1
|
Niedra H, Peculis R, Saksis R, Mandrika I, Vilisova S, Nazarovs J, Breiksa A, Gerina A, Earl J, Ruz‐Caracuel I, Rosas MG, Pukitis A, Senterjakova N, Rovite V. Tumor and α-SMA-expressing stromal cells in pancreatic neuroendocrine tumors have a distinct RNA profile depending on tumor grade. Mol Oncol 2025; 19:659-681. [PMID: 39245631 PMCID: PMC11887665 DOI: 10.1002/1878-0261.13727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 07/12/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024] Open
Abstract
Alpha-smooth muscle actin (α-SMA) expression in the stroma is linked to the presence of cancer-associated fibroblasts and is known to correlate with worse outcomes in various tumors. In this study, using a GeoMx digital spatial profiling approach, we characterized the gene expression of the tumor and α-SMA-expressing stromal cell compartments in pancreatic neuroendocrine tumors (PanNETs). The profiling was performed on tissues from eight retrospective cases (three grade 1, four grade 2, and one grade 3). Selected regions of interest were segmented geometrically based on tissue morphology and fluorescent signals from synaptophysin and α-SMA markers. The α-SMA-expressing stromal-cell-associated genes were involved in pathways of extracellular matrix modification, whereas, in tumor cells, the gene expression profiles were associated with pathways involved in cell proliferation. The comparison of gene expression profiles across all three PanNET grades revealed that the differences between grades are not only present at the level of the tumor but also in the α-SMA-expressing stromal cells. Furthermore, the tumor cells from regions with a rich presence of adjacent α-SMA-expressing stromal cells revealed an upregulation of matrix metalloproteinase-9 (MMP9) expression in grade 3 tumors. This study provides an in-depth characterization of gene expression profiles in α-SMA-expressing stromal and tumor cells, and outlines potential crosstalk mechanisms.
Collapse
Affiliation(s)
- Helvijs Niedra
- Department of Molecular and Functional GenomicsLatvian Biomedical Research and Study CentreRigaLatvia
| | - Raitis Peculis
- Department of Molecular and Functional GenomicsLatvian Biomedical Research and Study CentreRigaLatvia
| | - Rihards Saksis
- Department of Molecular and Functional GenomicsLatvian Biomedical Research and Study CentreRigaLatvia
| | - Ilona Mandrika
- Department of Molecular and Functional GenomicsLatvian Biomedical Research and Study CentreRigaLatvia
| | - Sofija Vilisova
- Oncology clinicPauls Stradins Clinical University HospitalRigaLatvia
| | - Jurijs Nazarovs
- Institute of PathologyPauls Stradins Clinical University HospitalRigaLatvia
- Department of PathologyRiga Stradins UniversityLatvia
| | - Austra Breiksa
- Institute of PathologyPauls Stradins Clinical University HospitalRigaLatvia
| | - Aija Gerina
- Oncology clinicPauls Stradins Clinical University HospitalRigaLatvia
| | - Julie Earl
- Ramón y Cajal Health Research Institute (IRYCIS)Ramón y Cajal University Hospital. Ctra. Colmenar Viejo, CIBERONCMadridSpain
| | - Ignacio Ruz‐Caracuel
- Ramón y Cajal Health Research Institute (IRYCIS)Ramón y Cajal University Hospital. Ctra. Colmenar Viejo, CIBERONCMadridSpain
- Department of PathologyRamón y Cajal University Hospital. CtraColmenar ViejoMadridSpain
| | - Marta Gabriela Rosas
- Department of PathologyRamón y Cajal University Hospital. CtraColmenar ViejoMadridSpain
| | - Aldis Pukitis
- Centre of Gastroenterology, Hepatology and Nutrition TherapyPauls Stradins Clinical University HospitalRigaLatvia
| | - Natalja Senterjakova
- Centre of Gastroenterology, Hepatology and Nutrition TherapyPauls Stradins Clinical University HospitalRigaLatvia
| | - Vita Rovite
- Department of Molecular and Functional GenomicsLatvian Biomedical Research and Study CentreRigaLatvia
| |
Collapse
|
2
|
Blondeel E, Peirsman A, Vermeulen S, Piccinini F, De Vuyst F, Estêvão D, Al-Jamei S, Bedeschi M, Castellani G, Cruz T, Dedeyne S, Oliveira MJ, Kawakita S, Nguyen HT, Kunz-Schughart LA, Lee S, Marino N, Steigemann P, Takayama S, Tesei A, Zablowsky N, Blondeel P, De Wever O. The Spheroid Light Microscopy Image Atlas for morphometrical analysis of three-dimensional cell cultures. Sci Data 2025; 12:283. [PMID: 39962061 PMCID: PMC11833042 DOI: 10.1038/s41597-025-04441-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 01/09/2025] [Indexed: 02/20/2025] Open
Abstract
The application of three-dimensional (3D) cell cultures such as spheroids and organoids is growing in popularity both in academia and industry. However, morphology of the 3D architecture remains remarkably understudied. Here, we introduce an open-access Spheroid Light Microscopy Image Atlas (SLiMIA) that can serve as a training set for morphology studies of 3D cell cultures. We provide images with a variety of metadata: 9 microscopes, 47 cell lines, 8 culture media, 4 spheroid formation methods and multiple cell seeding densities; totalling approximately 8,000 images of spheroids. This comprehensive dataset can guide spheroid researchers and promote economizing of resources by advancing 3D cell culture optimization, standardization and implementation by the community at large. Considering the exponentially growing interest in spheroid morphometrical analyses and the emerging technological possibilities to do so, this atlas can be applied to train and develop image segmentation models to deepen our understanding of 3D spheroid morphometry in biomedical research.
Collapse
Affiliation(s)
- Eva Blondeel
- Laboratory of Experimental Cancer Research (LECR), Ghent University, Ghent, Belgium
| | - Arne Peirsman
- Laboratory of Experimental Cancer Research (LECR), Ghent University, Ghent, Belgium.
- Plastic, Reconstructive and Aesthetic Surgery University Hospital Ghent, Ghent, Belgium.
- Terasaki Institute for Biomedical Innovation, Los Angeles, California, 90064, USA.
| | - Stephanie Vermeulen
- Laboratory of Experimental Cancer Research (LECR), Ghent University, Ghent, Belgium
| | - Filippo Piccinini
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Felix De Vuyst
- Laboratory of Experimental Cancer Research (LECR), Ghent University, Ghent, Belgium
| | - Diogo Estêvão
- Tumour and Microenvironment Interactions group, i3S - Institute for Research & Innovation in Health, Porto UnSiversity, Porto, Portugal
- ICBAS - Institute of Biomedical Sciences Abel Salazar, Porto University, Porto, Portugal
| | - Sayida Al-Jamei
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden and Helmholtz- Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Martina Bedeschi
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Gastone Castellani
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Tânia Cruz
- Tumour and Microenvironment Interactions group, i3S - Institute for Research & Innovation in Health, Porto UnSiversity, Porto, Portugal
| | - Sándor Dedeyne
- Laboratory of Experimental Cancer Research (LECR), Ghent University, Ghent, Belgium
| | - Maria José Oliveira
- Tumour and Microenvironment Interactions group, i3S - Institute for Research & Innovation in Health, Porto UnSiversity, Porto, Portugal
| | - Satoru Kawakita
- Terasaki Institute for Biomedical Innovation, Los Angeles, California, 90064, USA
| | - Huu Tuan Nguyen
- Terasaki Institute for Biomedical Innovation, Los Angeles, California, 90064, USA
| | - Leoni A Kunz-Schughart
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden and Helmholtz- Zentrum Dresden-Rossendorf, Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
| | - Soojung Lee
- Wallace H. Coulter Department of Biomedical Engineering and Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Noemi Marino
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Patrick Steigemann
- Lead Discovery, Nuvisan ICB GmbH, Muellerstr. 178, 13342, Berlin, Germany
| | - Shuichi Takayama
- Wallace H. Coulter Department of Biomedical Engineering and Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Anna Tesei
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Nina Zablowsky
- Lead Discovery, Nuvisan ICB GmbH, Muellerstr. 178, 13342, Berlin, Germany
| | - Phillip Blondeel
- Plastic, Reconstructive and Aesthetic Surgery University Hospital Ghent, Ghent, Belgium
| | - Olivier De Wever
- Laboratory of Experimental Cancer Research (LECR), Ghent University, Ghent, Belgium.
| |
Collapse
|
3
|
Kewitz‐Hempel S, Windisch N, Hause G, Müller L, Sunderkötter C, Gerloff D. Extracellular vesicles derived from melanoma cells induce carcinoma-associated fibroblasts via miR-92b-3p mediated downregulation of PTEN. J Extracell Vesicles 2024; 13:e12509. [PMID: 39315679 PMCID: PMC11420832 DOI: 10.1002/jev2.12509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/25/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
In melanoma, carcinoma-associated fibroblasts (CAFs) are important cellular components in the tumour microenvironment due to their potential to promote tumour growth and metastatic spread of malignant cells. Melanoma cells have the ability to affect non-tumour cells in the microenvironment by releasing extracellular vesicles (EVs). The mechanisms responsible for reprogramming normal dermal fibroblasts (NHDFs) into CAFs remain incompletely understood. However, it is likely thought to be mediated by melanoma-specific miRNAs, which are transported by EVs derived from melanoma cells. Therefore, we wondered if one of the most enriched miRNAs in EVs secreted by melanoma cells, miR-92b-3p, is involved in the conversion of normal fibroblasts into CAFs. We observed that melanoma cell-derived EVs indeed delivered miR-92b-3p into NHDFs and that its accumulation correlated with CAF formation, as demonstrated by enhanced expression of CAF marker genes and increased proliferation and migration. Overexpression of miR-92b-3p in NHDFs revealed similar results, while EVs deficient of miR-92b-3p did not induce a CAF phenotype. As a target we identified PTEN, whose repression led to increased expression of CAF markers. We thus provide a novel pathway of intercellular communication by which melanoma cells control the transformation of CAFs by virtue of EV-transported miRNAs.
Collapse
Affiliation(s)
- Stefanie Kewitz‐Hempel
- Department of Dermatology and VenereologyMartin‐Luther‐University Halle‐WittenbergHalle (Saale)Germany
| | - Nicola Windisch
- Department of Dermatology and VenereologyMartin‐Luther‐University Halle‐WittenbergHalle (Saale)Germany
| | - Gerd Hause
- BiocenterMartin‐Luther‐University Halle‐WittenbergHalle (Saale)Germany
| | - Lutz Müller
- Department of Internal Medicine IVHematology and Oncology, Martin‐Luther‐University Halle‐WittenbergHalle (Saale)Germany
| | - Cord Sunderkötter
- Department of Dermatology and VenereologyMartin‐Luther‐University Halle‐WittenbergHalle (Saale)Germany
| | - Dennis Gerloff
- Department of Dermatology and VenereologyMartin‐Luther‐University Halle‐WittenbergHalle (Saale)Germany
| |
Collapse
|
4
|
Yin J, Zhu W, Feng S, Yan P, Qin S. The role of cancer-associated fibroblasts in the invasion and metastasis of colorectal cancer. Front Cell Dev Biol 2024; 12:1375543. [PMID: 39139454 PMCID: PMC11319178 DOI: 10.3389/fcell.2024.1375543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/11/2024] [Indexed: 08/15/2024] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and has ranked the third leading cause in cancerassociated death globally. Metastasis is the leading cause of death in colorectal cancer patients. The role of tumor microenvironment (TME) in colorectal cancer metastasis has received increasing attention. As the most abundant cell type in the TME of solid tumors, cancer-associated fibroblasts (CAFs) have been demonstrated to have multiple functions in advancing tumor growth and metastasis. They can remodel the extracellular matrix (ECM) architecture, promote epithelial-mesenchymal transition (EMT), and interact with cancer cells or other stromal cells by secreting growth factors, cytokines, chemokines, and exosomes, facilitating tumor cell invasion into TME and contributing to distant metastasis. This article aims to analyze the sources and heterogeneity of CAFs in CRC, as well as their role in invasion and metastasis, in order to provide new insights into the metastasis mechanism of CRC and its clinical applications.
