1
|
Calvete JJ, Lomonte B, Saviola AJ, Calderón Celis F, Ruiz Encinar J. Quantification of snake venom proteomes by mass spectrometry-considerations and perspectives. MASS SPECTROMETRY REVIEWS 2024; 43:977-997. [PMID: 37155340 DOI: 10.1002/mas.21850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 11/24/2022] [Accepted: 03/30/2023] [Indexed: 05/10/2023]
Abstract
The advent of soft ionization mass spectrometry-based proteomics in the 1990s led to the development of a new dimension in biology that conceptually allows for the integral analysis of whole proteomes. This transition from a reductionist to a global-integrative approach is conditioned to the capability of proteomic platforms to generate and analyze complete qualitative and quantitative proteomics data. Paradoxically, the underlying analytical technique, molecular mass spectrometry, is inherently nonquantitative. The turn of the century witnessed the development of analytical strategies to endow proteomics with the ability to quantify proteomes of model organisms in the sense of "an organism for which comprehensive molecular (genomic and/or transcriptomic) resources are available." This essay presents an overview of the strategies and the lights and shadows of the most popular quantification methods highlighting the common misuse of label-free approaches developed for model species' when applied to quantify the individual components of proteomes of nonmodel species (In this essay we use the term "non-model" organisms for species lacking comprehensive molecular (genomic and/or transcriptomic) resources, a circumstance that, as we detail in this review-essay, conditions the quantification of their proteomes.). We also point out the opportunity of combining elemental and molecular mass spectrometry systems into a hybrid instrumental configuration for the parallel identification and absolute quantification of venom proteomes. The successful application of this novel mass spectrometry configuration in snake venomics represents a proof-of-concept for a broader and more routine application of hybrid elemental/molecular mass spectrometry setups in other areas of the proteomics field, such as phosphoproteomics, metallomics, and in general in any biological process where a heteroatom (i.e., any atom other than C, H, O, N) forms integral part of its mechanism.
Collapse
Affiliation(s)
- Juan J Calvete
- Evolutionary and Translational Venomics Laboratory, Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain
| | - Bruno Lomonte
- Unidad de Proteómica, Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Anthony J Saviola
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | | | - Jorge Ruiz Encinar
- Department of Physical and Analytical Chemistry, University of Oviedo, Oviedo, Spain
| |
Collapse
|
2
|
Elliott L, Kalde M, Schürholz AK, Zhang X, Wolf S, Moore I, Kirchhelle C. A self-regulatory cell-wall-sensing module at cell edges controls plant growth. NATURE PLANTS 2024; 10:483-493. [PMID: 38454063 PMCID: PMC10954545 DOI: 10.1038/s41477-024-01629-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 01/23/2024] [Indexed: 03/09/2024]
Abstract
Morphogenesis of multicellular organs requires coordination of cellular growth. In plants, cell growth is determined by turgor pressure and the mechanical properties of the cell wall, which also glues cells together. Because plants have to integrate tissue-scale mechanical stresses arising through growth in a fixed tissue topology, they need to monitor cell wall mechanical status and adapt growth accordingly. Molecular factors have been identified, but whether cell geometry contributes to wall sensing is unknown. Here we propose that plant cell edges act as cell-wall-sensing domains during growth. We describe two Receptor-Like Proteins, RLP4 and RLP4-L1, which occupy a unique polarity domain at cell edges established through a targeted secretory transport pathway. We show that RLP4s associate with the cell wall at edges via their extracellular domain, respond to changes in cell wall mechanics and contribute to directional growth control in Arabidopsis.
Collapse
Affiliation(s)
- Liam Elliott
- Department of Plant Sciences, University of Oxford, Oxford, UK
- Laboratoire Reproduction et Développement des Plantes, Université Lyon 1, ENS de Lyon, CNRS, INRAE, Lyon, France
| | - Monika Kalde
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | | | - Xinyu Zhang
- Department of Plant Sciences, University of Oxford, Oxford, UK
- Laboratoire Reproduction et Développement des Plantes, Université Lyon 1, ENS de Lyon, CNRS, INRAE, Lyon, France
| | - Sebastian Wolf
- Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
- Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Ian Moore
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | - Charlotte Kirchhelle
- Department of Plant Sciences, University of Oxford, Oxford, UK.
- Laboratoire Reproduction et Développement des Plantes, Université Lyon 1, ENS de Lyon, CNRS, INRAE, Lyon, France.
| |
Collapse
|
3
|
Herrera LR, Johnson RA, McGlynn K, Gibbs ZA, Davis AJ, Whitehurst AW. The cancer testes antigen, HORMAD1, limits genomic instability in cancer cells by protecting stalled replication forks. J Biol Chem 2023; 299:105348. [PMID: 37838177 PMCID: PMC10656231 DOI: 10.1016/j.jbc.2023.105348] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/18/2023] [Accepted: 10/01/2023] [Indexed: 10/16/2023] Open
Abstract
Tumors anomalously induce the expression of meiotic genes, which are otherwise restricted only to developing gametes. If and how these aberrantly expressed meiotic proteins influence DNA metabolism is not clear, but could have important implications for how tumors acquire and mitigate genomic instability. HORMAD1 is a highly conserved meiotic protein that is frequently expressed in lung adenocarincoma where its expression correlates with reduced patient survival and increased mutation burden. Here, we find that HORMAD1 associates with the replisome and is critical for protecting stalled DNA replication forks. Loss of HORMAD1 leads to nascent DNA strand degradation, an event which is mediated by the MRE11-DNA2-BLM pathway. We find that these phenotypes are due to limited RAD51 loading onto stalled replication forks in the absence of HORMAD1. Ultimately, loss of HORMAD1 leads to increased DNA breaks and chromosomal defects, which is exacerbated dramatically by induction of replication stress. Tumor cells proliferate despite encountering chronic replication stress, placing them on the precipice of catastrophic genomic damage. Our data support the hypothesis that the aberrant expression of HORMAD1 is engaged to attenuate the accumulation of excessive DNA damage due to chronic replication stress, which may otherwise lead to accumulation of toxic levels of genomic instability.
Collapse
Affiliation(s)
- Luis Reza Herrera
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Ronnesha A Johnson
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Kathleen McGlynn
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Zane A Gibbs
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Anthony J Davis
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, Texas, USA.
| | | |
Collapse
|
4
|
Hawkins TJ, Kopischke M, Duckney PJ, Rybak K, Mentlak DA, Kroon JTM, Bui MT, Richardson AC, Casey M, Alexander A, De Jaeger G, Kalde M, Moore I, Dagdas Y, Hussey PJ, Robatzek S. NET4 and RabG3 link actin to the tonoplast and facilitate cytoskeletal remodelling during stomatal immunity. Nat Commun 2023; 14:5848. [PMID: 37730720 PMCID: PMC10511709 DOI: 10.1038/s41467-023-41337-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 08/29/2023] [Indexed: 09/22/2023] Open
Abstract
Members of the NETWORKED (NET) family are involved in actin-membrane interactions. Here we show that two members of the NET family, NET4A and NET4B, are essential for normal guard cell actin reorganization, which is a process critical for stomatal closure in plant immunity. NET4 proteins interact with F-actin and with members of the Rab7 GTPase RABG3 family through two distinct domains, allowing for simultaneous localization to actin filaments and the tonoplast. NET4 proteins interact with GTP-bound, active RABG3 members, suggesting their function being downstream effectors. We also show that RABG3b is critical for stomatal closure induced by microbial patterns. Taken together, we conclude that the actin cytoskeletal remodelling during stomatal closure involves a molecular link between actin filaments and the tonoplast, which is mediated by the NET4-RABG3b interaction. We propose that stomatal closure to microbial patterns involves the coordinated action of immune-triggered osmotic changes and actin cytoskeletal remodelling likely driving compact vacuolar morphologies.
Collapse
Affiliation(s)
- Timothy J Hawkins
- Department of Biosciences, University of Durham, South Road, Durham, DH1 3LE, UK
| | - Michaela Kopischke
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
- LMU Munich Biocenter, Großhadener Strasse 4, 82152, Planegg, DE, Germany
| | - Patrick J Duckney
- Department of Biosciences, University of Durham, South Road, Durham, DH1 3LE, UK
| | - Katarzyna Rybak
- LMU Munich Biocenter, Großhadener Strasse 4, 82152, Planegg, DE, Germany
| | - David A Mentlak
- Department of Biosciences, University of Durham, South Road, Durham, DH1 3LE, UK
| | - Johan T M Kroon
- Department of Biosciences, University of Durham, South Road, Durham, DH1 3LE, UK
| | - Mai Thu Bui
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter, Vienna, AUT, Austria
| | | | - Mary Casey
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
| | | | - Geert De Jaeger
- VIB-University Ghent, Center for Plant System Biology, Technologiepark 927, 9052, Ghent, BE, Belgium
| | - Monika Kalde
- Department of Plant Sciences, University of Oxford, South Parks Rd., Oxford, OX1 3RB, UK
| | - Ian Moore
- Department of Plant Sciences, University of Oxford, South Parks Rd., Oxford, OX1 3RB, UK
| | - Yasin Dagdas
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter, Vienna, AUT, Austria
| | - Patrick J Hussey
- Department of Biosciences, University of Durham, South Road, Durham, DH1 3LE, UK.
| | - Silke Robatzek
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK.
- LMU Munich Biocenter, Großhadener Strasse 4, 82152, Planegg, DE, Germany.
| |
Collapse
|
5
|
Perez VA, Sanders DW, Mendoza-Oliva A, Stopschinski BE, Mullapudi V, White CL, Joachimiak LA, Diamond MI. DnaJC7 specifically regulates tau seeding. eLife 2023; 12:e86936. [PMID: 37387473 PMCID: PMC10473839 DOI: 10.7554/elife.86936] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/29/2023] [Indexed: 07/01/2023] Open
Abstract
Neurodegenerative tauopathies are caused by accumulation of toxic tau protein assemblies. This appears to involve template-based seeding events, whereby tau monomer changes conformation and is recruited to a growing aggregate. Several large families of chaperone proteins, including Hsp70s and J domain proteins (JDPs), cooperate to regulate the folding of intracellular proteins such as tau, but the factors that coordinate this activity are not well known. The JDP DnaJC7 binds tau and reduces its intracellular aggregation. However, it is unknown whether this is specific to DnaJC7 or if other JDPs might be similarly involved. We used proteomics within a cell model to determine that DnaJC7 co-purified with insoluble tau and colocalized with intracellular aggregates. We individually knocked out every possible JDP and tested the effect on intracellular aggregation and seeding. DnaJC7 knockout decreased aggregate clearance and increased intracellular tau seeding. This depended on the ability of the J domain (JD) of DnaJC7 to stimulate Hsp70 ATPase activity, as JD mutations that block this interaction abrogated the protective activity. Disease-associated mutations in the JD and substrate binding site of DnaJC7 also abolished its protective activity. DnaJC7 thus specifically regulates tau aggregation in cooperation with Hsp70.
Collapse
Affiliation(s)
- Valerie Ann Perez
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical CenterDallasUnited States
| | - David W Sanders
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical CenterDallasUnited States
| | - Ayde Mendoza-Oliva
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical CenterDallasUnited States
| | - Barbara Elena Stopschinski
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical CenterDallasUnited States
| | - Vishruth Mullapudi
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical CenterDallasUnited States
| | - Charles L White
- Department of Pathology, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical CenterDallasUnited States
| | - Lukasz A Joachimiak
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Biochemistry, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical CenterDallasUnited States
| | - Marc I Diamond
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Neurology, Peter O’Donnell Jr. Brain Institute, The University of Texas Southwestern Medical CenterDallasUnited States
| |
Collapse
|
6
|
McCoy CJ, Paupelin-Vaucelle H, Gorilak P, Beneke T, Varga V, Gluenz E. ULK4 and Fused/STK36 interact to mediate assembly of a motile flagellum. Mol Biol Cell 2023; 34:ar66. [PMID: 36989043 PMCID: PMC10295485 DOI: 10.1091/mbc.e22-06-0222] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 03/10/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Unc-51-like kinase (ULK) family serine-threonine protein kinase homologues have been linked to the function of motile cilia in diverse species. Mutations in Fused/STK36 and ULK4 in mice resulted in hydrocephalus and other phenotypes consistent with ciliary defects. How either protein contributes to the assembly and function of motile cilia is not well understood. Here we studied the phenotypes of ULK4 and Fused gene knockout (KO) mutants in the flagellated protist Leishmania mexicana. Both KO mutants exhibited a variety of structural defects of the flagellum cytoskeleton. Biochemical approaches indicate spatial proximity of these proteins and indicate a direct interaction between the N-terminus of LmxULK4 and LmxFused. Both proteins display a dispersed localization throughout the cell body and flagellum, with enrichment near the flagellar base and tip. The stable expression of LmxULK4 was dependent on the presence of LmxFused. Fused/STK36 was previously shown to localize to mammalian motile cilia, and we demonstrate here that ULK4 also localizes to the motile cilia in mouse ependymal cells. Taken together these data suggest a model where the pseudokinase ULK4 is a positive regulator of the kinase Fused/ STK36 in a pathway required for stable assembly of motile cilia.
