1
|
Ino Y, Nishi M, Yamaoka Y, Miyakawa K, Jeremiah SS, Osada M, Kimura Y, Ryo A. Phosphopeptide enrichment using Phos-tag technology reveals functional phosphorylation of the nucleocapsid protein of SARS-CoV-2. J Proteomics 2022; 255:104501. [PMID: 35093569 PMCID: PMC8800104 DOI: 10.1016/j.jprot.2022.104501] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/19/2022] [Accepted: 01/23/2022] [Indexed: 11/28/2022]
Abstract
Phosphorylation of viral proteins serves as a regulatory mechanism during the intracellular life cycle of infected viruses. There is therefore a pressing need to develop a method to efficiently purify and enrich phosphopeptides derived from viral particles in biological samples. In this study, we utilized Phos-tag technology to analyze the functional phosphorylation of the nucleocapsid protein (N protein; NP) of severe respiratory syndrome coronavirus 2 (SARS-CoV-2). Viral particles were collected from culture supernatants of SARS-CoV-2-infected VeroE6/TMPRSS2 cells by ultracentrifugation, and phosphopeptides were purified by Phos-tag magnetic beads for LC-MS/MS analysis. Analysis revealed that NP was reproducibly phosphorylated at serine 79 (Ser79). Multiple sequence alignment and phylogenetic analysis showed that the Ser79 was a distinct phospho-acceptor site in SARS-CoV-2 but not in other beta-coronaviruses. We also found that the prolyl-isomerase Pin1 bound to the phosphorylated Ser79 in NP and positively regulated the production of viral particles. These results suggest that SARS-CoV-2 may have acquired the potent virus-host interaction during its evolution mediated by viral protein phosphorylation. Moreover, Phos-tag technology can provide a useful means for analyzing the functional phosphorylation of viral proteins. Significance In this study, we aimed to investigate the functional phosphorylation of SARS-CoV-2 NP. For this purpose, we used Phos-tag technology to purify and enrich virus-derived phosphopeptides with high selectivity and reproducibility. This method can be particularly useful in analyzing viral phosphopeptides from cell culture supernatants that often contain high concentrations of fetal bovine serum and supplements. We newly identified an NP phosphorylation site at Ser79, which is important for Pin1 binding. Furthermore, we showed that the interaction between Pin1 and phosphorylated NP could enhance viral replication in a cell culture model.
Collapse
Affiliation(s)
- Yoko Ino
- Advanced Medical Research Center, Yokohama City University, Fukuura 3-9, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan; Graduate School of Health Sciences, Gunma Paz University, Tonyamachi 1-7-1, Takasaki-shi, Gunma 370-0006, Japan
| | - Mayuko Nishi
- Department of Microbiology, School of Medicine, Yokohama City University, Fukuura 3-9, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Yutaro Yamaoka
- Department of Microbiology, School of Medicine, Yokohama City University, Fukuura 3-9, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan; Life Science Laboratory, Technology and Development Division, Kanto Chemical Co., Inc., Suzukawa 21, Isehara-shi, Kanagawa 259-1146, Japan
| | - Kei Miyakawa
- Department of Microbiology, School of Medicine, Yokohama City University, Fukuura 3-9, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Sundararaj Stanleyraj Jeremiah
- Department of Microbiology, School of Medicine, Yokohama City University, Fukuura 3-9, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Makoto Osada
- Graduate School of Health Sciences, Gunma Paz University, Tonyamachi 1-7-1, Takasaki-shi, Gunma 370-0006, Japan
| | - Yayoi Kimura
- Advanced Medical Research Center, Yokohama City University, Fukuura 3-9, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Akihide Ryo
- Advanced Medical Research Center, Yokohama City University, Fukuura 3-9, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan; Department of Microbiology, School of Medicine, Yokohama City University, Fukuura 3-9, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan.
| |
Collapse
|
2
|
Poddar S, Sharmeen S, Hage DS. Affinity monolith chromatography: A review of general principles and recent developments. Electrophoresis 2021; 42:2577-2598. [PMID: 34293192 PMCID: PMC9536602 DOI: 10.1002/elps.202100163] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/07/2021] [Accepted: 07/18/2021] [Indexed: 12/28/2022]
Abstract
Affinity monolith chromatography (AMC) is a liquid chromatographic technique that utilizes a monolithic support with a biological ligand or related binding agent to isolate, enrich, or detect a target analyte in a complex matrix. The target-specific interaction exhibited by the binding agents makes AMC attractive for the separation or detection of a wide range of compounds. This article will review the basic principles of AMC and recent developments in this field. The supports used in AMC will be discussed, including organic, inorganic, hybrid, carbohydrate, and cryogel monoliths. Schemes for attaching binding agents to these monoliths will be examined as well, such as covalent immobilization, biospecific adsorption, entrapment, molecular imprinting, and coordination methods. An overview will then be given of binding agents that have recently been used in AMC, along with their applications. These applications will include bioaffinity chromatography, immunoaffinity chromatography, immobilized metal-ion affinity chromatography, and dye-ligand or biomimetic affinity chromatography. The use of AMC in chiral separations and biointeraction studies will also be discussed.
Collapse
Affiliation(s)
- Saumen Poddar
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Sadia Sharmeen
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - David S Hage
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| |
Collapse
|
3
|
Prediction of Metal Ion Binding Sites of Transmembrane Proteins. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:2327832. [PMID: 34721655 PMCID: PMC8556105 DOI: 10.1155/2021/2327832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/01/2021] [Indexed: 12/22/2022]
Abstract
The metal ion binding of transmembrane proteins (TMPs) plays a fundamental role in biological processes, pharmaceutics, and medicine, but it is hard to extract enough TMP structures in experimental techniques to discover their binding mechanism comprehensively. To predict the metal ion binding sites for TMPs on a large scale, we present a simple and effective two-stage prediction method TMP-MIBS, to identify the corresponding binding residues using TMP sequences. At present, there is no specific research on the metal ion binding prediction of TMPs. Thereby, we compared our model with the published tools which do not distinguish TMPs from water-soluble proteins. The results in the independent verification dataset show that TMP-MIBS has superior performance. This paper explores the interaction mechanism between TMPs and metal ions, which is helpful to understand the structure and function of TMPs and is of great significance to further construct transport mechanisms and identify potential drug targets.
Collapse
|
4
|
Shao H, Lai L, Xu D, Crommen J, Wang Q, Jiang Z. Development of zirconium modified adenosine triphosphate functionalized monolith for specific enrichment of N-glycans. J Chromatogr A 2021; 1644:462090. [PMID: 33823387 DOI: 10.1016/j.chroma.2021.462090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/01/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022]
Abstract
In this study, to selectively enrich N-glycans from complex biological samples, a novel Zr(IV) modified adenosine triphosphate (Zr(IV)-ATP) functionalized monolith was prepared through a facile approach. Well-defined macroporous structure was observed in the ATP functionalized monolith, which allows rapid mass transfer under low backpressure and is beneficial for the enrichment of N-glycans. After being modified with Zr(IV), the resulting Zr(IV)-ATP functionalized monolith could selectively capture N-glycans through the specific interactions between the sulfonate groups of 1-aminopyrene-3,6,8-trisulfonic acid (APTS) labeled N-glycans and Zr(IV). An APTS labeled maltooligosaccharide ladder was used to optimize the enrichment conditions for APTS labeled N-glycans, and capillary electrophoresis (CE) coupled with laser-induced fluorescence (LIF) detector was employed to evaluate the enrichment efficiency. The results show that the APTS labeled maltooligosaccharides could be enriched under the selected conditions and the signal amplify factors of the maltooligosaccharides were between 7.4 and 19.5 with RSDs for reproducibility from 4.0% to 8.3% (n = 3). Finally, the proposed method was successfully used for the enrichment and detection of N-glycans released from Ribonuclease B.
