1
|
Liu Y, He Y, Lu Q, Zhu T, Wang Y, Tong Y, Zhao Y, Ni BJ, Liu Y. Smaller sizes of polyethylene terephthalate microplastics mainly stimulate heterotrophic N 2O production in aerobic granular sludge systems. WATER RESEARCH X 2025; 27:100299. [PMID: 39867741 PMCID: PMC11758821 DOI: 10.1016/j.wroa.2024.100299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/16/2024] [Accepted: 12/27/2024] [Indexed: 01/28/2025]
Abstract
Widespread polyethylene terephthalate microplastics (PET MPs) have played unintended role in nitrous oxide (N2O) turnovers (i.e., production and consumption) at wastewater treatment plants (WWTPs). Mainstream aerobic granular sludge (AGS) systems possess potentially strong N2O-sink capability, which may be reduced by PET MPs stress through altering N2O-contributing pathways, electron transfer, and microbial community structures. In this study, the effects of PET MPs with two common particle sizes of effluent from WWTPs (0.1 and 0.5 mm) on N2O turnovers, production pathways and N2O-sink capability were systematically disclosed in AGS systems by a series of biochemical tests and molecular biological means to achieve the goal of carbon neutrality. The results indicated that 0.1 mm PET MPs could more significantly stimulate N2O production in AGS systems by inhibiting denitrifying metabolism, compared with control and 0.5 mm PET MPs systems. Specifically, 0.1 mm PET MPs slightly increased the relative abundance of Nitrosomonas, reducing N2O yields via promoting the hydroxylamine (NH2OH) oxidation pathway during nitrification. Also, 0.1 mm PET MPs inhibited the electron transport system activities and the relative abundance of N2O reductase, hindering N2O reduction during denitrification. Most importantly, 0.1 mm PET MPs more apparently reduced the N2O-sink capability based on the ratio of N2O reductase gene and nitrite reductase gene.
Collapse
Affiliation(s)
- Yingrui Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yanying He
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Qian Lu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Tingting Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yufen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
2
|
Michael JP, Putt AD, Yang Y, Adams BG, McBride KR, Fan Y, Lowe KA, Ning D, Jagadamma S, Moon JW, Klingeman DM, Zhang P, Fu Y, Hazen TC, Zhou J. Reproducible responses of geochemical and microbial successional patterns in the subsurface to carbon source amendment. WATER RESEARCH 2024; 255:121460. [PMID: 38552495 DOI: 10.1016/j.watres.2024.121460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 04/24/2024]
Abstract
Carbon amendments designed to remediate environmental contamination lead to substantial perturbations when injected into the subsurface. For the remediation of uranium contamination, carbon amendments promote reducing conditions to allow microorganisms to reduce uranium to an insoluble, less mobile state. However, the reproducibility of these amendments and underlying microbial community assembly mechanisms have rarely been investigated in the field. In this study, two injections of emulsified vegetable oil were performed in 2009 and 2017 to immobilize uranium in the groundwater at Oak Ridge, TN, USA. Our objectives were to determine whether and how the injections resulted in similar abiotic and biotic responses and their underlying community assembly mechanisms. Both injections caused similar geochemical and microbial succession. Uranium, nitrate, and sulfate concentrations in the groundwater dropped following the injection, and specific microbial taxa responded at roughly the same time points in both injections, including Geobacter, Desulfovibrio, and members of the phylum Comamonadaceae, all of which are well established in uranium, nitrate, and sulfate reduction. Both injections induced a transition from relatively stochastic to more deterministic assembly of microbial taxonomic and phylogenetic community structures based on 16S rRNA gene analysis. We conclude that geochemical and microbial successions after biostimulation are reproducible, likely owing to the selection of similar phylogenetic groups in response to EVO injection.
Collapse
Affiliation(s)
- Jonathan P Michael
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA; School of Biological Sciences, University of Oklahoma, Norman, OK, USA
| | - Andrew D Putt
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN, USA
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Benjamin G Adams
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN, USA
| | - Kathryn R McBride
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | - Yupeng Fan
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA; School of Biological Sciences, University of Oklahoma, Norman, OK, USA
| | - Kenneth A Lowe
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Daliang Ning
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA; School of Biological Sciences, University of Oklahoma, Norman, OK, USA
| | - Sindhu Jagadamma
- Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN, USA
| | - Ji Won Moon
- National Minerals Information Center, United States Geological Survey, Reston, VA, USA
| | - Dawn M Klingeman
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Ping Zhang
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Ying Fu
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA; School of Biological Sciences, University of Oklahoma, Norman, OK, USA
| | - Terry C Hazen
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN, USA; Department of Microbiology, University of Tennessee, Knoxville, TN, USA; Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA; Department of Civil and Environmental Sciences, University of Tennessee, Knoxville, TN, USA; Institute for a Secure and Sustainable Environment, University of Tennessee, Knoxville, TN, USA
| | - Jizhong Zhou
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA; School of Biological Sciences, University of Oklahoma, Norman, OK, USA; School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, USA; Earth and Environmental Sciences, Lawrence Berkley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
3
|
Zhao S, Zheng Q, Wang H, Fan X. Nitrogen in landfills: Sources, environmental impacts and novel treatment approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171725. [PMID: 38492604 DOI: 10.1016/j.scitotenv.2024.171725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/05/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Nitrogen (N) accumulation in landfills is a pressing environmental concern due to its diverse sources and significant environmental impacts. However, there is relatively limited attention and research focus on N in landfills as it is overshadowed by other more prominent pollutants. This study comprehensively examines the sources of N in landfills, including food waste contributing to 390 million tons of N annually, industrial discharges, and sewage treatment plant effluents. The environmental impacts of N in landfills are primarily manifested in N2O emissions and leachate with high N concentrations. To address these challenges, this study presents various mitigation and management strategies, including N2O reduction measures and novel NH4+ removal techniques, such as electrochemical technologies, membrane separation processes, algae-based process, and other advanced oxidation processes. However, a more in-depth understanding of the complexities of N cycling in landfills is required, due to the lack of long-term monitoring data and the presence of intricate interactions and feedback mechanisms. To ultimately achieve optimized N management and minimized adverse environmental impacts in landfill settings, future prospects should emphasize advancements in monitoring and modeling technologies, enhanced understanding of microbial ecology, implementation of circular economy principles, application of innovative treatment technologies, and comprehensive landfill design and planning.