Collapse
Affiliation(s)
- Ciaran J. McCoy
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | | | - Peter Gorilak
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, 142 20 Prague 4, Czech Republic
| | - Tom Beneke
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Vladimir Varga
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, 142 20 Prague 4, Czech Republic
| | - Eva Gluenz
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, United Kingdom
| |
Collapse
|
7
|
Perez VA, Sanders DW, Mendoza-Oliva A, Stopschinski BE, Mullapudi V, White CL, Joachimiak LA, Diamond MI. DnaJC7 specifically regulates tau seeding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.532880. [PMID: 36993367 PMCID: PMC10055123 DOI: 10.1101/2023.03.16.532880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Neurodegenerative tauopathies are caused by accumulation of toxic tau protein assemblies. This appears to involve template-based seeding events, whereby tau monomer changes conformation and is recruited to a growing aggregate. Several large families of chaperone proteins, including Hsp70s and J domain proteins (JDPs) cooperate to regulate the folding of intracellular proteins such as tau, but the factors that coordinate this activity are not well known. The JDP DnaJC7 binds tau and reduces its intracellular aggregation. However, it is unknown whether this is specific to DnaJC7 or if other JDPs might be similarly involved. We used proteomics within a cell model to determine that DnaJC7 co-purified with insoluble tau and colocalized with intracellular aggregates. We individually knocked out every possible JDP and tested the effect on intracellular aggregation and seeding. DnaJC7 knockout decreased aggregate clearance and increased intracellular tau seeding. This depended on the ability of the J domain (JD) of DnaJC7 to bind to Hsp70, as JD mutations that block binding to Hsp70 abrogated the protective activity. Disease-associated mutations in the JD and substrate binding site of DnaJC7 also abrogated its protective activity. DnaJC7 thus specifically regulates tau aggregation in cooperation with Hsp70.
Collapse
Affiliation(s)
- Valerie A Perez
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - David W Sanders
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Ayde Mendoza-Oliva
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Barbara E Stopschinski
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Vishruth Mullapudi
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Charles L White
- Department of Pathology, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Lukasz A Joachimiak
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX
- Department of Biochemistry, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Marc I Diamond
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX
- Department of Neurology, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
8
|
Herrera LR, McGlynn K, Gibbs ZA, Davis AJ, Whitehurst AW. The Cancer Testes Antigen, HORMAD1, is a Tumor-Specific Replication Fork Protection Factor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.31.526348. [PMID: 36778501 PMCID: PMC9915569 DOI: 10.1101/2023.01.31.526348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tumors frequently activate the expression of genes that are only otherwise required for meiosis. HORMAD1, which is essential for meiotic recombination in multiple species, is expressed in over 50% of human lung adenocarcinoma cells (LUAD). We previously found that HORMAD1 promotes DNA double strand break (DSB) repair in LUAD. Here, we report that HORMAD1 takes on an additional role in protecting genomic integrity. Specifically, we find HORMAD1 is critical for protecting stalled DNA replication forks in LUAD. Loss of HORMAD1 leads to nascent DNA degradation, an event which is mediated by the MRE11-DNA2-BLM pathway. Moreover, following exogenous induction of DNA replication stress, HORMAD1 deleted cells accumulate single stranded DNA (ssDNA). We find that these phenotypes are the result of a lack of RAD51 and BRCA2 loading onto stalled replication forks. Ultimately, loss of HORMAD1 leads to increased DSBs and chromosomal aberrations in response to replication stress. Collectively, our data support a model where HORMAD1 expression is selected to mitigate DNA replication stress, which would otherwise induce deleterious genomic instability.
Collapse
|
9
|
Macleod OJS, Cook AD, Webb H, Crow M, Burns R, Redpath M, Seisenberger S, Trevor CE, Peacock L, Schwede A, Kimblin N, Francisco AF, Pepperl J, Rust S, Voorheis P, Gibson W, Taylor MC, Higgins MK, Carrington M. Invariant surface glycoprotein 65 of Trypanosoma brucei is a complement C3 receptor. Nat Commun 2022; 13:5085. [PMID: 36038546 PMCID: PMC9424271 DOI: 10.1038/s41467-022-32728-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
African trypanosomes are extracellular pathogens of mammals and are exposed to the adaptive and innate immune systems. Trypanosomes evade the adaptive immune response through antigenic variation, but little is known about how they interact with components of the innate immune response, including complement. Here we demonstrate that an invariant surface glycoprotein, ISG65, is a receptor for complement component 3 (C3). We show how ISG65 binds to the thioester domain of C3b. We also show that C3 contributes to control of trypanosomes during early infection in a mouse model and provide evidence that ISG65 is involved in reducing trypanosome susceptibility to C3-mediated clearance. Deposition of C3b on pathogen surfaces, such as trypanosomes, is a central point in activation of the complement system. In ISG65, trypanosomes have evolved a C3 receptor which diminishes the downstream effects of C3 deposition on the control of infection. Trypanosomes evade the immune response through antigenic variation of a surface coat containing variant surface glycoproteins (VSG). They also express invariant surface glycoproteins (ISGs), which are less well understood. Here, Macleod et al. show that ISG65 of T. brucei is a receptor for complement component 3. They provide the crystal structure of T. brucei ISG65 in complex with complement C3d and show evidence that ISG65 is involved in reducing trypanosome susceptibility to C3-mediated clearance in vivo.
Collapse
Affiliation(s)
- Olivia J S Macleod
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Alexander D Cook
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.,Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Helena Webb
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Mandy Crow
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Roisin Burns
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Maria Redpath
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Stefanie Seisenberger
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Camilla E Trevor
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Lori Peacock
- Bristol Veterinary School and School of Biological Sciences, University of Bristol, Bristol, UK
| | - Angela Schwede
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Nicola Kimblin
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Amanda F Francisco
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Julia Pepperl
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Steve Rust
- Antibody Discovery and Protein Engineering, Biopharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Paul Voorheis
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Wendy Gibson
- Bristol Veterinary School and School of Biological Sciences, University of Bristol, Bristol, UK
| | - Martin C Taylor
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Matthew K Higgins
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK. .,Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, UK.
| |
Collapse
|
10
|
Brusini L, Dos Santos Pacheco N, Tromer EC, Soldati-Favre D, Brochet M. Composition and organization of kinetochores show plasticity in apicomplexan chromosome segregation. J Cell Biol 2022; 221:213421. [PMID: 36006241 PMCID: PMC9418836 DOI: 10.1083/jcb.202111084] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 05/31/2022] [Accepted: 07/15/2022] [Indexed: 01/01/2023] Open
Abstract
Kinetochores are multiprotein assemblies directing mitotic spindle attachment and chromosome segregation. In apicomplexan parasites, most known kinetochore components and associated regulators are apparently missing, suggesting a minimal structure with limited control over chromosome segregation. In this study, we use interactomics combined with deep homology searches to identify 13 previously unknown components of kinetochores in Apicomplexa. Apicomplexan kinetochores are highly divergent in sequence and composition from animal and fungal models. The nanoscale organization includes at least four discrete compartments, each displaying different biochemical interactions, subkinetochore localizations and evolutionary rates across the phylum. We reveal alignment of kinetochores at the metaphase plate in both Plasmodium berghei and Toxoplasma gondii, suggestive of a conserved "hold signal" that prevents precocious entry into anaphase. Finally, we show unexpected plasticity in kinetochore composition and segregation between apicomplexan lifecycle stages, suggestive of diverse requirements to maintain fidelity of chromosome segregation across parasite modes of division.
Collapse
Affiliation(s)
- Lorenzo Brusini
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland,Correspondence to Lorenzo Brusini:
| | - Nicolas Dos Santos Pacheco
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Eelco C. Tromer
- Cell Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Mathieu Brochet
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland,Mathieu Brochet:
| |
Collapse
|
11
|
Comparison of Different Label-Free Techniques for the Semi-Absolute Quantification of Protein Abundance. Proteomes 2022; 10:proteomes10010002. [PMID: 35076627 PMCID: PMC8788469 DOI: 10.3390/proteomes10010002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/20/2021] [Accepted: 01/04/2022] [Indexed: 02/04/2023] Open
Abstract
In proteomics, it is essential to quantify proteins in absolute terms if we wish to compare results among studies and integrate high-throughput biological data into genome-scale metabolic models. While labeling target peptides with stable isotopes allow protein abundance to be accurately quantified, the utility of this technique is constrained by the low number of quantifiable proteins that it yields. Recently, label-free shotgun proteomics has become the “gold standard” for carrying out global assessments of biological samples containing thousands of proteins. However, this tool must be further improved if we wish to accurately quantify absolute levels of proteins. Here, we used different label-free quantification techniques to estimate absolute protein abundance in the model yeast Saccharomyces cerevisiae. More specifically, we evaluated the performance of seven different quantification methods, based either on spectral counting (SC) or extracted-ion chromatogram (XIC), which were applied to samples from five different proteome backgrounds. We also compared the accuracy and reproducibility of two strategies for transforming relative abundance into absolute abundance: a UPS2-based strategy and the total protein approach (TPA). This study mentions technical challenges related to UPS2 use and proposes ways of addressing them, including utilizing a smaller, more highly optimized amount of UPS2. Overall, three SC-based methods (PAI, SAF, and NSAF) yielded the best results because they struck a good balance between experimental performance and protein quantification.
Collapse
|
12
|
Cai K, Zhao Y, Zhao L, Phan N, Hou Y, Cheng X, Witman GB, Nicastro D. Structural organization of the C1b projection within the ciliary central apparatus. J Cell Sci 2021; 134:272503. [PMID: 34651179 DOI: 10.1242/jcs.254227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 09/29/2021] [Indexed: 12/23/2022] Open
Abstract
Motile cilia have a '9+2' structure containing nine doublet microtubules and a central apparatus (CA) composed of two singlet microtubules with associated projections. The CA plays crucial roles in regulating ciliary motility. Defects in CA assembly or function usually result in motility-impaired or paralyzed cilia, which in humans causes disease. Despite their importance, the protein composition and functions of most CA projections remain largely unknown. Here, we combined genetic, proteomic and cryo-electron tomographic approaches to compare the CA of wild-type Chlamydomonas reinhardtii with those of three CA mutants. Our results show that two proteins, FAP42 and FAP246, are localized to the L-shaped C1b projection of the CA, where they interact with the candidate CA protein FAP413. FAP42 is a large protein that forms the peripheral 'beam' of the C1b projection, and the FAP246-FAP413 subcomplex serves as the 'bracket' between the beam (FAP42) and the C1b 'pillar' that attaches the projection to the C1 microtubule. The FAP246-FAP413-FAP42 complex is essential for stable assembly of the C1b, C1f and C2b projections, and loss of these proteins leads to ciliary motility defects.
Collapse
Affiliation(s)
- Kai Cai
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75231, USA
| | - Yanhe Zhao
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75231, USA
| | - Lei Zhao
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Nhan Phan
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75231, USA
| | - Yuqing Hou
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Xi Cheng
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - George B Witman
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Daniela Nicastro
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75231, USA
| |
Collapse
|
13
|
Fu G, Scarbrough C, Song K, Phan N, Wirschell M, Nicastro D. Structural organization of the intermediate and light chain complex of Chlamydomonas ciliary I1 dynein. FASEB J 2021; 35:e21646. [PMID: 33993568 DOI: 10.1096/fj.202001857r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 04/01/2021] [Accepted: 04/21/2021] [Indexed: 12/18/2022]
Abstract
Axonemal I1 dynein (dynein f) is the largest inner dynein arm in cilia and a key regulator of ciliary beating. It consists of two dynein heavy chains, and an intermediate chain/light chain (ICLC) complex. However, the structural organization of the nine ICLC subunits remains largely unknown. Here, we used biochemical and genetic approaches, and cryo-electron tomography imaging in Chlamydomonas to dissect the molecular architecture of the I1 dynein ICLC complex. Using a strain expressing SNAP-tagged IC140, tomography revealed the location of the IC140 N-terminus at the proximal apex of the ICLC structure. Mass spectrometry of a tctex2b mutant showed that TCTEX2B dynein light chain is required for the stable assembly of TCTEX1 and inner dynein arm interacting proteins IC97 and FAP120. The structural defects observed in tctex2b located these 4 subunits in the center and bottom regions of the ICLC structure, which overlaps with the location of the IC138 regulatory subcomplex, which contains IC138, IC97, FAP120, and LC7b. These results reveal the three-dimensional organization of the native ICLC complex and indicate potential protein-protein interactions that are involved in the pathway by which I1 regulates ciliary motility.
Collapse
Affiliation(s)
- Gang Fu
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Multiscale Research Institute of Complex Systems, Fudan University, Shanghai, China
| | - Chasity Scarbrough
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Kangkang Song
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nhan Phan
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Maureen Wirschell
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Daniela Nicastro
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
14
|
Gabdrakhmanov IT, Gorshkov MV, Tarasova IA. Proteomics of Cellular Response to Stress: Taking Control of False Positive Results. BIOCHEMISTRY (MOSCOW) 2021; 86:338-349. [PMID: 33838633 DOI: 10.1134/s0006297921030093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
One of the main goals of quantitative proteomics is molecular profiling of cellular response to stress at the protein level. To perform this profiling, statistical analysis of experimental data involves multiple testing of a hypothesis about the equality of protein concentrations between the cells under normal and stress conditions. This analysis is then associated with the multiple testing problem dealing with the increased chance of obtaining false positive results. A number of solutions to this problem are known, yet, they may lead to the loss of potentially important biological information when applied with commonly accepted thresholds of statistical significance. Using the proteomic data obtained earlier for the yeast samples containing proteins at known concentrations and the biological models of early and late cellular responses to stress, we analyzed dependences of distributions of false positive and false negative rates on the protein fold changes and thresholds of statistical significance. Based on the analysis of the density of data points in the volcano plots, Benjamini-Hochberg method, and gene ontology analysis, visual approach for optimization of the statistical threshold and selection of the differentially regulated proteins has been suggested, which could be useful for researchers working in the field of quantitative proteomics.
