time point. While the levels of epigenetic modifications are relatively low in stage-specific imprinted genes, they are considerably higher in persistent imprinted genes. Overall trends revealed that the maternal alleles of maternally expressed imprinted genes are activated by DNA demethylation, while the maternal alleles of paternally expressed imprinted genes with gene body methylation (gbM) are silenced by DNA demethylation and H3K27me3 deposition, and these regions are associated with an enriched motif related to Tc/Mar-Stowaway. Our findings provide insight into the stability of genomic imprinting and the potential variations associated with endosperm development, different cell types and parental genotypes.
Collapse
Grants
- 20K15504 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 22K15145 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 23H04749 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 23H04756 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 23K23585 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 22H05175 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 21H02170 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 22H02320 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
Collapse
Affiliation(s)
- Kaoru Tonosaki
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, Japan.
- Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan.
| | - Daichi Susaki
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Hatsune Morinaka
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Akemi Ono
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Hiroki Nagata
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Hiroyasu Furuumi
- Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Ken-Ichi Nonomura
- Plant Cytogenetics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Yutaka Sato
- Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Luca Comai
- Department of Plant Biology and Genome Center, University of California, Davis, CA, USA
| | | | - Taiji Kawakatsu
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan.
| | - Tetsu Kinoshita
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, Japan.
| |
Collapse
|
6
|
Bao H, Cui Y, Ge L, Li Y, Xu X, Tang M, Yi Y, Chen L. OsGEX3 affects anther development and improves osmotic stress tolerance in rice. PLANTA 2024; 259:68. [PMID: 38337086 DOI: 10.1007/s00425-024-04342-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 01/11/2024] [Indexed: 02/12/2024]
Abstract
MAIN CONCLUSION Overexpression and loss of function of OsGEX3 reduce seed setting rates and affect pollen fertility in rice. OsGEX3 positively regulates osmotic stress response by regulating ROS scavenging. GEX3 proteins are conserved in plants. AtGEX3 encodes a plasma membrane protein that plays a crucial role in pollen tube guidance. However, the function of its homolog in rice, OsGEX3, has not been determined. Our results demonstrate that OsGEX3 is localized in the plasma membrane and the nucleus as shown by a transiently transformed assay using Nicotiana benthamiana leaves. The up-regulation of OsGEX3 was detected in response to treatments with polyethylene glycol (PEG) 4000, hydrogen peroxide, and abscisic acid (ABA) via RT-qPCR analysis. Interestingly, we observed a significant decline in the seed setting rates of OsGEX3-OE lines and mutants, compared to the wild type. Further investigations reveal that overexpression and loss of function of OsGEX3 affect pollen maturation. TEM observation revealed a significant decrease in the fertile pollen rates of OsGEX3-OE transgenic lines and Osgex3 mutants due to a delay in pollen development at the late vacuolated stage. Overexpression of OsGEX3 improved osmotic stress and oxidative stress tolerance by enhancing reactive oxygen species (ROS) scavenging in rice seedlings, whereas Osgex3 mutants exhibited an opposite phenotype in osmotic stress. These findings highlight the multifunctional roles of OsGEX3 in pollen development and the response to abiotic stress. The functional characterization of OsGEX3 provides a fundamental basis for rice molecular breeding and can facilitate efforts to cultivate drought resistance and yield-related varieties.
Collapse
Affiliation(s)
- Han Bao
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- School of Life Sciences, Ningxia University, Yinchuan, 750021, China
| | - Yuchao Cui
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Li Ge
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Yan Li
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Xiaorong Xu
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Ming Tang
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Yin Yi
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Liang Chen
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
7
|
Wang X, Liu Y, Hao C, Li T, Majeed U, Liu H, Li H, Hou J, Zhang X. Wheat NAC-A18 regulates grain starch and storage proteins synthesis and affects grain weight. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:123. [PMID: 37147554 DOI: 10.1007/s00122-023-04365-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/14/2023] [Indexed: 05/07/2023]
Abstract
KEY MESSAGE Wheat NAC-A18 regulates both starch and storage protein synthesis in the grain, and a haplotype with positive effects on grain weight showed increased frequency during wheat breeding in China. Starch and seed storage protein (SSP) directly affect the processing quality of wheat grain. The synthesis of starch and SSP are also regulated at the transcriptional level. However, only a few starch and SSP regulators have been identified in wheat. In this study, we discovered a NAC transcription factor, designated as NAC-A18, which acts as a regulator of both starch and SSP synthesis. NAC-A18, is predominately expressed in wheat developing grains, encodes a transcription factor localized in the nucleus, with both activation and repression domains. Ectopic expression of wheat NAC-A18 in rice significantly decreased starch accumulation and increased SSP accumulation and grain size and weight. Dual-luciferase reporter assays indicated that NAC-A18 could reduce the expression of TaGBSSI-A1 and TaGBSSI-A2, and enhance the expression of TaLMW-D6 and TaLMW-D1. A yeast one hybrid assay demonstrated that NAC-A18 bound directly to the cis-element "ACGCAA" in the promoters of TaLMW-D6 and TaLMW-D1. Further analysis indicated that two haplotypes were formed at NAC-A18, and that NAC-A18_h1 was a favorable haplotype correlated with higher thousand grain weight. Based on limited population data, NAC-A18_h1 underwent positive selection during Chinese wheat breeding. Our study demonstrates that wheat NAC-A18 regulates starch and SSP accumulation and grain size. A molecular marker was developed for the favorable allele for breeding applications.