Collapse
Affiliation(s)
- Shan Zhao
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China; College of Civil Engineering, Tongji University, Shanghai 200092, China
| | - Qiteng Zheng
- College of Civil Engineering, Tongji University, Shanghai 200092, China
| | - Hao Wang
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Xinyao Fan
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| |
Collapse
|
4
|
Bell E, Lamminmäki T, Alneberg J, Qian C, Xiong W, Hettich RL, Frutschi M, Bernier-Latmani R. Active anaerobic methane oxidation and sulfur disproportionation in the deep terrestrial subsurface. THE ISME JOURNAL 2022; 16:1583-1593. [PMID: 35173296 PMCID: PMC9123182 DOI: 10.1038/s41396-022-01207-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/19/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Microbial life is widespread in the terrestrial subsurface and present down to several kilometers depth, but the energy sources that fuel metabolism in deep oligotrophic and anoxic environments remain unclear. In the deep crystalline bedrock of the Fennoscandian Shield at Olkiluoto, Finland, opposing gradients of abiotic methane and ancient seawater-derived sulfate create a terrestrial sulfate-methane transition zone (SMTZ). We used chemical and isotopic data coupled to genome-resolved metaproteogenomics to demonstrate active life and, for the first time, provide direct evidence of active anaerobic oxidation of methane (AOM) in a deep terrestrial bedrock. Proteins from Methanoperedens (formerly ANME-2d) are readily identifiable despite the low abundance (≤1%) of this genus and confirm the occurrence of AOM. This finding is supported by 13C-depleted dissolved inorganic carbon. Proteins from Desulfocapsaceae and Desulfurivibrionaceae, in addition to 34S-enriched sulfate, suggest that these organisms use inorganic sulfur compounds as both electron donor and acceptor. Zerovalent sulfur in the groundwater may derive from abiotic rock interactions, or from a non-obligate syntrophy with Methanoperedens, potentially linking methane and sulfur cycles in Olkiluoto groundwater. Finally, putative episymbionts from the candidate phyla radiation (CPR) and DPANN archaea represented a significant diversity in the groundwater (26/84 genomes) with roles in sulfur and carbon cycling. Our results highlight AOM and sulfur disproportionation as active metabolisms and show that methane and sulfur fuel microbial activity in the deep terrestrial subsurface.
Collapse
Affiliation(s)
- Emma Bell
- Environmental Microbiology Laboratory, Environmental Engineering Institute, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland.
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| | | | - Johannes Alneberg
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, SE-17121, Sweden
| | - Chen Qian
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Weili Xiong
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Robert L Hettich
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Manon Frutschi
- Environmental Microbiology Laboratory, Environmental Engineering Institute, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | - Rizlan Bernier-Latmani
- Environmental Microbiology Laboratory, Environmental Engineering Institute, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland.
| |
Collapse
|
5
|
Jouffret V, Miotello G, Culotta K, Ayrault S, Pible O, Armengaud J. Increasing the power of interpretation for soil metaproteomics data. MICROBIOME 2021; 9:195. [PMID: 34587999 PMCID: PMC8482631 DOI: 10.1186/s40168-021-01139-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 07/29/2021] [Indexed: 05/07/2023]
Abstract
BACKGROUND Soil and sediment microorganisms are highly phylogenetically diverse but are currently largely under-represented in public molecular databases. Their functional characterization by means of metaproteomics is usually performed using metagenomic sequences acquired for the same sample. However, such hugely diverse metagenomic datasets are difficult to assemble; in parallel, theoretical proteomes from isolates available in generic databases are of high quality. Both these factors advocate for the use of theoretical proteomes in metaproteomics interpretation pipelines. Here, we examined a number of database construction strategies with a view to increasing the outputs of metaproteomics studies performed on soil samples. RESULTS The number of peptide-spectrum matches was found to be of comparable magnitude when using public or sample-specific metagenomics-derived databases. However, numbers were significantly increased when a combination of both types of information was used in a two-step cascaded search. Our data also indicate that the functional annotation of the metaproteomics dataset can be maximized by using a combination of both types of databases. CONCLUSIONS A two-step strategy combining sample-specific metagenome database and public databases such as the non-redundant NCBI database and a massive soil gene catalog allows maximizing the metaproteomic interpretation both in terms of ratio of assigned spectra and retrieval of function-derived information. Video abstract.