Collapse
Affiliation(s)
| | - Mikhail V Gorshkov
- Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow Region, 141701, Russia.,Talrose Institute for Energy Problems of Chemical Physics, Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Irina A Tarasova
- Talrose Institute for Energy Problems of Chemical Physics, Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia.
| |
Collapse
|
15
|
Brusini L, D'Archivio S, McDonald J, Wickstead B. Trypanosome KKIP1 Dynamically Links the Inner Kinetochore to a Kinetoplastid Outer Kinetochore Complex. Front Cell Infect Microbiol 2021; 11:641174. [PMID: 33834005 PMCID: PMC8023272 DOI: 10.3389/fcimb.2021.641174] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/16/2021] [Indexed: 02/02/2023] Open
Abstract
Kinetochores perform an essential role in eukaryotes, coupling chromosomes to the mitotic spindle. In model organisms they are composed of a centromere-proximal inner kinetochore and an outer kinetochore network that binds to microtubules. In spite of universal function, the composition of kinetochores in extant eukaryotes differs greatly. In trypanosomes and other Kinetoplastida, kinetochores are extremely divergent, with most components showing no detectable similarity to proteins in other systems. They may also be very different functionally, potentially binding to the spindle directly via an inner-kinetochore protein. However, we do not know the extent of the trypanosome kinetochore, and proteins interacting with a highly divergent Ndc80/Nuf2-like protein (KKIP1) suggest the existence of more centromere-distal complexes. Here we use quantitative proteomics from multiple start-points to define a stable 9-protein kinetoplastid outer kinetochore (KOK) complex. This complex incorporates proteins recruited from other nuclear processes, exemplifying the role of moonlighting proteins in kinetochore evolution. The outer kinetochore complex is physically distinct from inner-kinetochore proteins, but nanometer-scale label separation shows that KKIP1 bridges the two plates in the same orientation as Ndc80. Moreover, KKIP1 exhibits substantial elongation at metaphase, altering kinetochore structure in a manner consistent with pulling at the outer plate. Together, these data suggest that the KKIP1/KOK likely constitute the extent of the trypanosome outer kinetochore and that this assembly binds to the spindle with sufficient strength to stretch the kinetochore, showing design parallels may exist in organisms with very different kinetochore composition.
Collapse
Affiliation(s)
- Lorenzo Brusini
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom.,Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Simon D'Archivio
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom.,Sygnature Discovery, Nottingham, United Kingdom
| | - Jennifer McDonald
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom.,Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Bill Wickstead
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
16
|
Galderisi S, Cicaloni V, Milella MS, Millucci L, Geminiani M, Salvini L, Tinti L, Tinti C, Vieira OV, Alves LS, Crevenna AH, Spiga O, Santucci A. Homogentisic acid induces cytoskeleton and extracellular matrix alteration in alkaptonuric cartilage. J Cell Physiol 2021; 236:6011-6024. [PMID: 33469937 DOI: 10.1002/jcp.30284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 12/29/2020] [Accepted: 01/05/2021] [Indexed: 11/08/2022]
Abstract
Alkaptonuria (AKU) is an ultra-rare disease caused by the deficient activity of homogentisate 1,2-dioxygenase enzyme, leading the accumulation of homogentisic acid (HGA) in connective tissues implicating the formation of a black pigmentation called "ochronosis." Although AKU is a multisystemic disease, the most affected tissue is the articular cartilage, which during the pathology appears to be highly damaged. In this study, a model of alkaptonuric chondrocytes and cartilage was realized to investigate the role of HGA in the alteration of the extracellular matrix (ECM). The AKU tissues lost its architecture composed of collagen, proteoglycans, and all the proteins that characterize the ECM. The cause of this alteration in AKU cartilage is attributed to a degeneration of the cytoskeletal network in chondrocytes caused by the accumulation of HGA. The three cytoskeletal proteins, actin, vimentin, and tubulin, were analyzed and a modification in their amount and disposition in AKU chondrocytes model was identified. Cytoskeleton is involved in many fundamental cellular processes; therefore, the aberration in this complex network is involved in the manifestation of AKU disease.
Collapse
Affiliation(s)
- Silvia Galderisi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Vittoria Cicaloni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy.,Toscana Life Sciences Foundation, Siena, Italy
| | - Maria S Milella
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Lia Millucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Michela Geminiani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | | | - Laura Tinti
- Toscana Life Sciences Foundation, Siena, Italy
| | | | - Otilia V Vieira
- NOVA Medical School, 3CEDOC, Faculdade de Ciências Médicas, Lisboa, Portugal
| | - Liliana S Alves
- NOVA Medical School, 3CEDOC, Faculdade de Ciências Médicas, Lisboa, Portugal
| | | | - Ottavia Spiga
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Annalisa Santucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| |
Collapse
|
17
|
Fenech EJ, Lari F, Charles PD, Fischer R, Laétitia-Thézénas M, Bagola K, Paton AW, Paton JC, Gyrd-Hansen M, Kessler BM, Christianson JC. Interaction mapping of endoplasmic reticulum ubiquitin ligases identifies modulators of innate immune signalling. eLife 2020; 9:e57306. [PMID: 32614325 PMCID: PMC7332293 DOI: 10.7554/elife.57306] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/11/2020] [Indexed: 12/25/2022] Open
Abstract
Ubiquitin ligases (E3s) embedded in the endoplasmic reticulum (ER) membrane regulate essential cellular activities including protein quality control, calcium flux, and sterol homeostasis. At least 25 different, transmembrane domain (TMD)-containing E3s are predicted to be ER-localised, but for most their organisation and cellular roles remain poorly defined. Using a comparative proteomic workflow, we mapped over 450 protein-protein interactions for 21 stably expressed, full-length E3s. Bioinformatic analysis linked ER-E3s and their interactors to multiple homeostatic, regulatory, and metabolic pathways. Among these were four membrane-embedded interactors of RNF26, a polytopic E3 whose abundance is auto-regulated by ubiquitin-proteasome dependent degradation. RNF26 co-assembles with TMEM43, ENDOD1, TMEM33 and TMED1 to form a complex capable of modulating innate immune signalling through the cGAS-STING pathway. This RNF26 complex represents a new modulatory axis of STING and innate immune signalling at the ER membrane. Collectively, these data reveal the broad scope of regulation and differential functionalities mediated by ER-E3s for both membrane-tethered and cytoplasmic processes.
Collapse
Affiliation(s)
- Emma J Fenech
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Federica Lari
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Philip D Charles
- TDI Mass Spectrometry Laboratory, Target Discovery Institute, University of OxfordOxfordUnited Kingdom
| | - Roman Fischer
- TDI Mass Spectrometry Laboratory, Target Discovery Institute, University of OxfordOxfordUnited Kingdom
| | - Marie Laétitia-Thézénas
- TDI Mass Spectrometry Laboratory, Target Discovery Institute, University of OxfordOxfordUnited Kingdom
| | - Katrin Bagola
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Adrienne W Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of AdelaideAdelaideAustralia
| | - James C Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of AdelaideAdelaideAustralia
| | - Mads Gyrd-Hansen
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Benedikt M Kessler
- TDI Mass Spectrometry Laboratory, Target Discovery Institute, University of OxfordOxfordUnited Kingdom
- Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - John C Christianson
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Botnar Research CentreOxfordUnited Kingdom
- Oxford Centre for Translational Myeloma Research, University of Oxford, Botnar Research CentreOxfordUnited Kingdom
| |
Collapse
|
18
|
Žaja R, Aydin G, Lippok BE, Feederle R, Lüscher B, Feijs KLH. Comparative analysis of MACROD1, MACROD2 and TARG1 expression, localisation and interactome. Sci Rep 2020; 10:8286. [PMID: 32427867 PMCID: PMC7237415 DOI: 10.1038/s41598-020-64623-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/20/2020] [Indexed: 02/06/2023] Open
Abstract
The posttranslational modification ADP-ribosylation is involved in many cellular processes, with distinct roles for poly- and mono(ADP-ribosyl)ation (PAR- and MARylation, respectively). Reversibility of intracellular MARylation was demonstrated with the discovery of MACROD1, MACROD2 and TARG1, three macrodomain-containing enzymes capable of reversing MARylation of proteins and RNA. While the three enzymes have identical activities in vitro, their roles in cells are unclear and published data are partially contradictory, possibly due to a lack of validated reagents. We developed monoclonal antibodies to study these proteins and analysed their tissue distribution and intracellular localisation. MACROD1 is most prevalent in mitochondria of skeletal muscle, MACROD2 localises to nucleo- and cytoplasm and is found so far only in neuroblastoma cells, whereas the more ubiquitously expressed TARG1 is present in nucleoplasm, nucleolus and stress granules. Loss of MACROD1 or loss of TARG1 leads to disruption of mitochondrial or nucleolar morphology, respectively, hinting at their importance for these organelles. To start elucidating the underlying mechanisms, we have mapped their interactomes using BioID. The cellular localisation of interactors supports the mitochondrial, nucleolar and stress granule localisation of MACROD1 and TARG1, respectively. Gene ontology analysis suggests an involvement of MACROD1 and TARG1 in RNA metabolism in their respective compartments. The detailed description of the hydrolases’ expression, localisation and interactome presented here provides a solid basis for future work addressing their physiological function in more detail.
Collapse
Affiliation(s)
- R Žaja
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.
| | - G Aydin
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - B E Lippok
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - R Feederle
- Monoclonal Antibody Core Facility, Institute for Diabetes and Obesity, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - B Lüscher
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - K L H Feijs
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.
| |
Collapse
|
19
|
Gong K, Guo G, Panchani N, Bender ME, Gerber DE, Minna JD, Fattah F, Gao B, Peyton M, Kernstine K, Mukherjee B, Burma S, Chiang CM, Zhang S, Amod Sathe A, Xing C, Dao KH, Zhao D, Akbay EA, Habib AA. EGFR inhibition triggers an adaptive response by co-opting antiviral signaling pathways in lung cancer. NATURE CANCER 2020; 1:394-409. [PMID: 33269343 PMCID: PMC7706867 DOI: 10.1038/s43018-020-0048-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 03/02/2020] [Indexed: 02/07/2023]
Abstract
EGFR inhibition is an effective treatment in the minority of non-small cell lung cancer (NSCLC) cases harboring EGFR-activating mutations, but not in EGFR wild type (EGFRwt) tumors. Here, we demonstrate that EGFR inhibition triggers an antiviral defense pathway in NSCLC. Inhibiting mutant EGFR triggers Type I IFN-I upregulation via a RIG-I-TBK1-IRF3 pathway. The ubiquitin ligase TRIM32 associates with TBK1 upon EGFR inhibition, and is required for K63-linked ubiquitination and TBK1 activation. Inhibiting EGFRwt upregulates interferons via an NF-κB-dependent pathway. Inhibition of IFN signaling enhances EGFR-TKI sensitivity in EGFR mutant NSCLC and renders EGFRwt/KRAS mutant NSCLC sensitive to EGFR inhibition in xenograft and immunocompetent mouse models. Furthermore, NSCLC tumors with decreased IFN-I expression are more responsive to EGFR TKI treatment. We propose that IFN-I signaling is a major determinant of EGFR-TKI sensitivity in NSCLC and that a combination of EGFR TKI plus IFN-neutralizing antibody could be useful in most NSCLC patients.
Collapse
Affiliation(s)
- Ke Gong
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gao Guo
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nishah Panchani
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Matthew E Bender
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David E Gerber
- Department of Internal Medicine, Division of Hematology-Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John D Minna
- Department of Internal Medicine, Division of Hematology-Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Farjana Fattah
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Boning Gao
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael Peyton
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kemp Kernstine
- Department of Cardiovascular and Thoracic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bipasha Mukherjee
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sandeep Burma
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Cheng-Ming Chiang
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shanrong Zhang
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Adwait Amod Sathe
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chao Xing
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Dawen Zhao
- Departments of Biomedical Engineering and Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Esra A Akbay
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Amyn A Habib
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Medicine, Division of Neurology, VA North Texas Health Care System, Dallas, TX, USA.
| |
Collapse
|
20
|
Ivanov MV, Bubis JA, Gorshkov V, Tarasova IA, Levitsky LI, Lobas AA, Solovyeva EM, Pridatchenko ML, Kjeldsen F, Gorshkov MV. DirectMS1: MS/MS-Free Identification of 1000 Proteins of Cellular Proteomes in 5 Minutes. Anal Chem 2020; 92:4326-4333. [DOI: 10.1021/acs.analchem.9b05095] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Mark V. Ivanov
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Julia A. Bubis
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Vladimir Gorshkov
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Irina A. Tarasova
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Lev I. Levitsky
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Anna A. Lobas
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Elizaveta M. Solovyeva
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Marina L. Pridatchenko
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Frank Kjeldsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Mikhail V. Gorshkov
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
- Moscow Institute of Physics and Technology (State University), 141700 Dolgoprudny, Russia
| |
Collapse
|
21
|
Beneke T, Banecki K, Fochler S, Gluenz E. LAX28 is required for the stable assembly of the inner dynein arm f complex, and the tether and tether head complex in Leishmania flagella. J Cell Sci 2020; 133:jcs239855. [PMID: 31932510 PMCID: PMC7747692 DOI: 10.1242/jcs.239855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/12/2019] [Indexed: 12/26/2022] Open
Abstract
Motile eukaryotic flagella beat through coordinated activity of dynein motor proteins; however, the mechanisms of dynein coordination and regulation are incompletely understood. The inner dynein arm (IDA) f complex (also known as the I1 complex), and the tether and tether head (T/TH) complex are thought to be key regulators of dynein action but, unlike the IDA f complex, T/TH proteins remain poorly characterised. Here, we characterised T/TH-associated proteins in the protist Leishmania mexicana Proteome analysis of axonemes from null mutants for the CFAP44 T/TH protein showed that they lacked the IDA f protein IC140 and a novel 28-kDa axonemal protein, LAX28. Sequence analysis identified similarities between LAX28 and the uncharacterised human sperm tail protein TEX47, both sharing features with sensory BLUF-domain-containing proteins. Leishmania lacking LAX28, CFAP44 or IC140 retained some motility, albeit with reduced swimming speed and directionality and a propensity for flagellar curling. Expression of tagged proteins in different null mutant backgrounds showed that the axonemal localisation of LAX28 requires CFAP44 and IC140, and the axonemal localisations of CFAP44 and IC140 both depend on LAX28. These data demonstrate a role for LAX28 in motility and show mutual dependencies of IDA f and T/TH-associated proteins for axonemal assembly in Leishmania.
