1
|
Treibergs KA, Giribet G. Differential Gene Expression Between Polymorphic Zooids of the Marine Bryozoan Bugulina stolonifera. G3 (BETHESDA, MD.) 2020; 10:3843-3857. [PMID: 32859685 PMCID: PMC7534450 DOI: 10.1534/g3.120.401348] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 08/18/2020] [Indexed: 01/31/2023]
Abstract
Bryozoans are a diverse phylum of marine and freshwater colonial invertebrates containing approximately 6,300 described living species. Bryozoans grow by budding new physiologically connected colony members (zooids) from a founding individual that forms from a metamorphosed larva. In some species these zooids come in different shapes and sizes and are specialized to serve different tasks within the colony. A complex interaction of genotype, environment, and developmental pathway shapes zooid fate, however, the specific mechanisms underlying the establishment of this division of labor remain unknown. Here, the first characterization of differential gene expression between polymorphic zooids of a bryozoan colony is presented. The development of different zooid types of lab-cultured Bugulina stolonifera colonies including feeding autozooids, avicularia (derived non-feeding zooids that are homologous to feeding autozooids but shaped like a bird's beak), and rhizoids (a branching network of non-feeding anchoring zooids) was explored using RNA sequencing, de novo transcriptome assembly, and differential gene expression analyses. High throughput sequencing of cDNA libraries yielded an average of 14.9 ± 1.3 (SE) million high-quality paired-end reads per sample. Data for the first de novo transcriptome assemblies of B. stolonifera and the first characterization of genes involved in the formation and maintenance of zooid types within a bryozoan colony are presented. In a comparison between autozooid and avicularium tissues, 1,097 significant differentially expressed genes were uncovered. This work provides a much-needed foundation for understanding the mechanisms involved in the development of polymorphic zooids and the establishment of division of labor in bryozoans.
Collapse
Affiliation(s)
- Kira A Treibergs
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138
| | - Gonzalo Giribet
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138
| |
Collapse
|
2
|
Proteome of larval metamorphosis induced by epinephrine in the Fujian oyster Crassostrea angulata. BMC Genomics 2020; 21:675. [PMID: 32993483 PMCID: PMC7525975 DOI: 10.1186/s12864-020-07066-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 09/10/2020] [Indexed: 01/10/2023] Open
Abstract
Background The Fujian oyster Crassostrea angulata is an economically important species that has typical settlement and metamorphosis stages. The development of the oyster involves complex morphological and physiological changes, the molecular mechanisms of which are as yet unclear. Results In this study, changes in proteins were investigated during larval settlement and metamorphosis of Crassostrea angulata using epinephrine induction. Protein abundance and identity were characterized using label-free quantitative proteomics, tandem mass spectrometry (MS/ MS), and Mascot methods. The results showed that more than 50% (764 out of 1471) of the quantified proteins were characterized as differentially expressed. Notably, more than two-thirds of the differentially expressed proteins were down-regulated in epinephrine-induced larvae. The results showed that “metabolic process” was closely related to the development of settlement and metamorphosis; 5 × 10− 4 M epinephrine induced direct metamorphosis of larvae and was non-toxic. Calmodulin and MAPK pathways were involved in the regulation of settlement of the oyster. Expression levels of immune-related proteins increased during metamorphosis. Hepatic lectin-like proteins, cadherins, calmodulin, calreticulin, and cytoskeletal proteins were involved in metamorphosis. The nervous system may be remodeled in larval metamorphosis induced by epinephrine. Expression levels of proteins that were enriched in the epinephrine signaling pathway may reflect the developmental stage of the larvae, that may reflect whether or not larvae were directly involved in metamorphosis when the larvae were treated with epinephrine. Conclusion The study provides insight into proteins that function in energy metabolism, immune responses, settlement and metamorphosis, and shell formation in C. angulata. The results contribute valuable information for further research on larval settlement and metamorphosis. Graphical abstract ![]()
Collapse
|
3
|
Kumar G, Ertl R, Bartholomew JL, El-Matbouli M. First transcriptome analysis of bryozoan Fredericella sultana, the primary host of myxozoan parasite Tetracapsuloides bryosalmonae. PeerJ 2020; 8:e9027. [PMID: 32377451 PMCID: PMC7194087 DOI: 10.7717/peerj.9027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/31/2020] [Indexed: 12/04/2022] Open
Abstract
Bryozoans are aquatic invertebrate moss animals that are found worldwide. Fredericella sultana is a freshwater bryozoan and is the most common primary host of myxozoan parasite, Tetracapsuloides bryosalmonae. However, limited genomic resources are available for this bryozoan, which hampers investigations into the molecular mechanisms of host-parasite interactions. To better understand these interactions, there is a need to build a transcriptome dataset of F. sultana, for functional genomics analysis by large-scale RNA sequencing. Total RNA was extracted from zooids of F. sultana cultivated under controlled laboratory conditions. cDNA libraries were prepared and were analyzed by the Illumina paired-ends sequencing. The sequencing data were used for de novo transcriptome assembly and functional annotation. Approximately 118 million clean reads were obtained, and assembled into 85,544 contigs with an average length of 852 bp, an N50 of 1,085 bp, and an average GC content 51.4%. A total of 23,978 (28%) contigs were annotated using BLASTX analysis. Of these transcripts, 4,400 contigs had highest similarity to brachiopod species Lingula anatina. Based on Gene ontology (GO) annotation, the most highly scored categories of biological process were categorized into cellular process (27%), metabolic process (24%), and biological regulation (8%) in the transcriptome of F. sultana. This study gives first insights into the transcriptome of F. sultana and provides comprehensive genetic resources for the species. We believe that the transcriptome of F. sultana will serve as a useful genomic dataset to accelerate research of functional genomics and will help facilitate whole genome sequencing and annotation. Candidate genes potentially involved in growth, proteolysis, and stress/immunity-response were identified, and are worthy of further investigation.
Collapse
Affiliation(s)
- Gokhlesh Kumar
- Clinical Division of Fish Medicine, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Reinhard Ertl
- VetCore Facility, University of Veterinary Medicine, Vienna, Vienna, Austria
| | - Jerri L. Bartholomew
- Department of Microbiology, Oregon State University, Corvallis, OR, United States of America
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
4
|
Toledo C, Andrade DC, Díaz HS, Inestrosa NC, Del Rio R. Neurocognitive Disorders in Heart Failure: Novel Pathophysiological Mechanisms Underpinning Memory Loss and Learning Impairment. Mol Neurobiol 2019; 56:8035-8051. [PMID: 31165973 DOI: 10.1007/s12035-019-01655-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/20/2019] [Indexed: 01/01/2023]
Abstract
Heart failure (HF) is a major public health issue affecting more than 26 million people worldwide. HF is the most common cardiovascular disease in elder population; and it is associated with neurocognitive function decline, which represent underlying brain pathology diminishing learning and memory faculties. Both HF and neurocognitive impairment are associated with recurrent hospitalization episodes and increased mortality rate in older people, but particularly when they occur simultaneously. Overall, the published studies seem to confirm that HF patients display functional impairments relating to attention, memory, concentration, learning, and executive functioning compared with age-matched controls. However, little is known about the molecular mechanisms underpinning neurocognitive decline in HF. The present review round step recent evidence related to the possible molecular mechanism involved in the establishment of neurocognitive disorders during HF. We will make a special focus on cerebral ischemia, neuroinflammation and oxidative stress, Wnt signaling, and mitochondrial DNA alterations as possible mechanisms associated with cognitive decline in HF. Also, we provide an integrative mechanism linking pathophysiological hallmarks of altered cardiorespiratory control and the development of cognitive dysfunction in HF patients. Graphical Abstract Main molecular mechanisms involved in the establishment of cognitive impairment during heart failure. Heart failure is characterized by chronic activation of brain areas responsible for increasing cardiac sympathetic load. In addition, HF patients also show neurocognitive impairment, suggesting that the overall mechanisms that underpin cardiac sympathoexcitation may be related to the development of cognitive disorders in HF. In low cardiac output, HF cerebral infarction due to cardiac mural emboli and cerebral ischemia due to chronic or intermittent cerebral hypoperfusion has been described as a major mechanism related to the development of CI. In addition, while acute norepinephrine (NE) release may be relevant to induce neural plasticity in the hippocampus, chronic or tonic release of NE may exert the opposite effects due to desensitization of the adrenergic signaling pathway due to receptor internalization. Enhanced chemoreflex drive is a major source of sympathoexcitation in HF, and this phenomenon elevates brain ROS levels and induces neuroinflammation through breathing instability. Importantly, both oxidative stress and neuroinflammation can induce mitochondrial dysfunction and vice versa. Then, this ROS inflammatory pathway may propagate within the brain and potentially contribute to the development of cognitive impairment in HF through the activation/inhibition of key molecular pathways involved in neurocognitive decline such as the Wnt signaling pathway.
Collapse
Affiliation(s)
- C Toledo
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Center for Aging and Regeneration (CARE-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - D C Andrade
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de investigación en fisiología del ejercicio, Universidad Mayor, Santiago, Chile
| | - H S Díaz
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - N C Inestrosa
- Center for Aging and Regeneration (CARE-UC), Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - R Del Rio
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Center for Aging and Regeneration (CARE-UC), Pontificia Universidad Católica de Chile, Santiago, Chile. .,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.
| |
Collapse
|
5
|
Yang XX, Wong YH, Zhang Y, Zhang G, Qian PY. Exploring the regulatory role of nitric oxide (NO) and the NO-p38MAPK/cGMP pathway in larval settlement of the bryozoan Bugula neritina. BIOFOULING 2018; 34:545-556. [PMID: 29842799 DOI: 10.1080/08927014.2018.1470240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/19/2018] [Indexed: 06/08/2023]
Abstract
The bryozoan Bugula neritina is a cosmopolitan marine fouling species that causes major fouling problems in sub-tropical waters. Settlement of B. neritina larvae can be triggered without an obvious external cue. Here, the negative regulatory role of nitric oxide (NO) during larval settlement of B. neritina was demonstrated to be mediated by cyclic guanosine monophosphate (cGMP). Although the regulatory role of the NO-p38 MAPK signaling axis in larval settlement was not evident, inhibition of nitric oxide synthase (NOS) led to the deactivation of p38 MAPK. Exclusive localization of NO and NO signaling components in sensory-related organs of the larvae is consistent with its signal transduction function in metamorphosis. Overall, this study provides new insights into the regulatory roles of the NO-p38MAPK/cGMP pathway in B. neritina settlement.