Collapse
Affiliation(s)
- Jinjin Yin
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenting Zhu
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Senling Feng
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Pengke Yan
- Department of Pharmacy, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shumin Qin
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
| |
Collapse
|
5
|
Lau R, Yu L, Roumeliotis TI, Stewart A, Pickard L, Choudhary JS, Banerji U. Secretome of Cancer-Associated Fibroblasts (CAFs) Influences Drug Sensitivity in Cancer Cells. J Proteome Res 2024; 23:2160-2168. [PMID: 38767394 PMCID: PMC11165579 DOI: 10.1021/acs.jproteome.4c00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/20/2024] [Accepted: 05/04/2024] [Indexed: 05/22/2024]
Abstract
Resistance is a major problem with effective cancer treatment and the stroma forms a significant portion of the tumor mass but traditional drug screens involve cancer cells alone. Cancer-associated fibroblasts (CAFs) are a major tumor stroma component and its secreted proteins may influence the function of cancer cells. The majority of secretome studies compare different cancer or CAF cell lines exclusively. Here, we present the direct characterization of the secreted protein profiles between CAFs and KRAS mutant-cancer cell lines from colorectal, lung, and pancreatic tissues using multiplexed mass spectrometry. 2573 secreted proteins were annotated, and differential analysis highlighted understudied CAF-enriched secreted proteins, including Wnt family member 5B (WNT5B), in addition to established CAF markers, such as collagens. The functional role of CAF secreted proteins was explored by assessing its effect on the response to 97 anticancer drugs since stromal cells may cause a differing cancer drug response, which may be missed on routine drug screening using cancer cells alone. CAF secreted proteins caused specific effects on each of the cancer cell lines, which highlights the complexity and challenges in cancer treatment and so the importance to consider stromal elements.
Collapse
Affiliation(s)
- Rachel Lau
- Clinical
Pharmacology and Adaptive Therapy Group, The Institute of Cancer Research and The Royal Marsden NHS Foundation
Trust, London SM2 5PT, United
Kingdom
| | - Lu Yu
- Functional
Proteomics Group, Chester Beatty Laboratories,
The Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Theodoros I. Roumeliotis
- Functional
Proteomics Group, Chester Beatty Laboratories,
The Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Adam Stewart
- Clinical
Pharmacology and Adaptive Therapy Group, The Institute of Cancer Research and The Royal Marsden NHS Foundation
Trust, London SM2 5PT, United
Kingdom
| | - Lisa Pickard
- Clinical
Pharmacology and Adaptive Therapy Group, The Institute of Cancer Research and The Royal Marsden NHS Foundation
Trust, London SM2 5PT, United
Kingdom
| | - Jyoti S. Choudhary
- Functional
Proteomics Group, Chester Beatty Laboratories,
The Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Udai Banerji
- Clinical
Pharmacology and Adaptive Therapy Group, The Institute of Cancer Research and The Royal Marsden NHS Foundation
Trust, London SM2 5PT, United
Kingdom
| |
Collapse
|
6
|
Chattopadhyay S, Liao YP, Wang X, Nel AE. Use of Stromal Intervention and Exogenous Neoantigen Vaccination to Boost Pancreatic Cancer Chemo-Immunotherapy by Nanocarriers. Bioengineering (Basel) 2023; 10:1205. [PMID: 37892935 PMCID: PMC10604647 DOI: 10.3390/bioengineering10101205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Despite the formidable treatment challenges of pancreatic ductal adenocarcinoma (PDAC), considerable progress has been made in improving drug delivery via pioneering nanocarriers. These innovations are geared towards overcoming the obstacles presented by dysplastic stroma and fostering anti-PDAC immune reactions. We are currently conducting research aimed at enhancing chemotherapy to stimulate anti-tumor immunity by inducing immunogenic cell death (ICD). This is accomplished using lipid bilayer-coated nanocarriers, which enable the attainment of synergistic results. Noteworthy examples include liposomes and lipid-coated mesoporous silica nanoparticles known as "silicasomes". These nanocarriers facilitate remote chemotherapy loading, as well as the seamless integration of immunomodulators into the lipid bilayer. In this communication, we elucidate innovative ways for further improving chemo-immunotherapy. The first is the development of a liposome platform engineered by the remote loading of irinotecan while incorporating a pro-resolving lipoxin in the lipid bilayer. This carrier interfered in stromal collagen deposition, as well as boosting the irinotecan-induced ICD response. The second approach was to synthesize polymer nanoparticles for the delivery of mutated KRAS peptides in conjunction with a TLR7/8 agonist. The dual delivery vaccine particle boosted the generation of antigen-specific cytotoxic T-cells that are recruited to lymphoid structures at the cancer site, with a view to strengthening the endogenous vaccination response achieved by chemo-immunotherapy.
Collapse
Affiliation(s)
- Saborni Chattopadhyay
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Yu-Pei Liao
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
- Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Xiang Wang
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
- Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - André E. Nel
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
- Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
7
|
Yau JNN, Adriani G. Three-dimensional heterotypic colorectal cancer spheroid models for evaluation of drug response. Front Oncol 2023; 13:1148930. [PMID: 37469395 PMCID: PMC10352797 DOI: 10.3389/fonc.2023.1148930] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/15/2023] [Indexed: 07/21/2023] Open
Abstract
Colorectal cancer (CRC) is a leading cause of death worldwide. Improved preclinical tumor models are needed to make treatment screening clinically relevant and address disease mortality. Advancements in 3D cell culture have enabled a greater recapitulation of the architecture and heterogeneity of the tumor microenvironment (TME). This has enhanced their pathophysiological relevance and enabled more accurate predictions of tumor progression and drug response in patients. An increasing number of 3D CRC spheroid models include cell populations such as cancer-associated fibroblasts (CAFs), endothelial cells (ECs), immune cells, and gut bacteria to better mimic the in vivo regulation of signaling pathways. Furthermore, cell heterogeneity within the 3D spheroid models enables the identification of new therapeutic targets to develop alternative treatments and test TME-target therapies. In this mini review, we present the advances in mimicking tumor heterogeneity in 3D CRC spheroid models by incorporating CAFs, ECs, immune cells, and gut bacteria. We introduce how, in these models, the diverse cells influence chemoresistance and tumor progression of the CRC spheroids. We also highlight important parameters evaluated during drug screening in the CRC heterocellular spheroids.
Collapse
Affiliation(s)
- Jia Ning Nicolette Yau
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Giulia Adriani
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
8
|
GLI1 interaction with p300 modulates SDF1 expression in cancer-associated fibroblasts to promote pancreatic cancer cells migration. Biochem J 2023; 480:225-241. [PMID: 36734208 DOI: 10.1042/bcj20220521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/04/2023]
Abstract
Carcinoma-associated fibroblasts (CAFs) play an important role in the progression of multiple malignancies. Secretion of cytokines and growth factors underlies the pro-tumoral effect of CAFs. Although this paracrine function has been extensively documented, the molecular mechanisms controlling the expression of these factors remain elusive. In this study, we provide evidence of a novel CAF transcriptional axis regulating the expression of SDF1, a major driver of cancer cell migration, involving the transcription factor GLI1 and histone acetyltransferase p300. We demonstrate that conditioned media from CAFs overexpressing GLI1 induce the migration of pancreatic cancer cells, and this effect is impaired by an SDF1-neutralizing antibody. Using a combination of co-immunoprecipitation, proximity ligation assay and chromatin immunoprecipitation assay, we further demonstrate that GLI1 and p300 physically interact in CAFs to co-occupy and drive SDF1 promoter activity. Mapping experiments highlight the requirement of GLI1 N-terminal for the interaction with p300. Importantly, knockdowns of both GLI1 and p300 reduce SDF1 expression. Further analysis shows that knockdown of GLI1 decreases SDF1 promoter activity, p300 recruitment, and levels of its associated histone marks (H4ac, H3K27ac, and H3K14ac). Finally, we show that the integrity of two GLI binding sites in the SDF1 promoter is required for p300 recruitment. Our findings define a new role for the p300-GLI1 complex in the regulation of SDF1, providing new mechanistic insight into the molecular events controlling pancreatic cancer cells migration.
Collapse
|
9
|
Owen JS, Clayton A, Pearson HB. Cancer-Associated Fibroblast Heterogeneity, Activation and Function: Implications for Prostate Cancer. Biomolecules 2022; 13:67. [PMID: 36671452 PMCID: PMC9856041 DOI: 10.3390/biom13010067] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023] Open
Abstract
The continuous remodeling of the tumor microenvironment (TME) during prostate tumorigenesis is emerging as a critical event that facilitates cancer growth, progression and drug-resistance. Recent advances have identified extensive communication networks that enable tumor-stroma cross-talk, and emphasized the functional importance of diverse, heterogeneous stromal fibroblast populations during malignant growth. Cancer-associated fibroblasts (CAFs) are a vital component of the TME, which mediate key oncogenic events including angiogenesis, immunosuppression, metastatic progression and therapeutic resistance, thus presenting an attractive therapeutic target. Nevertheless, how fibroblast heterogeneity, recruitment, cell-of-origin and differential functions contribute to prostate cancer remains to be fully delineated. Developing our molecular understanding of these processes is fundamental to developing new therapies and biomarkers that can ultimately improve clinical outcomes. In this review, we explore the current challenges surrounding fibroblast identification, discuss new mechanistic insights into fibroblast functions during normal prostate tissue homeostasis and tumorigenesis, and illustrate the diverse nature of fibroblast recruitment and CAF generation. We also highlight the promise of CAF-targeted therapies for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Jasmine S. Owen
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Aled Clayton
- Tissue Microenvironment Group, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Helen B. Pearson
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| |
Collapse
|
10
|
Fotsitzoudis C, Koulouridi A, Messaritakis I, Konstantinidis T, Gouvas N, Tsiaoussis J, Souglakos J. Cancer-Associated Fibroblasts: The Origin, Biological Characteristics and Role in Cancer-A Glance on Colorectal Cancer. Cancers (Basel) 2022; 14:cancers14184394. [PMID: 36139552 PMCID: PMC9497276 DOI: 10.3390/cancers14184394] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Tumor microenvironment is a major contributor to tumor growth, metastasis and resistance to therapy. It consists of many cancer-associated fibroblasts (CAFs), which derive from different types of cells. CAFs detected in different tumor types are linked to poor prognosis, as in the case of colorectal cancer. Although their functions differ according to their subtype, their detection is not easy, and there are no established markers for such detection. They are possible targets for therapeutic treatment. Many trials are ongoing for their use as a prognostic factor and as a treatment target. More research remains to be carried out to establish their role in prognosis and treatment. Abstract The therapeutic approaches to cancer remain a considerable target for all scientists around the world. Although new cancer treatments are an everyday phenomenon, cancer still remains one of the leading mortality causes. Colorectal cancer (CRC) remains in this category, although patients with CRC may have better survival compared with other malignancies. Not only the tumor but also its environment, what we call the tumor microenvironment (TME), seem to contribute to cancer progression and resistance to therapy. TME consists of different molecules and cells. Cancer-associated fibroblasts are a major component. They arise from normal fibroblasts and other normal cells through various pathways. Their role seems to contribute to cancer promotion, participating in tumorigenesis, proliferation, growth, invasion, metastasis and resistance to treatment. Different markers, such as a-SMA, FAP, PDGFR-β, periostin, have been used for the detection of cancer-associated fibroblasts (CAFs). Their detection is important for two main reasons; research has shown that their existence is correlated with prognosis, and they are already under evaluation as a possible target for treatment. However, extensive research is warranted.
Collapse
Affiliation(s)
- Charalampos Fotsitzoudis
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Asimina Koulouridi
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Ippokratis Messaritakis
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 70013 Heraklion, Greece
- Correspondence: ; Tel.: +30-2810-394926
| | | | | | - John Tsiaoussis
- Department of Anatomy, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - John Souglakos
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 70013 Heraklion, Greece
- Department of Medical Oncology, University Hospital of Heraklion, 71110 Heraklion, Greece
| |
Collapse
|
11
|
Bunnell BA, Martin EC, Matossian MD, Brock CK, Nguyen K, Collins-Burow B, Burow ME. The effect of obesity on adipose-derived stromal cells and adipose tissue and their impact on cancer. Cancer Metastasis Rev 2022; 41:549-573. [PMID: 35999486 DOI: 10.1007/s10555-022-10063-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 08/16/2022] [Indexed: 11/24/2022]
Abstract
The significant increase in the incidence of obesity represents the next global health crisis. As a result, scientific research has focused on gaining deeper insights into obesity and adipose tissue biology. As a result of the excessive accumulation of adipose tissue, obesity results from hyperplasia and hypertrophy within the adipose tissue. The functional alterations in the adipose tissue are a confounding contributing factor to many diseases, including cancer. The increased incidence and aggressiveness of several cancers, including colorectal, postmenopausal breast, endometrial, prostate, esophageal, hematological, malignant melanoma, and renal carcinomas, result from obesity as a contributing factor. The increased morbidity and mortality of obesity-associated cancers are attributable to increased hormones, adipokines, and cytokines produced by the adipose tissue. The increased adipose tissue levels observed in obese patients result in more adipose stromal/stem cells (ASCs) distributed throughout the body. ASCs have been shown to impact cancer progression in vitro and in preclinical animal models. ASCs influence tumor biology via multiple mechanisms, including the increased recruitment of ASCs to the tumor site and increased production of cytokines and growth factors by ASCs and other cells within the tumor stroma. Emerging evidence indicates that obesity induces alterations in the biological properties of ASCs, subsequently leading to enhanced tumorigenesis and metastasis of cancer cells. As the focus of this review is the interaction and impact of ASCs on cancer, the presentation is limited to preclinical data generated on cancers in which there is a demonstrated role for ASCs, such as postmenopausal breast, colorectal, prostate, ovarian, multiple myeloma, osteosarcoma, cervical, bladder, and gastrointestinal cancers. Our group has investigated the interactions between obesity and breast cancer and the mechanisms that regulate ASCs and adipocytes in these different contexts through interactions between cancer cells, immune cells, and other cell types present in the tumor microenvironment (TME) are discussed. The reciprocal and circular feedback loop between obesity and ASCs and the mechanisms by which ASCs from obese patients alter the biology of cancer cells and enhance tumorigenesis will be discussed. At present, the evidence for ASCs directly influencing human tumor growth is somewhat limited, though recent clinical studies suggest there may be some link.