Collapse
Affiliation(s)
- Xiaolu Wang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yunchuan Liu
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chenyang Hao
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tian Li
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Uzma Majeed
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongxia Liu
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huifang Li
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jian Hou
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Xueyong Zhang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
8
|
Mahto A, Yadav A, P V A, Parida SK, Tyagi AK, Agarwal P. Cytological, transcriptome and miRNome temporal landscapes decode enhancement of rice grain size. BMC Biol 2023; 21:91. [PMID: 37076907 PMCID: PMC10116700 DOI: 10.1186/s12915-023-01577-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 03/27/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND Rice grain size (GS) is an essential agronomic trait. Though several genes and miRNA modules influencing GS are known and seed development transcriptomes analyzed, a comprehensive compendium connecting all possible players is lacking. This study utilizes two contrasting GS indica rice genotypes (small-grained SN and large-grained LGR). Rice seed development involves five stages (S1-S5). Comparative transcriptome and miRNome atlases, substantiated with morphological and cytological studies, from S1-S5 stages and flag leaf have been analyzed to identify GS proponents. RESULTS Histology shows prolonged endosperm development and cell enlargement in LGR. Stand-alone and comparative RNAseq analyses manifest S3 (5-10 days after pollination) stage as crucial for GS enhancement, coherently with cell cycle, endoreduplication, and programmed cell death participating genes. Seed storage protein and carbohydrate accumulation, cytologically and by RNAseq, is shown to be delayed in LGR. Fourteen transcription factor families influence GS. Pathway genes for four phytohormones display opposite patterns of higher expression. A total of 186 genes generated from the transcriptome analyses are located within GS trait-related QTLs deciphered by a cross between SN and LGR. Fourteen miRNA families express specifically in SN or LGR seeds. Eight miRNA-target modules display contrasting expressions amongst SN and LGR, while 26 (SN) and 43 (LGR) modules are differentially expressed in all stages. CONCLUSIONS Integration of all analyses concludes in a "Domino effect" model for GS regulation highlighting chronology and fruition of each event. This study delineates the essence of GS regulation, providing scope for future exploits. The rice grain development database (RGDD) ( www.nipgr.ac.in/RGDD/index.php ; https://doi.org/10.5281/zenodo.7762870 ) has been developed for easy access of data generated in this paper.
Collapse
Affiliation(s)
- Arunima Mahto
- National Institute of Plant Genome Research, New Delhi, India
| | - Antima Yadav
- National Institute of Plant Genome Research, New Delhi, India
| | - Aswathi P V
- National Institute of Plant Genome Research, New Delhi, India
| | - Swarup K Parida
- National Institute of Plant Genome Research, New Delhi, India
| | - Akhilesh K Tyagi
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Pinky Agarwal
- National Institute of Plant Genome Research, New Delhi, India.