Collapse
Affiliation(s)
- Virginie Jouffret
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, F-30200, Bagnols-sur-Cèze, France
- Laboratoire des Sciences et de l'Environnement (LSCE-IPSL), UMR 8212 (CEA/CNRS/UVSQ), CEA Saclay, Université Paris-Saclay, Orme des Merisiers, F-91191, Gif-sur-Yvette, France
- Laboratoire Innovations technologiques pour la Détection et le Diagnostic (Li2D), Université de Montpellier, F-30207, Bagnols-sur-Cèze, France
| | - Guylaine Miotello
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, F-30200, Bagnols-sur-Cèze, France
| | - Karen Culotta
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, F-30200, Bagnols-sur-Cèze, France
| | - Sophie Ayrault
- Laboratoire des Sciences et de l'Environnement (LSCE-IPSL), UMR 8212 (CEA/CNRS/UVSQ), CEA Saclay, Université Paris-Saclay, Orme des Merisiers, F-91191, Gif-sur-Yvette, France
| | - Olivier Pible
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, F-30200, Bagnols-sur-Cèze, France
| | - Jean Armengaud
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, F-30200, Bagnols-sur-Cèze, France.
| |
Collapse
|
6
|
Lee DW, Ahn Y, Pandi K, Park J, Yun ST, Jang M, Choi J. Evaluation of natural attenuation-potential and biogeochemical analysis in nitrate contaminated bedrock aquifers by carbon source injection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146459. [PMID: 34030323 DOI: 10.1016/j.scitotenv.2021.146459] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
In this study, the natural attenuation potential and biogeochemical analysis of nitrate contaminated bedrock aquifers by injection of carbon sources was evaluated. The denitrification capacity was assessed by injecting different carbon sources (succinate, acetate, fumarate) into the groundwater. Acetate was identified as the optimum source of electron donors for microbial metabolic processes, as it improved the effect of nitrate removal and microbial activity in the groundwater. In addition, when acetate was injected with a C/N ratio = 2.1:1, the ratio of denitrifying bacteria was the greatest (C/N 2.1 (2.1%) > C/N 4.2 (1.9%) > C/N 7.0 (0.9%) > control (0.7%)). Reflecting the geochemical characteristics of the bedrock aquifer environment, acetate was injected into groundwater at the research site to activate biological heterotrophic denitrification. As a result, the nitrate reduction rate was 0.377 g-N/day (YP-3), while the rate in groundwater unaffected by acetate was significantly lower, at 0.028 g-N/day (YP-4) over the same reaction time. In particular, the ratio of Dechloromonas denitrificans sp., which is a representative denitrification bacteria involved in anaerobic reduction of nitrate, increased (before injection: 0.0089%, after injection: 1.3067%). Expression of the nosZ gene, which is involved in the denitrification pathway (N2O → N2), increased from 4.82 Log (gene copies L-1) to 9.71 Log (gene copies L-1). Together, these results demonstrate that denitrification in bedrock aquifers can be activated by injection of carbon sources and identified the genetic reason for that denitrification.
Collapse
Affiliation(s)
- Da-Won Lee
- Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology, Hwarang-ro 14, Seongbuk-gu, Seoul 02792, Republic of Korea; Graduate School of Energy and Environment (KU-KIST GREEN SCHOOL), Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Yongtae Ahn
- Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology, Hwarang-ro 14, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Kalimuthu Pandi
- Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology, Hwarang-ro 14, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Joonhong Park
- Department of Civil and Environmental Engineering, College of Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Seong-Teak Yun
- Graduate School of Energy and Environment (KU-KIST GREEN SCHOOL), Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea
| | - Jaeyoung Choi
- Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology, Hwarang-ro 14, Seongbuk-gu, Seoul 02792, Republic of Korea.
| |
Collapse
|
7
|
Nitrate Removal by a Novel Lithoautotrophic Nitrate-Reducing, Iron(II)-Oxidizing Culture Enriched from a Pyrite-Rich Limestone Aquifer. Appl Environ Microbiol 2021; 87:e0046021. [PMID: 34085863 DOI: 10.1128/aem.00460-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nitrate removal in oligotrophic environments is often limited by the availability of suitable organic electron donors. Chemolithoautotrophic bacteria may play a key role in denitrification in aquifers depleted in organic carbon. Under anoxic and circumneutral pH conditions, iron(II) was hypothesized to serve as an electron donor for microbially mediated nitrate reduction by Fe(II)-oxidizing (NRFeOx) microorganisms. However, lithoautotrophic NRFeOx cultures have never been enriched from any aquifer, and as such, there are no model cultures available to study the physiology and geochemistry of this potentially environmentally relevant process. Using iron(II) as an electron donor, we enriched a lithoautotrophic NRFeOx culture from nitrate-containing groundwater of a pyrite-rich limestone aquifer. In the enriched NRFeOx culture that does not require additional organic cosubstrates for growth, within 7 to 11 days, 0.3 to 0.5 mM nitrate was reduced and 1.3 to 2 mM iron(II) was oxidized, leading to a stoichiometric NO3-/Fe(II) ratio of 0.2, with N2 and N2O identified as the main nitrate reduction products. Short-range ordered Fe(III) (oxyhydr)oxides were the product of iron(II) oxidation. Microorganisms were observed to be closely associated with formed minerals, but only few cells were encrusted, suggesting that most of the bacteria were able to avoid mineral precipitation at their surface. Analysis of the microbial community by long-read 16S rRNA gene sequencing revealed that the culture is dominated by members of the Gallionellaceae family that are known as autotrophic, neutrophilic, and microaerophilic iron(II) oxidizers. In summary, our study suggests that NRFeOx mediated by lithoautotrophic bacteria can lead to nitrate removal in anthropogenically affected aquifers. IMPORTANCE Removal of nitrate by microbial denitrification in groundwater is often limited by low concentrations of organic carbon. In these carbon-poor ecosystems, nitrate-reducing bacteria that can use inorganic compounds such as Fe(II) (NRFeOx) as electron donors could play a major role in nitrate removal. However, no lithoautotrophic NRFeOx culture has been successfully isolated or enriched from this type of environment, and as such, there are no model cultures available to study the rate-limiting factors of this potentially important process. Here, we present the physiology and microbial community composition of a novel lithoautotrophic NRFeOx culture enriched from a fractured aquifer in southern Germany. The culture is dominated by a putative Fe(II) oxidizer affiliated with the Gallionellaceae family and performs nitrate reduction coupled to Fe(II) oxidation leading to N2O and N2 formation without the addition of organic substrates. Our analyses demonstrate that lithoautotrophic NRFeOx can potentially lead to nitrate removal in nitrate-contaminated aquifers.