Collapse
Affiliation(s)
- Huikai Shao
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou 510632, China; Department of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research, Jinan University, Guangzhou 510632, China; Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Liang Lai
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou 510632, China; Department of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research, Jinan University, Guangzhou 510632, China
| | - Dongsheng Xu
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou 510632, China; Department of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research, Jinan University, Guangzhou 510632, China
| | - Jacques Crommen
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou 510632, China; Laboratory for the Analysis of Medicines, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, Quartier Hôpital, Avenue Hippocrate 15, 4000 Liege, Belgium
| | - Qiqin Wang
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou 510632, China; Department of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research, Jinan University, Guangzhou 510632, China.
| | - Zhengjin Jiang
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou 510632, China; Department of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
5
|
Zheng H, Zhang J, Ma J, Jia Q. Engineering Magnetic Guanidyl-Functionalized Supramolecular Organic Framework for Efficient Enrichment of Global Phosphopeptides. ACS APPLIED MATERIALS & INTERFACES 2020; 12:57468-57476. [PMID: 33295748 DOI: 10.1021/acsami.0c18803] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Comprehensive mass spectrometry-based proteomics analysis is currently available but remains challenging, especially for post-translational modifications of phosphorylated proteins. Herein, multifunctional magnetic pillar[5]arene supramolecular organic frameworks were fabricated and immobilized with arginine (mP5SOF-Arg) for highly effective enrichment of global phosphopeptides. The specific phosphate-P5/phosphate-guanidine affinities and large surface area with regular porosity contribute to the high enrichment capacity. By coupling with mass spectrometry, high detection sensitivity (0.1 fmol), excellent selectivity (1:5000 molar ratios of β-casein/cytochrome c), and high recyclability (seven cycles) were achieved for phosphopeptide analysis. mP5SOF-Arg can efficiently enrich phosphopeptides from practical samples, including defatted milk, egg yolk, and human saliva. Notably, a total of 450 phosphopeptides were explored for highly selective identification from A594 cells and 1445 phosphopeptides were identified from mouse liver tissue samples. mP5SOF-Arg exhibited great potential to serve as the basis for peptidomic research to identify phosphopeptides and provided insight for biomarker discovery.
Collapse
Affiliation(s)
- Haijiao Zheng
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Jingchun Zhang
- China-Japan Union Hospital, Jilin University, Changchun 130033, China
| | - Jiutong Ma
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Qiong Jia
- College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
6
|
Tang W, Xu J, Gu Z. Metal–Organic‐Framework‐based Gas Chromatographic Separation. Chem Asian J 2019; 14:3462-3473. [DOI: 10.1002/asia.201900738] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/08/2019] [Indexed: 02/01/2023]
Affiliation(s)
- Wen‐Qi Tang
- Jiangsu Key Laboratory of Biofunctional MaterialsJiangsu Collaborative Innovation Center of Biomedical Functional MaterialsCollege of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 China
| | - Jin‐Ya Xu
- Jiangsu Key Laboratory of Biofunctional MaterialsJiangsu Collaborative Innovation Center of Biomedical Functional MaterialsCollege of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 China
| | - Zhi‐Yuan Gu
- Jiangsu Key Laboratory of Biofunctional MaterialsJiangsu Collaborative Innovation Center of Biomedical Functional MaterialsCollege of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 China
| |
Collapse
|
7
|
Zhang Z, Hebert AS, Westphall MS, Coon JJ, Dovichi NJ. Single-Shot Capillary Zone Electrophoresis-Tandem Mass Spectrometry Produces over 4400 Phosphopeptide Identifications from a 220 ng Sample. J Proteome Res 2019; 18:3166-3173. [PMID: 31180221 DOI: 10.1021/acs.jproteome.9b00244] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The dependence of capillary zone electrophoresis (CZE) separations on the charge state of the analyte is useful for the analysis of many post-translational modifications in proteins. In this work, we coupled CZE to an Orbitrap Fusion Lumos Tribrid platform with an advanced peak determination algorithm for phosphoproteomics analysis. A linear-polyacrylamide-coated capillary with very low electroosmotic flow was used for the separation. The optimal injection volume was between 100 and 150 nL of a solution of phosphopeptides in 30 mM ammonium bicarbonate (pH 8.2) buffer, which produces a dynamic pH junction sample injection. Larger injection volumes resulted in serious peak broadening and decreased numbers of phosphopeptide identifications. The optimized system identified 4405 phosphopeptides from 220 ng of enriched phosphopeptides from mouse brain, which represents the state-of-the-art result for single-shot CZE-ESI-MS/MS-based phosphoproteome analysis. We found that the migration time for phosphopeptides is much longer than that for non-phosphopeptides and increased along with the number of phosphorylation sites on the peptides, as expected for the additional negative charges associated with the phosphate groups. We also investigated the phosphorylation site motifs; a number of motifs appeared in the CZE-ESI-MS/MS data but not in LC-ESI-MS/MS data, which suggested the complementary performance of the techniques. The data are available via ProteomeXchange with identifier PXD012888.
Collapse
Affiliation(s)
- Zhenbin Zhang
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Alexander S Hebert
- Genome Center of Wisconsin and Departments of Chemistry and Biomolecular Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Michael S Westphall
- Genome Center of Wisconsin and Departments of Chemistry and Biomolecular Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Joshua J Coon
- Genome Center of Wisconsin and Departments of Chemistry and Biomolecular Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Norman J Dovichi
- Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| |
Collapse
|
8
|
Wang K, Qiao L, Li X, Li S, Wang Y, Xu X, He C, Fang L. Profiling of Ubiquitination Modification Sites in Talin in Colorectal Carcinoma by Mass Spectrometry. Chem Res Chin Univ 2019. [DOI: 10.1007/s40242-019-8377-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
9
|
Trang HK, Jiang L, Marcus RK. Grafting polymerization of glycidyl methacrylate onto capillary-channeled polymer (C-CP) fibers as a ligand binding platform: Applications in immobilized metal-ion affinity chromatography (IMAC) protein separations. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1110-1111:144-154. [DOI: 10.1016/j.jchromb.2019.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/28/2019] [Accepted: 02/11/2019] [Indexed: 01/28/2023]
|
10
|
Tang P, Wang R, Chen Z. In situ growth of Zr-based metal-organic framework UiO-66-NH 2 for open-tubular capillary electrochromatography. Electrophoresis 2018; 39:2619-2625. [PMID: 29660144 DOI: 10.1002/elps.201800057] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/08/2018] [Accepted: 04/08/2018] [Indexed: 11/05/2022]
Abstract
The high stability and other properties of Zr(IV)-based metal organic frameworks(MOFs) make it a promising choice for chromatographic separation, while the application in open-tubular capillary electrochromatography (OT-CEC) separation has not been explored yet. Herein, we report the first example of the in-situ growth of UiO-66-NH2 onto the capillary for open-tubular capillary electrochromatography. UiO-66-NH2 consists of ZrCl4 and 2-amino-1,4-benzenedicarboxylic acid, which is highly porous and stable in a variety of solvents. The prepared UiO-66-NH2 modified capillary was characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectra (FT-IR), and the results confirmed the successful growth of the UiO-66-NH2 . The baseline separation of chlorobenzenes, phenoxyacids and two groups of phenols was achieved owing to the combined interaction of π-π interaction, hydrophobic interaction, molecular sieve effect, electrophoretic migration and hydrogen-bonding interaction etc. Besides, the prepared capillaries showed good reproducibility, with relative standard deviations (RSDs) for intra-day, inter-day and column-to-column runs in the range of 1.38-2.60%, 3.39-4.05%, and 3.47-5.03%, respectively. Our work indicates Zr(IV)-based MOFs are promising materials as stationary phase in CEC separation.