Collapse
Affiliation(s)
- Xiao-Xue Yang
- a Division of Life Science , The Hong Kong University of Science and Technology , Hong Kong SAR , PR China
| | - Yue Him Wong
- a Division of Life Science , The Hong Kong University of Science and Technology , Hong Kong SAR , PR China
| | - Yu Zhang
- b Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography , Shenzhen University , Shenzhen , PR China
| | - Gen Zhang
- a Division of Life Science , The Hong Kong University of Science and Technology , Hong Kong SAR , PR China
| | - Pei-Yuan Qian
- a Division of Life Science , The Hong Kong University of Science and Technology , Hong Kong SAR , PR China
| |
Collapse
|
6
|
Barros I, Froufe H, Marnellos G, Egas C, Delaney J, Clamp M, Santos RS, Bettencourt R. Metatranscriptomics profile of the gill microbial community during Bathymodiolus azoricus aquarium acclimatization at atmospheric pressure. AIMS Microbiol 2018; 4:240-260. [PMID: 31294213 PMCID: PMC6604929 DOI: 10.3934/microbiol.2018.2.240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/05/2018] [Indexed: 12/04/2022] Open
Abstract
Background The deep-sea mussels Bathymodiolus azoricus (Bivalvia: Mytilidae) are the dominant macrofauna subsisting at the hydrothermal vents site Menez Gwen in the Mid-Atlantic Ridge (MAR). Their adaptive success in such challenging environments is largely due to their gill symbiotic association with chemosynthetic bacteria. We examined the response of vent mussels as they adapt to sea-level environmental conditions, through an assessment of the relative abundance of host-symbiont related RNA transcripts to better understand how the gill microbiome may drive host-symbiont interactions in vent mussels during hypothetical venting inactivity. Results The metatranscriptome of B. azoricus was sequenced from gill tissues sampled at different time-points during a five-week acclimatization experiment, using Next-Generation-Sequencing. After Illumina sequencing, a total of 181,985,262 paired-end reads of 150 bp were generated with an average of 16,544,115 read per sample. Metatranscriptome analysis confirmed that experimental acclimatization in aquaria accounted for global gill transcript variation. Additionally, the analysis of 16S and 18S rRNA sequences data allowed for a comprehensive characterization of host-symbiont interactions, which included the gradual loss of gill endosymbionts and signaling pathways, associated with stress responses and energy metabolism, under experimental acclimatization. Dominant active transcripts were assigned to the following KEGG categories: “Ribosome”, “Oxidative phosphorylation” and “Chaperones and folding catalysts” suggesting specific metabolic responses to physiological adaptations in aquarium environment. Conclusions Gill metagenomics analyses highlighted microbial diversity shifts and a clear pattern of varying mRNA transcript abundancies and expression during acclimatization to aquarium conditions which indicate change in bacterial community activity. This approach holds potential for the discovery of new host-symbiont associations, evidencing new functional transcripts and a clearer picture of methane metabolism during loss of endosymbionts. Towards the end of acclimatization, we observed trends in three major functional subsystems, as evidenced by an increment of transcripts related to genetic information processes; the decrease of chaperone and folding catalysts and oxidative phosphorylation transcripts; but no change in transcripts of gluconeogenesis and co-factors-vitamins.
Collapse
Affiliation(s)
- Inês Barros
- Department of Oceanography and Fisheries, University of the Azores, 9901-862 Horta, Portugal.,MARE-Marine and Environmental Sciences Centre, 9901-862 Horta, Portugal
| | - Hugo Froufe
- Next Generation Sequencing Unit-BIOCANT; Parque Tecnológico de Cantanhede, Núcleo 04, Lote 8, 3060-197 Cantanhede, Portugal
| | - George Marnellos
- Harvard University, Informatics and Scientific Applications, 38 Oxford Street, Cambridge, MA 02138-2020, United States
| | - Conceição Egas
- Next Generation Sequencing Unit-BIOCANT; Parque Tecnológico de Cantanhede, Núcleo 04, Lote 8, 3060-197 Cantanhede, Portugal
| | - Jennifer Delaney
- Harvard University, Informatics and Scientific Applications, 38 Oxford Street, Cambridge, MA 02138-2020, United States
| | - Michele Clamp
- Harvard University, Biological Laboratories, Room 3085, 16 Divinity Avenue, Cambridge, MA 02138-2020, United States
| | - Ricardo Serrão Santos
- Department of Oceanography and Fisheries, University of the Azores, 9901-862 Horta, Portugal.,MARE-Marine and Environmental Sciences Centre, 9901-862 Horta, Portugal.,OKEANOS Center, Faculty of Science and Technology, University of the Azores, 9901-862 Horta, Portugal
| | - Raul Bettencourt
- Department of Oceanography and Fisheries, University of the Azores, 9901-862 Horta, Portugal.,MARE-Marine and Environmental Sciences Centre, 9901-862 Horta, Portugal.,OKEANOS Center, Faculty of Science and Technology, University of the Azores, 9901-862 Horta, Portugal
| |
Collapse
|
7
|
Xiao K, Cao WB, Rong CH, Chen LG, Yang XX, Wen WJ, Qian PY, Hu ZL, Xu Y, Zhang Y. A novel assessment of the traction forces upon settlement of two typical marine fouling invertebrates using PDMS micropost arrays. Biol Open 2018; 7:bio030262. [PMID: 29242196 PMCID: PMC5829505 DOI: 10.1242/bio.030262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/28/2017] [Indexed: 11/30/2022] Open
Abstract
Marine biofouling poses a severe threat to maritime and aquaculture industries. To prevent the attachment of marine biofouling organisms on man-made structures, countless cost and effort was spent annually. In particular, most attention has been paid on the development of efficient and environmentally friendly fouling-resistant coatings, as well as larval settlement mechanism of several major biofouling invertebrates. In this study, polydimethylsiloxane (PDMS) micropost arrays were utilized as the settlement substrata and opposite tractions were identified during early settlement of the barnacle Amphibalanus amphitrite and the bryozoan Bugula neritina The settling A. amphitrite pushed the periphery microposts with an average traction force of 376.2 nN, while settling B. neritina pulled the periphery microposts with an average traction force of 205.9 nN. These micropost displacements are consistent with the body expansion of A. amphitrite during early post-settlement metamorphosis stage and elevation of wall epithelium of B. neritina during early pre-ancestrula stage, respectively. As such, the usage of micropost array may supplement the traditional histological approach to indicate the early settlement stages or even the initiation of larval settlement of marine fouling organisms, and could finally aid in the development of automatic monitoring platform for the real-time analysis on this complex biological process.
Collapse
Affiliation(s)
- Kang Xiao
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P.R. China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P.R. China
| | - Wen-Bin Cao
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, P.R. China
| | - Cu-Huang Rong
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P.R. China
| | - Lian-Guo Chen
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, P.R. China
| | - Xiao-Xue Yang
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, P.R. China
| | - Wei-Jia Wen
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, P.R. China
| | - Pei-Yuan Qian
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, P.R. China
| | - Zhang-Li Hu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P.R. China
| | - Ying Xu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P.R. China
| | - Yu Zhang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P.R. China
| |
Collapse
|
8
|
Yang XX, Zhang Y, Wong YH, Qian PY. HSP90 regulates larval settlement of the bryozoan Bugula neritina through NO pathway. J Exp Biol 2018; 221:jeb.167478. [DOI: 10.1242/jeb.167478] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 02/19/2018] [Indexed: 12/21/2022]
Abstract
The larvae of many sessile marine invertebrates go through a settlement process, during which the planktonic larvae attach to a substrate and metamorphose into sessile juveniles. Larval attachment and metamorphosis (herein defined as “settlement”) are complex processes mediated by many signaling pathways. Nitric oxide (NO) signaling is one of the pathways that inhibits larval settlement in marine invertebrates across different phyla. NO is synthesized by NO synthase (NOS), which is a client of molecular chaperon heat shock protein 90 (HSP90). In the present study, we provide evidence that NO, a gaseous messenger, regulates larval settlement of B. neritina. By using pharmacological bioassays and western blotting, we demonstrated that NO inhibits larval settlement of B. neritina and that NO signals occur mainly in the sensory organ of swimming larvae. The settlement rate of B. neritina larvae decreased after heat shock treatment. Inhibition of HSP90 induced larval settlement, and attenuated the inhibition of NO donors during larval settlement. In addition, the expression level of both HSP90 and NOS declined upon settlement. These results demonstrate that HSP90 regulates the larval settlement of B. neritina by interacting with the NO pathway.
Collapse
Affiliation(s)
- Xiao-Xue Yang
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, P. R. China
| | - Yu Zhang
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, P. R. China
- Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P. R. China
| | - Yue-Him Wong
- Department of Biotechnology, Akita Prefectural University, Japan
| | - Pei-Yuan Qian
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, P. R. China
| |
Collapse
|
9
|
Dhaygude K, Trontti K, Paviala J, Morandin C, Wheat C, Sundström L, Helanterä H. Transcriptome sequencing reveals high isoform diversity in the ant Formica exsecta. PeerJ 2017; 5:e3998. [PMID: 29177112 PMCID: PMC5701548 DOI: 10.7717/peerj.3998] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 10/17/2017] [Indexed: 12/21/2022] Open
Abstract
Transcriptome resources for social insects have the potential to provide new insight into polyphenism, i.e., how divergent phenotypes arise from the same genome. Here we present a transcriptome based on paired-end RNA sequencing data for the ant Formica exsecta (Formicidae, Hymenoptera). The RNA sequencing libraries were constructed from samples of several life stages of both sexes and female castes of queens and workers, in order to maximize representation of expressed genes. We first compare the performance of common assembly and scaffolding software (Trinity, Velvet-Oases, and SOAPdenovo-trans), in producing de novo assemblies. Second, we annotate the resulting expressed contigs to the currently published genomes of ants, and other insects, including the honeybee, to filter genes that have annotation evidence of being true genes. Our pipeline resulted in a final assembly of altogether 39,262 mRNA transcripts, with an average coverage of >300X, belonging to 17,496 unique genes with annotation in the related ant species. From these genes, 536 genes were unique to one caste or sex only, highlighting the importance of comprehensive sampling. Our final assembly also showed expression of several splice variants in 6,975 genes, and we show that accounting for splice variants affects the outcome of downstream analyses such as gene ontologies. Our transcriptome provides an outstanding resource for future genetic studies on F. exsecta and other ant species, and the presented transcriptome assembly can be adapted to any non-model species that has genomic resources available from a related taxon.