Collapse
|
8
|
Yan J, Wang J, Villalobos Solis MI, Jin H, Chourey K, Li X, Yang Y, Yin Y, Hettich RL, Löffler FE. Respiratory Vinyl Chloride Reductive Dechlorination to Ethene in TceA-Expressing Dehalococcoides mccartyi. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:4831-4841. [PMID: 33683880 DOI: 10.1021/acs.est.0c07354] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bioremediation of chlorinated ethenes in anoxic aquifers hinges on organohalide-respiring Dehalococcoidia expressing vinyl chloride (VC) reductive dehalogenase (RDase). The tceA gene encoding the trichloroethene-dechlorinating RDase TceA is frequently detected in contaminated groundwater but not recognized as a biomarker for VC detoxification. We demonstrate that tceA-carrying Dehalococcoides mccartyi (Dhc) strains FL2 and 195 grow with VC as an electron acceptor when sufficient vitamin B12 (B12) is provided. Strain FL2 cultures that received 50 μg L-1 B12 completely dechlorinated VC to ethene at rates of 14.80 ± 1.30 μM day-1 and attained 1.64 ± 0.11 × 108 cells per μmol of VC consumed. Strain 195 attained similar growth yields of 1.80 ± 1.00 × 108 cells per μmol of VC consumed, and both strains could be consecutively transferred with VC as the electron acceptor. Proteomic analysis demonstrated TceA expression in VC-grown strain FL2 cultures. Resequencing of the strain FL2 and strain 195 tceA genes identified non-synonymous substitutions, although their consequences for TceA function are currently unknown. The finding that Dhc strains expressing TceA respire VC can explain ethene formation at chlorinated solvent sites, where quantitative polymerase chain reaction analysis indicates that tceA dominates the RDase gene pool.
Collapse
Affiliation(s)
- Jun Yan
- Key Laboratory of Pollution Control and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Jingjing Wang
- Key Laboratory of Pollution Control and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Huijuan Jin
- Key Laboratory of Pollution Control and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Karuna Chourey
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Xiuying Li
- Key Laboratory of Pollution Control and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
| | - Yi Yang
- Key Laboratory of Pollution Control and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
| | - Yongchao Yin
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Robert L Hettich
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Frank E Löffler
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Joint Institute for Biological Sciences (JIBS), Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
- Department of Biosystems Engineering & Soil Science, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
9
|
Sun X, Qiu L, Kolton M, Häggblom M, Xu R, Kong T, Gao P, Li B, Jiang C, Sun W. V V Reduction by Polaromonas spp. in Vanadium Mine Tailings. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:14442-14454. [PMID: 33125214 DOI: 10.1021/acs.est.0c05328] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Vanadium (V) is an important metal with critical industrial and medical applications. Elevated V contamination, however, can be a threat to the environment and human health. Microorganisms can reduce the more toxic and mobile VV to the less toxic and immobile VIV, which could be a detoxification and energy metabolism strategy adopted by V-reducing bacteria (VRB). The limited understanding of microbial responses to V contamination and the mechanisms for VV reduction, however, hamper our capability to attenuate V contamination. This study focused on determining the microbial responses to elevated V concentration and the mechanisms of VV reduction in V tailings. The bacterial communities were characterized and compared between the V tailings and the less contaminated adjacent mineral soils. Further, VV-reducing enrichments indicated that bacteria associated with Polaromonas, a genus belonging to the family Burkholderiaceae, were potentially responsible for VV reduction. Retrieved metagenome-assembled genomes (MAGs) suggested that the Polaromonas spp. encoded genes (cymA, omcA, and narG) were responsible for VV reduction. Additionally, Polaromonas spp. was metabolically versatile and could use both organic and inorganic electron donors. The metabolic versatility of Polaromonas spp. may be important for its ability to flourish in the V tailings.
Collapse
Affiliation(s)
- Xiaoxu Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou 510650, China
| | - Lang Qiu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou 510650, China
| | - Max Kolton
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou 510650, China
| | - Max Häggblom
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Rui Xu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou 510650, China
| | - Tianle Kong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou 510650, China
| | - Pin Gao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou 510650, China
| | - Baoqin Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou 510650, China
| | - Chengjian Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou 510650, China
| |
Collapse
|
10
|
Tartaglia M, Bastida F, Sciarrillo R, Guarino C. Soil Metaproteomics for the Study of the Relationships Between Microorganisms and Plants: A Review of Extraction Protocols and Ecological Insights. Int J Mol Sci 2020; 21:ijms21228455. [PMID: 33187080 PMCID: PMC7697097 DOI: 10.3390/ijms21228455] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 12/19/2022] Open
Abstract
Soil is a complex matrix where biotic and abiotic components establish a still unclear network involving bacteria, fungi, archaea, protists, protozoa, and roots that are in constant communication with each other. Understanding these interactions has recently focused on metagenomics, metatranscriptomics and less on metaproteomics studies. Metaproteomic allows total extraction of intracellular and extracellular proteins from soil samples, providing a complete picture of the physiological and functional state of the “soil community”. The advancement of high-performance mass spectrometry technologies was more rapid than the development of ad hoc extraction techniques for soil proteins. The protein extraction from environmental samples is biased due to interfering substances and the lower amount of proteins in comparison to cell cultures. Soil sample preparation and extraction methodology are crucial steps to obtain high-quality resolution and yields of proteins. This review focuses on the several soil protein extraction protocols to date to highlight the methodological challenges and critical issues for the application of proteomics to soil samples. This review concludes that improvements in soil protein extraction, together with the employment of ad hoc metagenome database, may enhance the identification of proteins with low abundance or from non-dominant populations and increase our capacity to predict functional changes in soil.