Collapse
Affiliation(s)
- Pingxiu Tang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan, P. R. China
| | - Rong Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan, P. R. China
| | - Zilin Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan, P. R. China
| |
Collapse
|
11
|
Kumar S. Prediction of Metal Ion Binding Sites in Proteins from Amino Acid Sequences by Using Simplified Amino Acid Alphabets and Random Forest Model. Genomics Inform 2017; 15:162-169. [PMID: 29307143 PMCID: PMC5769865 DOI: 10.5808/gi.2017.15.4.162] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/16/2017] [Accepted: 11/16/2017] [Indexed: 11/20/2022] Open
Abstract
Metal binding proteins or metallo-proteins are important for the stability of the protein and also serve as co-factors in various functions like controlling metabolism, regulating signal transport, and metal homeostasis. In structural genomics, prediction of metal binding proteins help in the selection of suitable growth medium for overexpression's studies and also help in obtaining the functional protein. Computational prediction using machine learning approach has been widely used in various fields of bioinformatics based on the fact all the information contains in amino acid sequence. In this study, random forest machine learning prediction systems were deployed with simplified amino acid for prediction of individual major metal ion binding sites like copper, calcium, cobalt, iron, magnesium, manganese, nickel, and zinc.
Collapse
Affiliation(s)
- Suresh Kumar
- Department of Diagnostic and Allied Health Sciences, Faculty of Health and Life Sciences, Management and Science University, 40100 Shah Alam, Malaysia
| |
Collapse
|
12
|
Yao Y, Bian Y, Dong M, Wang Y, Lv J, Chen L, Wang H, Mao J, Dong J, Ye M. SH2 Superbinder Modified Monolithic Capillary Column for the Sensitive Analysis of Protein Tyrosine Phosphorylation. J Proteome Res 2017; 17:243-251. [PMID: 29083189 DOI: 10.1021/acs.jproteome.7b00546] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this study, we present a method to specifically capture phosphotyrosine (pTyr) peptides from minute amount of sample for the sensitive analysis of protein tyrosine phosphorylation. We immobilized SH2 superbinder on a monolithic capillary column to construct a microreactor to enrich pTyr peptides. It was found that the synthetic pTyr peptide could be specifically enriched by the microreactor from the peptide mixture prepared by spiking of the synthetic pTyr peptide into the tryptic digests of α-casein and β-casein with molar ratios of 1:1000:1000. The microreactor was further applied to enrich pTyr peptides from pervanadate-treated HeLa cell digests for phosphoproteomics analysis, which resulted in the identification of 796 unique pTyr sites. In contrast, the conventional SH2 superbinder-based method identified 41 pTyr sites for the same sample, only 5.2% of the number achieved by the microreactor. Finally, this microreactor was also applied to analyze the pTyr in Shc1 complex, an immunopurified protein complex, which resulted in the identification of 15 pTyr sites. Together, this technique is best fitted to analyze the pTyr in minute amount of sample and will have broad application in fields where only a limited amount of sample is available.
Collapse
Affiliation(s)
- Yating Yao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS) , Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangyang Bian
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS) , Dalian 116023, China.,Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University , Zhengzhou, Henan 450052, China
| | - Mingming Dong
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS) , Dalian 116023, China.,Dalian Ocean University, Dalian 116023, China
| | - Yan Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS) , Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiawen Lv
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS) , Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lianfang Chen
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS) , Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongwei Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS) , Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiawei Mao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS) , Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Dong
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS) , Dalian 116023, China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS) , Dalian 116023, China
| |
Collapse
|
13
|
Li Z, Rodriguez E, Azaria S, Pekarek A, Hage DS. Affinity monolith chromatography: A review of general principles and applications. Electrophoresis 2017; 38:2837-2850. [PMID: 28474739 PMCID: PMC5671914 DOI: 10.1002/elps.201700101] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/14/2017] [Accepted: 04/19/2017] [Indexed: 01/20/2023]
Abstract
Affinity monolith chromatography, or AMC, is a liquid chromatographic method in which the support is a monolith and the stationary phase is a biological-binding agent or related mimic. AMC has become popular for the isolation of biochemicals, for the measurement of various analytes, and for studying biological interactions. This review will examine the principles and applications of AMC. The materials that have been used to prepare AMC columns will be discussed, which have included various organic polymers, silica, agarose, and cryogels. Immobilization schemes that have been used in AMC will also be considered. Various binding agents and applications that have been reported for AMC will then be described. These applications will include the use of AMC for bioaffinity chromatography, immunoaffinity chromatography, dye-ligand affinity chromatography, and immobilized metal-ion affinity chromatography. The use of AMC with chiral stationary phases and as a tool to characterize biological interactions will also be examined.
Collapse
Affiliation(s)
- Zhao Li
- Department of Chemistry, University of Nebraska, Lincoln, NE, USA
| | | | - Shiden Azaria
- Department of Chemistry, University of Nebraska, Lincoln, NE, USA
| | - Allegra Pekarek
- Department of Chemistry, University of Nebraska, Lincoln, NE, USA
| | - David S. Hage
- Department of Chemistry, University of Nebraska, Lincoln, NE, USA
| |
Collapse
|
14
|
Li D, Yin D, Chen Y, Liu Z. Coupling of metal-organic frameworks-containing monolithic capillary-based selective enrichment with matrix-assisted laser desorption ionization-time-of-flight mass spectrometry for efficient analysis of protein phosphorylation. J Chromatogr A 2017; 1498:56-63. [DOI: 10.1016/j.chroma.2016.10.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/29/2016] [Accepted: 10/24/2016] [Indexed: 12/19/2022]
|
15
|
Zhang H, Ou J, Yao Y, Wang H, Liu Z, Wei Y, Ye M. Facile Preparation of Titanium(IV)-Immobilized Hierarchically Porous Hybrid Monoliths. Anal Chem 2017; 89:4655-4662. [PMID: 28316239 DOI: 10.1021/acs.analchem.7b00242] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hierarchically porous materials have become a key feature of biological materials and have been widely applied for adsorption or catalysis. Herein, we presented a new approach to directly prepare a phosphate-functionalized hierarchically porous hybrid monolith (HPHM), which simultaneously contained mesopores and macropores. The design was based on the copolymerization of polyhedral oligomeric vinylsilsesquioxanes (vinylPOSS) and vinylphosphonic acid (VPA) by adding degradable polycaprolactone (PCL) additive. The phosphate groups could be directly introduced into the hybrid monoliths. This approach was simple and time-saving, and overcame the defect of a rigorous, complex process for preparing traditional Ti4+-immobilized metal ion affinity chromatography (IMAC) materials. The specific surface area of an optimal hybrid monolith could reach 502 m2/g obtained by nitrogen adsorption/desorption measurements, which originated from the degradation of PCL. Meanwhile, the characterization of scanning electron microscopy (SEM) and mercury intrusion porosimetry (MIP) also suggested that the macropores existed in the hybrid monoliths. The size of macropores could be controlled by the content of PCL in the polymerization mixture. The prepared Ti4+-IMAC HPHMs exhibited high adsorption capacity (63.6 mg/g for pyridocal 5'-phosphatemonohydrate), and excellent enrichment specificity (tryptic digest of β-casein/BSA at a molar ratio of 1:1000) and sensitivity (tryptic digest of 5 fmol of β-casein). Moreover, the Ti4+-IMAC HPHMs provided effective enrichment ability of low-abundance phosphopeptides from human serum and HeLa cell digests.