Collapse
Affiliation(s)
- Kishor Dhaygude
- Centre of Excellence in Biological Interactions, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Kalevi Trontti
- Department of Biosciences, Neurogenomics Laboratory, University of Helsinki, Helsinki, Finland
| | - Jenni Paviala
- Centre of Excellence in Biological Interactions, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Claire Morandin
- Centre of Excellence in Biological Interactions, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Christopher Wheat
- Department of Zoology Ecology, Stockholm University, Stockholm, Sweden
| | - Liselotte Sundström
- Centre of Excellence in Biological Interactions, Department of Biosciences, University of Helsinki, Helsinki, Finland
- Tvärminne Zoological Station, University of Helsinki, Hanko, Finland
| | - Heikki Helanterä
- Centre of Excellence in Biological Interactions, Department of Biosciences, University of Helsinki, Helsinki, Finland
- Tvärminne Zoological Station, University of Helsinki, Hanko, Finland
| |
Collapse
|
10
|
Zhang C, Ma Z, Zhang X, Wu H. Transcriptomic alterations in Sitophilus zeamais in response to allyl isothiocyanate fumigation. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 137:62-70. [PMID: 28364805 DOI: 10.1016/j.pestbp.2016.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 09/26/2016] [Accepted: 10/08/2016] [Indexed: 06/07/2023]
Abstract
To study the fumigation mechanisms of Allyl isothiocyanate (AITC) a promising biorational alternative to present fumigants (phosphine and methyl bromide), and provide theoretical basis for its further development in the control of stored grain pests, this research presents a transcriptome analysis of Sitophilus zeamais fumigated with AITC at the concentration of LC50 (5.69μg/mL) and control over 8h. 21,869,022 and 23,873,110 clean reads in insects fumigated with AITC and control were gained, respectively. The results of RNA-seq were confirmed by qRT-PCR determination of the expression levels of NADH dehydrogenase subunit 6 and Vacuolar ATP synthase subunit B in the insects fumigated with AITC at different concentrations. After enrichment analysis of differentially expressed genes, 117 over-expressed and 271 down-regulated transcripts were gained. Following GO enrichment, these transcripts were classified into 38 GO subgroups (at level 2), and the majority enriched GO terms were "Binding" "Cell process" and "metabolic". KEGG enrichment analysis showed that the majority enriched pathway were "Folding, sorting and degradation", "Transport and catabolism", "Energy metabolism", and "Carbohydrate metabolism". Connected with previous researches on mechanisms of isothiocyanates, cytoskeleton collapse and mitochondria dysfunction are proposed to be significant lethal mechanisms of AITC.
Collapse
Affiliation(s)
- Chao Zhang
- Research and Development Center of Biorational Pesticide, Northwest Agriculture & Forestry University, Yangling, Shaanxi 712100, PR China
| | - Zhiqing Ma
- Research and Development Center of Biorational Pesticide, Northwest Agriculture & Forestry University, Yangling, Shaanxi 712100, PR China
| | - Xing Zhang
- Research and Development Center of Biorational Pesticide, Northwest Agriculture & Forestry University, Yangling, Shaanxi 712100, PR China.
| | - Hua Wu
- Research and Development Center of Biorational Pesticide, Northwest Agriculture & Forestry University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
11
|
Hekman JP, Johnson JL, Kukekova AV. Transcriptome Analysis in Domesticated Species: Challenges and Strategies. Bioinform Biol Insights 2016; 9:21-31. [PMID: 26917953 PMCID: PMC4756862 DOI: 10.4137/bbi.s29334] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/21/2015] [Accepted: 12/26/2015] [Indexed: 12/13/2022] Open
Abstract
Domesticated species occupy a special place in the human world due to their economic and cultural value. In the era of genomic research, domesticated species provide unique advantages for investigation of diseases and complex phenotypes. RNA sequencing, or RNA-seq, has recently emerged as a new approach for studying transcriptional activity of the whole genome, changing the focus from individual genes to gene networks. RNA-seq analysis in domesticated species may complement genome-wide association studies of complex traits with economic importance or direct relevance to biomedical research. However, RNA-seq studies are more challenging in domesticated species than in model organisms. These challenges are at least in part associated with the lack of quality genome assemblies for some domesticated species and the absence of genome assemblies for others. In this review, we discuss strategies for analyzing RNA-seq data, focusing particularly on questions and examples relevant to domesticated species.
Collapse
Affiliation(s)
- Jessica P. Hekman
- Department of Animal Sciences, College of ACES, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Jennifer L. Johnson
- Department of Animal Sciences, College of ACES, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Anna V. Kukekova
- Department of Animal Sciences, College of ACES, University of Illinois at Urbana-Champaign, Urbana, USA
| |
Collapse
|
12
|
Richardson MF, Sherman CDH. De Novo Assembly and Characterization of the Invasive Northern Pacific Seastar Transcriptome. PLoS One 2015; 10:e0142003. [PMID: 26529321 PMCID: PMC4631335 DOI: 10.1371/journal.pone.0142003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/15/2015] [Indexed: 12/11/2022] Open
Abstract
Invasive species are a major threat to global biodiversity but can also serve as valuable model systems to examine important evolutionary processes. While the ecological aspects of invasions have been well documented, the genetic basis of adaptive change during the invasion process has been hampered by a lack of genomic resources for the majority of invasive species. Here we report the first larval transcriptomic resource for the Northern Pacific Seastar, Asterias amurensis, an invasive marine predator in Australia. Approximately 117.5 million 100 base-pair (bp) paired-end reads were sequenced from a single RNA-Seq library from a pooled set of full-sibling A. amurensis bipinnaria larvae. We evaluated the efficacy of a pre-assembly error correction pipeline on subsequent de novo assembly. Error correction resulted in small but important improvements to the final assembly in terms of mapping statistics and core eukaryotic genes representation. The error-corrected de novo assembly resulted in 115,654 contigs after redundancy clustering. 41,667 assembled contigs were homologous to sequences from NCBI’s non-redundant protein and UniProt databases. We assigned Gene Ontology, KEGG Orthology, Pfam protein domain terms and predicted protein-coding sequences to > 36,000 contigs. The final transcriptome dataset generated here provides functional information for 18,319 unique proteins, comprising at least 11,355 expressed genes. Furthermore, we identified 9,739 orthologs to P. miniata proteins, evaluated our annotation pipeline and generated a list of 150 candidate genes for responses to several environmental stressors that may be important for adaptation of A. amurensis in the invasive range. Our study has produced a large set of A. amurensis RNA contigs with functional annotations that can serve as a resource for future comparisons to other echinoderm transcriptomes and gene expression studies. Our data can be used to study the genetic basis of adaptive change and other important evolutionary processes during a successful invasion.
Collapse
Affiliation(s)
- Mark F. Richardson
- Deakin University, Geelong, Australia. School of Life and Environmental Sciences, Centre for Integrative Ecology, (Waurn Ponds Campus). 75 Pigdons Road. Locked Bag 20000, Geelong, VIC 3220, Australia
- * E-mail:
| | - Craig D. H. Sherman
- Deakin University, Geelong, Australia. School of Life and Environmental Sciences, Centre for Integrative Ecology, (Waurn Ponds Campus). 75 Pigdons Road. Locked Bag 20000, Geelong, VIC 3220, Australia
| |
Collapse
|
13
|
Huang M, Fang Y, Liu Y, Jin Y, Sun J, Tao X, Ma X, He K, Zhao H. Using proteomic analysis to investigate uniconazole-induced phytohormone variation and starch accumulation in duckweed (Landoltia punctata). BMC Biotechnol 2015; 15:81. [PMID: 26369558 PMCID: PMC4570701 DOI: 10.1186/s12896-015-0198-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 08/29/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Duckweed (Landoltia punctata) has the potential to remediate wastewater and accumulate enormous amounts of starch for bioethanol production. Using systematical screening, we determined that the highest biomass and starch percentage of duckweed was obtained after uniconazole application. Uniconazole contributes to starch accumulation of duckweed, but the molecular mechanism is still unclear. RESULTS To elucidate the mechanisms of high starch accumulation, in the study, the responses of L. punctata to uniconazole were investigated using a quantitative proteomic approach combined with physiological and biochemical analysis. A total of 3327 proteins were identified. Among these identified proteins, a large number of enzymes involved in endogenous hormone synthetic and starch metabolic pathways were affected. Notably, most of the enzymes involved in abscisic acid (ABA) biosynthesis showed up-regulated expression, which was consistent with the content variation. The increased endogenous ABA may up-regulate expression of ADP-glucose pyrophosphorylase to promote starch biosynthesis. Importantly, the expression levels of several key enzymes in the starch biosynthetic pathway were up-regulated, which supported the enzymatic assay results and may explain why there is increased starch accumulation. CONCLUSIONS These generated data linked uniconazole with changes in expression of enzymes involved in hormone biosynthesis and starch metabolic pathways and elucidated the effect of hormones on starch accumulation. Thus, this study not only provided insights into the molecular mechanisms of uniconazole-induced hormone variation and starch accumulation but also highlighted the potential for duckweed to be feedstock for biofuel as well as for sewage treatment.