| |
Collapse
|
9
|
Song S, Ma D, Xu C, Guo Z, Li J, Song L, Wei M, Zhang L, Zhong YH, Zhang YC, Liu JW, Chi B, Wang J, Tang H, Zhu X, Zheng HL. In silico analysis of NAC gene family in the mangrove plant Avicennia marina provides clues for adaptation to intertidal habitats. PLANT MOLECULAR BIOLOGY 2023; 111:393-413. [PMID: 36645624 DOI: 10.1007/s11103-023-01333-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
NAC (NAM, ATAF1/2, CUC2) transcription factors (TFs) constitute a plant-specific gene family. It is reported that NAC TFs play important roles in plant growth and developmental processes and in response to biotic/abiotic stresses. Nevertheless, little information is known about the functional and evolutionary characteristics of NAC TFs in mangrove plants, a group of species adapting coastal intertidal habitats. Thus, we conducted a comprehensive investigation for NAC TFs in Avicennia marina, one pioneer species of mangrove plants. We totally identified 142 NAC TFs from the genome of A. marina. Combined with NAC proteins having been functionally characterized in other organisms, we built a phylogenetic tree to infer the function of NAC TFs in A. marina. Gene structure and motif sequence analyses suggest the sequence conservation and transcription regulatory regions-mediated functional diversity. Whole-genome duplication serves as the driver force to the evolution of NAC gene family. Moreover, two pairs of NAC genes were identified as positively selected genes of which AmNAC010/040 may be imposed on less constraint toward neofunctionalization. Quite a few stress/hormone-related responsive elements were found in promoter regions indicating potential response to various external factors. Transcriptome data revealed some NAC TFs were involved in pneumatophore and leaf salt gland development and response to salt, flooding and Cd stresses. Gene co-expression analysis found a few NAC TFs participates in the special biological processes concerned with adaptation to intertidal environment. In summary, this study provides detailed functional and evolutionary information about NAC gene family in mangrove plant A. marina and new perspective for adaptation to intertidal habitats.
Collapse
Affiliation(s)
- Shiwei Song
- Key Laboratory of the Ministry of Education for Costal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Dongna Ma
- Key Laboratory of the Ministry of Education for Costal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Chaoqun Xu
- Key Laboratory of the Ministry of Education for Costal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Zejun Guo
- Key Laboratory of the Ministry of Education for Costal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Jing Li
- Key Laboratory of the Ministry of Education for Costal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Lingyu Song
- Key Laboratory of the Ministry of Education for Costal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Mingyue Wei
- Key Laboratory of the Ministry of Education for Costal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Ludan Zhang
- Key Laboratory of the Ministry of Education for Costal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - You-Hui Zhong
- Key Laboratory of the Ministry of Education for Costal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Yu-Chen Zhang
- Key Laboratory of the Ministry of Education for Costal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Jing-Wen Liu
- Key Laboratory of the Ministry of Education for Costal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Bingjie Chi
- Key Laboratory of the Ministry of Education for Costal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Jicheng Wang
- Key Laboratory of the Ministry of Education for Costal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Hanchen Tang
- Key Laboratory of the Ministry of Education for Costal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Xueyi Zhu
- Key Laboratory of the Ministry of Education for Costal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Hai-Lei Zheng
- Key Laboratory of the Ministry of Education for Costal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China.
| |
Collapse
|
10
|
Wairich A, Vitali A, Adamski JM, Lopes KL, Duarte GL, Ponte LR, Costa HK, Menguer PK, Santos RPD, Fett JP, Sperotto RA, Ricachenevsky FK. Enhanced expression of OsNAC5 leads to up-regulation of OsNAC6 and changes rice (Oryza sativa L.) ionome. Genet Mol Biol 2023; 46:e20220190. [PMID: 37144919 PMCID: PMC10161346 DOI: 10.1590/1678-4685-gmb-2022-0190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 02/17/2023] [Indexed: 05/06/2023] Open
Abstract
NAC transcription factors are plant-specific proteins involved in many processes during the plant life cycle and responses to biotic and abiotic stresses. Previous studies have shown that stress-induced OsNAC5 from rice (Oryza sativa L.) is up-regulated by senescence and might be involved in control of iron (Fe) and zinc (Zn) concentrations in rice seeds. Aiming a better understanding of the role of OsNAC5 in rice plants, we investigated a mutant line carrying a T-DNA insertion in the promoter of OsNAC5, which resulted in enhanced expression of the transcription factor. Plants with OsNAC5 enhanced expression were shorter at the seedling stage and had reduced yield at maturity. In addition, we evaluated the expression level of OsNAC6, which is co-expressed with OsNAC5, and found that enhanced expression of OsNAC5 leads to increased expression of OsNAC6, suggesting that OsNAC5 might regulate OsNAC6 expression. Ionomic analysis of leaves and seeds from the OsNAC5 enhanced expression line revealed lower Fe and Zn concentrations in leaves and higher Fe concentrations in seeds than in WT plants, further suggesting that OsNAC5 may be involved in regulating the ionome in rice plants. Our work shows that fine-tuning of transcription factors is key when aiming at crop improvement.