Collapse
Affiliation(s)
- Haiyang Zhang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS) , Dalian 116023, China.,Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University , Xi'an 710069, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Junjie Ou
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS) , Dalian 116023, China
| | - Yating Yao
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS) , Dalian 116023, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Hongwei Wang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS) , Dalian 116023, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Zhongshan Liu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS) , Dalian 116023, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Yinmao Wei
- Key Laboratory of Synthetic and Natural Function Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University , Xi'an 710069, China
| | - Mingliang Ye
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS) , Dalian 116023, China
| |
Collapse
|
16
|
Li D, Bie Z. Metal–organic framework incorporated monolithic capillary for selective enrichment of phosphopeptides. RSC Adv 2017. [DOI: 10.1039/c7ra00263g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Protein phosphorylation is a major post-translational modification, which plays a central role in the cellular signaling of numerous biological processes.
Collapse
Affiliation(s)
- Daojin Li
- College of Chemistry and Chemical Engineering
- Henan Key Laboratory of Fuction-Oriented Porous Materials
- Luoyang Normal University
- Luoyang 471022
- P. R. China
| | - Zijun Bie
- Department of Chemistry
- Bengbu Medical College
- China
| |
Collapse
|
17
|
Ino Y, Arakawa N, Ishiguro H, Uemura H, Kubota Y, Hirano H, Toda T. Phosphoproteome analysis demonstrates the potential role of THRAP3 phosphorylation in androgen-independent prostate cancer cell growth. Proteomics 2016; 16:1069-78. [PMID: 26841317 DOI: 10.1002/pmic.201500365] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/07/2015] [Accepted: 01/28/2016] [Indexed: 11/12/2022]
Abstract
Elucidating the androgen-independent growth mechanism is critical for developing effective treatment strategies to combat androgen-independent prostate cancer. We performed a comparative phosphoproteome analysis using a prostate cancer cell line, LNCaP, and an LNCaP-derived androgen-independent cell line, LNCaP-AI, to identify phosphoproteins involved in this mechanism. We performed quantitative comparisons of the phosphopeptide levels in tryptic digests of protein extracts from these cell lines using MS. We found that the levels of 69 phosphopeptides in 66 proteins significantly differed between LNCaP and LNCaP-AI. In particular, we focused on thyroid hormone receptor associated protein 3 (THRAP3), which is a known transcriptional coactivator of the androgen receptor. The phosphorylation level of THRAP3 was significantly lower at S248 and S253 in LNCaP-AI cells. Furthermore, pull-down assays showed that 32 proteins uniquely bound to the nonphosphorylatable mutant form of THRAP3, whereas 31 other proteins uniquely bound to the phosphorylation-mimic form. Many of the differentially interacting proteins were identified as being involved with RNA splicing and processing. These results suggest that the phosphorylation state of THRAP3 at S248 and S253 might be involved in the mechanism of androgen-independent prostate cancer cell growth by changing the interaction partners.
Collapse
Affiliation(s)
- Yoko Ino
- Proteome Science Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan.,Advanced Medical Research Center, Yokohama City University, Yokohama, Japan
| | - Noriaki Arakawa
- Proteome Science Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan.,Advanced Medical Research Center, Yokohama City University, Yokohama, Japan
| | - Hitoshi Ishiguro
- Department of Urology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan.,Photocatalyst Group, Kanagawa Academy of Science and Technology, Kawasaki, Japan
| | - Hiroji Uemura
- Department of Urology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Yoshinobu Kubota
- Department of Urology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Hisashi Hirano
- Proteome Science Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan.,Advanced Medical Research Center, Yokohama City University, Yokohama, Japan
| | - Tosifusa Toda
- Proteome Science Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan.,Advanced Medical Research Center, Yokohama City University, Yokohama, Japan
| |
Collapse
|
18
|
Separation of proteins by cation-exchange sequential injection chromatography using a polymeric monolithic column. Anal Bioanal Chem 2015; 408:1445-52. [DOI: 10.1007/s00216-015-9242-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 11/25/2015] [Accepted: 12/01/2015] [Indexed: 01/25/2023]
|
19
|
Zhang L, Liang Z, Zhang L, Zhang Y, Shao S. Facile synthesis of gallium ions immobilized and adenosine functionalized magnetic nanoparticles with high selectivity for multi-phosphopeptides. Anal Chim Acta 2015; 900:46-55. [DOI: 10.1016/j.aca.2015.10.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 10/16/2015] [Accepted: 10/20/2015] [Indexed: 10/22/2022]
|
20
|
Chen Y, Xiong Z, Peng L, Gan Y, Zhao Y, Shen J, Qian J, Zhang L, Zhang W. Facile Preparation of Core-Shell Magnetic Metal-Organic Framework Nanoparticles for the Selective Capture of Phosphopeptides. ACS APPLIED MATERIALS & INTERFACES 2015; 7:16338-16347. [PMID: 26156207 DOI: 10.1021/acsami.5b03335] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In regard to the phosphoproteome, highly specific and efficient capture of heteroideous kinds of phosphopeptides from intricate biological sample attaches great significance to comprehensive and in-depth phosphorylated proteomics research. However, until now, it has been a challenge. In this study, a new-fashioned porous immobilized metal ion affinity chromatography (IMAC) material was designed and fabricated to promote the selectivity and detection limit for phosphopeptides by covering a metal-organic frameworks (MOFs) shell onto Fe3O4 nanoparticles, taking advantage of layer-by-layer method (the synthesized nanoparticle denoted as Fe3O4@MIL-100 (Fe)). The thick layer renders the nanoparticles with perfect hydrophilic character, super large surface area, large immobilization of the Fe(3+) ions and the special porous structure. Specifically, the as-synthesized MOF-decorated magnetic nanoparticles own an ultra large surface area which is up to 168.66 m(2) g(-1) as well as two appropriate pore sizes of 1.93 and 3.91 nm with a narrow grain-size distribution and rapid separation under the magnetic circumstance. The unique features vested the synthesized nanoparticles an excellent ability for phosphopeptides enrichment with high selectivity for β-casein (molar ratio of β-casein/BSA, 1:500), large enrichment capacity (60 mg g(-1)), low detection limit (0.5 fmol), excellent phosphopeptides recovery (above 84.47%), fine size-exclusion of high molecular weight proteins, good reusability, and desirable batch-to-batch repeatability. Furthermore, encouraged by the experimental results, we successfully performed the as-prepared porous IMAC nanoparticle in the specific capture of phosphopeptides from the human serum (both the healthy and unhealthy) and nonfat milk, which proves itself to be a good candidate for the enrichment and detection of the low-abundant phosphopeptides from complicated biological samples.
Collapse
Affiliation(s)
- Yajing Chen
- Shanghai Key Laboratory of Functional Materials Chemistry, Department of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhichao Xiong
- Shanghai Key Laboratory of Functional Materials Chemistry, Department of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Li Peng
- Shanghai Key Laboratory of Functional Materials Chemistry, Department of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yangyang Gan
- Shanghai Key Laboratory of Functional Materials Chemistry, Department of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yiman Zhao
- Shanghai Key Laboratory of Functional Materials Chemistry, Department of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jie Shen
- Shanghai Key Laboratory of Functional Materials Chemistry, Department of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Junhong Qian
- Shanghai Key Laboratory of Functional Materials Chemistry, Department of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lingyi Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, Department of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weibing Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, Department of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
21
|
Kim SW, Hasanuzzaman M, Cho M, Heo YR, Ryu MJ, Ha NY, Park HJ, Park HY, Shin JG. Casein Kinase 2 (CK2)-mediated Phosphorylation of Hsp90β as a Novel Mechanism of Rifampin-induced MDR1 Expression. J Biol Chem 2015; 290:17029-40. [PMID: 25995454 DOI: 10.1074/jbc.m114.624106] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Indexed: 12/15/2022] Open
Abstract
The P-glycoprotein (P-gp) encoded by the MDR1 gene is a drug-exporting transporter located in the cellular membrane. P-gp induction is regarded as one of the main mechanisms underlying drug-induced resistance. Although there is great interest in the regulation of P-gp expression, little is known about its underlying regulatory mechanisms. In this study, we demonstrate that casein kinase 2 (CK2)-mediated phosphorylation of heat shock protein 90β (Hsp90β) and subsequent stabilization of PXR is a key mechanism in the regulation of MDR1 expression. Furthermore, we show that CK2 is directly activated by rifampin. Upon exposure to rifampin, CK2 catalyzes the phosphorylation of Hsp90β at the Ser-225/254 residues. Phosphorylated Hsp90β then interacts with PXR, causing a subsequent increase in its stability, leading to the induction of P-gp expression. In addition, inhibition of CK2 and Hsp90β enhances the down-regulation of PXR and P-gp expression. The results of this study may facilitate the development of new strategies to prevent multidrug resistance and provide a plausible mechanism for acquired drug resistance by CK2-mediated regulation of P-gp expression.