Collapse
Affiliation(s)
- Maria Tartaglia
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100 Benevento, Italy; (M.T.); (R.S.)
| | - Felipe Bastida
- CEBAS-CSIC, Department of Soil and Water Conservation, Campus Universitario de Espinardo, 30100 Murcia, Spain;
| | - Rosaria Sciarrillo
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100 Benevento, Italy; (M.T.); (R.S.)
| | - Carmine Guarino
- Department of Science and Technology, University of Sannio, via de Sanctis snc, 82100 Benevento, Italy; (M.T.); (R.S.)
- Correspondence: ; Tel.: +39-824-305145
| |
Collapse
|
11
|
Liang Q, Yamashita T, Koike K, Matsuura N, Honda R, Hara-Yamamura H, Yokoyama H, Yamamoto-Ikemoto R. A bioelectrochemical-system-based trickling filter reactor for wastewater treatment. BIORESOURCE TECHNOLOGY 2020; 315:123798. [PMID: 32707501 DOI: 10.1016/j.biortech.2020.123798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 05/10/2023]
Abstract
A bioelectrochemical system (BES)-based trickling filter (TF) reactor was utilized for wastewater treatment. At a COD load of 1.0 g-COD/L/day, effluent chemical oxygen demand (COD) and total nitrogen (TN) were 115 and 108 mg/L, respectively, which were allowed for discharge. Superior performance was achieved at 0.5 g-COD/L/day with a circulation rate of 8 L/h, and both COD and TN removal were >98%. Coulombic efficiency was 11% at 1.0 g-COD/L/day and at most 16% at 0.5 g-COD/L/day. COD removal decreased when the BES was removed, demonstrating that BES improved COD removal capability. In anodic biofilms, exoelectrogenic, facultative, nitrifying, and sulfate-reducing bacteria could coexist. Geobacter for current generation grew inside the biofilm, and bacteria in the middle and outer layers consumed oxygen and degraded organic matter and nitrogen. This BES-based TF reactor may be used for efficient and cost-effective COD and TN removal at high loads without excess sludge removal.
Collapse
Affiliation(s)
- Qiaochu Liang
- Graduate School of Natural Science & Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Takahiro Yamashita
- Division of Animal Environment and Waste Management Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), 2 Ikenodai, Tsukuba 305-0901, Japan
| | - Kazuyoshi Koike
- Graduate School of Natural Science & Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Norihisa Matsuura
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Ryo Honda
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Hiroe Hara-Yamamura
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Hiroshi Yokoyama
- Division of Animal Environment and Waste Management Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), 2 Ikenodai, Tsukuba 305-0901, Japan
| | - Ryoko Yamamoto-Ikemoto
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.
| |
Collapse
|
12
|
In-field bioreactors demonstrate dynamic shifts in microbial communities in response to geochemical perturbations. PLoS One 2020; 15:e0232437. [PMID: 32986713 PMCID: PMC7521895 DOI: 10.1371/journal.pone.0232437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 09/09/2020] [Indexed: 11/19/2022] Open
Abstract
Subsurface microbial communities mediate the transformation and fate of redox sensitive materials including organic matter, metals and radionuclides. Few studies have explored how changing geochemical conditions influence the composition of groundwater microbial communities over time. We temporally monitored alterations in abiotic forces on microbial community structure using 1L in-field bioreactors receiving background and contaminated groundwater at the Oak Ridge Reservation, TN. Planktonic and biofilm microbial communities were initialized with background water for 4 days to establish communities in triplicate control reactors and triplicate test reactors and then fed filtered water for 14 days. On day 18, three reactors were switched to receive filtered groundwater from a contaminated well, enriched in total dissolved solids relative to the background site, particularly chloride, nitrate, uranium, and sulfate. Biological and geochemical data were collected throughout the experiment, including planktonic and biofilm DNA for 16S rRNA amplicon sequencing, cell counts, total protein, anions, cations, trace metals, organic acids, bicarbonate, pH, Eh, DO, and conductivity. We observed significant shifts in both planktonic and biofilm microbial communities receiving contaminated water. This included a loss of rare taxa, especially amongst members of the Bacteroidetes, Acidobacteria, Chloroflexi, and Betaproteobacteria, but enrichment in the Fe- and nitrate- reducing Ferribacterium and parasitic Bdellovibrio. These shifted communities were more similar to the contaminated well community, suggesting that geochemical forces substantially influence microbial community diversity and structure. These influences can only be captured through such comprehensive temporal studies, which also enable more robust and accurate predictive models to be developed.