Collapse
Affiliation(s)
- Bruce A Bunnell
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA.
| | - Elizabeth C Martin
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, USA
| | - Margarite D Matossian
- Department of Microbiology, Immunology and Genetics, University of Chicago, IL, Chicago, USA
| | - Courtney K Brock
- Section of Hematology and Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Khoa Nguyen
- Section of Hematology and Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Bridgette Collins-Burow
- Section of Hematology and Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Matthew E Burow
- Section of Hematology and Oncology, Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
12
|
Pereira JFS, Bessa C, Matos P, Jordan P. Pro-Inflammatory Cytokines Trigger the Overexpression of Tumour-Related Splice Variant RAC1B in Polarized Colorectal Cells. Cancers (Basel) 2022; 14:cancers14061393. [PMID: 35326545 PMCID: PMC8946262 DOI: 10.3390/cancers14061393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Tumours are now known to develop more quickly when the tumour cell mass is located in a tissue that shows signs of chronic inflammation. Under such conditions, inflammatory cells from the surrounding tumour microenvironment provide survival signals to which cancer cells respond. We have previously found that some colorectal tumours overexpress the protein RAC1B that sustains tumour cell survival. Here we used a colon mucosa-like in vitro cell model and found that the presence of cancer-associated fibroblasts and pro-inflammatory macrophages stimulated colorectal cells to increase their RAC1B levels. Under these conditions, the secreted survival signals were analysed, and interleukin-6 identified as the main trigger for the increase in RAC1B levels. The results contribute to understand the tumour-promoting effect of inflammation at the molecular level. Abstract An inflammatory microenvironment is a tumour-promoting condition that provides survival signals to which cancer cells respond with gene expression changes. One example is the alternative splicing variant Rat Sarcoma Viral Oncogene Homolog (Ras)-Related C3 Botulinum Toxin Substrate 1 (RAC1)B, which we previously identified in a subset of V-Raf Murine Sarcoma Viral Oncogene Homolog B (BRAF)-mutated colorectal tumours. RAC1B was also increased in samples from inflammatory bowel disease patients or in an acute colitis mouse model. Here, we used an epithelial-like layer of polarized Caco-2 or T84 colorectal cancer (CRC) cells in co-culture with fibroblasts, monocytes or macrophages and analysed the effect on RAC1B expression in the CRC cells by RT-PCR, Western blot and confocal fluorescence microscopy. We found that the presence of cancer-associated fibroblasts and M1 macrophages induced the most significant increase in RAC1B levels in the polarized CRC cells, accompanied by a progressive loss of epithelial organization. Under these conditions, we identified interleukin (IL)-6 as the main trigger for the increase in RAC1B levels, associated with Signal Transducer and Activator of Transcription (STAT)3 activation. IL-6 neutralization by a specific antibody abrogated both RAC1B overexpression and STAT3 phosphorylation in polarized CRC cells. Our data identify that pro-inflammatory extracellular signals from stromal cells can trigger the overexpression of tumour-related RAC1B in polarized CRC cells. The results will help to understand the tumour-promoting effect of inflammation and identify novel therapeutic strategies.
Collapse
Affiliation(s)
- Joana F. S. Pereira
- Department of Human Genetics, National Institute of Health ‘Dr. Ricardo Jorge’, 1649-016 Lisbon, Portugal; (J.F.S.P.); (C.B.); (P.M.)
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Cláudia Bessa
- Department of Human Genetics, National Institute of Health ‘Dr. Ricardo Jorge’, 1649-016 Lisbon, Portugal; (J.F.S.P.); (C.B.); (P.M.)
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Paulo Matos
- Department of Human Genetics, National Institute of Health ‘Dr. Ricardo Jorge’, 1649-016 Lisbon, Portugal; (J.F.S.P.); (C.B.); (P.M.)
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Peter Jordan
- Department of Human Genetics, National Institute of Health ‘Dr. Ricardo Jorge’, 1649-016 Lisbon, Portugal; (J.F.S.P.); (C.B.); (P.M.)
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
- Correspondence:
| |
Collapse
|
13
|
3D microgels to quantify tumor cell properties and therapy response dynamics. Biomaterials 2022; 283:121417. [DOI: 10.1016/j.biomaterials.2022.121417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/18/2022] [Accepted: 02/15/2022] [Indexed: 12/21/2022]
|
14
|
Wnt signaling pathway in cancer immunotherapy. Cancer Lett 2022; 525:84-96. [PMID: 34740608 DOI: 10.1016/j.canlet.2021.10.034] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/06/2021] [Accepted: 10/20/2021] [Indexed: 12/11/2022]
Abstract
Wnt/β-catenin signaling is a highly conserved pathway that regulates cell proliferation, differentiation, apoptosis, stem cell self-renewal, tissue homeostasis, and wound healing. Dysregulation of the Wnt pathway is intricately involved in almost all stages of tumorigenesis in various cancers. Through direct and/or indirect effects on effector T cells, T-regulatory cells, T-helper cells, dendritic cells, and other cytokine-expressing immune cells, abnormal activation of Wnt/β-catenin signaling benefits immune exclusion and hinders T-cell-mediated antitumor immune responses. Activation of Wnt signaling results in increased resistance to immunotherapies. In this review, we summarize the process by which Wnt signaling affects cancer and immune surveillance, and the potential for targeting the Wnt-signaling pathway via cancer immunotherapy.
Collapse
|
15
|
Deng L, Jiang N, Zeng J, Wang Y, Cui H. The Versatile Roles of Cancer-Associated Fibroblasts in Colorectal Cancer and Therapeutic Implications. Front Cell Dev Biol 2021; 9:733270. [PMID: 34660589 PMCID: PMC8517274 DOI: 10.3389/fcell.2021.733270] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/14/2021] [Indexed: 01/07/2023] Open
Abstract
The tumor microenvironment (TME) is populated by abundant cancer-associated fibroblasts (CAFs) that radically influence the disease progression across many cancers, including the colorectal cancer (CRC). In theory, targeting CAFs holds great potential in optimizing CRC treatment. However, attempts to translate the therapeutic benefit of CAFs into clinic practice face many obstacles, largely due to our limited understanding of the heterogeneity in their origins, functions, and mechanisms. In recent years, accumulating evidence has uncovered some cellular precursors and molecular markers of CAFs and also revealed their versatility in impacting various hallmarks of CRC, together helping us to better define the population of CAFs and also paving the way toward their future therapeutic targeting for CRC treatment. In this review, we outline the emerging concept of CAFs in CRC, with an emphasis on their origins, biomarkers, prognostic significance, as well as their functional roles and underlying mechanisms in CRC biology. At last, we discuss the prospect of harnessing CAFs as promising therapeutic targets for the treatment of patients with CRC.
Collapse
Affiliation(s)
- Longfei Deng
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Nianfen Jiang
- Health Management Center, Southwest University Hospital, Chongqing, China
| | - Jun Zeng
- Department of Genetics and Cell Biology, College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Yi Wang
- Department of General Surgery, The Ninth People's Hospital of Chongqing, Affiliated Hospital of Southwest University, Chongqing, China
| | - Hongjuan Cui
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China.,Department of General Surgery, The Ninth People's Hospital of Chongqing, Affiliated Hospital of Southwest University, Chongqing, China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| |
Collapse
|
16
|
Van Hove L, Hoste E. Activation of Fibroblasts in Skin Cancer. J Invest Dermatol 2021; 142:1026-1031. [PMID: 34600919 DOI: 10.1016/j.jid.2021.09.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/06/2021] [Accepted: 09/15/2021] [Indexed: 10/20/2022]
Abstract
Fibroblasts have emerged as a dominant component of the tumor microenvironment, but despite the surging interest in the activation of fibroblasts and their role in cancer, they remain an elusive and complex cell type. In this perspective, we discuss the phenotypic plasticity of cancer-associated fibroblasts (CAFs) in melanoma and nonmelanoma skin cancer identified by genome-wide transcriptomic studies and focus on the molecular pathways underlying their activation. These studies reveal distinct fibroblast activation profiles depending on tumor type and stage. A better understanding of skin CAF heterogeneity in origin and function will guide novel therapeutic approaches targeting this cell type in clinical cancer care.
Collapse
Affiliation(s)
- Lisette Van Hove
- VIB Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| | - Esther Hoste
- VIB Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent University, Ghent, Belgium.
| |
Collapse
|
17
|
Cao H, Cheng HS, Wang JK, Tan NS, Tay CY. A 3D physio-mimetic interpenetrating network-based platform to decode the pro and anti-tumorigenic properties of cancer-associated fibroblasts. Acta Biomater 2021; 132:448-460. [PMID: 33766799 DOI: 10.1016/j.actbio.2021.03.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/09/2021] [Accepted: 03/16/2021] [Indexed: 12/17/2022]
Abstract
Three-dimensional (3D) biomaterials with physiologically relevant and experimentally tractable biomechanical features are important platforms to advance our understanding of the influence of tissue mechanics in disease progression. Herein, an interpenetrating network (IPN) of collagen and alginate 3D culture system with tunable extracellular microstructure and mechanics is exploited as a tumor stroma proxy to study phenotypic plasticity of colorectal cancer-associated fibroblasts (CAF). In combination with Next Generation Sequencing (NGS) data analysis, we demonstrated that tuning the storage modulus of the IPN hydrogel between 49 and 419 Pa can trigger a reversible switch between an inflammatory (i-state, α-SMAlowIL-6high) and myofibroblastic (m-state, α-SMAhighIL-6low) state in CAF that is dependent on the polymer network confinement effect and ROS-HIF1-α mechanotransduction signaling axis. Secretome from m-state CAF upregulated several epithelial-mesenchymal-transition (EMT) transcripts and induced robust scattering in DLD-1, HCT116, and SW480 human colorectal adenocarcinoma, while the EMT-inducing capacity is muted in i-state CAF, suggestive of an anti-tumorigenic role. Our findings were further validated through Gene Expression Profiling Interactive Analysis (GEPIA), which showed that cytokines secreted at higher levels by i-state CAF are correlated (p < 0.05) with good overall colorectal cancer patient survival. Therefore, 3D network density and spatial cellular confinement are critical biophysical determinants that can profoundly influence CAF states, paracrine signaling, and EMT-inducing potential. STATEMENT OF SIGNIFICANCE: The communication between cancer cells and cancer-associated fibroblasts (CAF) contributes to tumor metastasis. CAF represent a diverse population of cellular subsets that can either promote or restrain tumor progression. However, the origin and cause of CAF heterogeneity remain elusive, limiting CAF-directed therapies for clinical use. We studied the dynamic phenotypes of CAF using a 3D physio-mimetic culture platform consisting of an interpenetrating collagen-alginate network. Combined with transcriptomic stratification and correlative analysis using cancer patient dataset, we showed phenotypic interconversion between inflammatory and myofibroblastic states, with anti- and pro-tumorigenic functions, in human colorectal CAF. This multidisciplinary study reveals the functional diversity of colorectal CAF caused by biophysical cues. The finding will influence the development of new CAF biomarkers and cancer therapies.