Collapse
Affiliation(s)
- Mengjun Huang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Key Laboratory of Environmental and Applied Microbiology, Chinese Academy of Sciences, Chengdu, 610041, China. .,Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu, 610041, China.
| | - Yang Fang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China. .,Key Laboratory of Environmental and Applied Microbiology, Chinese Academy of Sciences, Chengdu, 610041, China. .,Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu, 610041, China.
| | - Yang Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Key Laboratory of Environmental and Applied Microbiology, Chinese Academy of Sciences, Chengdu, 610041, China. .,Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu, 610041, China.
| | - Yanling Jin
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China. .,Key Laboratory of Environmental and Applied Microbiology, Chinese Academy of Sciences, Chengdu, 610041, China. .,Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu, 610041, China.
| | - Jiaolong Sun
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China. .,Key Laboratory of Environmental and Applied Microbiology, Chinese Academy of Sciences, Chengdu, 610041, China. .,Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu, 610041, China.
| | - Xiang Tao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China. .,Key Laboratory of Environmental and Applied Microbiology, Chinese Academy of Sciences, Chengdu, 610041, China. .,Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu, 610041, China.
| | - Xinrong Ma
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China. .,Key Laboratory of Environmental and Applied Microbiology, Chinese Academy of Sciences, Chengdu, 610041, China. .,Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu, 610041, China.
| | - Kaize He
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China. .,Key Laboratory of Environmental and Applied Microbiology, Chinese Academy of Sciences, Chengdu, 610041, China. .,Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu, 610041, China.
| | - Hai Zhao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China. .,Key Laboratory of Environmental and Applied Microbiology, Chinese Academy of Sciences, Chengdu, 610041, China. .,Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu, 610041, China.
| |
Collapse
|
14
|
RNA-Seq analysis and gene discovery of Andrias davidianus using Illumina short read sequencing. PLoS One 2015; 10:e0123730. [PMID: 25874626 PMCID: PMC4395309 DOI: 10.1371/journal.pone.0123730] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 03/05/2015] [Indexed: 11/19/2022] Open
Abstract
The Chinese giant salamander, Andrias davidianus, is an important species in the course of evolution; however, there is insufficient genomic data in public databases for understanding its immunologic mechanisms. High-throughput transcriptome sequencing is necessary to generate an enormous number of transcript sequences from A. davidianus for gene discovery. In this study, we generated more than 40 million reads from samples of spleen and skin tissue using the Illumina paired-end sequencing technology. De novo assembly yielded 87,297 transcripts with a mean length of 734 base pairs (bp). Based on the sequence similarities, searching with known proteins, 38,916 genes were identified. Gene enrichment analysis determined that 981 transcripts were assigned to the immune system. Tissue-specific expression analysis indicated that 443 of transcripts were specifically expressed in the spleen and skin. Among these transcripts, 147 transcripts were found to be involved in immune responses and inflammatory reactions, such as fucolectin, β-defensins and lymphotoxin beta. Eight tissue-specific genes were selected for validation using real time reverse transcription quantitative PCR (qRT-PCR). The results showed that these genes were significantly more expressed in spleen and skin than in other tissues, suggesting that these genes have vital roles in the immune response. This work provides a comprehensive genomic sequence resource for A. davidianus and lays the foundation for future research on the immunologic and disease resistance mechanisms of A. davidianus and other amphibians.
Collapse
|
15
|
Natural antifouling compounds: Effectiveness in preventing invertebrate settlement and adhesion. Biotechnol Adv 2015; 33:343-57. [PMID: 25749324 DOI: 10.1016/j.biotechadv.2015.01.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 11/17/2014] [Accepted: 01/26/2015] [Indexed: 12/13/2022]
Abstract
Biofouling represents a major economic issue regarding maritime industries and also raise important environmental concern. International legislation is restricting the use of biocidal-based antifouling (AF) coatings, and increasing efforts have been applied in the search for environmentally friendly AF agents. A wide diversity of natural AF compounds has been described for their ability to inhibit the settlement of macrofouling species. However poor information on the specific AF targets was available before the application of different molecular approaches both on invertebrate settlement strategies and bioadhesive characterization and also on the mechanistic effects of natural AF compounds. This review focuses on the relevant information about the main invertebrate macrofouler species settlement and bioadhesive mechanisms, which might help in the understanding of the reported effects, attributed to effective and non-toxic natural AF compounds towards this macrofouling species. It also aims to contribute to the elucidation of promising biotechnological strategies in the development of natural effective environmentally friendly AF paints.
Collapse
|
16
|
Lei K, Liu R, An LH, Luo YF, LeBlanc GA. Estrogen alters the profile of the transcriptome in river snail Bellamya aeruginosa. ECOTOXICOLOGY (LONDON, ENGLAND) 2015; 24:330-338. [PMID: 25398503 DOI: 10.1007/s10646-014-1381-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/05/2014] [Indexed: 06/04/2023]
Abstract
We evaluated the transcriptome dynamics of the freshwater river snail Bellamya aeruginosa exposed to 17β-estradiol (E2) using the Roche/454 GS-FLX platform. In total, 41,869 unigenes, with an average length of 586 bp, representing 36,181 contigs and 5,688 singlets were obtained. Among them, 18.08, 36.85, and 25.47 % matched sequences in the GenBank non-redundant nucleic acid database, non-redundant protein database, and Swiss protein database, respectively. Annotation of the unigenes with gene ontology, and then mapping them to biological pathways, revealed large groups of genes related to growth, development, reproduction, signal transduction, and defense mechanisms. Significant differences were found in gene expression in both liver and testicular tissues between control and E2-exposed organisms. These changes in gene expression will help in understanding the molecular mechanisms of the response to physiological stress in the river snail exposed to estrogen, and will facilitate research into biological processes and underlying physiological adaptations to xenoestrogen exposure in gastropods.
Collapse
Affiliation(s)
- Kun Lei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, No. 8, Da-Yang-Fang, An-Wai-Bei-Yuan Rd., Chao-yang District, Beijing, 100012, China
| | | | | | | | | |
Collapse
|
17
|
Zhang MF, Jiang LM, Zhang DM, Jia GX. De novo transcriptome characterization of Lilium 'Sorbonne' and key enzymes related to the flavonoid biosynthesis. Mol Genet Genomics 2014; 290:399-412. [PMID: 25307066 DOI: 10.1007/s00438-014-0919-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 09/09/2014] [Indexed: 11/25/2022]
Abstract
Lily is an important cut-flower and bulb crop in the commercial market. Here, transcriptome profiling of Lilium 'Sorbonne' was conducted through de novo sequencing based on Illumina platform. This research aims at revealing basic information and data that can be used for applied purposes especially the molecular regulatory information on flower color formation in lily. In total, 36,920,680 short reads which corresponded to 3.32 GB of total nucleotides, were produced through transcriptome sequencing. These reads were assembled into 39,636 Unigenes, of which 30,986 were annotated in Nr, Nt, Swiss-Prot, KEGG, COG, GO databases. Based on the three public protein databases, a total of 32,601 coding sequences were obtained. Meanwhile, 19,242 Unigenes were assigned to 128 KEGG pathways. Those with the greatest representation by unique sequences were for ''metabolic pathways'' (5,406 counts, 28.09 %). Our transcriptome revealed 156 Unigenes that encode key enzymes in the flavonoid biosynthesis pathway including CHS, CHI, F3H, FLS, DFR, etc. MISA software identified 2,762 simple sequence repeats, from which 1,975 primers pairs were designed. Over 2,762 motifs were identified, of which the most frequent was AG/CT (659, 23.86 %), followed by A/T (615, 22.27 %) and CCG/CGG (416, 15.06 %). Based on the results, we believe that the color formation of the Lilium 'Sorbonne' flower was mainly controlled by the flavonoid biosynthesis pathway. Additionally, this research provides initial genetic resources that will be valuable to the lily community for other molecular biology research, and the SSRs will facilitate marker-assisted selection in lily breeding.
Collapse
Affiliation(s)
- Ming-fang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture and College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China,
| | | | | | | |
Collapse
|
18
|
Transcriptome analysis elucidates key developmental components of bryozoan lophophore development. Sci Rep 2014; 4:6534. [PMID: 25300304 PMCID: PMC4192642 DOI: 10.1038/srep06534] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 08/06/2014] [Indexed: 11/08/2022] Open
Abstract
The most recent phylogenomic study suggested that Bryozoa (Ectoprocta), Brachiopoda, and Phoronida are monophyletic, implying that the lophophore of bryozoans, phoronids and brachiopods is a synapomorphy. Understanding the molecular mechanisms of the lophophore development of the Lophophorata clade can therefore provide us a new insight into the formation of the diverse morphological traits in metazoans. In the present study, we profiled the transcriptome of the Bryozoan (Ectoproct) Bugula neritina during the swimming larval stage (SW) and the early (4 h) and late (24 h) metamorphic stages using the Illumina HiSeq2000 platform. Various genes that function in development, the immune response and neurogenesis showed differential expression levels during metamorphosis. In situ hybridization of 23 genes that participate in the Wnt, BMP, Notch, and Hedgehog signaling pathways revealed their regulatory roles in the development of the lophophore and the ancestrula digestive tract. Our findings support the hypothesis that developmental precursors of the lophophore and the ancestrula digestive tract are pre-patterned by the differential expression of key developmental genes according to their fate. This study provides a foundation to better understand the developmental divergence and/or convergence among developmental precursors of the lophophore of bryozoans, branchiopods and phoronids.
Collapse
|
19
|
Duan CX, Li DD, Sun SL, Wang XM, Zhu ZD. Rapid development of microsatellite markers for Callosobruchus chinensis using Illumina paired-end sequencing. PLoS One 2014; 9:e95458. [PMID: 24835431 PMCID: PMC4023940 DOI: 10.1371/journal.pone.0095458] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 03/27/2014] [Indexed: 11/26/2022] Open
Abstract
Background The adzuki bean weevil, Callosobruchus chinensis L., is one of the most destructive pests of stored legume seeds such as mungbean, cowpea, and adzuki bean, which usually cause considerable loss in the quantity and quality of stored seeds during transportation and storage. However, a lack of genetic information of this pest results in a series of genetic questions remain largely unknown, including population genetic structure, kinship, biotype abundance, and so on. Co-dominant microsatellite markers offer a great resolving power to determine these events. Here, we report rapid microsatellite isolation from C. chinensis via high-throughput sequencing. Principal Findings In this study, 94,560,852 quality-filtered and trimmed reads were obtained for the assembly of genome using Illumina paired-end sequencing technology. In total, the genome with total length of 497,124,785 bp, comprising 403,113 high quality contigs was generated with de novo assembly. More than 6800 SSR loci were detected and a suit of 6303 primer pair sequences were designed and 500 of them were randomly selected for validation. Of these, 196 pair of primers, i.e. 39.2%, produced reproducible amplicons that were polymorphic among 8 C. chinensis genotypes collected from different geographical regions. Twenty out of 196 polymorphic SSR markers were used to analyze the genetic diversity of 18 C. chinensis populations. The results showed the twenty SSR loci were highly polymorphic among these populations. Conclusions This study presents a first report of genome sequencing and de novo assembly for C. chinensis and demonstrates the feasibility of generating a large scale of sequence information and SSR loci isolation by Illumina paired-end sequencing. Our results provide a valuable resource for C. chinensis research. These novel markers are valuable for future genetic mapping, trait association, genetic structure and kinship among C. chinensis.