Collapse
|
13
|
Wang S, Chen M, Zheng K, Wan C, Li J. Promising carbon utilization for nitrogen recovery in low strength wastewater treatment: Ammonia nitrogen assimilation, protein production and microbial community structure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 710:136306. [PMID: 32050365 DOI: 10.1016/j.scitotenv.2019.136306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/21/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
Acetic acid and sodium acetate are generally supplied to wastewater treatment plants (WWTPs) in China to improve total nitrogen (TN) and total phosphorus (TP) removal, and the addition of carbon source also facilitates to increase sludge growth rate and further provides material basis for the extraction of proteins and amino acids from activated sludge. To recycle ammonia nitrogen resources, a system that combined adsorption and anaerobic-anoxic-oxic (A/AAO) process for treating low strength wastewater was established. Experimental results showed that by the addition of carbon substrate from a mixture of anaerobically fermented adsorption sludge, the average removal efficiency of chemical oxygen demand (COD), ammonia nitrogen, TN, and TP were 88%, 96.9%, 93.9%, and 92.1%, respectively, and the ratio of nitrogen assimilation to nitrogen dissimilation significantly increased by a factor of 2.5. Through energy analysis (based on adenosine triphosphate, ATP), sludge flocculation capacity and settling property, it was found that the AAO process sludge presented the logarithmic growth characteristics. The respective sludge protein and amino acids contents increased by over 11.4% and 40.3%, and the synthetic products of glutamic acid, alanine and aspartate increased through the assimilation of ammonia nitrogen, thereby indicating that replenishing the carbon substrate could markedly enhance protein and amino acids contents in AAO process sludge. Moreover, the diversity of the microbial community in adsorption process was relatively rich, the diversity in the adsorption process sludge was the highest, while the diversity of the AAO process sludge evidently decreased. The microbial community in each process was similarly based on 16S rDNA gene sequence analysis, microflora was prominent in the AAO process, with Dechloromonas, Flavobacterium, Zoogloea, Unclassified_Rhodocyclaceae and Thauera as the dominant species. Promising carbon utilization facilitates contaminants removal in low strength wastewater treatment and is conducive to protein production through ammonia nitrogen assimilation.
Collapse
Affiliation(s)
- Shuo Wang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu College of Water Treatment Technology and Material Collaborative Innovation Center, Suzhou 215009, China; Department of Civil Engineering, Schulich School of Engineering, University of Calgary, Calgary T2N 1N4, Canada
| | - Mingfei Chen
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Kaikai Zheng
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Chunli Wan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China.
| | - Ji Li
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu College of Water Treatment Technology and Material Collaborative Innovation Center, Suzhou 215009, China
| |
Collapse
|
14
|
Giovanella P, Vieira GAL, Ramos Otero IV, Pais Pellizzer E, de Jesus Fontes B, Sette LD. Metal and organic pollutants bioremediation by extremophile microorganisms. JOURNAL OF HAZARDOUS MATERIALS 2020; 382:121024. [PMID: 31541933 DOI: 10.1016/j.jhazmat.2019.121024] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 07/17/2019] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Abstract
Extremophiles comprise microorganisms that are able to grow and thrive in extreme environments, including in an acidic or alkaline pH, high or low temperatures, high concentrations of pollutants, and salts, among others. These organisms are promising for environmental biotechnology due to their unique physiological and enzymatic characteristics, which allow them to survive in harsh environments. Due to the stability and persistence of these microorganisms under adverse environmental conditions, they can be used for the bioremediation of environments contaminated with extremely recalcitrant pollutants. Here, we provide an overview of extremophiles and the role of "omics" in the field of bioremediation of environmental pollutants, including hydrocarbons, textile dyes and metals.
Collapse
Affiliation(s)
- Patricia Giovanella
- Departamento de Bioquímica e Microbiologia, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho, Rio Claro, SP, Brazil.
| | - Gabriela A L Vieira
- Departamento de Bioquímica e Microbiologia, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho, Rio Claro, SP, Brazil
| | - Igor V Ramos Otero
- Departamento de Bioquímica e Microbiologia, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho, Rio Claro, SP, Brazil
| | - Elisa Pais Pellizzer
- Departamento de Bioquímica e Microbiologia, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho, Rio Claro, SP, Brazil
| | - Bruno de Jesus Fontes
- Departamento de Bioquímica e Microbiologia, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho, Rio Claro, SP, Brazil
| | - Lara D Sette
- Departamento de Bioquímica e Microbiologia, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho, Rio Claro, SP, Brazil.
| |
Collapse
|
15
|
Kaya D, Kjellerup BV, Chourey K, Hettich RL, Taggart DM, Löffler FE. Impact of Fixed Nitrogen Availability on Dehalococcoides mccartyi Reductive Dechlorination Activity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:14548-14558. [PMID: 31693350 DOI: 10.1021/acs.est.9b04463] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Biostimulation to promote reductive dechlorination is widely practiced, but the value of adding an exogenous nitrogen (N) source (e.g., NH4+) during treatment is unclear. This study investigates the effect of NH4+ availability on organohalide-respiring Dehalococcoides mccartyi (Dhc) growth and reductive dechlorination in enrichment cultures derived from groundwater (PW4) and river sediment (TC) impacted with chlorinated ethenes. In PW4 cultures, the addition of NH4+ increased cis-1,2-dichloroethene (cDCE)-to-ethene dechlorination rates about 5-fold (20.6 ± 1.6 versus 3.8 ± 0.5 μM Cl- d-1), and the total number of Dhc 16S rRNA gene copies were about 43-fold higher in incubations with NH4+ ((1.8 ± 0.9) × 108 mL-1) compared to incubations without NH4+ ((4.1 ± 0.8) × 107 mL-1). In TC cultures, NH4+ also stimulated cDCE-to-ethene dechlorination and Dhc growth. Quantitative polymerase chain reaction (qPCR) revealed that Cornell-type Dhc capable of N2 fixation dominated PW4 cultures without NH4+, but their relative abundance decreased in cultures with NH4+ amendment (i.e., 99 versus 54% of total Dhc). Pinellas-type Dhc incapable of N2 fixation were responsible for cDCE dechlorination in TC cultures, and diazotrophic community members met their fixed N requirement in the medium without NH4+. Responses to NH4+ were apparent at the community level, and N2-fixing bacterial populations increased in incubations without NH4+. Quantitative assessment of Dhc nitrogenase genes, transcripts, and proteomics data linked Cornell-type Dhc nifD and nifK expression with fixed N limitation. NH4+ additions also demonstrated positive effects on Dhc in situ dechlorination activity in the vicinity of well PW4. These findings demonstrate that biostimulation with NH4+ can enhance Dhc reductive dechlorination rates; however, a "do nothing" approach that relies on indigenous diazotrophs can achieve similar dechlorination end points and avoids the potential for stalled dechlorination due to inhibitory levels of NH4+ or transformation products (i.e., nitrous oxide).