Collapse
|
18
|
Abosalema H, Mahgoub S, Emara M, Kotb N, Soror S. Interrupted crosstalk between natural killer cells and anti-epidermal growth factor receptor: a possible role in hepatocellular carcinoma treatment failure. Curr Cancer Drug Targets 2021; 21:601-607. [PMID: 34011259 DOI: 10.2174/1568009621666210519105203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 11/22/2022]
Abstract
Hepatocellular carcinoma (HCC) is a major health problem worldwide. Most patients are diagnosed for the first time at late stages; this leads to a very poor prognosis. It is challenging to discover strategies for treatment at these advanced stages. Recently, monoclonal antibodies (mAbs) targeting specific cellular signaling pathways in HCC have been developed. Unfortunately, they still have a low survival rate, and some of them failed clinically to produce effective responses even if they showed very good results against HCC in preclinical studies. This review focuses on and discusses the possible causes for the failure of mAbs, precisely anti-Epidermal Growth Factor Receptor (EGFR) mAb and the crosstalk between this mAb and patients' NK cells.
Collapse
Affiliation(s)
- Hadeer Abosalema
- Deputy of Technical Mmanager, Biotechnology Unit, Egyptian Drug Authority (EDA), Giza, 12654, Egypt
| | - Shahenda Mahgoub
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Ein-Helwan, Helwan, Cairo,11795, Egypt
| | - Mohamed Emara
- Department of Microbiology and Immunology, Faculty of Pharmacy, Helwan University, Ein-Helwan, Helwan, Cairo,11795, Egypt
| | - Nahla Kotb
- Manager of Blood Derivative Unite, Egyptian Drug Authority (EDA), 12654, Egypt
| | - Sameh Soror
- Department of Biochemistry and molecular biology, Faculty of Pharmacy, Helwan University, Ein-Helwan, Helwan, Cairo,11795, Egypt
| |
Collapse
|
19
|
Yang M, Wei Z, Feng M, Zhu Y, Chen Y, Zhu D. Pharmacological Inhibition and Genetic Knockdown of BCL9 Modulate the Cellular Landscape of Cancer-Associated Fibroblasts in the Tumor-Immune Microenvironment of Colorectal Cancer. Front Oncol 2021; 11:603556. [PMID: 34026600 PMCID: PMC8131873 DOI: 10.3389/fonc.2021.603556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 03/15/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) exert a key role in cancer progression and liver metastasis. They are activated in the tumor microenvironment (TME), but their prometastatic mechanisms are not defined. CAFs are abundant in colorectal cancer (CRC). However, it is not clear whether they are raised from local tissue-resident fibroblasts or pericryptal fibroblasts and distant fibroblast precursors, and whether they may stimulate metastasis-promoting communication. B-cell lymphoma 9/B-cell lymphoma 9-like (BCL9/BCL9L) is the key transcription cofactor of β-catenin. We studied the TME of CRC with single-cell sequencing and consequently found that Bcl9 depletion caused a pro-tumor effect of CAFs, while inhibition of abnormal activation of Wnt/β-catenin signal through Bcl9 depletion benefited T-cell–mediated antitumor immune responses. We also identified and evaluated four types of CAFs in CRC with liver metastasis. In summary, we demonstrate cell type landscape and transcription difference upon BCL9 suppression in CAFs, as well as how CAF affects cancer associated immune surveillance by inhibition of Wnt signaling. Targeting the Wnt signaling pathway via modulating CAF may be a potential therapeutic approach.
Collapse
Affiliation(s)
- Mengxuan Yang
- Central Hospital of Minhang District, Shanghai, China
| | - Zhuang Wei
- Key Laboratory of Systems Biology, Innovation Center for Cell Signaling Network, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Shanghai, China
| | - Mei Feng
- School of Pharmacy, Fudan University, Shanghai, China
| | - Yuanyuan Zhu
- School of Pharmacy, Fudan University, Shanghai, China
| | - Yong Chen
- Department of General Surgery, Huai'an Second People's Hospital and the Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Di Zhu
- Central Hospital of Minhang District, Shanghai, China.,New Drug Evaluation Center, Shandong Academy of Pharmaceutical Science, Jinan, China
| |
Collapse
|
20
|
Ternet C, Kiel C. Signaling pathways in intestinal homeostasis and colorectal cancer: KRAS at centre stage. Cell Commun Signal 2021; 19:31. [PMID: 33691728 PMCID: PMC7945333 DOI: 10.1186/s12964-021-00712-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/25/2021] [Indexed: 02/06/2023] Open
Abstract
The intestinal epithelium acts as a physical barrier that separates the intestinal microbiota from the host and is critical for preserving intestinal homeostasis. The barrier is formed by tightly linked intestinal epithelial cells (IECs) (i.e. enterocytes, goblet cells, neuroendocrine cells, tuft cells, Paneth cells, and M cells), which constantly self-renew and shed. IECs also communicate with microbiota, coordinate innate and adaptive effector cell functions. In this review, we summarize the signaling pathways contributing to intestinal cell fates and homeostasis functions. We focus especially on intestinal stem cell proliferation, cell junction formation, remodelling, hypoxia, the impact of intestinal microbiota, the immune system, inflammation, and metabolism. Recognizing the critical role of KRAS mutants in colorectal cancer, we highlight the connections of KRAS signaling pathways in coordinating these functions. Furthermore, we review the impact of KRAS colorectal cancer mutants on pathway rewiring associated with disruption and dysfunction of the normal intestinal homeostasis. Given that KRAS is still considered undruggable and the development of treatments that directly target KRAS are unlikely, we discuss the suitability of targeting pathways downstream of KRAS as well as alterations of cell extrinsic/microenvironmental factors as possible targets for modulating signaling pathways in colorectal cancer. Video Abstract
Collapse
Affiliation(s)
- Camille Ternet
- School of Medicine, Systems Biology Ireland, and UCD Charles Institute of Dermatology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Christina Kiel
- School of Medicine, Systems Biology Ireland, and UCD Charles Institute of Dermatology, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
21
|
Koustoulidou S, Hoorens MWH, Dalm SU, Mahajan S, Debets R, Seimbille Y, de Jong M. Cancer-Associated Fibroblasts as Players in Cancer Development and Progression and Their Role in Targeted Radionuclide Imaging and Therapy. Cancers (Basel) 2021; 13:1100. [PMID: 33806468 PMCID: PMC7961537 DOI: 10.3390/cancers13051100] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer Associated Fibroblasts (CAFs) form a major component of the tumour microenvironment, they have a complex origin and execute diverse functions in tumour development and progression. As such, CAFs constitute an attractive target for novel therapeutic interventions that will aid both diagnosis and treatment of various cancers. There are, however, a few limitations in reaching successful translation of CAF targeted interventions from bench to bedside. Several approaches targeting CAFs have been investigated so far and a few CAF-targeting tracers have successfully been developed and applied. This includes tracers targeting Fibroblast Activation Protein (FAP) on CAFs. A number of FAP-targeting tracers have shown great promise in the clinic. In this review, we summarize our current knowledge of the functional heterogeneity and biology of CAFs in cancer. Moreover, we highlight the latest developments towards theranostic applications that will help tumour characterization, radioligand therapy and staging in cancers with a distinct CAF population.
Collapse
Affiliation(s)
- Sofia Koustoulidou
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (M.W.H.H.); (S.U.D.); (Y.S.); (M.d.J.)
| | - Mark W. H. Hoorens
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (M.W.H.H.); (S.U.D.); (Y.S.); (M.d.J.)
| | - Simone U. Dalm
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (M.W.H.H.); (S.U.D.); (Y.S.); (M.d.J.)
| | - Shweta Mahajan
- Department of Medical Oncology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (R.D.); (S.M.)
| | - Reno Debets
- Department of Medical Oncology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (R.D.); (S.M.)
| | - Yann Seimbille
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (M.W.H.H.); (S.U.D.); (Y.S.); (M.d.J.)
| | - Marion de Jong
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (M.W.H.H.); (S.U.D.); (Y.S.); (M.d.J.)
| |
Collapse
|
22
|
Zhang Y, Rajput A, Jin N, Wang J. Mechanisms of Immunosuppression in Colorectal Cancer. Cancers (Basel) 2020; 12:cancers12123850. [PMID: 33419310 PMCID: PMC7766388 DOI: 10.3390/cancers12123850] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary More emerging studies are exploring immunotherapy for solid cancers, including colorectal cancer. Besides, checkpoint blockade immunotherapy and chimeric antigen receptor (CAR) -based immune cell therapy have being examined in clinical trials for colorectal cancer patients. However, immunosuppression that leads to the blockage of normal immunosurveillance often leads to cancer development and relapse. In this study, we systematically reviewed the mechanism of immunosuppression, specifically in colorectal cancer, from different perspectives, including the natural or induced immunosuppressive cells, cell surface protein, cytokines/chemokines, transcriptional factors, metabolic alteration, phosphatase, and tissue hypoxia in the tumor microenvironment. We also discussed the progress of immunotherapies in clinical trials/studies for colorectal cancer and highlighted how different strategies for cancer therapy targeted the immunosuppression reviewed above. Our review provides some timely implications for restoring immunosurveillance to improve treatment efficacy in colorectal cancer (CRC). Abstract CRC is the third most diagnosed cancer in the US with the second-highest mortality rate. A multi-modality approach with surgery/chemotherapy is used in patients with early stages of colon cancer. Radiation therapy is added to the armamentarium in patients with locally advanced rectal cancer. While some patients with metastatic CRC are cured, the majority remain incurable and receive palliative chemotherapy as the standard of care. Recently, immune checkpoint blockade has emerged as a promising treatment for many solid tumors, including CRC with microsatellite instability. However, it has not been effective for microsatellite stable CRC. Here, main mechanisms of immunosuppression in CRC will be discussed, aiming to provide some insights for restoring immunosurveillance to improve treatment efficacy in CRC.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Ashwani Rajput
- Johns Hopkins Sidney Kimmel Cancer Center, National Capital Region, Sibley Memorial Hospital, 5255 Loughboro Road NW, Washington, DC 20016, USA;
| | - Ning Jin
- Division of Medical Oncology, Department of Internal Medicine, James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Correspondence: (N.J.); (J.W.); Tel.: +1-614-293-6529 (N.J.); +1-614-293-7733 (J.W.)
| | - Jing Wang
- Department of Cancer Biology and Genetics, James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Correspondence: (N.J.); (J.W.); Tel.: +1-614-293-6529 (N.J.); +1-614-293-7733 (J.W.)
| |
Collapse
|
23
|
Bu L, Baba H, Yasuda T, Uchihara T, Ishimoto T. Functional diversity of cancer-associated fibroblasts in modulating drug resistance. Cancer Sci 2020; 111:3468-3477. [PMID: 33044028 PMCID: PMC7541012 DOI: 10.1111/cas.14578] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 12/15/2022] Open
Abstract
The effectiveness of current chemotherapies for cancer is gradually progressing; however achieving a complete cure through chemotherapy is still difficult and has been the main goal in treatment of advanced cancer. Drug resistance is an issue in cancer therapy, therefore increasing numbers of investigations into drug resistance have focused on the characteristics of the cancer cells themselves. The interaction between the tumor microenvironment (TME) and cancer cells is also intimately involved in the development of drug resistance. Cancer-associated fibroblasts (CAFs) are a predominant component of the TME and affect tumor progression by secreting soluble factors. This review summarizes the most up-to-date knowledge of CAFs and drug resistance in cancer, with a focus on factors secreted from CAFs including proteins, cytokines, extracellular vesicles, and metabolites. A perspective on the potential role of anti-CAF therapies in overcoming CAF-induced drug resistance is also discussed.