Collapse
Affiliation(s)
- Can-xing Duan
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Dan-dan Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Su-li Sun
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Xiao-ming Wang
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Zhen-dong Zhu
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
- * E-mail:
| |
Collapse
|
20
|
Chen ZF, Zhang H, Wang H, Matsumura K, Wong YH, Ravasi T, Qian PY. Quantitative proteomics study of larval settlement in the Barnacle Balanus amphitrite. PLoS One 2014; 9:e88744. [PMID: 24551147 PMCID: PMC3923807 DOI: 10.1371/journal.pone.0088744] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 01/08/2014] [Indexed: 01/06/2023] Open
Abstract
Barnacles are major sessile components of the intertidal areas worldwide, and also one of the most dominant fouling organisms in fouling communities. Larval settlement has a crucial ecological effect not only on the distribution of the barnacle population but also intertidal community structures. However, the molecular mechanisms involved in the transition process from the larval to the juvenile stage remain largely unclear. In this study, we carried out comparative proteomic profiles of stage II nauplii, stage VI nauplii, cyprids, and juveniles of the barnacle Balanus amphitrite using label-free quantitative proteomics, followed by the measurement of the gene expression levels of candidate proteins. More than 700 proteins were identified at each stage; 80 were significantly up-regulated in cyprids and 95 in juveniles vs other stages. Specifically, proteins involved in energy and metabolism, the nervous system and signal transduction were significantly up-regulated in cyprids, whereas proteins involved in cytoskeletal remodeling, transcription and translation, cell proliferation and differentiation, and biomineralization were up-regulated in juveniles, consistent with changes associated with larval metamorphosis and tissue remodeling in juveniles. These findings provided molecular evidence for the morphological, physiological and biological changes that occur during the transition process from the larval to the juvenile stages in B. amphitrite.
Collapse
Affiliation(s)
- Zhang-Fan Chen
- KAUST Global Collaborative Research Program, Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Huoming Zhang
- Bioscience Core Laboratory, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Hao Wang
- KAUST Global Collaborative Research Program, Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Kiyotaka Matsumura
- KAUST Global Collaborative Research Program, Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Yue Him Wong
- KAUST Global Collaborative Research Program, Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Timothy Ravasi
- Integrative Systems Biology Lab, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Pei-Yuan Qian
- KAUST Global Collaborative Research Program, Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| |
Collapse
|
21
|
Fehlauer-Ale KH, Mackie JA, Lim-Fong GE, Ale E, Pie MR, Waeschenbach A. Cryptic species in the cosmopolitanBugula neritinacomplex (Bryozoa, Cheilostomata). ZOOL SCR 2013. [DOI: 10.1111/zsc.12042] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Karin H. Fehlauer-Ale
- Laboratório de Sistemática e Evolução de Bryozoa; Centro de Biologia Marinha; Universidade de São Paulo; Rodovia Manoel Hypólito do Rego, km131,5 Praia do Cabelo Gordo CEP 11600-000 São Sebastião São Paulo Brazil
| | - Joshua A. Mackie
- Biological Sciences; San Jose State University; One Washington Square San Jose California 95192 USA
| | - Grace E. Lim-Fong
- Department of Biology; Randolph-Macon College; 304 Caroline Street Ashland Virginia 23005 USA
| | - Ezequiel Ale
- Departamento de Genética e Biologia Evolutiva; Instituto de Biociências da Universidade de São Paulo; Rua do Matão, 277 CEP 05508-090 São Paulo Brazil
| | - Marcio R. Pie
- Laboratório de Dinâmica Evolutiva e Sistemas Complexos; Departamento de Zoologia; Universidade Federal do Paraná; Caixa Postal 19020 CEP 81531-980 Curitiba Paraná Brazil
| | - Andrea Waeschenbach
- Department of Life Sciences; The Natural History Museum; Cromwell Road London SW7 5BD UK
| |
Collapse
|
22
|
Ouyang LL, Chen SH, Li Y, Zhou ZG. Transcriptome analysis reveals unique C4-like photosynthesis and oil body formation in an arachidonic acid-rich microalga Myrmecia incisa Reisigl H4301. BMC Genomics 2013; 14:396. [PMID: 23759028 PMCID: PMC3686703 DOI: 10.1186/1471-2164-14-396] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 06/06/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Arachidonic acid (ArA) is important for human health because it is one of the major components of mammalian brain membrane phospholipids. The interest in ArA inspired the search for a new sustainable source, and the green microalga Myrmecia incisa Reisigl H4301 has been found a potential ArA-producer due to a high content of intracellular ArA. To gain more molecular information about metabolism pathways, including the biosynthesis of ArA in the non-model microalga, a transcriptomic analysis was performed. RESULTS The 454 pyrosequencing generated 371,740 high-quality reads, which were assembled into 51,908 unique sequences consisting of 22,749 contigs and 29,159 singletons. A total of 11,873 unique sequences were annotated through BLAST analysis, and 3,733 were assigned to Gene Ontology (GO) categories. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis uncovered a C4-like photosynthesis pathway in M. incisa. The biosynthesis pathways of lipid particularly those of ArA and triacylglycerol (TAG) were analyzed in detail, and TAG was proposed to be accumulated in oil bodies in the cytosol with the help of caleosin or oil globule-associated proteins. In addition, the carotenoid biosynthesis pathways are discussed. CONCLUSION This transcriptomic analysis of M. incisa enabled a global understanding of mechanisms involved in photosynthesis, de novo biosynthesis of ArA, metabolism of carotenoids, and accumulation of TAG in M. incisa. These findings provided a molecular basis for the research and possibly economic exploitation of this ArA-rich microalga.
Collapse
Affiliation(s)
- Long-Ling Ouyang
- College of Aqua-life Sciences and Technology, Shanghai Ocean University, 999 Hucheng Huan Road, Pudong New District, Shanghai 201306, China
| | - Si-Hong Chen
- College of Aqua-life Sciences and Technology, Shanghai Ocean University, 999 Hucheng Huan Road, Pudong New District, Shanghai 201306, China
| | - Yan Li
- College of Aqua-life Sciences and Technology, Shanghai Ocean University, 999 Hucheng Huan Road, Pudong New District, Shanghai 201306, China
| | - Zhi-Gang Zhou
- College of Aqua-life Sciences and Technology, Shanghai Ocean University, 999 Hucheng Huan Road, Pudong New District, Shanghai 201306, China
| |
Collapse
|
23
|
Sedeek KEM, Qi W, Schauer MA, Gupta AK, Poveda L, Xu S, Liu ZJ, Grossniklaus U, Schiestl FP, Schlüter PM. Transcriptome and proteome data reveal candidate genes for pollinator attraction in sexually deceptive orchids. PLoS One 2013; 8:e64621. [PMID: 23734209 PMCID: PMC3667177 DOI: 10.1371/journal.pone.0064621] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 04/17/2013] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Sexually deceptive orchids of the genus Ophrys mimic the mating signals of their pollinator females to attract males as pollinators. This mode of pollination is highly specific and leads to strong reproductive isolation between species. This study aims to identify candidate genes responsible for pollinator attraction and reproductive isolation between three closely related species, O. exaltata, O. sphegodes and O. garganica. Floral traits such as odour, colour and morphology are necessary for successful pollinator attraction. In particular, different odour hydrocarbon profiles have been linked to differences in specific pollinator attraction among these species. Therefore, the identification of genes involved in these traits is important for understanding the molecular basis of pollinator attraction by sexually deceptive orchids. RESULTS We have created floral reference transcriptomes and proteomes for these three Ophrys species using a combination of next-generation sequencing (454 and Solexa), Sanger sequencing, and shotgun proteomics (tandem mass spectrometry). In total, 121 917 unique transcripts and 3531 proteins were identified. This represents the first orchid proteome and transcriptome from the orchid subfamily Orchidoideae. Proteome data revealed proteins corresponding to 2644 transcripts and 887 proteins not observed in the transcriptome. Candidate genes for hydrocarbon and anthocyanin biosynthesis were represented by 156 and 61 unique transcripts in 20 and 7 genes classes, respectively. Moreover, transcription factors putatively involved in the regulation of flower odour, colour and morphology were annotated, including Myb, MADS and TCP factors. CONCLUSION Our comprehensive data set generated by combining transcriptome and proteome technologies allowed identification of candidate genes for pollinator attraction and reproductive isolation among sexually deceptive orchids. This includes genes for hydrocarbon and anthocyanin biosynthesis and regulation, and the development of floral morphology. These data will serve as an invaluable resource for research in orchid floral biology, enabling studies into the molecular mechanisms of pollinator attraction and speciation.