Collapse
Affiliation(s)
- Devrim Kaya
- Biosciences Division and ⊥Chemical Sciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
- Department of Civil and Environmental Engineering , University of Maryland College Park , College Park , Maryland 20742 , United States
| | - Birthe V Kjellerup
- Department of Civil and Environmental Engineering , University of Maryland College Park , College Park , Maryland 20742 , United States
| | | | | | - Dora M Taggart
- Microbial Insights, Inc. , Knoxville , Tennessee 37932 , United States
| | - Frank E Löffler
- Biosciences Division and ⊥Chemical Sciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| |
Collapse
|
16
|
Chen J, Arafat Y, Ud Din I, Yang B, Zhou L, Wang J, Letuma P, Wu H, Qin X, Wu L, Lin S, Zhang Z, Lin W. Nitrogen Fertilizer Amendment Alter the Bacterial Community Structure in the Rhizosphere of Rice ( Oryza sativa L.) and Improve Crop Yield. Front Microbiol 2019; 10:2623. [PMID: 31798559 PMCID: PMC6868037 DOI: 10.3389/fmicb.2019.02623] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 10/28/2019] [Indexed: 01/01/2023] Open
Abstract
Availability of nitrogen (N) in soil changes the composition and activities of microbial community, which is critical for the processing of soil organic matter and health of crop plants. Inappropriate application of N fertilizer can alter the rhizosphere microbial community and disturb the soil N homeostasis. The goal of this study was to assess the effect of different ratio of N fertilizer at various early to late growth stages of rice, while keeping the total N supply constant on rice growth performance, microbial community structure, and soil protein expression in rice rhizosphere. Two different N regimes were applied, i.e., traditional N application (NT) consists of three sessions including 60, 30 and 10% at pre-transplanting, tillering and panicle initiation stages, respectively, while efficient N application (NF) comprises of four sessions, i.e., 30, 30, 30, and 10%), where the fourth session was extended to anthesis stage. Soil metaproteomics combined with Terminal Restriction Fragment Length Polymorphism (T-RFLP) were used to determine the rhizosphere biological process. Under NF application, soil enzymes, nitrogen utilization efficiency and rice yield were significantly higher compared to NT application. T-RFLP and qPCR analysis revealed differences in rice rhizosphere bacterial diversity and structure. NF significantly decreased the specific microbes related to denitrification, but opposite result was observed for bacteria associated with nitrification. Furthermore, soil metaproteomics analysis showed that 88.28% of the soil proteins were derived from microbes, 5.74% from plants, and 6.25% from fauna. Specifically, most of the identified microbial proteins were involved in carbohydrate, amino acid and protein metabolisms. Our experiments revealed that NF positively regulates the functioning of the rhizosphere ecosystem and further enabled us to put new insight into microbial communities and soil protein expression in rice rhizosphere.
Collapse
Affiliation(s)
- Jun Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yasir Arafat
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Genetic Breeding and Comprehensive Utilization of the Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Israr Ud Din
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Bo Yang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liuting Zhou
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Juanying Wang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Puleng Letuma
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hongmiao Wu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xianjin Qin
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Linkun Wu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sheng Lin
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhixing Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenxiong Lin
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
17
|
Han H, Song B, Song MJ, Yoon S. Enhanced Nitrous Oxide Production in Denitrifying Dechloromonas aromatica Strain RCB Under Salt or Alkaline Stress Conditions. Front Microbiol 2019; 10:1203. [PMID: 31275250 PMCID: PMC6593283 DOI: 10.3389/fmicb.2019.01203] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 05/13/2019] [Indexed: 11/25/2022] Open
Abstract
Salinity and pH have direct and indirect impacts on the growth and metabolic activities of microorganisms. In this study, the effects of salt and alkaline stresses on the kinetic balance between nitrous oxide (N2O) production and consumption in the denitrification pathway of Dechloromonas aromatica strain RCB were examined. N2O accumulated transiently only in insignificant amounts at low salinity (≤0.5% NaCl) and circumneutral pH (7.0 and 7.5). As compared to these control conditions, incubation at 0.7% salinity resulted in substantially longer lag phase and slower growth rate, along with the increase in the amounts of transiently accumulated N2O (15.8 ± 2.8 μmoles N2O-N/vessel). Incubation at pH 8.0 severely inhibited growth and resulted in permanent accumulation of 29.9 ± 1.3 μmoles N2O-N/vessel from reduction of 151 ± 20 μmoles NO3−/vessel. Monitoring of temporal changes in nirS1, nirS2, and nosZ transcription suggested that the nosZ/(nirS1+nirS2) ratios were indicative of whether N2O was produced or consumed at the time points where measurements were taken. The salt and alkaline stresses altered the N2O consumption kinetics of the resting D. aromatica cells with expressed nitrous oxide reductases. The N2O consumption rates of the cells subjected to the salt and alkaline stress conditions were significantly reduced from 0.84 ± 0.007 μmoles min−1 mg protein−1 of the control to 0.27 ± 0.02 μmoles min−1 mg protein−1 and 0.31 ± 0.03 μmoles min−1 mg protein−1, respectively, when the initial dissolved N2O concentration was 0.1 mM. As the rates of N2O production from NO2− reduction was not significantly affected by the stresses (0.45–0.55 μmoles min−1 mg protein−1), the N2O consumption rate was lower than the N2O production rate at the stress conditions, but not at the control condition. These results clearly indicate that the altered kinetics of expressed nitrous oxide reductase and the resultant disruption of kinetic balance between N2O production and consumption was another cause of enhanced N2O emission observed under the salt and alkaline stress conditions. These findings suggest that canonical denitrifiers may become a significant N2O source when faced with abrupt environmental changes.