Collapse
Affiliation(s)
- So Won Kim
- From the Department of Pharmacology and the Institute for Clinical and Translational Research, Catholic Kwandong University College of Medicine, Gangneung 210-701, Korea, the Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 614-735, Korea, the Department of Clinical Pharmacology, Inje University Busan Paik Hospital, Busan 614-735, Korea
| | - Md Hasanuzzaman
- the Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 614-735, Korea
| | - Munju Cho
- the Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 614-735, Korea
| | - Ye Rang Heo
- the Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 614-735, Korea
| | - Min-Jung Ryu
- the Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 614-735, Korea
| | - Na-Young Ha
- the Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 614-735, Korea
| | - Hyun June Park
- the Bio-MAX Institute, Seoul National University, Seoul 151-742, Korea, and
| | - Hyung-Yeon Park
- the Agriculture and Biotechnology Department, Noroo Holdings Co. Ltd., Seoul 135-983, Korea
| | - Jae-Gook Shin
- the Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 614-735, Korea, the Department of Clinical Pharmacology, Inje University Busan Paik Hospital, Busan 614-735, Korea,
| |
Collapse
|
22
|
Yusuf K, Aqel A, ALOthman Z. Metal-organic frameworks in chromatography. J Chromatogr A 2014; 1348:1-16. [DOI: 10.1016/j.chroma.2014.04.095] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/14/2014] [Accepted: 04/28/2014] [Indexed: 11/25/2022]
|
23
|
Xu Y, Xu L, Qi S, Dong Y, ur Rahman Z, Chen H, Chen X. In situ synthesis of MIL-100(Fe) in the capillary column for capillary electrochromatographic separation of small organic molecules. Anal Chem 2013; 85:11369-75. [PMID: 24187953 DOI: 10.1021/ac402254u] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Because of the unusual properties of the structure, the metal organic frameworks (MOFs) have received great interest in separation science. However, the most existing methods for the applications of MOFs in separation science require an off-line procedure to prepare the materials. Here, we report an in situ, layer-by-layer self-assembly approach to fabricate MIL-100(Fe) coated open tubular (OT) capillary columns for capillary electrochromatography. By a controllable manner, the OT capillary columns with a tailored MIL-100(Fe) coating have been successfully synthesized. The results of SEM, XRD, FT-IR, and ICP-AES indicated that MIL-100(Fe) was successfully grafted on the inner wall of the capillary. Some neutral, acidic and basic analytes were used to evaluate the performance of the MIL-100(Fe) coating OT capillary column. Because of the size selectivity of lattice aperture and hydrophobicity of the organic ligands, three types of analytes were well separated with this novel MIL-100(Fe) coating OT capillary column. For three consecutive runs, the intraday relative standard deviations (RSDs) of migration time and peak areas were 0.4-4.6% and 1.2-6.6%, respectively. The interday RSDs of migration time and peak areas were 0.6-8.0% and 2.2-9.5%, respectively. The column-to-column reproducibility of retention time was in range of 0.6-9.2%. Additionally, the 10 cycles OT capillary column (10-LC) could be used for more than 150 runs with no observable changes on the separation efficiency.
Collapse
Affiliation(s)
- Yinyin Xu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University , Lanzhou 730000, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Tan YJ, Sui D, Wang WH, Kuo MH, Reid GE, Bruening ML. Phosphopeptide enrichment with TiO2-modified membranes and investigation of tau protein phosphorylation. Anal Chem 2013; 85:5699-706. [PMID: 23638980 PMCID: PMC3721342 DOI: 10.1021/ac400198n] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Selective enrichment of phosphopeptides prior to their analysis by mass spectrometry (MS) is vital for identifying protein phosphorylation sites involved in cellular regulation. This study describes modification of porous nylon substrates with TiO2 nanoparticles to create membranes that rapidly enrich phosphopeptides. Membranes with a 22-mm diameter bind 540 nmol of phosphoangiotensin and recover 70% of the phosphopeptides in mixtures with a 15-fold excess of nonphosphorylated proteins. Recovery is 90% for a pure phosphopeptide. Insertion of small membrane disks into HPLC fittings allows rapid enrichment from 5 mL of 1 fmol/μL phosphoprotein digests and concentration into small-volume (tens of microliters) eluates. The combination of membrane enrichment with tandem mass spectrometry reveals seven phosphorylation sites from in vivo phosphorylated tau (p-tau) protein, which is associated with Alzheimer's disease.
Collapse
Affiliation(s)
- Yu-Jing Tan
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824
| | - Dexin Sui
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Wei-Han Wang
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824
| | - Min-Hao Kuo
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Gavin E. Reid
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Merlin L. Bruening
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
25
|
Pfaunmiller EL, Paulemond ML, Dupper CM, Hage DS. Affinity monolith chromatography: a review of principles and recent analytical applications. Anal Bioanal Chem 2013; 405:2133-45. [PMID: 23187827 PMCID: PMC3578177 DOI: 10.1007/s00216-012-6568-4] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 11/12/2012] [Indexed: 10/27/2022]
Abstract
Affinity monolith chromatography (AMC) is a type of liquid chromatography that uses a monolithic support and a biologically related binding agent as a stationary phase. AMC is a powerful method for the selective separation, analysis, or study of specific target compounds in a sample. This review discusses the basic principles of AMC and recent developments and applications of this method, with particular emphasis being given to work that has appeared in the last 5 years. Various materials that have been used to prepare columns for AMC are examined, including organic monoliths, silica monoliths, agarose monoliths, and cryogels. These supports have been used in AMC for formats that have ranged from traditional columns to disks, microcolumns, and capillaries. Many binding agents have also been employed in AMC, such as antibodies, enzymes, proteins, lectins, immobilized metal ions, and dyes. Some applications that have been reported with these binding agents in AMC are bioaffinity chromatography, immunoaffinity chromatography or immunoextraction, immobilized-metal-ion affinity chromatography, dye-ligand affinity chromatography, chiral separations, and biointeraction studies. Examples are presented from fields that include analytical chemistry, pharmaceutical analysis, clinical testing, and biotechnology. Current trends and possible directions in AMC are also discussed.