Collapse
Affiliation(s)
- Khalid E M Sedeek
- Institute of Systematic Botany & Zürich-Basel Plant Science Centre, University of Zurich, Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Fu N, Wang Q, Shen HL. De novo assembly, gene annotation and marker development using Illumina paired-end transcriptome sequences in celery (Apium graveolens L.). PLoS One 2013; 8:e57686. [PMID: 23469050 PMCID: PMC3585167 DOI: 10.1371/journal.pone.0057686] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 01/23/2013] [Indexed: 12/11/2022] Open
Abstract
Background Celery is an increasing popular vegetable species, but limited transcriptome and genomic data hinder the research to it. In addition, a lack of celery molecular markers limits the process of molecular genetic breeding. High-throughput transcriptome sequencing is an efficient method to generate a large transcriptome sequence dataset for gene discovery, molecular marker development and marker-assisted selection breeding. Principal Findings Celery transcriptomes from four tissues were sequenced using Illumina paired-end sequencing technology. De novo assembling was performed to generate a collection of 42,280 unigenes (average length of 502.6 bp) that represent the first transcriptome of the species. 78.43% and 48.93% of the unigenes had significant similarity with proteins in the National Center for Biotechnology Information (NCBI) non-redundant protein database (Nr) and Swiss-Prot database respectively, and 10,473 (24.77%) unigenes were assigned to Clusters of Orthologous Groups (COG). 21,126 (49.97%) unigenes harboring Interpro domains were annotated, in which 15,409 (36.45%) were assigned to Gene Ontology(GO) categories. Additionally, 7,478 unigenes were mapped onto 228 pathways using the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG). Large numbers of simple sequence repeats (SSRs) were indentified, and then the rate of successful amplication and polymorphism were investigated among 31 celery accessions. Conclusions This study demonstrates the feasibility of generating a large scale of sequence information by Illumina paired-end sequencing and efficient assembling. Our results provide a valuable resource for celery research. The developed molecular markers are the foundation of further genetic linkage analysis and gene localization, and they will be essential to accelerate the process of breeding.
Collapse
Affiliation(s)
- Nan Fu
- College of Agriculture and Biotechnology, China Agricultural University, Beijing, China
| | - Qian Wang
- College of Agriculture and Biotechnology, China Agricultural University, Beijing, China
| | - Huo-Lin Shen
- College of Agriculture and Biotechnology, China Agricultural University, Beijing, China
- * E-mail:
| |
Collapse
|
25
|
Abstract
Various antifouling (AF) coatings have been developed to protect submerged surfaces by deterring the settlement of the colonizing stages of fouling organisms. A review of the literature shows that effective AF compounds with specific targets are ones often considered non-toxic. Such compounds act variously on ion channels, quorum sensing systems, neurotransmitters, production/release of adhesive, and specific enzymes that regulate energy production or primary metabolism. In contrast, AF compounds with general targets may or may not act through toxic mechanisms. These compounds affect a variety of biological activities including algal photosynthesis, energy production, stress responses, genotoxic damage, immunosuppressed protein expression, oxidation, neurotransmission, surface chemistry, the formation of biofilms, and adhesive production/release. Among all the targets, adhesive production/release is the most common, possibly due to a more extensive research effort in this area. Overall, the specific molecular targets and the molecular mechanisms of most AF compounds have not been identified. Thus, the information available is insufficient to draw firm conclusions about the types of molecular targets to be used as sensitive biomarkers for future design and screening of compounds with AF potential. In this review, the relevant advantages and disadvantages of the molecular tools available for studying the molecular targets of AF compounds are highlighted briefly and the molecular mechanisms of the AF compounds, which are largely a source of speculation in the literature, are discussed.
Collapse
Affiliation(s)
- Pei-Yuan Qian
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, HKSAR, China.
| | | | | |
Collapse
|
26
|
Slattery M, Ankisetty S, Corrales J, Marsh-Hunkin KE, Gochfeld DJ, Willett KL, Rimoldi JM. Marine proteomics: a critical assessment of an emerging technology. JOURNAL OF NATURAL PRODUCTS 2012; 75:1833-1877. [PMID: 23009278 DOI: 10.1021/np300366a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The application of proteomics to marine sciences has increased in recent years because the proteome represents the interface between genotypic and phenotypic variability and, thus, corresponds to the broadest possible biomarker for eco-physiological responses and adaptations. Likewise, proteomics can provide important functional information regarding biosynthetic pathways, as well as insights into mechanism of action, of novel marine natural products. The goal of this review is to (1) explore the application of proteomics methodologies to marine systems, (2) assess the technical approaches that have been used, and (3) evaluate the pros and cons of this proteomic research, with the intent of providing a critical analysis of its future roles in marine sciences. To date, proteomics techniques have been utilized to investigate marine microbe, plant, invertebrate, and vertebrate physiology, developmental biology, seafood safety, susceptibility to disease, and responses to environmental change. However, marine proteomics studies often suffer from poor experimental design, sample processing/optimization difficulties, and data analysis/interpretation issues. Moreover, a major limitation is the lack of available annotated genomes and proteomes for most marine organisms, including several "model species". Even with these challenges in mind, there is no doubt that marine proteomics is a rapidly expanding and powerful integrative molecular research tool from which our knowledge of the marine environment, and the natural products from this resource, will be significantly expanded.
Collapse
Affiliation(s)
- Marc Slattery
- Department of Pharmacognosy, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Sun J, Wang M, Wang H, Zhang H, Zhang X, Thiyagarajan V, Qian PY, Qiu JW. De novo
assembly of the transcriptome of an invasive snail and its multiple ecological applications. Mol Ecol Resour 2012; 12:1133-44. [PMID: 22994926 DOI: 10.1111/1755-0998.12014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 08/08/2012] [Accepted: 08/14/2012] [Indexed: 11/28/2022]
Affiliation(s)
- J. Sun
- Department of Biology Hong Kong Baptist University Waterloo Road Hong Kong China
| | - M. Wang
- Department of Biology Hong Kong Baptist University Waterloo Road Hong Kong China
| | - H. Wang
- Division of Life Science Section of Marine Ecology and Biotechnology, Clear Water Bay Road The Hong Kong University of Science and Technology Hong Kong China
| | - H. Zhang
- Department of Biology Hong Kong Baptist University Waterloo Road Hong Kong China
| | - X. Zhang
- Laboratory of Disease Genomics and Individualized Medicine Beijing Institute of Genomics Chinese Academy of Sciences 7 Beitucheng West Road, Beijing 100029 China
| | - V. Thiyagarajan
- School of Biological Sciences and Swire Marine Institute The University of Hong Kong Pok Fu Lam Road Hong Kong China
| | - P. Y. Qian
- Division of Life Science Section of Marine Ecology and Biotechnology, Clear Water Bay Road The Hong Kong University of Science and Technology Hong Kong China
| | - J. W. Qiu
- Department of Biology Hong Kong Baptist University Waterloo Road Hong Kong China
| |
Collapse
|
28
|
Chandramouli KH, Reish D, Qian PY. Gel-based and gel-free identification of proteins and phosphopeptides during egg-to-larva transition in polychaete Neanthes arenaceodentata. PLoS One 2012; 7:e38814. [PMID: 22719953 PMCID: PMC3376139 DOI: 10.1371/journal.pone.0038814] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 05/10/2012] [Indexed: 12/15/2022] Open
Abstract
The polychaete Neanthes arenaceodentata- is cosmopolitan in distribution-, has been used as a laboratory test animal. Life history of this species has several unique features; the female dies after spawning and the male incubates the fertilized eggs through the 21-segmented stage. The larvae leave the tube and commence feeding. Changes in protein abundance and phosphorylation were examined during early development of N. arenaceodentata. A gel-based approach and gel-free enrichment of phosphopeptides coupled with mass spectrometry were used to identify proteins and phosphopeptides in fertilized ova and larval stages. Patterns of proteins and phosphoproteins changed from fertilized ova to larval stages. Twelve proteins occurred in phosphorylated form and nine as stage specific proteins. Cytoskeletal proteins have exhibited differential phosphorylation from ova to larval stages; whereas, other proteins exhibited stage-specific phosphorylation patterns. Ten phosphopeptides were identified that showed phosphorylation sites on serine or threonine residues. Sixty percent of the identified proteins were related to structural reorganization and others with protein synthesis, stress response and attachment. The abundance and distribution of two cytoskeleton proteins were examined further by 2-DE Western blot analysis. This is the first report on changes in protein expression and phosphorylation sites at Thr/Ser in early development of N. arenaceodentata. The 2-DE proteome maps and identified phosphoproteins contributes toward understanding the state of fertilized ova and early larval stages and serves as a basis for further studies on proteomics changes under different developmental conditions in this and other polychaete species.
Collapse
Affiliation(s)
| | - Donald Reish
- Department of Biological Sciences, California State University, Long Beach, California, United States of America
- * E-mail: (DR); (PYQ)
| | - Pei-Yuan Qian
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
- * E-mail: (DR); (PYQ)
| |
Collapse
|
29
|
Butenolide inhibits marine fouling by altering the primary metabolism of three target organisms. ACS Chem Biol 2012; 7:1049-58. [PMID: 22458453 DOI: 10.1021/cb200545s] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Butenolide is a very promising antifouling compound that inhibits ship hull fouling by a variety of marine organisms, but its antifouling mechanism was previously unknown. Here we report the first study of butenolide's molecular targets in three representative fouling organisms. In the barnacle Balanus (=Amphibalanus) amphitrite, butenolide bound to acetyl-CoA acetyltransferase 1 (ACAT1), which is involved in ketone body metabolism. Both the substrate and the product of ACAT1 increased larval settlement under butenolide treatment, suggesting its functional involvement. In the bryozoan Bugula neritina, butenolide bound to very long chain acyl-CoA dehydrogenase (ACADVL), actin, and glutathione S-transferases (GSTs). ACADVL is the first enzyme in the very long chain fatty acid β-oxidation pathway. The inhibition of this primary pathway for energy production in larvae by butenolide was supported by the finding that alternative energy sources (acetoacetate and pyruvate) increased larval attachment under butenolide treatment. In marine bacterium Vibrio sp. UST020129-010, butenolide bound to succinyl-CoA synthetase β subunit (SCSβ) and inhibited bacterial growth. ACAT1, ACADVL, and SCSβ are all involved in primary metabolism for energy production. These findings suggest that butenolide inhibits fouling by influencing the primary metabolism of target organisms.