Collapse
Affiliation(s)
- Andriele Wairich
- Universidade Federal do Rio Grande do Sul, Centro de Biotecnologia, Programa de Pós-Graduação em Biologia Celular e Molecular (PPGBCM), Porto Alegre, RS, Brazil
| | - Ariane Vitali
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Departamento de Botânica, Porto Alegre, RS, Brazil
| | - Janete Mariza Adamski
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Departamento de Botânica, Porto Alegre, RS, Brazil
| | - Karina Letícia Lopes
- Universidade Federal do Rio Grande do Sul, Centro de Biotecnologia, Programa de Pós-Graduação em Biologia Celular e Molecular (PPGBCM), Porto Alegre, RS, Brazil
| | - Guilherme Leitão Duarte
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Departamento de Botânica, Porto Alegre, RS, Brazil
| | - Lucas Roani Ponte
- Universidade Federal do Rio Grande do Sul, Centro de Biotecnologia, Programa de Pós-Graduação em Biologia Celular e Molecular (PPGBCM), Porto Alegre, RS, Brazil
| | - Henrique Keller Costa
- Universidade Federal de Santa Maria, Instituto de Ciências Naturais e Exatas, Departamento de Biologia, Porto Alegre, RS, Brazil
| | - Paloma Koprovski Menguer
- Universidade Federal do Rio Grande do Sul, Centro de Biotecnologia, Programa de Pós-Graduação em Biologia Celular e Molecular (PPGBCM), Porto Alegre, RS, Brazil
| | - Rinaldo Pires Dos Santos
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Departamento de Botânica, Porto Alegre, RS, Brazil
| | - Janette Palma Fett
- Universidade Federal do Rio Grande do Sul, Centro de Biotecnologia, Programa de Pós-Graduação em Biologia Celular e Molecular (PPGBCM), Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Departamento de Botânica, Porto Alegre, RS, Brazil
| | - Raul Antonio Sperotto
- Universidade do Vale do Taquari (Univates), Programa de Pós-Graduação em Biotecnologia (PPGBiotec), Lajeado, RS, Brazil
- Universidade Federal de Pelotas, Programa de Pós-Graduação em Fisiologia Vegetal (PPGFV), Pelotas, RS, Brazil
| | - Felipe Klein Ricachenevsky
- Universidade Federal do Rio Grande do Sul, Centro de Biotecnologia, Programa de Pós-Graduação em Biologia Celular e Molecular (PPGBCM), Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Departamento de Botânica, Porto Alegre, RS, Brazil
| |
Collapse
|
11
|
Song H, Liu Y, Dong G, Zhang M, Wang Y, Xin J, Su Y, Sun H, Yang M. Genome-Wide Characterization and Comprehensive Analysis of NAC Transcription Factor Family in Nelumbo nucifera. Front Genet 2022; 13:901838. [PMID: 35754820 PMCID: PMC9214227 DOI: 10.3389/fgene.2022.901838] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/17/2022] [Indexed: 11/18/2022] Open
Abstract
NAC (NAM, ATAF, and CUC) is a ubiquitously expressed plant-specific transcription factor (TF) family which is involved in the regulation of various biological processes. However, a systematic characterization of NAC gene family is yet to be reported in lotus. Here, 82 NnNAC genes which included five predicted membrane-bound NAC proteins were identified in the lotus genome. Phylogenetic analysis revealed seven-subfamily clusters (I–VII) of NnNAC proteins, with homologous gene pairs displaying similar conserved motifs and gene structure characteristics. Transactivation assay of NnNAC proteins revealed an extensive transcriptional activation capacity which is mediated by the highly divergent C-terminal activation domain (AD). Expression analysis of NnNAC genes in lotus tissues showed high transcript levels in root, stamen, petal and seed coat. In addition, 30 and 29 differentially expressed NnNAC candidate genes putatively involved in lotus seed development and response to complete submergence stress, respectively, were identified. Overall, our study provides potentially useful candidate gene resources for future molecular breeding of lotus varieties with novel agronomic traits.