Collapse
Affiliation(s)
| | | | - Courtney M. Dupper
- Department of Chemistry University of Nebraska Lincoln, NE 68588-0304, USA
| | - David S. Hage
- Department of Chemistry University of Nebraska Lincoln, NE 68588-0304, USA
| |
Collapse
|
26
|
|
27
|
Chester TL. Recent Developments in High-Performance Liquid Chromatography Stationary Phases. Anal Chem 2012; 85:579-89. [DOI: 10.1021/ac303180y] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Thomas L. Chester
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati,
Ohio 45221-0172, United States
| |
Collapse
|
28
|
Wang ST, Wang MY, Su X, Yuan BF, Feng YQ. Facile Preparation of SiO2/TiO2 Composite Monolithic Capillary Column and Its Application in Enrichment of Phosphopeptides. Anal Chem 2012; 84:7763-70. [DOI: 10.1021/ac301258q] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Shao-Ting Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine
(Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| | - Meng-Ya Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine
(Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| | - Xin Su
- Key Laboratory of Analytical Chemistry for Biology and Medicine
(Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| | - Bi-Feng Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine
(Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| | - Yu-Qi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine
(Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, P.R. China
| |
Collapse
|
29
|
Multidimensional nano-HPLC coupled with tandem mass spectrometry for analyzing biotinylated proteins. Anal Bioanal Chem 2012; 405:2163-73. [DOI: 10.1007/s00216-012-6057-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 04/12/2012] [Accepted: 04/16/2012] [Indexed: 10/28/2022]
|
30
|
Negroni L, Claverol S, Rosenbaum J, Chevet E, Bonneu M, Schmitter JM. Comparison of IMAC and MOAC for phosphopeptide enrichment by column chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 891-892:109-12. [PMID: 22406350 DOI: 10.1016/j.jchromb.2012.02.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 02/15/2012] [Accepted: 02/16/2012] [Indexed: 11/25/2022]
Abstract
Automated phosphopeptide enrichment prior to MS analysis by means of Immobilized Metal Affinity Chromatography (IMAC) and Metal Oxide Affinity Chromatography (MOAC) has been probed with packed columns. We compared POROS-Fe³⁺ and TiO₂ (respectively IMAC and MOAC media), using a simple mixture of peptides from casein-albumin and a complex mixture of peptides isolated from mouse liver. With theses samples, selectivity of POROS-Fe³⁺ and TiO₂ were pH dependant. In the case of liver extract, selectivity increased from 12-18% to 58-60% when loading buffer contained 0.1 M acetic acid or 0.1 M trifluoroacetic acid, respectively. However, with POROS-Fe³⁺ column, the number of identifications decreased from 356 phosphopeptides with 0.1 M acetic acid to 119 phosphopeptides with 0.1 M TFA. This decrease of binding capacity of POROS-Fe³⁺ was associated with strong Fe³⁺ leaching. Furthermore, repetitive use of IMAC-Fe³⁺ with the 0.5 M NH₄OH solution required for phosphopeptide elution induced Fe₂O₃ accumulation in the column. By comparison, MOAC columns packed with TiO₂ support do not present any problem of stability in the same conditions and provide a reliable solution for packed column phosphopeptide enrichment.
Collapse
Affiliation(s)
- Luc Negroni
- UMR 5248, CNRS-UBx1-IPB, Centre de Génomique Fonctionnelle, Université de Bordeaux, BP 68, 146 Rue Léo Saignat, 33076 Bordeaux, France.
| | | | | | | | | | | |
Collapse
|
31
|
Abi Jaoudé M, Randon J, Bordes C, Lanteri P, Bois L. A design of experiment approach to the sol–gel synthesis of titania monoliths for chromatographic applications. Anal Bioanal Chem 2012; 403:1145-55. [DOI: 10.1007/s00216-012-5761-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 12/14/2011] [Accepted: 01/18/2012] [Indexed: 10/14/2022]
|
32
|
Wang F, Song C, Cheng K, Jiang X, Ye M, Zou H. Perspectives of Comprehensive Phosphoproteome Analysis Using Shotgun Strategy. Anal Chem 2011; 83:8078-85. [DOI: 10.1021/ac201833j] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Fangjun Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Chunxia Song
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Kai Cheng
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xinning Jiang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hanfa Zou
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
33
|
El Idrissi K, Eddarir S, Tokarski C, Rolando C. Immobilized metal affinity chromatography using open tubular capillary for phosphoprotein analysis: Comparison between polymer brush coating and surface functionalization. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:2852-9. [DOI: 10.1016/j.jchromb.2011.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Revised: 08/02/2011] [Accepted: 08/04/2011] [Indexed: 11/27/2022]
|
34
|
Sproß J, Sinz A. Monolithic media for applications in affinity chromatography. J Sep Sci 2011; 34:1958-73. [DOI: 10.1002/jssc.201100400] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 05/19/2011] [Accepted: 05/19/2011] [Indexed: 11/10/2022]
|
35
|
Wang H, Duan J, Xu H, Zhao L, Liang Y, Shan Y, Zhang L, Liang Z, Zhang Y. Monoliths with immobilized zirconium ions for selective enrichment of phosphopeptides. J Sep Sci 2011; 34:2113-21. [DOI: 10.1002/jssc.201100168] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 04/10/2011] [Accepted: 04/11/2011] [Indexed: 11/11/2022]
|
36
|
Arrua RD, Alvarez Igarzabal CI. Macroporous monolithic supports for affinity chromatography. J Sep Sci 2011; 34:1974-87. [DOI: 10.1002/jssc.201100197] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 03/28/2011] [Accepted: 03/28/2011] [Indexed: 01/21/2023]
|
37
|
Zhang L, Wang H, Liang Z, Yang K, Zhang L, Zhang Y. Facile preparation of monolithic immobilized metal affinity chromatography capillary columns for selective enrichment of phosphopeptides. J Sep Sci 2011; 34:2122-30. [DOI: 10.1002/jssc.201100169] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 04/09/2011] [Accepted: 04/11/2011] [Indexed: 01/23/2023]
|
38
|
Krenkova J, Foret F. Iron oxide nanoparticle coating of organic polymer-based monolithic columns for phosphopeptide enrichment. J Sep Sci 2011; 34:2106-12. [PMID: 21560247 DOI: 10.1002/jssc.201100256] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 04/01/2011] [Accepted: 04/01/2011] [Indexed: 11/06/2022]
Abstract
A new monolithic capillary column with an iron oxide nanoparticle coating has been developed for selective and efficient enrichment of phosphopeptides. Iron oxide nanoparticles were prepared by a co-precipitation method and stabilized by citrate ions. A stable coating of nanoparticles was obtained via multivalent electrostatic interactions of citrate ions on the surface of iron oxide nanoparticles with a quaternary amine functionalized poly(glycidyl methacrylate-co-ethylene dimethacrylate) monolith. A high dynamic binding capacity of 86 μmol/mL column volume was measured with an adenosine-5'-triphosphate. Performance of the monolithic column was demonstrated with the efficient and selective enrichment of phosphopeptides from peptide mixtures of α-casein and β-casein digests and their MALDI/MS characterization in off-line mode.
Collapse
Affiliation(s)
- Jana Krenkova
- Institute of Analytical Chemistry of the ASCR, v. v. i., Veveri, Brno, Czech Republic.
| | | |
Collapse
|
39
|
Hu Y, Peng Y, Lin K, Shen H, Brousseau LC, Sakamoto J, Sun T, Ferrari M. Surface engineering on mesoporous silica chips for enriching low molecular weight phosphorylated proteins. NANOSCALE 2011; 3:421-8. [PMID: 21135976 PMCID: PMC3397147 DOI: 10.1039/c0nr00720j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Phosphorylated peptides and proteins play an important role in normal cellular activities, e.g., gene expression, mitosis, differentiation, proliferation, and apoptosis, as well as tumor initiation, progression and metastasis. However, technical hurdles hinder the use of common fractionation methods to capture phosphopeptides from complex biological fluids such as human sera. Herein, we present the development of a dual strategy material that offers enhanced capture of low molecular weight phosphoproteins: mesoporous silica thin films with precisely engineered pore sizes that sterically select for molecular size combined with chemically selective surface modifications (i.e. Ga3+, Ti4+ and Zr4+) that target phosphoroproteins. These materials provide high reproducibility (CV=18%) and increase the stability of the captured proteins by excluding degrading enzymes, such as trypsin. The chemical and physical properties of the composite mesoporous thin films were characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy and ellipsometry. Using mass spectroscopy and biostatistics analysis, the enrichment efficiency of different metal ions immobilized on mesoporous silica chips was investigated. The novel technology reported provides a platform capable of efficiently profiling the serum proteome for biomarker discovery, forensic sampling, and routine diagnostic applications.