Collapse
|
30
|
Wong YH, Wang H, Ravasi T, Qian PY. Involvement of Wnt signaling pathways in the metamorphosis of the bryozoan Bugula neritina. PLoS One 2012; 7:e33323. [PMID: 22448242 PMCID: PMC3308966 DOI: 10.1371/journal.pone.0033323] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 02/07/2012] [Indexed: 11/18/2022] Open
Abstract
In this study, we analyzed the metamorphosis of the marine bryozoan Bugula neritina. We observed the morphogenesis of the ancestrula. We defined three distinct pre-ancestrula stages based on the anatomy of the developing polypide and the overall morphology of pre-ancestrula. We then used an annotation based enrichment analysis tool to analyze the B. neritina transcriptome and identified over-representation of genes related to Wnt signaling pathways, suggesting its involvement in metamorphosis. Finally, we studied the temporal-spatial gene expression studies of several Wnt pathway genes. We found that one of the Wnt ligand, BnWnt10, was expressed spatially opposite to the Wnt antagonist BnsFRP within the blastemas, which is the presumptive polypide. Down-stream components of the canonical Wnt signaling pathway were exclusively expressed in the blastemas. Bnβcatenin and BnFz5/8 were exclusively expressed in the blastemas throughout the metamorphosis. Based on the genes expression patterns, we propose that BnWnt10 and BnsFRP may relate to the patterning of the polypide, in which the two genes served as positional signals and contributed to the polarization of the blastemas. Another Wnt ligand, BnWnt6, was expressed in the apical part of the pre-ancestrula epidermis. Overall, our findings suggest that the Wnt signaling pathway may be important to the pattern formation of polypide and the development of epidermis.
Collapse
Affiliation(s)
- Yue Him Wong
- KAUST Global Collaborative Research Program, Division of Life Sciences, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Hao Wang
- KAUST Global Collaborative Research Program, Division of Life Sciences, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Timothy Ravasi
- Department of Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, The Kingdom of Saudi Arabia
| | - Pei-Yuan Qian
- KAUST Global Collaborative Research Program, Division of Life Sciences, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| |
Collapse
|
31
|
Blythe MJ, Malla S, Everall R, Shih YH, Lemay V, Moreton J, Wilson R, Aboobaker AA. High through-put sequencing of the Parhyale hawaiensis mRNAs and microRNAs to aid comparative developmental studies. PLoS One 2012; 7:e33784. [PMID: 22448274 PMCID: PMC3309017 DOI: 10.1371/journal.pone.0033784] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 02/17/2012] [Indexed: 12/19/2022] Open
Abstract
Understanding the genetic and evolutionary basis of animal morphological diversity will require comparative developmental studies that use new model organisms. This necessitates development of tools for the study of genetics and also the generation of sequence information of the organism to be studied. The development of next generation sequencing technology has enabled quick and cost effective generation of sequence information. Parhyale hawaiensis has emerged as a model organism of choice due to the development of advanced molecular tools, thus P. hawaiensis genetic information will help drive functional studies in this organism. Here we present a transcriptome and miRNA collection generated using next generation sequencing platforms. We generated approximately 1.7 million reads from a P. hawaiensis cDNA library constructed from embryos up to the germ band stage. These reads were assembled into a dataset comprising 163,501 transcripts. Using the combined annotation of Annot8r and pfam2go, Gene Ontology classifications was assigned to 20,597 transcripts. Annot8r was used to provide KEGG orthology to our transcript dataset. A total of 25,292 KEGG pathway assignments were defined and further confirmed with reciprocal blast against the NCBI nr protein database. This has identified many P. hawaiensis gene orthologs of key conserved signalling pathways involved in development. We also generated small RNA sequences from P. hawaiensis, identifying 55 conserved miRNAs. Sequenced small RNAs that were not annotated by stringent comparison to mirBase were used to search the Daphnia pulex for possible novel miRNAs. Using a conservative approach, we have identified 51 possible miRNA candidates conserved in the Daphnia pulex genome, which could be potential crustacean/arthropod specific miRNAs. Our study presents gene and miRNA discovery in a new model organism that does not have a sequenced genome. The data provided by our work will be valuable for the P. hawaiensis community as well as the wider evolutionary developmental biology community.
Collapse
Affiliation(s)
- Martin J. Blythe
- Deep Seq, Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Sunir Malla
- Deep Seq, Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Richard Everall
- Evolutionary Developmental Biology Laboratory, Centre for Genetics and Genomics, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Yu-huan Shih
- Evolutionary Developmental Biology Laboratory, Centre for Genetics and Genomics, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Virginie Lemay
- Evolutionary Developmental Biology Laboratory, Centre for Genetics and Genomics, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Joanna Moreton
- Deep Seq, Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Raymond Wilson
- Deep Seq, Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - A. Aziz Aboobaker
- Deep Seq, Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
- Evolutionary Developmental Biology Laboratory, Centre for Genetics and Genomics, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
- * E-mail:
| |
Collapse
|
32
|
Du H, Bao Z, Hou R, Wang S, Su H, Yan J, Tian M, Li Y, Wei W, Lu W, Hu X, Wang S, Hu J. Transcriptome sequencing and characterization for the sea cucumber Apostichopus japonicus (Selenka, 1867). PLoS One 2012; 7:e33311. [PMID: 22428017 PMCID: PMC3299772 DOI: 10.1371/journal.pone.0033311] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 02/07/2012] [Indexed: 01/01/2023] Open
Abstract
Background Sea cucumbers are a special group of marine invertebrates. They occupy a taxonomic position that is believed to be important for understanding the origin and evolution of deuterostomes. Some of them such as Apostichopus japonicus represent commercially important aquaculture species in Asian countries. Many efforts have been devoted to increasing the number of expressed sequence tags (ESTs) for A. japonicus, but a comprehensive characterization of its transcriptome remains lacking. Here, we performed the large-scale transcriptome profiling and characterization by pyrosequencing diverse cDNA libraries from A. japonicus. Results In total, 1,061,078 reads were obtained by 454 sequencing of eight cDNA libraries representing different developmental stages and adult tissues in A. japonicus. These reads were assembled into 29,666 isotigs, which were further clustered into 21,071 isogroups. Nearly 40% of the isogroups showed significant matches to known proteins based on sequence similarity. Gene ontology (GO) and KEGG pathway analyses recovered diverse biological functions and processes. Candidate genes that were potentially involved in aestivation were identified. Transcriptome comparison with the sea urchin Strongylocentrotus purpuratus revealed similar patterns of GO term representation. In addition, 4,882 putative orthologous genes were identified, of which 202 were not present in the non-echinoderm organisms. More than 700 simple sequence repeats (SSRs) and 54,000 single nucleotide polymorphisms (SNPs) were detected in the A. japonicus transcriptome. Conclusion Pyrosequencing was proven to be efficient in rapidly identifying a large set of genes for the sea cucumber A. japonicus. Through the large-scale transcriptome sequencing as well as public EST data integration, we performed a comprehensive characterization of the A. japonicus transcriptome and identified candidate aestivation-related genes. A large number of potential genetic markers were also identified from the A. japonicus transcriptome. This transcriptome resource would lay an important foundation for future genetic or genomic studies on this species.
Collapse
Affiliation(s)
- Huixia Du
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zhenmin Bao
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Rui Hou
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Shan Wang
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Hailin Su
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jingjing Yan
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Meilin Tian
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yan Li
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Beijing Genomics Institute at Shenzhen, Shenzhen, China
| | - Wen Wei
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Wei Lu
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiaoli Hu
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Shi Wang
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- * E-mail: (SW); (JH)
| | - Jingjie Hu
- Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- * E-mail: (SW); (JH)
| |
Collapse
|
33
|
Diz AP, Martínez-Fernández M, Rolán-Alvarez E. Proteomics in evolutionary ecology: linking the genotype with the phenotype. Mol Ecol 2012; 21:1060-80. [PMID: 22268916 DOI: 10.1111/j.1365-294x.2011.05426.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The study of the proteome (proteomics), which includes the dynamics of protein expression, regulation, interactions and its function, has played a less prominent role in evolutionary and ecological investigations in comparison with the study of the genome and transcriptome. There are, however, a number of arguments suggesting that this situation should change. First, the proteome is closer to the phenotype than the genome or the transcriptome, and as such may be more directly responsive to natural selection, and thus closely linked to adaptation. Second, there is evidence of a low correlation between protein and transcript expression levels across genes in many different organisms. Finally, there have been some recent important technological improvements in proteomics methods that make them feasible, practical and useful to address a wide range of evolutionary questions even in nonmodel organisms. The different proteomic methods, their limitations and problems when interpreting empirical data are described and discussed. In addition, the proteomic literature pertaining to evolutionary ecology is reviewed with examples, and potential applications of proteomics in a variety of evolutionary contexts are outlined. New proteomic research trends such as the study of posttranslational modifications and protein-protein interactions, as well as the combined use of the different -omics approaches, are discussed in relation to the development of a more functional and integrated perspective, needed for achieving a more comprehensive knowledge of evolutionary change.
Collapse
Affiliation(s)
- Angel P Diz
- Departamento de Bioquímica, Genética e Inmunología, Facultad de Biología, Universidade de Vigo, Vigo, Spain
| | | | | |
Collapse
|
34
|
Blank M, Mikkat S, Verleih M, Bastrop R. Proteomic Comparison of Two Invasive Polychaete Species and Their Naturally Occurring F1-hybrids. J Proteome Res 2012; 11:897-905. [DOI: 10.1021/pr200710z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Miriam Blank
- Biozentrum Grindel und Zoologisches Museum, Universität Hamburg , Martin-Luther-King-Platz 3, 20146 Hamburg, Germany.
| | | | | | | |
Collapse
|
35
|
Chen ZF, Matsumura K, Wang H, Arellano SM, Yan X, Alam I, Archer JAC, Bajic VB, Qian PY. Toward an understanding of the molecular mechanisms of barnacle larval settlement: a comparative transcriptomic approach. PLoS One 2011; 6:e22913. [PMID: 21829555 PMCID: PMC3146488 DOI: 10.1371/journal.pone.0022913] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 07/01/2011] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The barnacle Balanus amphitrite is a globally distributed biofouler and a model species in intertidal ecology and larval settlement studies. However, a lack of genomic information has hindered the comprehensive elucidation of the molecular mechanisms coordinating its larval settlement. The pyrosequencing-based transcriptomic approach is thought to be useful to identify key molecular changes during larval settlement. METHODOLOGY AND PRINCIPAL FINDINGS Using 454 pyrosequencing, we collected totally 630,845 reads including 215,308 from the larval stages and 415,537 from the adults; 23,451 contigs were generated while 77,785 remained as singletons. We annotated 31,720 of the 92,322 predicted open reading frames, which matched hits in the NCBI NR database, and identified 7,954 putative genes that were differentially expressed between the larval and adult stages. Of these, several genes were further characterized with quantitative real-time PCR and in situ hybridization, revealing some key findings: 1) vitellogenin was uniquely expressed in late nauplius stage, suggesting it may be an energy source for the subsequent non-feeding cyprid stage; 2) the locations of mannose receptors suggested they may be involved in the sensory system of cyprids; 3) 20 kDa-cement protein homologues were expressed in the cyprid cement gland and probably function during attachment; and 4) receptor tyrosine kinases were expressed higher in cyprid stage and may be involved in signal perception during larval settlement. CONCLUSIONS Our results provide not only the basis of several new hypotheses about gene functions during larval settlement, but also the availability of this large transcriptome dataset in B. amphitrite for further exploration of larval settlement and developmental pathways in this important marine species.