Collapse
Affiliation(s)
- Heyun Song
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yanling Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | | | - Minghua Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuxin Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jia Xin
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yanyan Su
- Amway (China) Botanical R&D Centre, Wuxi, China
| | - Heng Sun
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Mei Yang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
12
|
Verma S, Attuluri VPS, Robert HS. Transcriptional control of Arabidopsis seed development. PLANTA 2022; 255:90. [PMID: 35318532 PMCID: PMC8940821 DOI: 10.1007/s00425-022-03870-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 03/04/2022] [Indexed: 05/04/2023]
Abstract
The entire process of embryo development is under the tight control of various transcription factors. Together with other proteins, they act in a combinatorial manner and control distinct events during embryo development. Seed development is a complex process that proceeds through sequences of events regulated by the interplay of various genes, prominent among them being the transcription factors (TFs). The members of WOX, HD-ZIP III, ARF, and CUC families have a preferential role in embryonic patterning. While WOX TFs are required for initiating body axis, HD-ZIP III TFs and CUCs establish bilateral symmetry and SAM. And ARF5 performs a major role during embryonic root, ground tissue, and vasculature development. TFs such as LEC1, ABI3, FUS3, and LEC2 (LAFL) are considered the master regulators of seed maturation. Furthermore, several new TFs involved in seed storage reserves and dormancy have been identified in the last few years. Their association with those master regulators has been established in the model plant Arabidopsis. Also, using chromatin immunoprecipitation (ChIP) assay coupled with transcriptomics, genome-wide target genes of these master regulators have recently been proposed. Many seed-specific genes, including those encoding oleosins and albumins, have appeared as the direct target of LAFL. Also, several other TFs act downstream of LAFL TFs and perform their function during maturation. In this review, the function of different TFs in different phases of early embryogenesis and maturation is discussed in detail, including information about their genetic and molecular interactors and target genes. Such knowledge can further be leveraged to understand and manipulate the regulatory mechanisms involved in seed development. In addition, the genomics approaches and their utilization to identify TFs aiming to study embryo development are discussed.
Collapse
Affiliation(s)
- Subodh Verma
- Mendel Centre for Genomics and Proteomics of Plants Systems, CEITEC MU - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Venkata Pardha Saradhi Attuluri
- Mendel Centre for Genomics and Proteomics of Plants Systems, CEITEC MU - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Hélène S. Robert
- Mendel Centre for Genomics and Proteomics of Plants Systems, CEITEC MU - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
13
|
Verma A, Prakash G, Ranjan R, Tyagi AK, Agarwal P. Silencing of an Ubiquitin Ligase Increases Grain Width and Weight in indica Rice. Front Genet 2021; 11:600378. [PMID: 33510769 PMCID: PMC7835794 DOI: 10.3389/fgene.2020.600378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/27/2020] [Indexed: 11/18/2022] Open
Abstract
Many quantitative trait loci (QTLs) have been identified by molecular genetic studies which control grain size by regulating grain width, length, and/or thickness. Grain width 2 (GW2) is one such QTL that codes for a RING-type E3 ubiquitin ligase and increases grain size by regulating grain width through ubiquitin-mediated degradation of unknown substrates. A natural variation (single-nucleotide polymorphism at the 346th position) in the functional domain-coding region of OsGW2 in japonica rice genotypes has been shown to cause an increase in grain width/weight in rice. However, this variation is absent in indica rice genotypes. In this study, we report that reduced expression of OsGW2 can alter grain size, even though natural sequence variation is not responsible for increased grain size in indica rice genotypes. OsGW2 shows high expression in seed development stages and the protein localizes to the nucleus and cytoplasm. Downregulation of OsGW2 by RNAi technology results in wider and heavier grains. Microscopic observation of grain morphology suggests that OsGW2 determines grain size by influencing both cell expansion and cell proliferation in spikelet hull. Using transcriptome analysis, upregulated genes related to grain size regulation have been identified among 1,426 differentially expressed genes in an OsGW2_RNAi transgenic line. These results reveal that OsGW2 is a negative regulator of grain size in indica rice and affects both cell number and cell size in spikelet hull.
Collapse
Affiliation(s)
- Ankit Verma
- National Institute of Plant Genome Research, New Delhi, India
| | - Geeta Prakash
- National Institute of Plant Genome Research, New Delhi, India.,Department of Botany, Gargi College, University of Delhi, New Delhi, India
| | - Rajeev Ranjan
- National Institute of Plant Genome Research, New Delhi, India.,Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Akhilesh K Tyagi
- National Institute of Plant Genome Research, New Delhi, India.,Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Pinky Agarwal
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|