Collapse
Affiliation(s)
- Ye Hu
- Department of Nanomedicine and Biomedical Engineering, the University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yang Peng
- Department of Nanomedicine and Biomedical Engineering, the University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kevin Lin
- Department of Biomedical Engineering, the University of Texas at Austin, Austin, TX, USA
| | - Haifa Shen
- Department of Nanomedicine and Biomedical Engineering, the University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Louis C. Brousseau
- Department of Nanomedicine and Biomedical Engineering, the University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jason Sakamoto
- Department of Nanomedicine and Biomedical Engineering, the University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Tong Sun
- Department of Nanomedicine and Biomedical Engineering, the University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Mauro Ferrari
- Department of Nanomedicine and Biomedical Engineering, the University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Biomedical Engineering, the University of Texas at Austin, Austin, TX, USA
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Bioengineering, Rice University, Houston, TX, USA
| |
Collapse
|
40
|
Hou C, Ma J, Tao D, Shan Y, Liang Z, Zhang L, Zhang Y. Organic−Inorganic Hybrid Silica Monolith Based Immobilized Titanium Ion Affinity Chromatography Column for Analysis of Mitochondrial Phosphoproteome. J Proteome Res 2010; 9:4093-101. [DOI: 10.1021/pr100294z] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Chunyan Hou
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China, and Graduate School of the Chinese Academy of Sciences, Beijing 100039, China
| | - Junfeng Ma
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China, and Graduate School of the Chinese Academy of Sciences, Beijing 100039, China
| | - Dingyin Tao
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China, and Graduate School of the Chinese Academy of Sciences, Beijing 100039, China
| | - Yichu Shan
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China, and Graduate School of the Chinese Academy of Sciences, Beijing 100039, China
| | - Zhen Liang
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China, and Graduate School of the Chinese Academy of Sciences, Beijing 100039, China
| | - Lihua Zhang
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China, and Graduate School of the Chinese Academy of Sciences, Beijing 100039, China
| | - Yukui Zhang
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China, and Graduate School of the Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|
41
|
Niklew ML, Hochkirch U, Melikyan A, Moritz T, Kurzawski S, Schlüter H, Ebner I, Linscheid MW. Phosphopeptide Screening Using Nanocrystalline Titanium Dioxide Films as Affinity Matrix-Assisted Laser Desorption Ionization Targets in Mass Spectrometry. Anal Chem 2010; 82:1047-53. [DOI: 10.1021/ac902403m] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Marie-Luise Niklew
- Department of Chemistry, Humboldt-Universitaet zu Berlin, Berlin, Germany, Analytical Laboratories, Atotech GmbH, Berlin, Germany, and Department of Clinical Chemistry/Central Laboratories, University Medical Center, Hamburg-Eppendorf, Germany
| | - Ulrike Hochkirch
- Department of Chemistry, Humboldt-Universitaet zu Berlin, Berlin, Germany, Analytical Laboratories, Atotech GmbH, Berlin, Germany, and Department of Clinical Chemistry/Central Laboratories, University Medical Center, Hamburg-Eppendorf, Germany
| | - Anna Melikyan
- Department of Chemistry, Humboldt-Universitaet zu Berlin, Berlin, Germany, Analytical Laboratories, Atotech GmbH, Berlin, Germany, and Department of Clinical Chemistry/Central Laboratories, University Medical Center, Hamburg-Eppendorf, Germany
| | - Thomas Moritz
- Department of Chemistry, Humboldt-Universitaet zu Berlin, Berlin, Germany, Analytical Laboratories, Atotech GmbH, Berlin, Germany, and Department of Clinical Chemistry/Central Laboratories, University Medical Center, Hamburg-Eppendorf, Germany
| | - Sandra Kurzawski
- Department of Chemistry, Humboldt-Universitaet zu Berlin, Berlin, Germany, Analytical Laboratories, Atotech GmbH, Berlin, Germany, and Department of Clinical Chemistry/Central Laboratories, University Medical Center, Hamburg-Eppendorf, Germany
| | - Hartmut Schlüter
- Department of Chemistry, Humboldt-Universitaet zu Berlin, Berlin, Germany, Analytical Laboratories, Atotech GmbH, Berlin, Germany, and Department of Clinical Chemistry/Central Laboratories, University Medical Center, Hamburg-Eppendorf, Germany
| | - Ingo Ebner
- Department of Chemistry, Humboldt-Universitaet zu Berlin, Berlin, Germany, Analytical Laboratories, Atotech GmbH, Berlin, Germany, and Department of Clinical Chemistry/Central Laboratories, University Medical Center, Hamburg-Eppendorf, Germany
| | - Michael W. Linscheid
- Department of Chemistry, Humboldt-Universitaet zu Berlin, Berlin, Germany, Analytical Laboratories, Atotech GmbH, Berlin, Germany, and Department of Clinical Chemistry/Central Laboratories, University Medical Center, Hamburg-Eppendorf, Germany
| |
Collapse
|
42
|
Meng J, Zhang W, Cao CX, Fan LY, Wu J, Wang QL. Moving affinity boundary electrophoresis and its selective isolation of histidine in urine. Analyst 2010; 135:1592-9. [DOI: 10.1039/c000472c] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Advances in Separation and Enrichment Approach of Phosphoproteome Researches. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2009. [DOI: 10.1016/s1872-2040(08)60131-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Lazar IM. Recent advances in capillary and microfluidic platforms with MS detection for the analysis of phosphoproteins. Electrophoresis 2009; 30:262-75. [PMID: 19156662 DOI: 10.1002/elps.200800427] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Reversible protein phosphorylation represents a key regulatory mechanism that triggers essential cellular signaling events. The large-scale characterization of protein phosphorylation in a cell represents, therefore, the objective of many biological studies that aim at elucidating the complex signaling pathways that are involved in the progression and/or regression of a disease. The recent implementation of novel MS detection strategies has significantly advanced the capabilities for interrogating the complex cellular phosphoproteome. Simultaneously, the current advent of miniaturized technologies has clearly demonstrated the superior performance of microfluidic instrumentation for bioanalytical and biological applications that cope with speed, sensitivity and throughput-related demands. This review aims at providing an update on the latest developments regarding the interfacing of microfluidic devices with MS detection for exploring the challenging area of phosphoproteomics.
Collapse
Affiliation(s)
- Iulia M Lazar
- Virginia Bioinformatics Institute and Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| |
Collapse
|
45
|
Yoo MJ, Hage DS. Evaluation of silica monoliths in affinity microcolumns for high-throughput analysis of drug-protein interactions. J Sep Sci 2009; 32:2776-85. [PMID: 19630007 PMCID: PMC2765799 DOI: 10.1002/jssc.200900346] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Silica monoliths in affinity microcolumns were tested for the high-throughput analysis of drug-protein interactions. HSA was used as a model protein for this work, while carbamazepine and R-warfarin were used as model analytes. A comparison of HSA silica monoliths of various lengths indicated columns as short as 1 to 3 mm could be used to provide reproducible estimates of retention factors or plate heights. Benefits of using smaller columns for this work included the lower retention times and lower back pressures that could be obtained versus traditional HPLC affinity columns, as well as the smaller amount of protein that is required for column preparation. One disadvantage of decreasing column length was the lower precision that resulted in retention factor and plate height measurements. A comparison was also made between microcolumns containing silica particles versus silica monoliths. It was demonstrated with R-warfarin that supports could be used in HSA microcolumns for the determination of retention factors or plate heights. However, the higher efficiency of the silica monolith made this the preferred support for work at higher flow rates or when a larger number of plates are needed during the rapid analysis of drug-protein interactions.