Collapse
Affiliation(s)
- Luke Bu
- Department of Gastroenterological SurgeryGraduate School of Medical SciencesKumamoto UniversityKumamotoJapan
- Gastrointestinal Cancer BiologyInternational Research Center of Medical Sciences (IRCMS)Kumamoto UniversityKumamotoJapan
| | - Hideo Baba
- Department of Gastroenterological SurgeryGraduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Tadahito Yasuda
- Department of Gastroenterological SurgeryGraduate School of Medical SciencesKumamoto UniversityKumamotoJapan
- Gastrointestinal Cancer BiologyInternational Research Center of Medical Sciences (IRCMS)Kumamoto UniversityKumamotoJapan
| | - Tomoyuki Uchihara
- Department of Gastroenterological SurgeryGraduate School of Medical SciencesKumamoto UniversityKumamotoJapan
- Gastrointestinal Cancer BiologyInternational Research Center of Medical Sciences (IRCMS)Kumamoto UniversityKumamotoJapan
| | - Takatsugu Ishimoto
- Department of Gastroenterological SurgeryGraduate School of Medical SciencesKumamoto UniversityKumamotoJapan
- Gastrointestinal Cancer BiologyInternational Research Center of Medical Sciences (IRCMS)Kumamoto UniversityKumamotoJapan
| |
Collapse
|
24
|
Yamauchi M, Gibbons DL, Zong C, Fradette JJ, Bota-Rabassedas N, Kurie JM. Fibroblast heterogeneity and its impact on extracellular matrix and immune landscape remodeling in cancer. Matrix Biol 2020; 91-92:8-18. [PMID: 32442601 DOI: 10.1016/j.matbio.2020.05.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 12/12/2022]
Abstract
Tumor progression is marked by dense collagenous matrix accumulations that dynamically reorganize to accommodate a growing and invasive tumor mass. Cancer-associated fibroblasts (CAFs) play an essential role in matrix remodeling and influence other processes in the tumor microenvironment, including angiogenesis, immunosuppression, and invasion. These findings have spawned efforts to elucidate CAF functionality at the single-cell level. Here, we will discuss how those efforts have impacted our understanding of the ways in which CAFs govern matrix remodeling and the influence of matrix remodeling on the development of an immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Mitsuo Yamauchi
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NS, United States
| | - Don L Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas - MD Anderson Cancer Center, Houston, TX, United States
| | - Chenghang Zong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Jared J Fradette
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas - MD Anderson Cancer Center, Houston, TX, United States
| | - Neus Bota-Rabassedas
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas - MD Anderson Cancer Center, Houston, TX, United States
| | - Jonathan M Kurie
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas - MD Anderson Cancer Center, Houston, TX, United States.
| |
Collapse
|
25
|
Secretome Proteomic Approaches for Biomarker Discovery: An Update on Colorectal Cancer. ACTA ACUST UNITED AC 2020; 56:medicina56090443. [PMID: 32878319 PMCID: PMC7559921 DOI: 10.3390/medicina56090443] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/27/2020] [Accepted: 08/30/2020] [Indexed: 02/07/2023]
Abstract
Searching for new cancer-related biomarkers is a key priority for the early detection of solid tumors, such as colorectal cancer (CRC), in clinically relevant biological fluids. The cell line and/or tumor tissue secretome represents a valuable resource for discovering novel protein markers secreted by cancer cells. The advantage of a secretome analysis is the reduction of the large dynamic range characterizing human plasma/serum, and the simultaneous enrichment of low abundance cancer-secreted proteins, thereby overcoming the technical limitations underlying the direct search in blood samples. In this review, we provided a comprehensive overview of recent studies on the CRC secretome for biomarker discovery, focusing both on methodological and technical aspects of secretome proteomic approaches and on biomarker-independent validation in CRC patient samples (blood and tissues). Secretome proteomics are mainly based on LC-MS/MS analyses for which secretome samples are either in-gel or in-solution trypsin-digested. Adequate numbers of biological and technical replicates are required to ensure high reproducibility and robustness of the secretome studies. Moreover, another major challenge is the accuracy of proteomic quantitative analysis performed by label-free or labeling methods. The analysis of differentially expressed proteins in the CRC secretome by using bioinformatic tools allowed the identification of potential biomarkers for early CRC detection. In this scenario, this review may help to follow-up the recent secretome studies in order to select promising circulating biomarkers to be validated in larger screenings, thereby contributing toward a complete translation in clinical practice.
Collapse
|
26
|
Unterleuthner D, Neuhold P, Schwarz K, Janker L, Neuditschko B, Nivarthi H, Crncec I, Kramer N, Unger C, Hengstschläger M, Eferl R, Moriggl R, Sommergruber W, Gerner C, Dolznig H. Cancer-associated fibroblast-derived WNT2 increases tumor angiogenesis in colon cancer. Angiogenesis 2020; 23:159-177. [PMID: 31667643 PMCID: PMC7160098 DOI: 10.1007/s10456-019-09688-8] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/26/2019] [Accepted: 10/09/2019] [Indexed: 12/24/2022]
Abstract
WNT2 acts as a pro-angiogenic factor in placental vascularization and increases angiogenesis in liver sinusoidal endothelial cells (ECs) and other ECs. Increased WNT2 expression is detectable in many carcinomas and participates in tumor progression. In human colorectal cancer (CRC), WNT2 is selectively elevated in cancer-associated fibroblasts (CAFs), leading to increased invasion and metastasis. However, if there is a role for WNT2 in colon cancer, angiogenesis was not addressed so far. We demonstrate that WNT2 enhances EC migration/invasion, while it induces canonical WNT signaling in a small subset of cells. Knockdown of WNT2 in CAFs significantly reduced angiogenesis in a physiologically relevant assay, which allows precise assessment of key angiogenic properties. In line with these results, expression of WNT2 in otherwise WNT2-devoid skin fibroblasts led to increased angiogenesis. In CRC xenografts, WNT2 overexpression resulted in enhanced vessel density and tumor volume. Moreover, WNT2 expression correlates with vessel markers in human CRC. Secretome profiling of CAFs by mass spectrometry and cytokine arrays revealed that proteins associated with pro-angiogenic functions are elevated by WNT2. These included extracellular matrix molecules, ANG-2, IL-6, G-CSF, and PGF. The latter three increased angiogenesis. Thus, stromal-derived WNT2 elevates angiogenesis in CRC by shifting the balance towards pro-angiogenic signals.
Collapse
Affiliation(s)
- Daniela Unterleuthner
- Institute of Medical Genetics, Medical University of Vienna, Währinger Straße 10, 1090, Vienna, Austria
| | - Patrick Neuhold
- Institute of Medical Genetics, Medical University of Vienna, Währinger Straße 10, 1090, Vienna, Austria
| | - Katharina Schwarz
- Institute of Medical Genetics, Medical University of Vienna, Währinger Straße 10, 1090, Vienna, Austria
| | - Lukas Janker
- Institute of Analytical Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
| | - Benjamin Neuditschko
- Institute of Analytical Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
| | - Harini Nivarthi
- Ludwig Boltzmann Institute for Cancer Research, Währinger Straße 13a, 1090, Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
| | - Ilija Crncec
- Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8, 1090, Vienna, Austria
- Servier Pharma, Tuškanova 37, 10 000, Zagreb, Croatia
| | - Nina Kramer
- Institute of Medical Genetics, Medical University of Vienna, Währinger Straße 10, 1090, Vienna, Austria
- Department for Companion Animals and Horses, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | - Christine Unger
- Institute of Medical Genetics, Medical University of Vienna, Währinger Straße 10, 1090, Vienna, Austria
| | - Markus Hengstschläger
- Institute of Medical Genetics, Medical University of Vienna, Währinger Straße 10, 1090, Vienna, Austria
| | - Robert Eferl
- Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8, 1090, Vienna, Austria
| | - Richard Moriggl
- Ludwig Boltzmann Institute for Cancer Research, Währinger Straße 13a, 1090, Vienna, Austria
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Wolfgang Sommergruber
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, 1130, Vienna, Austria
- Biotechnology, University of Applied Sciences, FH Campus Wien, Helmut- Qualtinger-Gasse 2, 1030, Vienna, Austria
| | - Christopher Gerner
- Institute of Analytical Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
| | - Helmut Dolznig
- Institute of Medical Genetics, Medical University of Vienna, Währinger Straße 10, 1090, Vienna, Austria.
| |
Collapse
|
27
|
Steitz AM, Steffes A, Finkernagel F, Unger A, Sommerfeld L, Jansen JM, Wagner U, Graumann J, Müller R, Reinartz S. Tumor-associated macrophages promote ovarian cancer cell migration by secreting transforming growth factor beta induced (TGFBI) and tenascin C. Cell Death Dis 2020; 11:249. [PMID: 32312959 PMCID: PMC7171168 DOI: 10.1038/s41419-020-2438-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/10/2020] [Accepted: 03/10/2020] [Indexed: 12/13/2022]
Abstract
A central and unique aspect of high-grade serous ovarian carcinoma (HGSC) is the extensive transcoelomic spreading of tumor cell via the peritoneal fluid or malignant ascites. We and others identified tumor-associated macrophages (TAM) in the ascites as promoters of metastasis-associated processes like extracellular matrix (ECM) remodeling, tumor cell migration, adhesion, and invasion. The precise mechanisms and mediators involved in these functions of TAM are, however, largely unknown. We observed that HGSC migration is promoted by soluble mediators from ascites-derived TAM, which can be emulated by conditioned medium from monocyte-derived macrophages (MDM) differentiated in ascites to TAM-like asc-MDM. A similar effect was observed with IL-10-induced alternatively activated m2c-MDM but not with LPS/IFNγ-induced inflammatory m1-MDM. These observations provided the basis for deconvolution of the complex TAM secretome by performing comparative secretome analysis of matched triplets of different MDM phenotypes with different pro-migratory properties (asc-MDM, m2c-MDM, m1-MDM). Mass spectrometric analysis identified an overlapping set of nine proteins secreted by both asc-MDM and m2c-MDM, but not by m1-MDM. Of these, three proteins, i.e., transforming growth factor beta-induced (TGFBI) protein, tenascin C (TNC), and fibronectin (FN1), have been associated with migration-related functions. Intriguingly, increased ascites concentrations of TGFBI, TNC, and fibronectin were associated with short progression-free survival. Furthermore, transcriptome and secretome analyses point to TAM as major producers of these proteins, further supporting an essential role for TAM in promoting HGSC progression. Consistent with this hypothesis, we were able to demonstrate that the migration-inducing potential of asc-MDM and m2c-MDM secretomes is inhibited, at least partially, by neutralizing antibodies against TGFBI and TNC or siRNA-mediated silencing of TGFBI expression. In conclusion, the present study provides the first experimental evidence that TAM-derived TGFBI and TNC in ascites promote HGSC progression.
Collapse
Affiliation(s)
- Anna Mary Steitz
- Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Alina Steffes
- Clinic for Gynecology, Gynecologic Oncology and Endocrinology, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Florian Finkernagel
- Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Annika Unger
- Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Leah Sommerfeld
- Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| | - Julia M Jansen
- Clinic for Gynecology, Gynecological Oncology and Gynecological Endocrinology, University Hospital Giessen and Marburg (UKGM), Marburg, Germany
| | - Uwe Wagner
- Clinic for Gynecology, Gynecological Oncology and Gynecological Endocrinology, University Hospital Giessen and Marburg (UKGM), Marburg, Germany
| | - Johannes Graumann
- Biomolecular Mass Spectrometry, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany.,The German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rolf Müller
- Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany.
| | - Silke Reinartz
- Clinic for Gynecology, Gynecologic Oncology and Endocrinology, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| |
Collapse
|
28
|
De Jaeghere EA, Denys HG, De Wever O. Fibroblasts Fuel Immune Escape in the Tumor Microenvironment. Trends Cancer 2019; 5:704-723. [PMID: 31735289 DOI: 10.1016/j.trecan.2019.09.009] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/17/2019] [Accepted: 09/26/2019] [Indexed: 02/08/2023]
Abstract
Immune escape is central to the persistence of most, if not all, solid tumors and poses a critical obstacle to successful cancer (immuno)therapy. Cancer-associated fibroblasts (CAFs) constitute the most prevalent, yet heterogeneous, component of the tumor stroma, where they 'cool down' the immune microenvironment. The central role played by CAFs, both as a physical barrier and source of immunosuppressive molecules, sets them as a target to enhance immunotherapy of cancer. We outline the current understanding of how CAFs fuel immune escape, as well as their potential clinical applications. Whether these therapeutics really have clinically significant activity remains to be seen, but the outlook is positive.
Collapse
Affiliation(s)
- Emiel A De Jaeghere
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium; Medical Oncology, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium; Gynecologic Pelvic Oncology Network Ghent (GYPON), Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Hannelore G Denys
- Medical Oncology, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium; Gynecologic Pelvic Oncology Network Ghent (GYPON), Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Olivier De Wever
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium; Gynecologic Pelvic Oncology Network Ghent (GYPON), Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
29
|
Tuomisto AE, Mäkinen MJ, Väyrynen JP. Systemic inflammation in colorectal cancer: Underlying factors, effects, and prognostic significance. World J Gastroenterol 2019; 25:4383-4404. [PMID: 31496619 PMCID: PMC6710177 DOI: 10.3748/wjg.v25.i31.4383] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/07/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
Systemic inflammation is a marker of poor prognosis preoperatively present in around 20%-40% of colorectal cancer patients. The hallmarks of systemic inflammation include an increased production of proinflammatory cytokines and acute phase proteins that enter the circulation. While the low-level systemic inflammation is often clinically silent, its consequences are many and may ultimately lead to chronic cancer-associated wasting, cachexia. In this review, we discuss the pathogenesis of cancer-related systemic inflammation, explore the role of systemic inflammation in promoting cancer growth, escaping antitumor defense, and shifting metabolic pathways, and how these changes are related to less favorable outcome.