Collapse
Affiliation(s)
- Tom Beneke
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Katherine Banecki
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Sophia Fochler
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Eva Gluenz
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
22
|
Yenerall P, Das AK, Wang S, Kollipara RK, Li LS, Villalobos P, Flaming J, Lin YF, Huffman K, Timmons BC, Gilbreath C, Sonavane R, Kinch LN, Rodriguez-Canales J, Moran C, Behrens C, Hirasawa M, Takata T, Murakami R, Iwanaga K, Chen BPC, Grishin NV, Raj GV, Wistuba II, Minna JD, Kittler R. RUVBL1/RUVBL2 ATPase Activity Drives PAQosome Maturation, DNA Replication and Radioresistance in Lung Cancer. Cell Chem Biol 2019; 27:105-121.e14. [PMID: 31883965 DOI: 10.1016/j.chembiol.2019.12.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/07/2019] [Accepted: 12/06/2019] [Indexed: 02/03/2023]
Abstract
RUVBL1 and RUVBL2 (collectively RUVBL1/2) are essential AAA+ ATPases that function as co-chaperones and have been implicated in cancer. Here we investigated the molecular and phenotypic role of RUVBL1/2 ATPase activity in non-small cell lung cancer (NSCLC). We find that RUVBL1/2 are overexpressed in NSCLC patient tumors, with high expression associated with poor survival. Utilizing a specific inhibitor of RUVBL1/2 ATPase activity, we show that RUVBL1/2 ATPase activity is necessary for the maturation or dissociation of the PAQosome, a large RUVBL1/2-dependent multiprotein complex. We also show that RUVBL1/2 have roles in DNA replication, as inhibition of its ATPase activity can cause S-phase arrest, which culminates in cancer cell death via replication catastrophe. While in vivo pharmacological inhibition of RUVBL1/2 results in modest antitumor activity, it synergizes with radiation in NSCLC, but not normal cells, an attractive property for future preclinical development.
Collapse
Affiliation(s)
- Paul Yenerall
- Eugene McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Amit K Das
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shan Wang
- Eugene McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Urology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rahul K Kollipara
- Eugene McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Long Shan Li
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Pamela Villalobos
- Department of Translational Molecular Pathology, UT M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Josiah Flaming
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yu-Fen Lin
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kenneth Huffman
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Brenda C Timmons
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Collin Gilbreath
- Department of Urology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rajni Sonavane
- Department of Urology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lisa N Kinch
- Howard Hughes Medical Institute and Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jaime Rodriguez-Canales
- Department of Translational Molecular Pathology, UT M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Cesar Moran
- Department of Pathology, UT M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Carmen Behrens
- Department of Thoracic/Head and Neck Medical Oncology, UT M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Makoto Hirasawa
- Drug Metabolism & Pharmacokinetics Research Laboratories, Daiichi-Sankyo Co., Ltd., Tokyo 103-8426, Japan
| | - Takehiko Takata
- Oncology Medical Science Department, Medical Affairs, Daiichi-Sankyo Co., Ltd., Tokyo 103-8426, Japan
| | - Ryo Murakami
- Oncology Research Laboratories II, Daiichi-Sankyo Co., Ltd., Tokyo 103-8426, Japan
| | - Koichi Iwanaga
- Oncology Medical Science Department, Medical Affairs, Daiichi-Sankyo Co., Ltd., Tokyo 103-8426, Japan
| | - Benjamin P C Chen
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nick V Grishin
- Howard Hughes Medical Institute and Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ganesh V Raj
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Urology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, UT M.D. Anderson Cancer Center, Houston, TX 77030, USA; Department of Thoracic/Head and Neck Medical Oncology, UT M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - John D Minna
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Ralf Kittler
- Eugene McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
23
|
Cristini A, Groh M, Kristiansen MS, Gromak N. RNA/DNA Hybrid Interactome Identifies DXH9 as a Molecular Player in Transcriptional Termination and R-Loop-Associated DNA Damage. Cell Rep 2019; 23:1891-1905. [PMID: 29742442 PMCID: PMC5976580 DOI: 10.1016/j.celrep.2018.04.025] [Citation(s) in RCA: 258] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 03/03/2018] [Accepted: 04/04/2018] [Indexed: 11/27/2022] Open
Abstract
R-loops comprise an RNA/DNA hybrid and displaced single-stranded DNA. They play important biological roles and are implicated in pathology. Even so, proteins recognizing these structures are largely undefined. Using affinity purification with the S9.6 antibody coupled to mass spectrometry, we defined the RNA/DNA hybrid interactome in HeLa cells. This consists of known R-loop-associated factors SRSF1, FACT, and Top1, and yet uncharacterized interactors, including helicases, RNA processing, DNA repair, and chromatin factors. We validate specific examples of these interactors and characterize their involvement in R-loop biology. A top candidate DHX9 helicase promotes R-loop suppression and transcriptional termination. DHX9 interacts with PARP1, and both proteins prevent R-loop-associated DNA damage. DHX9 and other interactome helicases are overexpressed in cancer, linking R-loop-mediated DNA damage and disease. Our RNA/DNA hybrid interactome provides a powerful resource to study R-loop biology in health and disease. Mass spectrometry identifies the RNA/DNA hybrid interactome in human cells Top RNA/DNA interactome candidate DHX9 promotes R-loop suppression DHX9 regulates transcriptional termination DHX9 interacts with PARP1 and prevents R-loop-associated DNA damage
Collapse
Affiliation(s)
- Agnese Cristini
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Matthias Groh
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Maiken S Kristiansen
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Natalia Gromak
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
24
|
Xu CC, Mau T. A tissue-specific, injectable acellular gel for the treatment of chronic vocal fold scarring. Acta Biomater 2019; 99:141-153. [PMID: 31425889 PMCID: PMC6851489 DOI: 10.1016/j.actbio.2019.08.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/27/2019] [Accepted: 08/13/2019] [Indexed: 02/08/2023]
Abstract
Gel-based injectable biomaterials have significant potential for treating vocal fold defects such as scarring. An ideal injectable for vocal fold lamina propria restoration should mimic the microenvironment of the lamina propria to induce scarless wound healing and functional tissue regeneration. Most current synthetic or natural injectable biomaterials do not possess the same level of complex, tissue-specific constituents as the natural vocal fold lamina propria. In this study we present a newly-developed injectable gel fabricated from decellularized bovine vocal fold lamina propria. Blyscan assay and mass spectrometry indicated that the vocal fold-specific gel contained a large amount of sulfated glycosaminoglycans and over 250 proteins. Gene Ontology overrepresentation analysis revealed that the proteins in the gel dominantly promote antifibrotic biological process. In vivo study using a rabbit vocal fold injury model showed that the injectable gel significantly reduced collagen density and decreased tissue contraction of the lamina propria in vocal folds with chronic scarring. Furthermore, this acellular gel only elicited minimal humoral immune response after injection. Our findings suggested that the tissue-specific, injectable extracellular matrix gel could be a promising biomaterial for treating vocal fold scarring, even after the formation of mature scar. STATEMENT OF SIGNIFICANCE: Vocal fold lamina propria scarring remains among the foremost therapeutic challenges in the management of patients with voice disorders. Surgical excision of scar may cause secondary scarring and yield inconsistent results. The present study reports an extracellular matrix-derived biomaterial that demonstrated antifibrotic effect on chronic scarring in vocal fold lamina propria. Its injectability minimizes the invasiveness of the delivery procedure and the degree of mucosal violation. In this work we also describe a new methodology which can more accurately identify proteins from the complex mixture of an acellular extracellular matrix gel by excluding interfering peptides produced during the enzymatic digestion in gel fabrication.
Collapse
Affiliation(s)
- Chet C Xu
- Department of Otolaryngology-Head and Neck Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Biomedical Engineering Graduate Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Ted Mau
- Department of Otolaryngology-Head and Neck Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
25
|
Fu G, Zhao L, Dymek E, Hou Y, Song K, Phan N, Shang Z, Smith EF, Witman GB, Nicastro D. Structural organization of the C1a-e-c supercomplex within the ciliary central apparatus. J Cell Biol 2019; 218:4236-4251. [PMID: 31672705 PMCID: PMC6891083 DOI: 10.1083/jcb.201906006] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/13/2019] [Accepted: 09/23/2019] [Indexed: 12/13/2022] Open
Abstract
Fu et al. use a WT versus mutant comparison and cryo-electron tomography of Chlamydomonas flagella to identify central apparatus (CA) subunits and visualize their location in the native 3D CA structure. This study provides a better understanding of the CA and how it regulates ciliary motility. Nearly all motile cilia contain a central apparatus (CA) composed of two connected singlet microtubules with attached projections that play crucial roles in regulating ciliary motility. Defects in CA assembly usually result in motility-impaired or paralyzed cilia, which in humans causes disease. Despite their importance, the protein composition and functions of the CA projections are largely unknown. Here, we integrated biochemical and genetic approaches with cryo-electron tomography to compare the CA of wild-type Chlamydomonas with CA mutants. We identified a large (>2 MD) complex, the C1a-e-c supercomplex, that requires the PF16 protein for assembly and contains the CA components FAP76, FAP81, FAP92, and FAP216. We localized these subunits within the supercomplex using nanogold labeling and show that loss of any one of them results in impaired ciliary motility. These data provide insight into the subunit organization and 3D structure of the CA, which is a prerequisite for understanding the molecular mechanisms by which the CA regulates ciliary beating.
Collapse
Affiliation(s)
- Gang Fu
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Lei Zhao
- Department of Radiology, Division of Cell Biology and Imaging, University of Massachusetts Medical School, Worcester, MA
| | - Erin Dymek
- Department of Biological Sciences, Dartmouth College, Hanover, NH
| | - Yuqing Hou
- Department of Radiology, Division of Cell Biology and Imaging, University of Massachusetts Medical School, Worcester, MA
| | - Kangkang Song
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Nhan Phan
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Zhiguo Shang
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX
| | | | - George B Witman
- Department of Radiology, Division of Cell Biology and Imaging, University of Massachusetts Medical School, Worcester, MA
| | - Daniela Nicastro
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
26
|
Beneke T, Demay F, Hookway E, Ashman N, Jeffery H, Smith J, Valli J, Becvar T, Myskova J, Lestinova T, Shafiq S, Sadlova J, Volf P, Wheeler RJ, Gluenz E. Genetic dissection of a Leishmania flagellar proteome demonstrates requirement for directional motility in sand fly infections. PLoS Pathog 2019; 15:e1007828. [PMID: 31242261 PMCID: PMC6615630 DOI: 10.1371/journal.ppat.1007828] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 07/09/2019] [Accepted: 05/08/2019] [Indexed: 11/29/2022] Open
Abstract
The protozoan parasite Leishmania possesses a single flagellum, which is remodelled during the parasite’s life cycle from a long motile flagellum in promastigote forms in the sand fly to a short immotile flagellum in amastigotes residing in mammalian phagocytes. This study examined the protein composition and in vivo function of the promastigote flagellum. Protein mass spectrometry and label free protein enrichment testing of isolated flagella and deflagellated cell bodies defined a flagellar proteome for L. mexicana promastigote forms (available via ProteomeXchange with identifier PXD011057). This information was used to generate a CRISPR-Cas9 knockout library of 100 mutants to screen for flagellar defects. This first large-scale knockout screen in a Leishmania sp. identified 56 mutants with altered swimming speed (52 reduced and 4 increased) and defined distinct mutant categories (faster swimmers, slower swimmers, slow uncoordinated swimmers and paralysed cells, including aflagellate promastigotes and cells with curled flagella and disruptions of the paraflagellar rod). Each mutant was tagged with a unique 17-nt barcode, providing a simple barcode sequencing (bar-seq) method for measuring the relative fitness of L. mexicana mutants in vivo. In mixed infections of the permissive sand fly vector Lutzomyia longipalpis, paralysed promastigotes and uncoordinated swimmers were severely diminished in the fly after defecation of the bloodmeal. Subsequent examination of flies infected with a single paralysed mutant lacking the central pair protein PF16 or an uncoordinated swimmer lacking the axonemal protein MBO2 showed that these promastigotes did not reach anterior regions of the fly alimentary tract. These data show that L. mexicana need directional motility for successful colonisation of sand flies. Leishmania are protozoan parasites, transmitted between mammals by the bite of phlebotomine sand flies. Promastigote forms in the sand fly have a long flagellum, which is motile and used for anchoring the parasites to prevent clearance with the digested blood meal remnants. To dissect flagellar functions and their importance in life cycle progression, we generated here a comprehensive list of >300 flagellar proteins and produced a CRISPR-Cas9 gene knockout library of 100 mutant Leishmania. We studied their behaviour in vitro before examining their fate in the sand fly Lutzomyia longipalpis. Measuring mutant swimming speeds showed that about half behaved differently compared to the wild type: a few swam faster, many slower and some were completely paralysed. We also found a group of uncoordinated swimmers. To test whether flagellar motility is required for parasite migration from the fly midgut to the foregut from where they reach the next host, we infected sand flies with a mixed mutant population. Each mutant carried a unique tag and tracking these tags up to nine days after infection showed that paralysed and uncoordinated Leishmania were rapidly lost from flies. These data indicate that directional swimming is important for successful colonisation of sand flies.