Collapse
Affiliation(s)
- Michelle J. Yoo
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304 (USA)
| | - David S. Hage
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304 (USA)
| |
Collapse
|
46
|
Feng S, Yang N, Pennathur S, Goodison S, Lubman DM. Enrichment of glycoproteins using nanoscale chelating concanavalin A monolithic capillary chromatography. Anal Chem 2009; 81:3776-83. [PMID: 19366252 PMCID: PMC2759973 DOI: 10.1021/ac900085k] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Immobilized lectin chromatography can be employed for glycoprotein enrichment, but commonly used columns have limitations of yield and resolution. To improve efficiency and to make the technique applicable to minimal sample material, we have developed a nanoscale chelating Concanavalin A (Con A) monolithic capillary prepared using GMA-EDMA (glycidyl methacrylate-co-ethylene dimethacrylate) as polymeric support. Con A was immobilized on Cu(II)-charged iminodiacetic acid (IDA) regenerable sorbents by forming a IDA:Cu(II):Con A sandwich affinity structure that has high column capacity, as well as stability. When compared with conventional Con A lectin chromatography, the monolithic capillary enabled the better reproducible detection of over double the number of unique N-glycoproteins in human urine samples. Utility for analysis of minimal biological samples was confirmed by the successful elucidation of glycoprotein profiles in mouse urine samples at the microliter scale. The improved efficiency of the nanoscale monolithic capillary will impact the analysis of glycoproteins in complex biological samples, especially where only limited material may be available.
Collapse
Affiliation(s)
- Shun Feng
- Department of Surgery, The University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Na Yang
- Department of Surgery, The University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Subramaniam Pennathur
- Department of Internal Medicine, Division of Nephrology, The University of Michigan, Ann Arbor, MI 48109
| | - Steve Goodison
- Department of Surgery, The University of Florida, Jacksonville, FL 32009
| | - David M. Lubman
- Department of Surgery, The University of Michigan Medical Center, Ann Arbor, MI 48109
- Department of Chemistry, The University of Michigan, Ann Arbor, MI 48109
- Comprehensive Cancer Center, The University of Michigan Medical Center, Ann Arbor, MI 48109
| |
Collapse
|
47
|
Nucleic acids in protein samples interfere with phosphopeptide identification by immobilized-metal-ion affinity chromatography and mass spectrometry. Mol Biotechnol 2009; 43:59-66. [PMID: 19412670 DOI: 10.1007/s12033-009-9176-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Accepted: 04/17/2009] [Indexed: 10/20/2022]
Abstract
Immobilized-metal-ion affinity chromatography (IMAC) is used extensively for phosphopeptide enrichment in phosphoproteomics. However, the effect of nucleic acids in protein samples on phosphopeptide enrichment by IMAC has not yet been well clarified. In this study, we demonstrate that IMAC beads possess a strong adsorption of nucleic acids, especially single-stranded or single-stranded-region-containing nucleic acids, leading to approximately 50% loss of phosphopeptides during the process of IMAC enrichment. Therefore, nucleic acids must be removed from protein samples prior to IMAC. Acetonitrile (ACN) precipitation, a simple and efficient procedure, was established to remove nucleic acids from the protein samples. We showed that ACN precipitation approximately doubled the phosphopeptide number identified by IMAC and mass spectrometry, indicating that nucleic acid removal significantly improves the identification of phosphopeptides.
Collapse
|
48
|
Hu L, Zhou H, Li Y, Sun S, Guo L, Ye M, Tian X, Gu J, Yang S, Zou H. Profiling of Endogenous Serum Phosphorylated Peptides by Titanium (IV) Immobilized Mesoporous Silica Particles Enrichment and MALDI-TOFMS Detection. Anal Chem 2008; 81:94-104. [DOI: 10.1021/ac801974f] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Lianghai Hu
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai 200032, China, Shanghai Research Center of Biotechnology, Chinese Academy of Sciences, Shanghai
| | - Houjiang Zhou
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai 200032, China, Shanghai Research Center of Biotechnology, Chinese Academy of Sciences, Shanghai
| | - Yinghua Li
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai 200032, China, Shanghai Research Center of Biotechnology, Chinese Academy of Sciences, Shanghai
| | - Shutao Sun
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai 200032, China, Shanghai Research Center of Biotechnology, Chinese Academy of Sciences, Shanghai
| | - Lihai Guo
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai 200032, China, Shanghai Research Center of Biotechnology, Chinese Academy of Sciences, Shanghai
| | - Mingliang Ye
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai 200032, China, Shanghai Research Center of Biotechnology, Chinese Academy of Sciences, Shanghai
| | - Xiaofeng Tian
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai 200032, China, Shanghai Research Center of Biotechnology, Chinese Academy of Sciences, Shanghai
| | - Jianren Gu
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai 200032, China, Shanghai Research Center of Biotechnology, Chinese Academy of Sciences, Shanghai
| | - Shengli Yang
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai 200032, China, Shanghai Research Center of Biotechnology, Chinese Academy of Sciences, Shanghai
| | - Hanfa Zou
- Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai 200032, China, Shanghai Research Center of Biotechnology, Chinese Academy of Sciences, Shanghai
| |
Collapse
|
49
|
Xu S, Whitin JC, Yu TTS, Zhou H, Sun D, Sue HJ, Zou H, Cohen HJ, Zare RN. Capture of phosphopeptides using alpha-zirconium phosphate nanoplatelets. Anal Chem 2008; 80:5542-9. [PMID: 18522436 DOI: 10.1021/ac800577z] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alpha-zirconium phosphate nanoplatelets (alpha-ZrPN) were studied as a binding agent for phosphopeptides. Nanoplatelets of alpha-zirconium phosphate were incubated overnight with zirconium oxychloride, followed by centrifugation, and washed twice with water followed by an aqueous solution of 80% acetonitrile to form the binding agent. Alpha-ZrPN were able specifically to capture phosphoserine-containing peptides from a tryptic digest of a complex peptide mixture in which its abundance was only 0.05%. Alpha-ZrPN also bound peptides containing phosphothreonine and phosphotyrosine. The limit of detection for phosphopeptides is approximately 2 fmol, based on using matrix-assisted laser desorption/ionization mass spectrometry. Alpha-ZrPN were applied for the analysis of tryptic digests of mouse liver and leukemia cell phosphoproteomes and succeeded in identifying 158 phosphopeptides (209 phosphorylation sites) from 101 phosphoproteins in mouse liver lysate and 78 phosphopeptides (104 phosphorylation sites) from 59 phosphoproteins in leukemia cell extract. For these two tryptic digests, the alpha-ZrPN approach is able to capture more phosphopeptides than that obtained from TiO2 particles or from Fe(3+)-IMAC beads, but each method is able to bind some phosphopeptides that the others do not.
Collapse
Affiliation(s)
- Songyun Xu
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305-5208, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Li Y, Xu X, Qi D, Deng C, Yang P, Zhang X. Novel Fe3O4@TiO2 Core−Shell Microspheres for Selective Enrichment of Phosphopeptides in Phosphoproteome Analysis. J Proteome Res 2008; 7:2526-38. [DOI: 10.1021/pr700582z] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yan Li
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Xiuqing Xu
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Dawei Qi
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Chunhui Deng
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Pengyuan Yang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Xiangmin Zhang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|