Collapse
Affiliation(s)
- Anne E Tuomisto
- Cancer and Translational Medicine Research Unit, University of Oulu, Oulu 90220, Finland
- Department of Pathology, Oulu University Hospital and Medical Research Center Oulu, Oulu 90220, Finland
| | - Markus J Mäkinen
- Cancer and Translational Medicine Research Unit, University of Oulu, Oulu 90220, Finland
- Department of Pathology, Oulu University Hospital and Medical Research Center Oulu, Oulu 90220, Finland
| | - Juha P Väyrynen
- Cancer and Translational Medicine Research Unit, University of Oulu, Oulu 90220, Finland
- Department of Pathology, Oulu University Hospital and Medical Research Center Oulu, Oulu 90220, Finland
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, United States
| |
Collapse
|
30
|
Zhang Y, Xu J, Zhang N, Chen M, Wang H, Zhu D. Targeting the tumour immune microenvironment for cancer therapy in human gastrointestinal malignancies. Cancer Lett 2019; 458:123-135. [DOI: 10.1016/j.canlet.2019.05.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/11/2019] [Accepted: 05/14/2019] [Indexed: 12/12/2022]
|
31
|
Sandri BJ, Masvidal L, Murie C, Bartish M, Avdulov S, Higgins L, Markowski T, Peterson M, Bergh J, Yang P, Rolny C, Limper AH, Griffin TJ, Bitterman PB, Wendt CH, Larsson O. Distinct Cancer-Promoting Stromal Gene Expression Depending on Lung Function. Am J Respir Crit Care Med 2019; 200:348-358. [PMID: 30742544 PMCID: PMC6680296 DOI: 10.1164/rccm.201801-0080oc] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 02/08/2019] [Indexed: 12/31/2022] Open
Abstract
Rationale: Chronic obstructive pulmonary disease is an independent risk factor for lung cancer, but the underlying molecular mechanisms are unknown. We hypothesized that lung stromal cells activate pathological gene expression programs that support oncogenesis.Objectives: To identify molecular mechanisms operating in the lung stroma that support the development of lung cancer.Methods: The study included subjects with and without lung cancer across a spectrum of lung-function values. We conducted a multiomics analysis of nonmalignant lung tissue to quantify the transcriptome, translatome, and proteome.Measurements and Main Results: Cancer-associated gene expression changes predominantly manifested as alterations in the efficiency of mRNA translation modulating protein levels in the absence of corresponding changes in mRNA levels. The molecular mechanisms that drove these cancer-associated translation programs differed based on lung function. In subjects with normal to mildly impaired lung function, the mammalian target of rapamycin (mTOR) pathway served as an upstream driver, whereas in subjects with severe airflow obstruction, pathways downstream of pathological extracellular matrix emerged. Consistent with a role during cancer initiation, both the mTOR and extracellular matrix gene expression programs paralleled the activation of previously identified procancer secretomes. Furthermore, an in situ examination of lung tissue showed that stromal fibroblasts expressed cancer-associated proteins from two procancer secretomes: one that included IL-6 (in cases of mild or no airflow obstruction), and one that included BMP1 (in cases of severe airflow obstruction).Conclusions: Two distinct stromal gene expression programs that promote cancer initiation are activated in patients with lung cancer depending on lung function. Our work has implications both for screening strategies and for personalized approaches to cancer treatment.
Collapse
Affiliation(s)
- Brian J. Sandri
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Laia Masvidal
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Carl Murie
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Margarita Bartish
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Svetlana Avdulov
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota
| | - LeeAnn Higgins
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - Todd Markowski
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - Mark Peterson
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Jonas Bergh
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | | | - Charlotte Rolny
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Andrew H. Limper
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, Minnesota; and
| | - Timothy J. Griffin
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - Peter B. Bitterman
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Chris H. Wendt
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota
- Pulmonary, Allergy, Critical Care, and Sleep Medicine, Veterans Affairs Medical Center, Minneapolis, Minnesota
| | - Ola Larsson
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
32
|
Natural Killer Cells as Key Players of Tumor Progression and Angiogenesis: Old and Novel Tools to Divert Their Pro-Tumor Activities into Potent Anti-Tumor Effects. Cancers (Basel) 2019; 11:cancers11040461. [PMID: 30939820 PMCID: PMC6521276 DOI: 10.3390/cancers11040461] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023] Open
Abstract
Immune cells, as a consequence of their plasticity, can acquire altered phenotype/functions within the tumor microenvironment (TME). Some of these aberrant functions include attenuation of targeting and killing of tumor cells, tolerogenic/immunosuppressive behavior and acquisition of pro-angiogenic activities. Natural killer (NK) cells are effector lymphocytes involved in tumor immunosurveillance. In solid malignancies, tumor-associated NK cells (TANK cells) in peripheral blood and tumor-infiltrating NK (TINK) cells show altered phenotypes and are characterized by either anergy or reduced cytotoxicity. Here, we aim at discussing how NK cells can support tumor progression and how induction of angiogenesis, due to TME stimuli, can be a relevant part on the NK cell-associated tumor supporting activities. We will review and discuss the contribution of the TME in shaping NK cell response favoring cancer progression. We will focus on TME-derived set of factors such as TGF-β, soluble HLA-G, prostaglandin E2, adenosine, extracellular vesicles, and miRNAs, which can exhibit a dual function. On one hand, these factors can suppress NK cell-mediated activities but, on the other hand, they can induce a pro-angiogenic polarization in NK cells. Also, we will analyze the impact on cancer progression of the interaction of NK cells with several TME-associated cells, including macrophages, neutrophils, mast cells, cancer-associated fibroblasts, and endothelial cells. Then, we will discuss the most relevant therapeutic approaches aimed at potentiating/restoring NK cell activities against tumors. Finally, supported by the literature revision and our new findings on NK cell pro-angiogenic activities, we uphold NK cells to a key host cellular paradigm in controlling tumor progression and angiogenesis; thus, we should bear in mind NK cells like a TME-associated target for anti-tumor therapeutic approaches.
Collapse
|
33
|
Morissette Martin P, Grant A, Hamilton DW, Flynn LE. Matrix composition in 3-D collagenous bioscaffolds modulates the survival and angiogenic phenotype of human chronic wound dermal fibroblasts. Acta Biomater 2019; 83:199-210. [PMID: 30385224 DOI: 10.1016/j.actbio.2018.10.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 10/22/2018] [Accepted: 10/27/2018] [Indexed: 01/18/2023]
Abstract
There is a substantial need for new strategies to stimulate cutaneous tissue repair in the treatment of chronic wounds. To address this challenge, our team is developing modular biomaterials termed "bead foams", comprised of porous beads synthesized exclusively of extracellular matrix (ECM) and assembled into a cohesive three-dimensional (3-D) network. In the current study, bead foams were fabricated from human decellularized adipose tissue (DAT) or commercially-sourced bovine tendon collagen (COL) to explore the effects of ECM composition on human wound edge dermal fibroblasts (weDF) sourced from chronic wound tissues. The DAT and COL bead foams were shown to be structurally similar, but compositionally distinct, containing different levels of glycosaminoglycan content and collagen types IV, V, and VI. In vitro testing under conditions simulating stresses within the chronic wound microenvironment indicated that weDF survival and angiogenic marker expression were significantly enhanced in the DAT bead foams as compared to the COL bead foams. These findings were corroborated through in vivo assessment in a subcutaneous athymic mouse model. Taken together, the results demonstrate that weDF survival and paracrine function can be modulated by the matrix source applied in the design of ECM-derived scaffolds and that the DAT bead foams hold promise as cell-instructive biological wound dressings. STATEMENT OF SIGNIFICANCE: Biological wound dressings derived from the extracellular matrix (ECM) can be designed to promote the establishment of a more permissive microenvironment for healing in the treatment of chronic wounds. In the current work, we developed modular biomaterials comprised of fused networks of porous ECM-derived beads fabricated from human decellularized adipose tissue (DAT) or commercially-available bovine collagen. The bioscaffolds were designed to be structurally similar to provide a platform for investigating the effects of ECM composition on human dermal fibroblasts isolated from chronic wounds. Testing in in vitro and in vivo models demonstrated that cell survival and pro-angiogenic function were enhanced in the adipose-derived bioscaffolds, which contained higher levels of glycosaminoglycans and collagen types IV, V, and VI. Our findings support that the complex matrix composition within DAT can induce a more pro-regenerative cellular response for applications in wound healing.
Collapse
|
34
|
Hernández-Bronchud M. Do locally advanced and metastatic human epithelial cancers evolve in 'placental/decidual-like microenvironments'? Clin Transl Oncol 2018; 21:160-166. [PMID: 30430395 DOI: 10.1007/s12094-018-1982-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 11/07/2018] [Indexed: 11/26/2022]
Abstract
Successful tumor microenvironments eventually kill the host. They are not only meant to nourish and protect tumor development, but to give them the right "soil" for perpetual malignant properties such as tissue invasion and metastasis. This can only be achieved if cancers avoid immune vigilance. A similar situation occurs in mammalian placental pregnancy but feto-maternal tolerance is required for a correct physiological process only until birth. Once a cancer microenvironment has acquired the genetic and epigenetic "placental immune editing switches" (PIES) phenotype, it seems likely that it will keep them "available", whenever needed, for the rest of its development, because it gives cellular clones a competitive advantage to pass unnoticed by the host's immune system. This allows primary cancers and their metastasis to continue growing in spite of new and changing antigenic landscapes.
Collapse
|
35
|
Rappaport JA, Waldman SA. The Guanylate Cyclase C-cGMP Signaling Axis Opposes Intestinal Epithelial Injury and Neoplasia. Front Oncol 2018; 8:299. [PMID: 30131940 PMCID: PMC6091576 DOI: 10.3389/fonc.2018.00299] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/17/2018] [Indexed: 12/12/2022] Open
Abstract
Guanylate cyclase C (GUCY2C) is a transmembrane receptor expressed on the luminal aspect of the intestinal epithelium. Its ligands include bacterial heat-stable enterotoxins responsible for traveler's diarrhea, the endogenous peptide hormones uroguanylin and guanylin, and the synthetic agents, linaclotide, plecanatide, and dolcanatide. Ligand-activated GUCY2C catalyzes the synthesis of intracellular cyclic GMP (cGMP), initiating signaling cascades underlying homeostasis of the intestinal epithelium. Mouse models of GUCY2C ablation, and recently, human populations harboring GUCY2C mutations, have revealed the diverse contributions of this signaling axis to epithelial health, including regulating fluid secretion, microbiome composition, intestinal barrier integrity, epithelial renewal, cell cycle progression, responses to DNA damage, epithelial-mesenchymal cross-talk, cell migration, and cellular metabolic status. Because of these wide-ranging roles, dysregulation of the GUCY2C-cGMP signaling axis has been implicated in the pathogenesis of bowel transit disorders, inflammatory bowel disease, and colorectal cancer. This review explores the current understanding of cGMP signaling in the intestinal epithelium and mechanisms by which it opposes intestinal injury. Particular focus will be applied to its emerging role in tumor suppression. In colorectal tumors, endogenous GUCY2C ligand expression is lost by a yet undefined mechanism conserved in mice and humans. Further, reconstitution of GUCY2C signaling through genetic or oral ligand replacement opposes tumorigenesis in mice. Taken together, these findings suggest an intriguing hypothesis that colorectal cancer arises in a microenvironment of functional GUCY2C inactivation, which can be repaired by oral ligand replacement. Hence, the GUCY2C signaling axis represents a novel therapeutic target for preventing colorectal cancer.
Collapse
Affiliation(s)
- Jeffrey A Rappaport
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, United States
| | - Scott A Waldman
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
36
|
Comen EA, Bowman RL, Kleppe M. Underlying Causes and Therapeutic Targeting of the Inflammatory Tumor Microenvironment. Front Cell Dev Biol 2018; 6:56. [PMID: 29946544 PMCID: PMC6005853 DOI: 10.3389/fcell.2018.00056] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/11/2018] [Indexed: 12/13/2022] Open
Abstract
Historically, the link between chronic inflammation and cancer has long been speculated. Only more recently, pre-clinical and epidemiologic data as well as clinical evidence all point to the role of the tumor microenvironment as inextricably connected to the neoplastic process. The tumor microenvironment (TME), a complex mix of vasculature, inflammatory cells, and stromal cells is the essential "soil" helping to modulate tumor potential. Increasingly, evidence suggests that chronic inflammation modifies the tumor microenvironment, via a host of mechanisms, including the production of cytokines, pro-inflammatory mediators, angiogenesis, and tissue remodeling. Inflammation can be triggered by a variety of different pressures, such as carcinogen exposure, immune dysfunction, dietary habits, and obesity, as well as genetic alterations leading to oncogene activation or loss of tumor suppressors. In this review, we examine the concept of the tumor microenvironment as related to both extrinsic and intrinsic stimuli that promote chronic inflammation and in turn tumorigenesis. Understanding the common pathways inherent in an inflammatory response and the tumor microenvironment may shed light on new therapies for both primary and metastatic disease. The concept of personalized medicine has pushed the field of oncology to drill down on the genetic changes of a cancer, in the hopes of identifying individually targeted agents. Given the complexities of the tumor microenvironment, it is clear that effective oncologic therapies will necessitate targeting not only the cancer cells, but their dynamic relationship to the tumor microenvironment as well.