Collapse
Affiliation(s)
- Tom Beneke
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - François Demay
- University of Lille 1, Cité Scientifique, Villeneuve d’Ascq, France
| | - Edward Hookway
- Research Department of Pathology, University College London, London, United Kingdom
| | - Nicole Ashman
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Heather Jeffery
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - James Smith
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Jessica Valli
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Tomas Becvar
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jitka Myskova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tereza Lestinova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Shahaan Shafiq
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, United Kingdom
| | - Jovana Sadlova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Richard John Wheeler
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Eva Gluenz
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
27
|
Ikeda KN, Freeman M. Spatial proteomics reveal that the protein phosphatase PTP1B interacts with and may modify tyrosine phosphorylation of the rhomboid protease RHBDL4. J Biol Chem 2019; 294:11486-11497. [PMID: 31177093 PMCID: PMC6663880 DOI: 10.1074/jbc.ra118.007074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 06/03/2019] [Indexed: 12/23/2022] Open
Abstract
Rhomboid-like proteins are evolutionarily conserved, ubiquitous polytopic membrane proteins, including the canonical rhomboid intramembrane serine proteases and also others that have lost protease activity during evolution. We still have much to learn about their cellular roles, and evidence suggests that some may have more than one function. For example, RHBDL4 (rhomboid-like protein 4) is an endoplasmic reticulum (ER)-resident protease that forms a ternary complex with ubiquitinated substrates and p97/VCP (valosin-containing protein), a major driver of ER-associated degradation (ERAD). RHBDL4 is required for ERAD of some substrates, such as the pre-T-cell receptor α chain (pTα) and has also been shown to cleave amyloid precursor protein to trigger its secretion. In another case, RHBDL4 enables the release of full-length transforming growth factor α in exosomes. Using the proximity proteomic method BioID, here we screened for proteins that interact with or are in close proximity to RHBDL4. Bioinformatics analyses revealed that BioID hits of RHBDL4 overlap with factors related to protein stress at the ER, including proteins that interact with p97/VCP. PTP1B (protein-tyrosine phosphatase nonreceptor type 1, also called PTPN1) was also identified as a potential proximity factor and interactor of RHBDL4. Analysis of RHBDL4 peptides highlighted the presence of tyrosine phosphorylation at the cytoplasmic RHBDL4 C terminus. Site-directed mutagenesis targeting these tyrosine residues revealed that their phosphorylation modifies binding of RHBDL4 to p97/VCP and Lys63-linked ubiquitinated proteins. Our work lays a critical foundation for future mechanistic studies of the roles of RHBDL4 in ERAD and other important cellular pathways.
Collapse
Affiliation(s)
- Kyojiro N Ikeda
- Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Matthew Freeman
- Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| |
Collapse
|
28
|
Huang L, Chambliss KL, Gao X, Yuhanna IS, Behling-Kelly E, Bergaya S, Ahmed M, Michaely P, Luby-Phelps K, Darehshouri A, Xu L, Fisher EA, Ge WP, Mineo C, Shaul PW. SR-B1 drives endothelial cell LDL transcytosis via DOCK4 to promote atherosclerosis. Nature 2019; 569:565-569. [PMID: 31019307 PMCID: PMC6631346 DOI: 10.1038/s41586-019-1140-4] [Citation(s) in RCA: 202] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 03/25/2019] [Indexed: 01/15/2023]
Abstract
Atherosclerosis, which underlies life-threatening cardiovascular disorders including myocardial infarction and stroke1, is initiated by low density lipoprotein cholesterol (LDL) passage into the artery wall and engulfment by macrophages, leading to foam cell formation and lesion development2, 2, 3, 3. How circulating LDL enters the artery wall to instigate atherosclerosis is unknown. Here we show in mice that scavenger receptor, class B type 1 (SR-B1) in endothelial cells mediates LDL delivery into arteries and its accumulation by artery wall macrophages, thereby promoting atherosclerosis. LDL particles are colocalized with SR-B1 in endothelial cell intracellular vesicles in vivo, and LDL transcytosis across endothelial monolayers requires its direct binding to SR-B1 and an 8 amino acid cytoplasmic domain of the receptor that recruits the guanine nucleotide exchange factor dedicator of cytokinesis 4 (DOCK4)4. DOCK4 promotes SR-B1 internalization and LDL transport by coupling LDL binding to SR-B1 with Rac1 activation. SR-B1 and DOCK4 expression are increased in atherosclerosis-prone regions of the mouse aorta prior to lesion formation, and in human atherosclerotic versus normal arteries. These findings challenge the long-held concept that atherogenesis involves passive LDL movement across a compromised endothelial barrier. Interventions inhibiting endothelial delivery of LDL into the artery wall may represent a new therapeutic category in the battle against cardiovascular disease.
Collapse
Affiliation(s)
- Linzhang Huang
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ken L Chambliss
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaofei Gao
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ivan S Yuhanna
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Erica Behling-Kelly
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Sonia Bergaya
- Department of Medicine, New York University School of Medicine, New York, NY, USA.,Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, NY, USA.,Marc and Ruti Bell Program in Vascular Biology, New York University School of Medicine, New York, NY, USA
| | - Mohamed Ahmed
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Peter Michaely
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kate Luby-Phelps
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Anza Darehshouri
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Edward A Fisher
- Department of Medicine, New York University School of Medicine, New York, NY, USA.,Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, NY, USA.,Marc and Ruti Bell Program in Vascular Biology, New York University School of Medicine, New York, NY, USA
| | - Woo-Ping Ge
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chieko Mineo
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Philip W Shaul
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
29
|
Bricogne C, Fine M, Pereira PM, Sung J, Tijani M, Wang Y, Henriques R, Collins MK, Hilgemann DW. TMEM16F activation by Ca 2+ triggers plasma membrane expansion and directs PD-1 trafficking. Sci Rep 2019; 9:619. [PMID: 30679690 PMCID: PMC6345885 DOI: 10.1038/s41598-018-37056-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/03/2018] [Indexed: 12/22/2022] Open
Abstract
TMEM16F is a Ca2+ -gated ion channel that is required for Ca2+ -activated phosphatidylserine exposure on the surface of many eukaryotic cells. TMEM16F is widely expressed and has roles in platelet activation during blood clotting, bone formation and T cell activation. By combining microscopy and patch clamp recording we demonstrate that activation of TMEM16F by Ca2+ ionophores in Jurkat T cells triggers large-scale surface membrane expansion in parallel with phospholipid scrambling. With continued ionophore application,TMEM16F-expressing cells then undergo extensive shedding of ectosomes. The T cell co-receptor PD-1 is selectively incorporated into ectosomes. This selectivity depends on its transmembrane sequence. Surprisingly, cells lacking TMEM16F not only fail to expand surface membrane in response to elevated cytoplasmic Ca2+, but instead undergo rapid massive endocytosis with PD-1 internalisation. These results establish a new role for TMEM16F as a regulator of Ca2+ activated membrane trafficking.
Collapse
Affiliation(s)
| | - Michael Fine
- University of Texas Southwestern Medical Center, Department of Physiology, Dallas, Texas, USA
| | - Pedro M Pereira
- MRC Laboratory for Molecular Cell Biology, University College London, Gower St, London, UK
| | - Julia Sung
- National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Herts, UK
| | - Maha Tijani
- National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Herts, UK
| | - Youxue Wang
- University of Texas Southwestern Medical Center, Department of Physiology, Dallas, Texas, USA
| | - Ricardo Henriques
- MRC Laboratory for Molecular Cell Biology, University College London, Gower St, London, UK
| | - Mary K Collins
- UCL Cancer Institute, University College London, Gower St, London, UK.
- National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Herts, UK.
- Okinawa Institute of Science and Technology, Onna-son, Okinawa, Japan.
| | - Donald W Hilgemann
- University of Texas Southwestern Medical Center, Department of Physiology, Dallas, Texas, USA.
| |
Collapse
|
30
|
Moussa EM, Huang H, Thézénas ML, Fischer R, Ramaprasad A, Sisay-Joof F, Jallow M, Pain A, Kwiatkowski D, Kessler BM, Casals-Pascual C. Proteomic profiling of the plasma of Gambian children with cerebral malaria. Malar J 2018; 17:337. [PMID: 30249265 PMCID: PMC6154937 DOI: 10.1186/s12936-018-2487-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/19/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cerebral malaria (CM) is a severe neurological complication of Plasmodium falciparum infection. A number of pathological findings have been correlated with pediatric CM including sequestration, platelet accumulation, petechial haemorrhage and retinopathy. However, the molecular mechanisms leading to death in CM are not yet fully understood. METHODS A shotgun plasma proteomic study was conducted using samples form 52 Gambian children with CM admitted to hospital. Based on clinical outcome, children were assigned to two groups: reversible and fatal CM. Label-free liquid chromatography-tandem mass spectrometry was used to identify and compare plasma proteins that were differentially regulated in children who recovered from CM and those who died. Candidate biomarkers were validated using enzyme immunoassays. RESULTS The plasma proteomic signature of children with CM identified 266 proteins differentially regulated in children with fatal CM. Proteins from the coagulation cascade were consistently decreased in fatal CM, whereas the plasma proteomic signature associated with fatal CM underscored the importance of endothelial activation, tissue damage, inflammation, haemolysis and glucose metabolism. The concentration of circulating proteasomes or PSMB9 in plasma was not significantly different in fatal CM when compared with survivors. Plasma PSMB9 concentration was higher in patients who presented with seizures and was significantly correlated with the number of seizures observed in patients with CM during admission. CONCLUSIONS The results indicate that increased tissue damage and hypercoagulability may play an important role in fatal CM. The diagnostic value of this molecular signature to identify children at high risk of dying to optimize patient referral practices should be validated prospectively.
Collapse
Affiliation(s)
- Ehab M Moussa
- Wellcome Trust Centre for Human Genetics, Oxford, UK
- King Abdulla University of Science and Technology, Thuwal, Saudi Arabia
| | - Honglei Huang
- Wellcome Trust Centre for Human Genetics, Oxford, UK
| | | | - Roman Fischer
- Wellcome Trust Centre for Human Genetics, Oxford, UK
| | - Abhinay Ramaprasad
- Wellcome Trust Centre for Human Genetics, Oxford, UK
- King Abdulla University of Science and Technology, Thuwal, Saudi Arabia
| | | | | | - Arnab Pain
- King Abdulla University of Science and Technology, Thuwal, Saudi Arabia
| | | | | | - Climent Casals-Pascual
- Wellcome Trust Centre for Human Genetics, Oxford, UK.
- Hospital Clinic i Provincial de Barcelona, CDB and ISGlobal, Barcelona, Spain.
| |
Collapse
|
31
|
Stegmann M, Barclay AN, Metcalfe C. Reduction of leucocyte cell surface disulfide bonds during immune activation is dynamic as revealed by a quantitative proteomics workflow (SH-IQ). Open Biol 2018; 8:rsob.180079. [PMID: 30232098 PMCID: PMC6170505 DOI: 10.1098/rsob.180079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 08/17/2018] [Indexed: 11/16/2022] Open
Abstract
Communication through cell surface receptors is crucial for maintaining immune homeostasis, coordinating the immune response and pathogen clearance. This is dependent on the interaction of cell surface receptors with their ligands and requires functionally active conformational states. Thus, immune cell function can be controlled by modulating the structure of either the receptor or the ligand. Reductive cleavage of labile disulfide bonds can mediate such an allosteric change, resulting in modulation of the immune system by a hitherto little studied mechanism. Identifying proteins with labile disulfide bonds and determining the extent of reduction is crucial in elucidating the functional result of reduction. We describe a mass spectrometry-based method—thiol identification and quantitation (SH-IQ)—to identify, quantify and monitor such reduction of labile disulfide bonds in primary cells during immune activation. These results provide the first insight into the extent and dynamics of labile disulfide bond reduction in leucocyte cell surface proteins upon immune activation. We show that this process is thiol oxidoreductase-dependent and mainly affects activatory (e.g. CD132, SLAMF1) and adhesion (CD44, ICAM1) molecules, suggesting a mechanism to prevent over-activation of the immune system and excessive accumulation of leucocytes at sites of inflammation.