Collapse
Affiliation(s)
- Zhang-Fan Chen
- KAUST Global Collaborative Research Program, Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Kiyotaka Matsumura
- KAUST Global Collaborative Research Program, Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Hao Wang
- KAUST Global Collaborative Research Program, Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Shawn M. Arellano
- KAUST Global Collaborative Research Program, Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
| | - Xingcheng Yan
- KAUST Global Collaborative Research Program, Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Intikhab Alam
- Red Sea Laboratory for Integrative Systems Biology, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - John A. C. Archer
- Red Sea Laboratory for Integrative Systems Biology, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Vladimir B. Bajic
- Red Sea Laboratory for Integrative Systems Biology, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Pei-Yuan Qian
- KAUST Global Collaborative Research Program, Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| |
Collapse
|
36
|
Chandramouli KH, Mok FSY, Wang H, Qian PY. Phosphoproteome analysis during larval development and metamorphosis in the spionid polychaete Pseudopolydora vexillosa. BMC DEVELOPMENTAL BIOLOGY 2011; 11:31. [PMID: 21612608 PMCID: PMC3115903 DOI: 10.1186/1471-213x-11-31] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 05/25/2011] [Indexed: 01/04/2023]
Abstract
Background The metamorphosis of the spionid polychaete Pseudopolydora vexillosa includes spontaneous settlement onto soft-bottom habitats and morphogenesis that can be completed in a very short time. A previous study on the total changes to the proteome during the various developmental stages of P. vexillosa suggested that little or no de novo protein synthesis occurs during metamorphosis. In this study, we used multicolor fluorescence detection of proteins in 2-D gels for differential analysis of proteins and phosphoproteins to reveal the dynamics of post-translational modification proteins in this species. A combination of affinity chromatography, 2D-PAGE, and mass spectrometry was used to identify the phosphoproteins in pre-competent larvae, competent larvae, and newly metamorphosed juveniles. Results We reproducibly detected 210, 492, and 172 phosphoproteins in pre-competent larvae, competent larvae, and newly metamorphosed juveniles, respectively. The highest percentage of phosphorylation was observed during the competent larval stage. About 64 stage-specific phosphoprotein spots were detected in the competent stage, and 32 phosphoproteins were found to be significantly differentially expressed in the three stages. We identified 38 phosphoproteins, 10 of which were differentially expressed during metamorphosis. These phosphoproteins belonged to six categories of biological processes: (1) development, (2) cell differentiation and integrity, (3) transcription and translation, (4) metabolism, (5) protein-protein interaction and proteolysis, and (6) receptors and enzymes. Conclusion This is the first study to report changes in phosphoprotein expression patterns during the metamorphosis of the marine polychaete P. vexillosa. The higher degree of phosphorylation during the process of attaining competence to settle and metamorphose may be due to fast morphological transitions regulated by various mechanisms. Our data are consistent with previous studies showing a high percentage of phosphorylation during competency in the barnacle Balanus amphitrite and the bryozoan Bugula neritina. The identified phosphoproteins may play an important role during metamorphosis, and further studies on the location and functions of important proteins during metamorphosis are warranted.
Collapse
Affiliation(s)
- Kondethimmanahalli H Chandramouli
- KAUST Global Collaborative Research Program, Division of Life Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | | | | | | |
Collapse
|
37
|
Rismani-Yazdi H, Haznedaroglu BZ, Bibby K, Peccia J. Transcriptome sequencing and annotation of the microalgae Dunaliella tertiolecta: pathway description and gene discovery for production of next-generation biofuels. BMC Genomics 2011; 12:148. [PMID: 21401935 PMCID: PMC3061936 DOI: 10.1186/1471-2164-12-148] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 03/14/2011] [Indexed: 11/28/2022] Open
Abstract
Background Biodiesel or ethanol derived from lipids or starch produced by microalgae may overcome many of the sustainability challenges previously ascribed to petroleum-based fuels and first generation plant-based biofuels. The paucity of microalgae genome sequences, however, limits gene-based biofuel feedstock optimization studies. Here we describe the sequencing and de novo transcriptome assembly for the non-model microalgae species, Dunaliella tertiolecta, and identify pathways and genes of importance related to biofuel production. Results Next generation DNA pyrosequencing technology applied to D. tertiolecta transcripts produced 1,363,336 high quality reads with an average length of 400 bases. Following quality and size trimming, ~ 45% of the high quality reads were assembled into 33,307 isotigs with a 31-fold coverage and 376,482 singletons. Assembled sequences and singletons were subjected to BLAST similarity searches and annotated with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) orthology (KO) identifiers. These analyses identified the majority of lipid and starch biosynthesis and catabolism pathways in D. tertiolecta. Conclusions The construction of metabolic pathways involved in the biosynthesis and catabolism of fatty acids, triacylglycrols, and starch in D. tertiolecta as well as the assembled transcriptome provide a foundation for the molecular genetics and functional genomics required to direct metabolic engineering efforts that seek to enhance the quantity and character of microalgae-based biofuel feedstock.
Collapse
Affiliation(s)
- Hamid Rismani-Yazdi
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511, USA
| | | | | | | |
Collapse
|
38
|
Kumar S, Blaxter ML. Comparing de novo assemblers for 454 transcriptome data. BMC Genomics 2010; 11:571. [PMID: 20950480 PMCID: PMC3091720 DOI: 10.1186/1471-2164-11-571] [Citation(s) in RCA: 214] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 10/16/2010] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Roche 454 pyrosequencing has become a method of choice for generating transcriptome data from non-model organisms. Once the tens to hundreds of thousands of short (250-450 base) reads have been produced, it is important to correctly assemble these to estimate the sequence of all the transcripts. Most transcriptome assembly projects use only one program for assembling 454 pyrosequencing reads, but there is no evidence that the programs used to date are optimal. We have carried out a systematic comparison of five assemblers (CAP3, MIRA, Newbler, SeqMan and CLC) to establish best practices for transcriptome assemblies, using a new dataset from the parasitic nematode Litomosoides sigmodontis. RESULTS Although no single assembler performed best on all our criteria, Newbler 2.5 gave longer contigs, better alignments to some reference sequences, and was fast and easy to use. SeqMan assemblies performed best on the criterion of recapitulating known transcripts, and had more novel sequence than the other assemblers, but generated an excess of small, redundant contigs. The remaining assemblers all performed almost as well, with the exception of Newbler 2.3 (the version currently used by most assembly projects), which generated assemblies that had significantly lower total length. As different assemblers use different underlying algorithms to generate contigs, we also explored merging of assemblies and found that the merged datasets not only aligned better to reference sequences than individual assemblies, but were also more consistent in the number and size of contigs. CONCLUSIONS Transcriptome assemblies are smaller than genome assemblies and thus should be more computationally tractable, but are often harder because individual contigs can have highly variable read coverage. Comparing single assemblers, Newbler 2.5 performed best on our trial data set, but other assemblers were closely comparable. Combining differently optimal assemblies from different programs however gave a more credible final product, and this strategy is recommended.
Collapse
Affiliation(s)
- Sujai Kumar
- Institute of Evolutionary Biology, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK
| | - Mark L Blaxter
- Institute of Evolutionary Biology, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK
| |
Collapse
|
39
|
Qian PY, Wong YH, Zhang Y. Changes in the proteome and phosphoproteome expression in the bryozoan Bugula neritina
larvae in response to the antifouling agent butenolide. Proteomics 2010; 10:3435-46. [DOI: 10.1002/pmic.201000199] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
40
|
Wong YH, Arellano SM, Zhang H, Ravasi T, Qian PY. Dependency on de novo protein synthesis and proteomic changes during metamorphosis of the marine bryozoan Bugula neritina. Proteome Sci 2010; 8:25. [PMID: 20497544 PMCID: PMC2890537 DOI: 10.1186/1477-5956-8-25] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 05/24/2010] [Indexed: 11/12/2022] Open
Abstract
Background Metamorphosis in the bryozoan Bugula neritina (Linne) includes an initial phase of rapid morphological rearrangement followed by a gradual phase of morphogenesis. We hypothesized that the first phase may be independent of de novo synthesis of proteins and, instead, involves post-translational modifications of existing proteins, providing a simple mechanism to quickly initiate metamorphosis. To test our hypothesis, we challenged B. neritina larvae with transcription and translation inhibitors. Furthermore, we employed 2D gel electrophoresis to characterize changes in the phosphoproteome and proteome during early metamorphosis. Differentially expressed proteins were identified by liquid chromatography tandem mass spectrometry and their gene expression patterns were profiled using semi-quantitative real time PCR. Results When larvae were incubated with transcription and translation inhibitors, metamorphosis initiated through the first phase but did not complete. We found a significant down-regulation of 60 protein spots and the percentage of phosphoprotein spots decreased from 15% in the larval stage to12% during early metamorphosis. Two proteins--the mitochondrial processing peptidase beta subunit and severin--were abundantly expressed and phosphorylated in the larval stage, but down-regulated during metamorphosis. MPPbeta and severin were also down-regulated on the gene expression level. Conclusions The initial morphogenetic changes that led to attachment of B. neritina did not depend on de novo protein synthesis, but the subsequent gradual morphogenesis did. This is the first time that the mitochondrial processing peptidase beta subunit or severin have been shown to be down-regulated on both gene and protein expression levels during the metamorphosis of B. neritina. Future studies employing immunohistochemistry to reveal the expression locality of these two proteins during metamorphosis should provide further evidence of the involvement of these two proteins in the morphogenetic rearrangement of B. neritina.
Collapse
Affiliation(s)
- Yue Him Wong
- Department of Biology, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR.
| | | | | | | | | |
Collapse
|