Collapse
Affiliation(s)
- Elizabeth A. Comen
- Breast Cancer Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Robert L. Bowman
- Center for Hematopoietic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Maria Kleppe
- Center for Hematopoietic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
37
|
Lakins MA, Ghorani E, Munir H, Martins CP, Shields JD. Cancer-associated fibroblasts induce antigen-specific deletion of CD8 + T Cells to protect tumour cells. Nat Commun 2018; 9:948. [PMID: 29507342 PMCID: PMC5838096 DOI: 10.1038/s41467-018-03347-0] [Citation(s) in RCA: 400] [Impact Index Per Article: 57.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 02/06/2018] [Indexed: 11/17/2022] Open
Abstract
Tumours have developed strategies to interfere with most steps required for anti-tumour immune responses. Although many populations contribute to anti-tumour responses, tumour-infiltrating cytotoxic T cells dominate, hence, many suppressive strategies act to inhibit these. Tumour-associated T cells are frequently restricted to stromal zones rather than tumour islands, raising the possibility that the tumour microenvironment, where crosstalk between malignant and "normal" stromal cells exists, may be critical for T cell suppression. We provide evidence of direct interactions between stroma and T cells driving suppression, showing that cancer-associated fibroblasts (CAFs) sample, process and cross-present antigen, killing CD8+ T cells in an antigen-specific, antigen-dependent manner via PD-L2 and FASL. Inhibitory ligand expression is observed in CAFs from human tumours, and neutralisation of PD-L2 or FASL reactivates T cell cytotoxic capacity in vitro and in vivo. Thus, CAFs support T cell suppression within the tumour microenvironment by a mechanism dependent on immune checkpoint activation.
Collapse
Affiliation(s)
- Matthew A Lakins
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Ehsan Ghorani
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Hafsa Munir
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Carla P Martins
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Jacqueline D Shields
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK.
| |
Collapse
|
38
|
Ziani L, Chouaib S, Thiery J. Alteration of the Antitumor Immune Response by Cancer-Associated Fibroblasts. Front Immunol 2018; 9:414. [PMID: 29545811 PMCID: PMC5837994 DOI: 10.3389/fimmu.2018.00414] [Citation(s) in RCA: 271] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 02/14/2018] [Indexed: 12/12/2022] Open
Abstract
Among cells present in the tumor microenvironment, activated fibroblasts termed cancer-associated fibroblasts (CAFs), play a critical role in the complex process of tumor-stroma interaction. CAFs, one of the prominent stromal cell populations in most types of human carcinomas, have been involved in tumor growth, angiogenesis, cancer stemness, extracellular matrix remodeling, tissue invasion, metastasis, and even chemoresistance. During the past decade, these activated tumor-associated fibroblasts have also been involved in the modulation of the anti-tumor immune response on various levels. In this review, we describe our current understanding of how CAFs accomplish this task as well as their potential therapeutic implications.
Collapse
Affiliation(s)
- Linda Ziani
- INSERM, UMR 1186, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France.,Faculty of Medicine, University Paris Sud, Le Kremlin Bicêtre, France
| | - Salem Chouaib
- INSERM, UMR 1186, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France.,Faculty of Medicine, University Paris Sud, Le Kremlin Bicêtre, France
| | - Jerome Thiery
- INSERM, UMR 1186, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France.,Faculty of Medicine, University Paris Sud, Le Kremlin Bicêtre, France
| |
Collapse
|
39
|
Santi A, Kugeratski FG, Zanivan S. Cancer Associated Fibroblasts: The Architects of Stroma Remodeling. Proteomics 2018; 18:e1700167. [PMID: 29280568 PMCID: PMC5900985 DOI: 10.1002/pmic.201700167] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 12/15/2017] [Indexed: 12/24/2022]
Abstract
Fibroblasts have exceptional phenotypic plasticity and capability to secrete vast amount of soluble factors, extracellular matrix components and extracellular vesicles. While in physiological conditions this makes fibroblasts master regulators of tissue homeostasis and healing of injured tissues, in solid tumors cancer associated fibroblasts (CAFs) co-evolve with the disease, and alter the biochemical and physical structure of the tumor microenvironment, as well as the behavior of the surrounding stromal and cancer cells. Thus CAFs are fundamental regulators of tumor progression and influence response to therapeutic treatments. Increasing efforts are devoted to better understand the biology of CAFs to bring insights to develop complementary strategies to target this cell type in cancer. Here we highlight components of the tumor microenvironment that play key roles in cancer progression and invasion, and provide an extensive overview of past and emerging understanding of CAF biology as well as the contribution that MS-based proteomics has made to this field.
Collapse
Affiliation(s)
- Alice Santi
- Cancer Research UK Beatson InstituteGlasgowUK
| | | | - Sara Zanivan
- Cancer Research UK Beatson InstituteGlasgowUK
- Institute of Cancer SciencesUniversity of GlasgowGlasgowUK
| |
Collapse
|
40
|
Kilvaer TK, Rakaee M, Hellevik T, Østman A, Strell C, Bremnes RM, Busund LT, Dønnem T, Martinez-Zubiaurre I. Tissue analyses reveal a potential immune-adjuvant function of FAP-1 positive fibroblasts in non-small cell lung cancer. PLoS One 2018; 13:e0192157. [PMID: 29415055 PMCID: PMC5802915 DOI: 10.1371/journal.pone.0192157] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 01/17/2018] [Indexed: 01/08/2023] Open
Abstract
Objectives Selective targeting of cancer-associated fibroblasts (CAFs) has been proposed to synergize with immune-checkpoint inhibitors. While the roles of CAFs in cancer development are well described, their immune-regulatory properties remain incompletely understood. This study investigates correlations between CAF and immune-markers in tumor stroma from non-small cell lung cancer (NSCLC) patients, and examines whether a combination of CAF and immune cell scores impact patient prognosis. Methods Tumor specimens from 536 primary operable stage I-III NSCLC patients were organized in tissue microarrays. Expression of protein-markers was evaluated by immunohistochemistry. Results Fibroblast and stromal markers PDGFRα, PDGFRβ, FAP-1 and vimentin showed weak correlations while αSMA, and Masson’s trichrome did not correlate with any of the investigated markers. Hierarchical clustering indicated the existence of different CAF-subsets. No relevant correlations were found between any CAF-marker and the immune-markers CD3, CD4, CD8, CD20, CD68, CD1a, CD56, FoxP3 and CD45RO. High density of fibroblast-activation protein positive mesenchymal cells (CAFFAP) was associated with better prognosis in tumors with high infiltration of CD8 and CD3 T-lymphocytes. Conclusions The presented data suggest that CAFs, irrespective of identity, have low influence on the degree of tumor infiltration by inflammatory- and/or immune-cells. However, CAFFAP may exert immuno-adjuvant roles in NSCLC, and targeting CAFs should be cautiously considered.
Collapse
Affiliation(s)
- Thomas Karsten Kilvaer
- Department of Oncology, University Hospital of Northern Norway, Tromsø, Norway
- Department of Clinical Medicine, UiT The Artic University of Norway, Tromsø, Norway
| | - Mehrdad Rakaee
- Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Turid Hellevik
- Department of Oncology, University Hospital of Northern Norway, Tromsø, Norway
| | - Arne Østman
- Department of Oncology-Pathology Cancer Center Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Carina Strell
- Department of Oncology-Pathology Cancer Center Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Roy M. Bremnes
- Department of Oncology, University Hospital of Northern Norway, Tromsø, Norway
- Department of Clinical Medicine, UiT The Artic University of Norway, Tromsø, Norway
| | - Lill-Tove Busund
- Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
- Department of Clinical Pathology, University Hospital of Northern Norway, Tromsø, Norway
| | - Tom Dønnem
- Department of Oncology, University Hospital of Northern Norway, Tromsø, Norway
- Department of Clinical Medicine, UiT The Artic University of Norway, Tromsø, Norway
| | | |
Collapse
|
41
|
Abstract
Intratumoral fibrosis results from the deposition of a cross-linked collagen matrix by cancer-associated fibroblasts (CAFs). This type of fibrosis has been shown to exert mechanical forces and create a biochemical milieu that, together, shape intratumoral immunity and influence tumor cell metastatic behavior. In this Review, we present recent evidence that CAFs and tumor cells are regulated by provisional matrix molecules, that metastasis results from a change in the type of stromal collagen cross-link, and that fibrosis and inflammation perpetuate each other through proteolytic and chemotactic mediators released into the tumor stroma. We also discuss aspects of the emerging biology that have potential therapeutic value.
Collapse
Affiliation(s)
- Mitsuo Yamauchi
- Oral and Craniofacial Health Sciences, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Thomas H Barker
- Department of Biomedical Engineering, School of Engineering and Applied Sciences and School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Don L Gibbons
- Department of Thoracic/Head and Neck Medical Oncology and.,Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | |
Collapse
|
42
|
Georges LM, Verset L, Zlobec I, Demetter P, De Wever O. Impact of the Microenvironment on Tumour Budding in Colorectal Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1110:101-111. [PMID: 30623368 DOI: 10.1007/978-3-030-02771-1_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tumour Budding (TB) is recognized as an adverse prognostic factor in colorectal cancer (CRC). TB is the detachment of isolated cancer cells or small clusters of such cells mainly at the invasion front. One question that arises is of the role of the tumour stroma regarding the permissiveness of the formation and progression of TB. In this review, we will examine potential factors affecting TB, in particular we will analyse the potential effect of inflammation, hypoxia, extracellular matrix and Cancer-Associated Fibroblasts (CAFs).
Collapse
Affiliation(s)
- Laurent Mc Georges
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Laurine Verset
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Inti Zlobec
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Pieter Demetter
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Olivier De Wever
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium. .,Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
43
|
De Jaeghere E, De Vlieghere E, Van Hoorick J, Van Vlierberghe S, Wagemans G, Pieters L, Melsens E, Praet M, Van Dorpe J, Boone MN, Ghobeira R, De Geyter N, Bracke M, Vanhove C, Neyt S, Berx G, De Geest BG, Dubruel P, Declercq H, Ceelen W, De Wever O. Heterocellular 3D scaffolds as biomimetic to recapitulate the tumor microenvironment of peritoneal metastases in vitro and in vivo. Biomaterials 2017; 158:95-105. [PMID: 29306747 DOI: 10.1016/j.biomaterials.2017.12.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 01/01/2023]
Abstract
Peritoneal metastasis is a major cause of death and preclinical models are urgently needed to enhance therapeutic progress. This study reports on a hybrid hydrogel-polylactic acid (PLA) scaffold that mimics the architecture of peritoneal metastases at the qualitative, quantitative and spatial level. Porous PLA scaffolds with controllable pore size, geometry and surface properties are functionalized by type I collagen hydrogel. Co-seeding of cancer-associated fibroblasts (CAF) increases cancer cell adhesion, recovery and exponential growth by in situ heterocellular spheroid formation. Scaffold implantation into the peritoneum allows long-term follow-up (>14 weeks) and results in a time-dependent increase in vascularization, which correlates with cancer cell colonization in vivo. CAF, endothelial cells, macrophages and cancer cells show spatial and quantitative aspects as similarly observed in patient-derived peritoneal metastases. CAF provide long-term secretion of complementary paracrine factors implicated in spheroid formation in vitro as well as in recruitment and organization of host cells in vivo. In conclusion, the multifaceted heterocellular interactions that occur within peritoneal metastases are reproduced in this tissue-engineered implantable scaffold model.