Collapse
Affiliation(s)
- Monika Stegmann
- The Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - A Neil Barclay
- The Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Clive Metcalfe
- The Sir William Dunn School of Pathology, University of Oxford, Oxford, UK .,National Institute of Biological Standards and Control, Blanche Lane, South Mimms, UK
| |
Collapse
|
32
|
Cominetti O, Smith D, Hoffman F, Jallow M, Thézénas ML, Huang H, Kwiatkowski D, Maini PK, Casals-Pascual C. Identification of a Novel Clinical Phenotype of Severe Malaria using a Network-Based Clustering Approach. Sci Rep 2018; 8:12849. [PMID: 30150696 PMCID: PMC6110866 DOI: 10.1038/s41598-018-31320-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 08/14/2018] [Indexed: 11/29/2022] Open
Abstract
The parasite Plasmodium falciparum is the main cause of severe malaria (SM). Despite treatment with antimalarial drugs, more than 400,000 deaths are reported every year, mainly in African children. The diversity of clinical presentations associated with SM highlights important differences in disease pathogenesis that often require specific therapeutic options. The clinical heterogeneity of SM is largely unresolved. Here we report a network-based analysis of clinical phenotypes associated with SM in 2,915 Gambian children admitted to hospital with Plasmodium falciparum malaria. We used a network-based clustering method which revealed a strong correlation between disease heterogeneity and mortality. The analysis identified four distinct clusters of SM and respiratory distress that departed from the WHO definition. Patients in these clusters characteristically presented with liver enlargement and high concentrations of brain natriuretic peptide (BNP), giving support to the potential role of circulatory overload and/or right-sided heart failure as a mechanism of disease. The role of heart failure is controversial in SM and our work suggests that standard clinical management may not be appropriate. We find that our clustering can be a powerful data exploration tool to identify novel disease phenotypes and therapeutic options to reduce malaria-associated mortality.
Collapse
Affiliation(s)
- Ornella Cominetti
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, UK
- Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - David Smith
- London School of Hygiene and Tropical Medicine, Keppel Street, London, UK
| | - Fred Hoffman
- Department of Computer Science, University of Oxford, Oxford, UK
- XL Catlin, London, UK
| | | | - Marie L Thézénas
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Honglei Huang
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Philip K Maini
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, UK
| | - Climent Casals-Pascual
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.
- ISGlobal, Hospital Clínic i Provincial de Barcelona, Centre Diagnòstic Biomèdic- Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
33
|
Ankney JA, Muneer A, Chen X. Relative and Absolute Quantitation in Mass Spectrometry-Based Proteomics. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2018; 11:49-77. [PMID: 29894226 DOI: 10.1146/annurev-anchem-061516-045357] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Mass spectrometry-based quantitative proteomics is a powerful tool for gaining insights into function and dynamics of biological systems. However, peptides with different sequences have different ionization efficiencies, and their intensities in a mass spectrum are not correlated with their abundances. Therefore, various label-free or stable isotope label-based quantitation methods have emerged to assist mass spectrometry to perform comparative proteomic experiments, thus enabling nonbiased identification of thousands of proteins differentially expressed in healthy versus diseased cells. Here, we discuss the most widely used label-free and metabolic-, enzymatic-, and chemical labeling-based proteomic strategies for relative and absolute quantitation. We summarize the specific strengths and weaknesses of each technique in terms of quantification accuracy, proteome coverage, multiplexing capability, and robustness. Applications of each strategy for solving specific biological complexities are also presented.
Collapse
Affiliation(s)
- J Astor Ankney
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA;
| | - Adil Muneer
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA;
| | - Xian Chen
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA;
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
34
|
Abstract
O-GlcNAc is an intracellular posttranslational modification that governs myriad cell biological processes and is dysregulated in human diseases. Despite this broad pathophysiological significance, the biochemical effects of most O-GlcNAcylation events remain uncharacterized. One prevalent hypothesis is that O-GlcNAc moieties may be recognized by "reader" proteins to effect downstream signaling. However, no general O-GlcNAc readers have been identified, leaving a considerable gap in the field. To elucidate O-GlcNAc signaling mechanisms, we devised a biochemical screen for candidate O-GlcNAc reader proteins. We identified several human proteins, including 14-3-3 isoforms, that bind O-GlcNAc directly and selectively. We demonstrate that 14-3-3 proteins bind O-GlcNAc moieties in human cells, and we present the structures of 14-3-3β/α and γ bound to glycopeptides, providing biophysical insights into O-GlcNAc-mediated protein-protein interactions. Because 14-3-3 proteins also bind to phospho-serine and phospho-threonine, they may integrate information from O-GlcNAc and O-phosphate signaling pathways to regulate numerous physiological functions.
Collapse
|
35
|
Hicks JA, Li L, Matsui M, Chu Y, Volkov O, Johnson KC, Corey DR. Human GW182 Paralogs Are the Central Organizers for RNA-Mediated Control of Transcription. Cell Rep 2018; 20:1543-1552. [PMID: 28813667 DOI: 10.1016/j.celrep.2017.07.058] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 04/10/2017] [Accepted: 07/20/2017] [Indexed: 01/21/2023] Open
Abstract
In the cytoplasm, small RNAs can control mammalian translation by regulating the stability of mRNA. In the nucleus, small RNAs can also control transcription and splicing. The mechanisms for RNA-mediated nuclear regulation are not understood and remain controversial, hindering the effective application of nuclear RNAi and investigation of its natural regulatory roles. Here, we reveal that the human GW182 paralogs TNRC6A/B/C are central organizing factors critical to RNA-mediated transcriptional activation. Mass spectrometry of purified nuclear lysates followed by experimental validation demonstrates that TNRC6A interacts with proteins involved in protein degradation, RNAi, the CCR4-NOT complex, the mediator complex, and histone-modifying complexes. Functional analysis implicates TNRC6A, NAT10, MED14, and WDR5 in RNA-mediated transcriptional activation. These findings describe protein complexes capable of bridging RNA-mediated sequence-specific recognition of noncoding RNA transcripts with the regulation of gene transcription.
Collapse
Affiliation(s)
- Jessica A Hicks
- Departments of Pharmacology and Biochemistry, UT Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9041, USA
| | - Liande Li
- Departments of Pharmacology and Biochemistry, UT Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9041, USA
| | - Masayuki Matsui
- Departments of Pharmacology and Biochemistry, UT Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9041, USA
| | - Yongjun Chu
- Departments of Pharmacology and Biochemistry, UT Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9041, USA
| | - Oleg Volkov
- Departments of Pharmacology and Biochemistry, UT Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9041, USA
| | - Krystal C Johnson
- Departments of Pharmacology and Biochemistry, UT Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9041, USA
| | - David R Corey
- Departments of Pharmacology and Biochemistry, UT Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9041, USA.
| |
Collapse
|
36
|
Fu G, Wang Q, Phan N, Urbanska P, Joachimiak E, Lin J, Wloga D, Nicastro D. The I1 dynein-associated tether and tether head complex is a conserved regulator of ciliary motility. Mol Biol Cell 2018. [PMID: 29514928 PMCID: PMC5921572 DOI: 10.1091/mbc.e18-02-0142] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Motile cilia are essential for propelling cells and moving fluids across tissues. The activity of axonemal dynein motors must be precisely coordinated to generate ciliary motility, but their regulatory mechanisms are not well understood. The tether and tether head (T/TH) complex was hypothesized to provide mechanical feedback during ciliary beating because it links the motor domains of the regulatory I1 dynein to the ciliary doublet microtubule. Combining genetic and biochemical approaches with cryoelectron tomography, we identified FAP44 and FAP43 (plus the algae-specific, FAP43-redundant FAP244) as T/TH components. WT-mutant comparisons revealed that the heterodimeric T/TH complex is required for the positional stability of the I1 dynein motor domains, stable anchoring of CK1 kinase, and proper phosphorylation of the regulatory IC138-subunit. T/TH also interacts with inner dynein arm d and radial spoke 3, another important motility regulator. The T/TH complex is a conserved regulator of I1 dynein and plays an important role in the signaling pathway that is critical for normal ciliary motility.
Collapse
Affiliation(s)
- Gang Fu
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75235
| | - Qian Wang
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75235
| | - Nhan Phan
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75235
| | - Paulina Urbanska
- Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Jianfeng Lin
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75235
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Daniela Nicastro
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75235
| |
Collapse
|
37
|
Qu Z, D'Mello SR. Proteomic analysis identifies NPTX1 and HIP1R as potential targets of histone deacetylase-3-mediated neurodegeneration. Exp Biol Med (Maywood) 2018; 243:627-638. [PMID: 29486577 DOI: 10.1177/1535370218761149] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A defining feature of neurodegenerative diseases is the abnormal and excessive loss of neurons. One molecule that is particularly important in promoting neuronal death in a variety of cell culture and in vivo models of neurodegeneration is histone deacetylase-3 (HDAC3), a member of the histone deacetylase family of proteins. As a step towards understanding how HDAC3 promotes neuronal death, we conducted a proteomic screen aimed at identifying proteins that were regulated by HDAC3. HDAC3 was overexpressed in cultured rat cerebellar granule neurons (CGNs) and protein lysates were analyzed by mass spectrometry. Of over 3000 proteins identified in the screen, only 21 proteins displayed a significant alteration in expression. Of these, 12 proteins were downregulated whereas 9 proteins were upregulated. The altered expression of five of these proteins, TEX10, NPTX1, TFG, TSC1, and NFL, along with another protein that was downregulated in the proteomic screen, HIP1R, was confirmed using Western blots and commercially available antibodies. Because antibodies were not available for some of the proteins and since HDAC3 is a transcriptional regulator of gene expression, we conducted RT-PCR analysis to confirm expression changes. In separate analyses, we also included other proteins that are known to regulate neurodegeneration, including HDAC9, HSF1, huntingtin, GAPDH, FUS, and p65/RELA. Based on our proteomic screen and candidate protein approach, we identify three genes, Nptx1, Hip1r, and Hdac9, all known to regulate neurodegeneration that are robustly regulated by HDAC3. Given their suggested roles in regulating neuronal death, these genes are likely to be involved in regulating HDAC3-mediated neurotoxicity. Impact statement Neurodegenerative diseases are a major medical, social, and economic problem. Recent studies by several laboratories have indicated that histone deacetylase-3 (HDAC3) plays a key role in promoting neuronal death. But the downstream mediators of HDAC3 neurotoxicity have yet to be identified. We conducted a proteomic screen to identify HDAC3 targets the results of which have been described in this report. Briefly, we identify Nptx1, Hip1r, and Hdac9 as genes whose expression is altered by HDAC3. Investigating how these genes are involved in HDAC3 neurotoxicity could shed valuable insight into neurodegenerative disease and identify molecules that can be targeted to treat these devastating disorders.
Collapse
Affiliation(s)
- Zhe Qu
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275, USA
| | - Santosh R D'Mello
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275, USA
| |
Collapse
|
38
|
Hoopmann MR, Winget JM, Mendoza L, Moritz RL. StPeter: Seamless Label-Free Quantification with the Trans-Proteomic Pipeline. J Proteome Res 2018; 17:1314-1320. [PMID: 29400476 DOI: 10.1021/acs.jproteome.7b00786] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Label-free quantification has grown in popularity as a means of obtaining relative abundance measures for proteomics experiments. However, easily accessible and integrated tools to perform label-free quantification have been lacking. We describe StPeter, an implementation of Normalized Spectral Index quantification for wide availability through integration into the widely used Trans-Proteomic Pipeline. This implementation has been specifically designed for reproducibility and ease of use. We demonstrate that StPeter outperforms other state-of-the art packages using a recently reported benchmark data set over the range of false discovery rates relevant to shotgun proteomics results. We also demonstrate that the software is computationally efficient and supports data from a variety of instrument platforms and experimental designs. Results can be viewed within the Trans-Proteomic Pipeline graphical user interfaces and exported in standard formats for downstream statistical analysis. By integrating StPeter into the freely available Trans-Proteomic Pipeline, users can now obtain high-quality label-free quantification of any data set in seconds by adding a single command to the workflow.