Collapse
Affiliation(s)
- Emiel De Jaeghere
- Laboratory Experimental Cancer Research (LECR), Ghent University, De Pintelaan 185, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - Elly De Vlieghere
- Laboratory Experimental Cancer Research (LECR), Ghent University, De Pintelaan 185, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - Jasper Van Hoorick
- Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium
| | - Glenn Wagemans
- Laboratory Experimental Cancer Research (LECR), Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - Leen Pieters
- Department of Basic Medical Sciences, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - Elodie Melsens
- Experimental Surgery Lab, Department of Surgery, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - Marleen Praet
- Department of Pathology, Ghent University Hospital, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - Jo Van Dorpe
- Cancer Research Institute Ghent (CRIG), Ghent University, De Pintelaan 185, 9000 Ghent, Belgium; Department of Pathology, Ghent University Hospital, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - Matthieu N Boone
- Department of Physics and Astronomy, Ghent University, Proeftuinstraat 86, 9000 Ghent, Belgium
| | - Rouba Ghobeira
- Department of Applied Physics, Research Unit Plasma Technology (RUPT), Ghent University, Sint-Pietersnieuwstraat 41, B4, 9000 Ghent, Belgium
| | - Nathalie De Geyter
- Department of Applied Physics, Research Unit Plasma Technology (RUPT), Ghent University, Sint-Pietersnieuwstraat 41, B4, 9000 Ghent, Belgium
| | - Marc Bracke
- Laboratory Experimental Cancer Research (LECR), Ghent University, De Pintelaan 185, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - Christian Vanhove
- Cancer Research Institute Ghent (CRIG), Ghent University, De Pintelaan 185, 9000 Ghent, Belgium; Institute Biomedical Technology, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - Sara Neyt
- MOLECUBES NV, Ottergemsesteenweg-Zuid 808, 325 Ghent, Belgium
| | - Geert Berx
- Cancer Research Institute Ghent (CRIG), Ghent University, De Pintelaan 185, 9000 Ghent, Belgium; Department of Biomedical Molecular Biology, Unit of Molecular and Cellular Oncology, Inflammation Research Center, VIB, Technologiepark Zwijnaarde 927, 9052 Ghent, Belgium
| | - Bruno G De Geest
- Cancer Research Institute Ghent (CRIG), Ghent University, De Pintelaan 185, 9000 Ghent, Belgium; Department of Pharmaceutics, Ghent University, Ottergemstesteenweg 460, 9000 Ghent, Belgium
| | - Peter Dubruel
- Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium
| | - Heidi Declercq
- Cancer Research Institute Ghent (CRIG), Ghent University, De Pintelaan 185, 9000 Ghent, Belgium; Department of Basic Medical Sciences, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - Wim Ceelen
- Cancer Research Institute Ghent (CRIG), Ghent University, De Pintelaan 185, 9000 Ghent, Belgium; Experimental Surgery Lab, Department of Surgery, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - Olivier De Wever
- Laboratory Experimental Cancer Research (LECR), Ghent University, De Pintelaan 185, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, De Pintelaan 185, 9000 Ghent, Belgium.
| |
Collapse
|
44
|
Murdamoothoo D, Schwenzer A, Kant J, Rupp T, Marzeda A, Midwood K, Orend G. Investigating cell-type specific functions of tenascin-C. Methods Cell Biol 2017; 143:401-428. [PMID: 29310789 DOI: 10.1016/bs.mcb.2017.08.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The extracellular matrix molecule tenascin-C (TNC) has received a lot of attention since its discovery 30 years ago because of its multiple roles in tissue repair, and in pathologies such as chronic inflammation, fibrosis, and cancer. Mouse models with high or no TNC expression have enabled the validation of key roles for TNC in immunity and angiogenesis. In parallel, many approaches including primary cell or organ cultures have shed light on the cellular and molecular mechanisms by which TNC exerts its multiple actions in vivo. Here, we will describe assays that investigate its antiadhesive properties and that measure the effect of TNC on the actin cytoskeleton, cell survival, proliferation, and migration. We will also describe assays to assess the impact of TNC on endothelial and immune cells in cell and organ culture, and to compare the responses of fibroblasts from normal and diseased tissues.
Collapse
Affiliation(s)
- Devadarssen Murdamoothoo
- Inserm U1109, The Microenvironmental Niche in Tumorigenesis and Targeted Therapy (MNT3) Team, Strasbourg, France; Université de Strasbourg, LabEx Medalis, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Anja Schwenzer
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Jessica Kant
- Inserm U1109, The Microenvironmental Niche in Tumorigenesis and Targeted Therapy (MNT3) Team, Strasbourg, France; Université de Strasbourg, LabEx Medalis, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Tristan Rupp
- Inserm U1109, The Microenvironmental Niche in Tumorigenesis and Targeted Therapy (MNT3) Team, Strasbourg, France; Université de Strasbourg, LabEx Medalis, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Anna Marzeda
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Kim Midwood
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom.
| | - Gertraud Orend
- Inserm U1109, The Microenvironmental Niche in Tumorigenesis and Targeted Therapy (MNT3) Team, Strasbourg, France; Université de Strasbourg, LabEx Medalis, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.
| |
Collapse
|
45
|
Giblin SP, Murdamoothoo D, Deligne C, Schwenzer A, Orend G, Midwood KS. How to detect and purify tenascin-C. Methods Cell Biol 2017; 143:371-400. [PMID: 29310788 DOI: 10.1016/bs.mcb.2017.08.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The extracellular matrix molecule tenascin-C (TNC) was discovered over 30 years ago, and its tightly regulated pattern of expression since sparked keen interest in the scientific community. In adult tissues, TNC expression is restricted to specific niches and areas of active remodeling or high mechanical strain. However, while most healthy tissues contain little TNC, its transient expression upon cellular stress or tissue injury helps to mediate repair and restore homeostasis. Persistent expression of TNC is associated with chronic inflammation, fibrosis, and cancer, where methods for its detection are emerging as a reliable means to predict disease onset, prognosis, and response to treatment. Because studying the expression of this large matrix molecule is not always straightforward, here we describe basic techniques to examine tissue levels of TNC mRNA and protein. We also describe methods for purifying recombinant TNC, knocking down its expression, and creating cell-derived matrices with or without TNC within.
Collapse
Affiliation(s)
- Sean P Giblin
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Devadarssen Murdamoothoo
- Inserm U1109, The Microenvironmental Niche in Tumorigenesis and Targeted Therapy (MNT3) Team, Strasbourg, France; Université de Strasbourg, LabEx Medalis, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Claire Deligne
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Anja Schwenzer
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Gertraud Orend
- Inserm U1109, The Microenvironmental Niche in Tumorigenesis and Targeted Therapy (MNT3) Team, Strasbourg, France; Université de Strasbourg, LabEx Medalis, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.
| | - Kim S Midwood
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
46
|
Kistner L, Doll D, Holtorf A, Nitsche U, Janssen KP. Interferon-inducible CXC-chemokines are crucial immune modulators and survival predictors in colorectal cancer. Oncotarget 2017; 8:89998-90012. [PMID: 29163806 PMCID: PMC5685727 DOI: 10.18632/oncotarget.21286] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/26/2017] [Indexed: 12/22/2022] Open
Abstract
Tumor-infiltrating T-cells are strongly associated with prognosis in colorectal cancer, but the mechanisms governing intratumoral lymphocyte recruitment are unclear. We investigated the clinical relevance and functional contribution of interferon-regulated CXC-chemokines CXCL9, CXCL10, and CXCL11, described as T-cells attractants. Their expression was significantly elevated in tumors as compared to normal colon in 163 patients with colon cancer, represented an independent positive predictor of post-operative survival, and was highly significantly correlated with the presence of tumor-infiltrating cytotoxic CD8+ T-cells and CD4+ TH1-effector cells. The regulation of chemokine expression was investigated in established cell lines and in tissue explants from resected tumor specimen (n=22). All colorectal cancer cell lines tested, as well as stroma or endothelial cells, produced CXC-chemokines in response to cytokine stimulation. Moreover, resected tumor explants could be stimulated to produce CXC-chemokines, even in cases with initially low CXC-levels. Lastly, a causative role of chemokine expression was evaluated with an orthotopic mouse model, based on isogenic rectal CT26 cancer cells, engineered to express CXCL10. The orthotopic model demonstrated a protective and anti-metastatic role of intratumoral CXCL10 expression, mediated mainly by adaptive immunity.
Collapse
Affiliation(s)
- Larissa Kistner
- Department of Surgery, Klinikum rechts der Isar, TUM, Munich, Germany
| | - Dietrich Doll
- Department of Surgery, Klinikum rechts der Isar, TUM, Munich, Germany.,Current/Present Address: St. Marienhospital Vechta, Vechta, Germany
| | - Anne Holtorf
- Department of Surgery, Klinikum rechts der Isar, TUM, Munich, Germany
| | - Ulrich Nitsche
- Department of Surgery, Klinikum rechts der Isar, TUM, Munich, Germany
| | | |
Collapse
|
47
|
Maffioli E, Nonnis S, Angioni R, Santagata F, Calì B, Zanotti L, Negri A, Viola A, Tedeschi G. Proteomic analysis of the secretome of human bone marrow-derived mesenchymal stem cells primed by pro-inflammatory cytokines. J Proteomics 2017; 166:115-126. [DOI: 10.1016/j.jprot.2017.07.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/07/2017] [Accepted: 07/17/2017] [Indexed: 02/07/2023]
|
48
|
Dalla Pozza E, Forciniti S, Palmieri M, Dando I. Secreted molecules inducing epithelial-to-mesenchymal transition in cancer development. Semin Cell Dev Biol 2017; 78:62-72. [PMID: 28673679 DOI: 10.1016/j.semcdb.2017.06.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/27/2017] [Accepted: 06/29/2017] [Indexed: 02/08/2023]
Abstract
The epithelial-mesenchymal transition (EMT) is a biologic process that allows a polarized epithelial cell to undergo multiple biochemical changes that enable it to assume a mesenchymal cell phenotype. EMT is involved in embryo development, wound healing, tissue regeneration, organ fibrosis and has also been proposed as the critical mechanism for the acquisition of malignant phenotypes by epithelial cancer cells. These cells have been shown to acquire a mesenchymal phenotype when localized at the invasive front of primary tumours increasing aggressiveness, invasiveness, metastatic potential and resistance to chemotherapy. There is now increasing evidence demonstrating that a crucial role in the development of this process is played by factors secreted by cells of the tumour microenvironment or by the tumour cells themselves. This review summarises the current knowledge of EMT induction in cancer by paracrine or autocrine mechanisms, by exosomes or free proteins and miRNAs.
Collapse
Affiliation(s)
- Elisa Dalla Pozza
- Department of Neuroscience, Biomedicine and Movement, Biochemistry Section, University of Verona, Verona, Italy
| | - Stefania Forciniti
- Department of Neuroscience, Biomedicine and Movement, Biochemistry Section, University of Verona, Verona, Italy
| | - Marta Palmieri
- Department of Neuroscience, Biomedicine and Movement, Biochemistry Section, University of Verona, Verona, Italy.
| | - Ilaria Dando
- Department of Neuroscience, Biomedicine and Movement, Biochemistry Section, University of Verona, Verona, Italy
| |
Collapse
|
49
|
Abstract
The pre-metastatic niche — the accumulation of aberrant immune cells and extracellular matrix proteins in target organs — primes the initially healthy organ microenvironment and renders it amenable for subsequent metastatic cell colonization. By attracting metastatic cancer cells, mimics of the pre-metastatic niche offer both diagnostic and therapeutic potential. However, deconstructing the complexity of the niche by identifying the interactions between cell populations and the mediatory roles of the immune system, soluble factors, extracellular matrix proteins, and stromal cells has proved challenging. Experimental models need to recapitulate niche-population biology in situ and mediate in vivo tumour-cell homing, colonization and proliferation. In this Review, we outline the biology of the pre-metastatic niche and discuss advances in engineered niche-mimicking biomaterials that regulate the behaviour of tumour cells at an implant site. Such oncomaterials offer strategies for early detection of metastatic events, inhibiting the formation of the pre-metastatic niche, and attenuating metastatic progression.
Collapse
|
50
|
Kalluri R. The biology and function of fibroblasts in cancer. NATURE REVIEWS. CANCER 2016. [PMID: 27550820 DOI: 10.1038/nrc.2016.73.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Among all cells, fibroblasts could be considered the cockroaches of the human body. They survive severe stress that is usually lethal to all other cells, and they are the only normal cell type that can be live-cultured from post-mortem and decaying tissue. Their resilient adaptation may reside in their intrinsic survival programmes and cellular plasticity. Cancer is associated with fibroblasts at all stages of disease progression, including metastasis, and they are a considerable component of the general host response to tissue damage caused by cancer cells. Cancer-associated fibroblasts (CAFs) become synthetic machines that produce many different tumour components. CAFs have a role in creating extracellular matrix (ECM) structure and metabolic and immune reprogramming of the tumour microenvironment with an impact on adaptive resistance to chemotherapy. The pleiotropic actions of CAFs on tumour cells are probably reflective of them being a heterogeneous and plastic population with context-dependent influence on cancer.
Collapse
Affiliation(s)
- Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| |
Collapse
|