Collapse
Affiliation(s)
- Michael R Hoopmann
- Institute for Systems Biology , Seattle, Washington 98109, United States
| | - Jason M Winget
- Institute for Systems Biology , Seattle, Washington 98109, United States
| | - Luis Mendoza
- Institute for Systems Biology , Seattle, Washington 98109, United States
| | - Robert L Moritz
- Institute for Systems Biology , Seattle, Washington 98109, United States
| |
Collapse
|
39
|
Kanellopoulos AH, Koenig J, Huang H, Pyrski M, Millet Q, Lolignier S, Morohashi T, Gossage SJ, Jay M, Linley JE, Baskozos G, Kessler BM, Cox JJ, Dolphin AC, Zufall F, Wood JN, Zhao J. Mapping protein interactions of sodium channel Na V1.7 using epitope-tagged gene-targeted mice. EMBO J 2018; 37:427-445. [PMID: 29335280 PMCID: PMC5793798 DOI: 10.15252/embj.201796692] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 11/30/2017] [Accepted: 12/05/2017] [Indexed: 11/24/2022] Open
Abstract
The voltage-gated sodium channel NaV1.7 plays a critical role in pain pathways. We generated an epitope-tagged NaV1.7 mouse that showed normal pain behaviours to identify channel-interacting proteins. Analysis of NaV1.7 complexes affinity-purified under native conditions by mass spectrometry revealed 267 proteins associated with Nav1.7 in vivo The sodium channel β3 (Scn3b), rather than the β1 subunit, complexes with Nav1.7, and we demonstrate an interaction between collapsing-response mediator protein (Crmp2) and Nav1.7, through which the analgesic drug lacosamide regulates Nav1.7 current density. Novel NaV1.7 protein interactors including membrane-trafficking protein synaptotagmin-2 (Syt2), L-type amino acid transporter 1 (Lat1) and transmembrane P24-trafficking protein 10 (Tmed10) together with Scn3b and Crmp2 were validated by co-immunoprecipitation (Co-IP) from sensory neuron extract. Nav1.7, known to regulate opioid receptor efficacy, interacts with the G protein-regulated inducer of neurite outgrowth (Gprin1), an opioid receptor-binding protein, demonstrating a physical and functional link between Nav1.7 and opioid signalling. Further information on physiological interactions provided with this normal epitope-tagged mouse should provide useful insights into the many functions now associated with the NaV1.7 channel.
Collapse
Affiliation(s)
| | - Jennifer Koenig
- Molecular Nociception Group, WIBR, University College London, London, UK
| | - Honglei Huang
- TDI Mass Spectrometry Laboratory, Target Discovery Institute, University of Oxford, Oxford, UK
| | - Martina Pyrski
- Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Queensta Millet
- Molecular Nociception Group, WIBR, University College London, London, UK
| | - Stéphane Lolignier
- Molecular Nociception Group, WIBR, University College London, London, UK
- Université Clermont Auvergne, Inserm U1107 Neuro-Dol, Pharmacologie Fondamentale et Clinique de la Douleur, Clermont-Ferrand, France
| | - Toru Morohashi
- Molecular Nociception Group, WIBR, University College London, London, UK
| | - Samuel J Gossage
- Molecular Nociception Group, WIBR, University College London, London, UK
| | - Maude Jay
- Molecular Nociception Group, WIBR, University College London, London, UK
| | - John E Linley
- Molecular Nociception Group, WIBR, University College London, London, UK
- Neuroscience, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | | | - Benedikt M Kessler
- TDI Mass Spectrometry Laboratory, Target Discovery Institute, University of Oxford, Oxford, UK
| | - James J Cox
- Molecular Nociception Group, WIBR, University College London, London, UK
| | - Annette C Dolphin
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Frank Zufall
- Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - John N Wood
- Molecular Nociception Group, WIBR, University College London, London, UK
| | - Jing Zhao
- Molecular Nociception Group, WIBR, University College London, London, UK
| |
Collapse
|
40
|
Kessler BM, Bursomanno S, McGouran JF, Hickson ID, Liu Y. Biochemical and Mass Spectrometry-Based Approaches to Profile SUMOylation in Human Cells. Methods Mol Biol 2018; 1491:131-144. [PMID: 27778286 DOI: 10.1007/978-1-4939-6439-0_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Posttranslational modification of proteins with the small ubiquitin-like modifier (SUMO) regulates protein function in the context of cell cycle and DNA repair. The occurrence of SUMOylation is less frequent as compared to protein modification with ubiquitin, and appears to be controlled by a smaller pool of conjugating and deconjugating enzymes. Mass spectrometry has been instrumental in defining specific as well as proteome-wide views of SUMO-dependent biological processes, and several methodological approaches have been developed in the recent past. Here, we provide an overview of the latest experimental approaches to the study of SUMOylation, and also describe hands-on protocols using a combination of biochemistry and mass spectrometry-based technologies to profile proteins that are SUMOylated in human cells.
Collapse
Affiliation(s)
- Benedikt M Kessler
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK.
| | - Sara Bursomanno
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, Astra Zeneca, Godsmottagningen MA1, Pepparedsleden, 43183, Mölndal, Sweden
| | - Joanna F McGouran
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK.,School of Chemistry, Trinity College Dublin, University of Dublin, College Green, Dublin 2, Ireland
| | - Ian D Hickson
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, Astra Zeneca, Godsmottagningen MA1, Pepparedsleden, 43183, Mölndal, Sweden
| | - Ying Liu
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, Astra Zeneca, Godsmottagningen MA1, Pepparedsleden, 43183, Mölndal, Sweden
| |
Collapse
|
41
|
Ray A, Schwartz N, de Souza Santos M, Zhang J, Orth K, Salomon D. Type VI secretion system MIX-effectors carry both antibacterial and anti-eukaryotic activities. EMBO Rep 2017; 18:1978-1990. [PMID: 28912123 PMCID: PMC5666596 DOI: 10.15252/embr.201744226] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 08/14/2017] [Accepted: 08/16/2017] [Indexed: 12/12/2022] Open
Abstract
Most type VI secretion systems (T6SSs) described to date are protein delivery apparatuses that mediate bactericidal activities. Several T6SSs were also reported to mediate virulence activities, although only few anti-eukaryotic effectors have been described. Here, we identify three T6SSs in the marine bacterium Vibrio proteolyticus and show that T6SS1 mediates bactericidal activities under warm marine-like conditions. Using comparative proteomics, we find nine potential T6SS1 effectors, five of which belong to the polymorphic MIX-effector class. Remarkably, in addition to six predicted bactericidal effectors, the T6SS1 secretome includes three putative anti-eukaryotic effectors. One of these is a MIX-effector containing a cytotoxic necrotizing factor 1 domain. We demonstrate that T6SS1 can use this MIX-effector to target phagocytic cells, resulting in morphological changes and actin cytoskeleton rearrangements. In conclusion, the V. proteolyticus T6SS1, a system homologous to one found in pathogenic vibrios, uses a suite of polymorphic effectors that target both bacteria and eukaryotic neighbors.
Collapse
Affiliation(s)
- Ann Ray
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nika Schwartz
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Marcela de Souza Santos
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Junmei Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kim Orth
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dor Salomon
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
42
|
Khatamzas E, Hipp MM, Gaughan D, Pichulik T, Leslie A, Fernandes RA, Muraro D, Booth S, Zausmer K, Sun MY, Kessler B, Rowland-Jones S, Cerundolo V, Simmons A. Snapin promotes HIV-1 transmission from dendritic cells by dampening TLR8 signaling. EMBO J 2017; 36:2998-3011. [PMID: 28923824 PMCID: PMC5641917 DOI: 10.15252/embj.201695364] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 08/05/2017] [Accepted: 08/11/2017] [Indexed: 12/18/2022] Open
Abstract
HIV-1 traffics through dendritic cells (DCs) en route to establishing a productive infection in T lymphocytes but fails to induce an innate immune response. Within DC endosomes, HIV-1 somehow evades detection by the pattern-recognition receptor (PRR) Toll-like receptor 8 (TLR8). Using a phosphoproteomic approach, we identified a robust and diverse signaling cascade triggered by HIV-1 upon entry into human DCs. A secondary siRNA screen of the identified signaling factors revealed several new mediators of HIV-1 trans-infection of CD4+ T cells in DCs, including the dynein motor protein Snapin. Inhibition of Snapin enhanced localization of HIV-1 with TLR8+ early endosomes, triggered a pro-inflammatory response, and inhibited trans-infection of CD4+ T cells. Snapin inhibited TLR8 signaling in the absence of HIV-1 and is a general regulator of endosomal maturation. Thus, we identify a new mechanism of innate immune sensing by TLR8 in DCs, which is exploited by HIV-1 to promote transmission.
Collapse
Affiliation(s)
- Elham Khatamzas
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, UK
| | - Madeleine Maria Hipp
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, UK
| | - Daniel Gaughan
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, UK
| | - Tica Pichulik
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, UK
| | - Alasdair Leslie
- KwaZulu-Natal Research Institute for TB & HIV, Durban, South Africa
| | - Ricardo A Fernandes
- Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniele Muraro
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, UK
| | - Sarah Booth
- Immunology & Immunotherapy, College of Medical & Dental Sciences, University of Birmingham, Birmingham, UK
| | - Kieran Zausmer
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, UK
| | - Mei-Yi Sun
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, UK
| | - Benedikt Kessler
- KwaZulu-Natal Research Institute for TB & HIV, Durban, South Africa
| | - Sarah Rowland-Jones
- Nuffield Department of Clinical Medicine, University of Oxford NDMRB, Oxford, UK
| | - Vincenzo Cerundolo
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, UK
| | - Alison Simmons
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford, UK
- Translational Gastroenterology Unit, Nuffield Department of Medicine University of Oxford, Oxford, UK
| |
Collapse
|
43
|
Cooper JM, Ou YH, McMillan EA, Vaden RM, Zaman A, Bodemann BO, Makkar G, Posner BA, White MA. TBK1 Provides Context-Selective Support of the Activated AKT/mTOR Pathway in Lung Cancer. Cancer Res 2017; 77:5077-5094. [PMID: 28716898 PMCID: PMC5833933 DOI: 10.1158/0008-5472.can-17-0829] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/19/2017] [Accepted: 07/05/2017] [Indexed: 12/27/2022]
Abstract
Emerging observations link dysregulation of TANK-binding kinase 1 (TBK1) to developmental disorders, inflammatory disease, and cancer. Biochemical mechanisms accounting for direct participation of TBK1 in host defense signaling have been well described. However, the molecular underpinnings of the selective participation of TBK1 in a myriad of additional cell biological systems in normal and pathophysiologic contexts remain poorly understood. To elucidate the context-selective role of TBK1 in cancer cell survival, we employed a combination of broad-scale chemogenomic and interactome discovery strategies to generate data-driven mechanism-of-action hypotheses. This approach uncovered evidence that TBK1 supports AKT/mTORC1 pathway activation and function through direct modulation of multiple pathway components acting both upstream and downstream of the mTOR kinase itself. Furthermore, we identified distinct molecular features in which mesenchymal, Ras-mutant lung cancer is acutely dependent on TBK1-mediated support of AKT/mTORC1 pathway activation for survival. Cancer Res; 77(18); 5077-94. ©2017 AACR.
Collapse
MESH Headings
- Apoptosis/drug effects
- Apoptosis/genetics
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Proliferation/drug effects
- Cell Proliferation/genetics
- Cell Transformation, Neoplastic/drug effects
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Humans
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Mesoderm/drug effects
- Mesoderm/metabolism
- Mesoderm/pathology
- Phosphorylation/drug effects
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- Regulatory Elements, Transcriptional/drug effects
- Signal Transduction/drug effects
- Small Molecule Libraries/pharmacology
- TOR Serine-Threonine Kinases/genetics
- TOR Serine-Threonine Kinases/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Jonathan M Cooper
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas
| | - Yi-Hung Ou
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas
| | | | - Rachel M Vaden
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas
| | - Aubhishek Zaman
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas
| | - Brian O Bodemann
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas
| | - Gurbani Makkar
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas
| | - Bruce A Posner
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas
| | - Michael A White
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
44
|
Environmental and Genetic Determinants of Biofilm Formation in Paracoccus denitrificans. mSphere 2017; 2:mSphere00350-17. [PMID: 28904996 PMCID: PMC5588039 DOI: 10.1128/mspheredirect.00350-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 08/16/2017] [Indexed: 01/12/2023] Open
Abstract
The bacterium Paracoccus denitrificans is a model for the process of denitrification, by which nitrate is reduced to dinitrogen during anaerobic growth. Denitrification is important for soil fertility and greenhouse gas emission and in waste and water treatment processes. The ability of bacteria to grow as a biofilm attached to a solid surface is important in many different contexts. In this paper, we report that attached growth of P. denitrificans is stimulated by nitric oxide, an intermediate in the denitrification pathway. We also show that calcium ions stimulate attached growth, and we identify a large calcium binding protein that is required for growth on a polystyrene surface. We identify components of a signaling pathway through which nitric oxide may regulate biofilm formation. Our results point to an intimate link between metabolic processes and the ability of P. denitrificans to grow attached to a surface. The genome of the denitrifying bacterium Paracoccus denitrificans predicts the expression of a small heme-containing nitric oxide (NO) binding protein, H-NOX. The genome organization and prior work in other bacteria suggest that H-NOX interacts with a diguanylate cyclase that cyclizes GTP to make cyclic di-GMP (cdGMP). Since cdGMP frequently regulates attached growth as a biofilm, we first established conditions for biofilm development by P. denitrificans. We found that adhesion to a polystyrene surface is strongly stimulated by the addition of 10 mM Ca2+ to rich media. The genome encodes at least 11 repeats-in-toxin family proteins that are predicted to be secreted by the type I secretion system (TISS). We deleted the genes encoding the TISS and found that the mutant is almost completely deficient for attached growth. Adjacent to the TISS genes there is a potential open reading frame encoding a 2,211-residue protein with 891 Asp-Ala repeats. This protein is also predicted to bind calcium and to be a TISS substrate, and a mutant specifically lacking this protein is deficient in biofilm formation. By analysis of mutants and promoter reporter fusions, we show that biofilm formation is stimulated by NO generated endogenously by the respiratory reduction of nitrite. A mutant lacking both predicted diguanylate cyclases encoded in the genome overproduces biofilm, implying that cdGMP is a negative regulator of attached growth. Our data are consistent with a model in which there are H-NOX-dependent and -independent pathways by which NO stimulates biofilm formation. IMPORTANCE The bacterium Paracoccus denitrificans is a model for the process of denitrification, by which nitrate is reduced to dinitrogen during anaerobic growth. Denitrification is important for soil fertility and greenhouse gas emission and in waste and water treatment processes. The ability of bacteria to grow as a biofilm attached to a solid surface is important in many different contexts. In this paper, we report that attached growth of P. denitrificans is stimulated by nitric oxide, an intermediate in the denitrification pathway. We also show that calcium ions stimulate attached growth, and we identify a large calcium binding protein that is required for growth on a polystyrene surface. We identify components of a signaling pathway through which nitric oxide may regulate biofilm formation. Our results point to an intimate link between metabolic processes and the ability of P. denitrificans to grow attached to a surface.
Collapse
|
45
|
Gao Q, Binns DD, Kinch LN, Grishin NV, Ortiz N, Chen X, Goodman JM. Pet10p is a yeast perilipin that stabilizes lipid droplets and promotes their assembly. J Cell Biol 2017; 216:3199-3217. [PMID: 28801319 PMCID: PMC5626530 DOI: 10.1083/jcb.201610013] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 03/28/2017] [Accepted: 07/11/2017] [Indexed: 11/22/2022] Open
Abstract
Pet10p is a yeast lipid droplet protein of unknown function. We show that it binds specifically to and is stabilized by droplets containing triacylglycerol (TG). Droplets isolated from cells with a PET10 deletion strongly aggregate, appear fragile, and fuse in vivo when cells are cultured in oleic acid. Pet10p binds early to nascent droplets, and their rate of appearance is decreased in pet10Δ Moreover, Pet10p functionally interacts with the endoplasmic reticulum droplet assembly factors seipin and Fit2 to maintain proper droplet morphology. The activity of Dga1p, a diacylglycerol acyltransferase, and TG accumulation were both 30-35% lower in the absence of Pet10p. Pet10p contains a PAT domain, a defining property of perilipins, which was not previously known to exist in yeast. We propose that the core functions of Pet10p and other perilipins extend beyond protection from lipases and include the preservation of droplet integrity as well as collaboration with seipin and Fit2 in droplet assembly and maintenance.
Collapse
Affiliation(s)
- Qiang Gao
- Department of Pharmacology, University of Texas Southwestern Medical School, Dallas, TX
| | - Derk D Binns
- Department of Pharmacology, University of Texas Southwestern Medical School, Dallas, TX
| | - Lisa N Kinch
- Howard Hughes Medical Institute, University of Texas Southwestern Medical School, Dallas, TX.,Department of Biophysics, University of Texas Southwestern Medical School, Dallas, TX
| | - Nick V Grishin
- Howard Hughes Medical Institute, University of Texas Southwestern Medical School, Dallas, TX.,Department of Biophysics, University of Texas Southwestern Medical School, Dallas, TX
| | - Natalie Ortiz
- Department of Pharmacology, University of Texas Southwestern Medical School, Dallas, TX
| | - Xiao Chen
- Department of Pharmacology, University of Texas Southwestern Medical School, Dallas, TX
| | - Joel M Goodman
- Department of Pharmacology, University of Texas Southwestern Medical School, Dallas, TX
| |
Collapse
|
46
|
Protein diversity in discrete structures at the distal tip of the trypanosome flagellum. Proc Natl Acad Sci U S A 2017; 114:E6546-E6555. [PMID: 28724725 DOI: 10.1073/pnas.1703553114] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The distal end of the eukaryotic flagellum/cilium is important for axonemal growth and signaling and has distinct biomechanical properties. Specific flagellum tip structures exist, yet their composition, dynamics, and functions are largely unknown. We used biochemical approaches to identify seven constituents of the flagella connector at the tip of an assembling trypanosome flagellum and three constituents of the axonemal capping structure at the tips of both assembling and mature flagella. Both tip structures contain evolutionarily conserved as well as kinetoplastid-specific proteins, and component assembly into the structures occurs very early during flagellum extension. Localization and functional studies reveal that the flagella connector membrane junction is attached to the tips of extending microtubules of the assembling flagellum by a kinesin-15 family member. On the opposite side, a kinetoplastid-specific kinesin facilitates attachment of the junction to the microtubules in the mature flagellum. Functional studies also suggest roles of several other components and the definition of subdomains in the tip structures.
Collapse
|
47
|
A dynamic and adaptive network of cytosolic interactions governs protein export by the T3SS injectisome. Nat Commun 2017; 8:15940. [PMID: 28653671 PMCID: PMC5490264 DOI: 10.1038/ncomms15940] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 05/15/2017] [Indexed: 12/03/2022] Open
Abstract
Many bacteria use a type III secretion system (T3SS) to inject effector proteins into host cells. Selection and export of the effectors is controlled by a set of soluble proteins at the cytosolic interface of the membrane spanning type III secretion ‘injectisome’. Combining fluorescence microscopy, biochemical interaction studies and fluorescence correlation spectroscopy, we show that in live Yersinia enterocolitica bacteria these soluble proteins form complexes both at the injectisome and in the cytosol. Binding to the injectisome stabilizes these cytosolic complexes, whereas the free cytosolic complexes, which include the type III secretion ATPase, constitute a highly dynamic and adaptive network. The extracellular calcium concentration, which triggers activation of the T3SS, directly influences the cytosolic complexes, possibly through the essential component SctK/YscK, revealing a potential mechanism involved in the regulation of type III secretion. Bacterial type III secretion systems (T3SS) play important roles in pathogenesis. Here, Diepold et al. show the dynamic nature of complexes formed of essential T3SS components in live bacteria, and that extracellular calcium concentrations influence these cytosolic complexes likely via SctK/YscK.
Collapse
|
48
|
Chen CC, Montalbano AP, Hussain I, Lee WR, Mendelson CR. The transcriptional repressor GATAD2B mediates progesterone receptor suppression of myometrial contractile gene expression. J Biol Chem 2017; 292:12560-12576. [PMID: 28576827 DOI: 10.1074/jbc.m117.791350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/31/2017] [Indexed: 01/05/2023] Open
Abstract
The mechanisms whereby progesterone (P4), acting via the progesterone receptor (PR), inhibits proinflammatory/contractile gene expression during pregnancy are incompletely defined. Using immortalized human myometrial (hTERT-HM) cells stably expressing wild-type PR-A or PR-B (PRWT), we found that P4 significantly inhibited IL-1β induction of the NF-κB target genes, COX-2 and IL-8 P4-PRWT transrepression occurred at the level of transcription initiation and was mediated by decreased recruitment of NF-κB p65 and RNA polymerase II to COX-2 and IL-8 promoters. However, in cells stably expressing a PR-A or PR-B DNA-binding domain mutant (PRmDBD), P4-mediated transrepression was significantly reduced, suggesting a critical role of the PR DBD. ChIP analysis of hTERT-HM cells stably expressing PRWT or PRmDBD revealed that P4 treatment caused equivalent recruitment of PRWT and PRmDBD to COX-2 and IL-8 promoters, suggesting that PR inhibitory effects were not mediated by its direct DNA binding. Using immunoprecipitation, followed by MS, we identified a transcriptional repressor, GATA zinc finger domain-containing 2B (GATAD2B), that interacted strongly with PRWT but poorly with PRmDBD P4 treatment of PRWT hTERT-HM cells caused enhanced recruitment of endogenous GATAD2B to COX-2 and IL-8 promoters. Further, siRNA knockdown of endogenous GATAD2B significantly reduced P4-PRWT transrepression of COX-2 and IL-8 Notably, GATAD2B expression was significantly decreased in pregnant mouse and human myometrium during labor. Our findings suggest that GATAD2B serves as an important mediator of P4-PR suppression of proinflammatory and contractile genes during pregnancy. Decreased GATAD2B expression near term may contribute to the decline in PR function, leading to labor.
Collapse
Affiliation(s)
- Chien-Cheng Chen
- Department of Biochemistry and the Department of Obstetrics and Gynecology, North Texas March of Dimes Birth Defects Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9038
| | - Alina P Montalbano
- Department of Biochemistry and the Department of Obstetrics and Gynecology, North Texas March of Dimes Birth Defects Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9038
| | - Imran Hussain
- Department of Biochemistry and the Department of Obstetrics and Gynecology, North Texas March of Dimes Birth Defects Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9038
| | - Wan-Ru Lee
- Department of Biochemistry and the Department of Obstetrics and Gynecology, North Texas March of Dimes Birth Defects Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9038
| | - Carole R Mendelson
- Department of Biochemistry and the Department of Obstetrics and Gynecology, North Texas March of Dimes Birth Defects Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9038.
| |
Collapse
|
49
|
De Pablos LM, Kelly S, de Freitas Nascimento J, Sunter J, Carrington M. Characterization of RBP9 and RBP10, two developmentally regulated RNA-binding proteins in Trypanosoma brucei. Open Biol 2017; 7:rsob.160159. [PMID: 28381627 PMCID: PMC5413900 DOI: 10.1098/rsob.160159] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 03/08/2017] [Indexed: 12/19/2022] Open
Abstract
The fate of an mRNA is determined by its interaction with proteins and small RNAs within dynamic complexes called ribonucleoprotein complexes (mRNPs). In Trypanosoma brucei and related kinetoplastids, responses to internal and external signals are mainly mediated by post-transcriptional processes. Here, we used proximity-dependent biotin identification (BioID) combined with RNA-seq to investigate the changes resulting from ectopic expression of RBP10 and RBP9, two developmentally regulated RNA-binding proteins (RBPs). Both RBPs have reduced expression in insect procyclic forms (PCFs) compared with bloodstream forms (BSFs). Upon overexpression in PCFs, both proteins were recruited to cytoplasmic foci, co-localizing with the processing body marker SCD6. Further, both RBPs altered the transcriptome from a PCF- to a BSF-like pattern. Notably, upon expression of BirA*-RBP9 and BirA*-RBP10, BioID yielded more than 200 high confidence protein interactors (more than 10-fold enriched); 45 (RBP9) and 31 (RBP10) were directly related to mRNA metabolism. This study validates the use of BioID for investigating mRNP components but also illustrates the complexity of mRNP function.
Collapse
Affiliation(s)
- Luis Miguel De Pablos
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK.,Centre for Immunology and Infection (CII). Biology Dept., University of York, York YO10 5DD, UK
| | - Steve Kelly
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | | | - Jack Sunter
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| |
Collapse
|
50
|
Grieve AG, Xu H, Künzel U, Bambrough P, Sieber B, Freeman M. Phosphorylation of iRhom2 at the plasma membrane controls mammalian TACE-dependent inflammatory and growth factor signalling. eLife 2017; 6. [PMID: 28432785 PMCID: PMC5436907 DOI: 10.7554/elife.23968] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 04/20/2017] [Indexed: 12/21/2022] Open
Abstract
Proteolytic cleavage and release from the cell surface of membrane-tethered ligands is an important mechanism of regulating intercellular signalling. TACE is a major shedding protease, responsible for the liberation of the inflammatory cytokine TNFα and ligands of the epidermal growth factor receptor. iRhoms, catalytically inactive members of the rhomboid-like superfamily, have been shown to control the ER-to-Golgi transport and maturation of TACE. Here, we reveal that iRhom2 remains associated with TACE throughout the secretory pathway, and is stabilised at the cell surface by this interaction. At the plasma membrane, ERK1/2-mediated phosphorylation and 14-3-3 protein binding of the cytoplasmic amino-terminus of iRhom2 alter its interaction with mature TACE, thereby licensing its proteolytic activity. We show that this molecular mechanism is responsible for triggering inflammatory responses in primary mouse macrophages. Overall, iRhom2 binds to TACE throughout its lifecycle, implying that iRhom2 is a primary regulator of stimulated cytokine and growth factor signalling. DOI:http://dx.doi.org/10.7554/eLife.23968.001 Injury or infection can cause tissues in the body to become inflamed. The immune system triggers this inflammation to help repair the injury or fight the infection. A signal molecule known as TNF – which is produced by immune cells called macrophages – triggers inflammation. This protein is normally attached to the surface of the macrophage, and it only activates inflammation once it has been cut free. An enzyme called TACE cuts and releases TNF from the surface of macrophages. This enzyme is made inside the cell and is then transported to the surface. On the way, TACE matures from an inactive form to a fully functional enzyme. Previous work revealed that a protein called iRhom2 controls TACE maturation, but it has been unclear whether iRhom2 affects TACE in any additional ways. Grieve et al. studied the relationship between iRhom2 and TACE in more detail. The experiments show two new roles for iRhom2: in protecting TACE from being destroyed at the cell surface, and prompting TACE to release TNF to trigger inflammation. Injury or infection causes small molecules called phosphate groups to be attached to iRhom2 in macrophages, which causes TACE to release TNF. The findings of Grieve et al. provide the first evidence that iRhom2 influences the activity of TACE throughout the enzyme’s lifetime. Excessive inflammation, often triggered by the uncontrolled release of TNF, can lead to rheumatoid arthritis, cancer and many other diseases. Therefore, iRhom2 could be a promising new target for anti-inflammatory drugs that may help to treat these conditions. DOI:http://dx.doi.org/10.7554/eLife.23968.002
Collapse
Affiliation(s)
- Adam Graham Grieve
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Hongmei Xu
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Ulrike Künzel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Paul Bambrough
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Boris Sieber
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Matthew Freeman
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|