Collapse
Affiliation(s)
- Heejoo Han
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Bongkeun Song
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,Department of Biological Sciences, Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, VA, United States
| | - Min Joon Song
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Sukhwan Yoon
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| |
Collapse
|
18
|
|
19
|
Using proteins to study how microbes contribute to soil ecosystem services: The current state and future perspectives of soil metaproteomics. J Proteomics 2019; 198:50-58. [DOI: 10.1016/j.jprot.2018.11.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/08/2018] [Accepted: 11/12/2018] [Indexed: 02/07/2023]
|
20
|
Proteogenomics Reveals Novel Reductive Dehalogenases and Methyltransferases Expressed during Anaerobic Dichloromethane Metabolism. Appl Environ Microbiol 2019; 85:AEM.02768-18. [PMID: 30658979 DOI: 10.1128/aem.02768-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 01/08/2019] [Indexed: 11/20/2022] Open
Abstract
Dichloromethane (DCM) is susceptible to microbial degradation under anoxic conditions and is metabolized via the Wood-Ljungdahl pathway; however, mechanistic understanding of carbon-chlorine bond cleavage is lacking. The microbial consortium RM contains the DCM degrader "Candidatus Dichloromethanomonas elyunquensis" strain RM, which strictly requires DCM as a growth substrate. Proteomic workflows applied to DCM-grown consortium RM biomass revealed a total of 1,705 nonredundant proteins, 521 of which could be assigned to strain RM. In the presence of DCM, strain RM expressed a complete set of Wood-Ljungdahl pathway enzymes, as well as proteins implicated in chemotaxis, motility, sporulation, and vitamin/cofactor synthesis. Four corrinoid-dependent methyltransferases were among the most abundant proteins. Notably, two of three putative reductive dehalogenases (RDases) encoded within strain RM's genome were also detected in high abundance. Expressed RDase 1 and RDase 2 shared 30% amino acid identity, and RDase 1 was most similar to an RDase of Dehalococcoides mccartyi strain WBC-2 (AOV99960, 52% amino acid identity), while RDase 2 was most similar to an RDase of Dehalobacter sp. strain UNSWDHB (EQB22800, 72% amino acid identity). Although the involvement of RDases in anaerobic DCM metabolism has yet to be experimentally verified, the proteome characterization results implicated the possible participation of one or more reductive dechlorination steps and methyl group transfer reactions, leading to a revised proposal for an anaerobic DCM degradation pathway.IMPORTANCE Naturally produced and anthropogenically released DCM can reside in anoxic environments, yet little is known about the diversity of organisms, enzymes, and mechanisms involved in carbon-chlorine bond cleavage in the absence of oxygen. A proteogenomic approach identified two RDases and four corrinoid-dependent methyltransferases expressed by the DCM degrader "Candidatus Dichloromethanomonas elyunquensis" strain RM, suggesting that reductive dechlorination and methyl group transfer play roles in anaerobic DCM degradation. These findings suggest that the characterized DCM-degrading bacterium Dehalobacterium formicoaceticum and "Candidatus Dichloromethanomonas elyunquensis" strain RM utilize distinct strategies for carbon-chlorine bond cleavage, indicating that multiple pathways evolved for anaerobic DCM metabolism. The specific proteins (e.g., RDases and methyltransferases) identified in strain RM may have value as biomarkers for monitoring anaerobic DCM degradation in natural and contaminated environments.
Collapse
|
21
|
Yu H, Susanti D, McGlynn SE, Skennerton CT, Chourey K, Iyer R, Scheller S, Tavormina PL, Hettich RL, Mukhopadhyay B, Orphan VJ. Comparative Genomics and Proteomic Analysis of Assimilatory Sulfate Reduction Pathways in Anaerobic Methanotrophic Archaea. Front Microbiol 2018; 9:2917. [PMID: 30559729 PMCID: PMC6286981 DOI: 10.3389/fmicb.2018.02917] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 11/13/2018] [Indexed: 01/17/2023] Open
Abstract
Sulfate is the predominant electron acceptor for anaerobic oxidation of methane (AOM) in marine sediments. This process is carried out by a syntrophic consortium of anaerobic methanotrophic archaea (ANME) and sulfate reducing bacteria (SRB) through an energy conservation mechanism that is still poorly understood. It was previously hypothesized that ANME alone could couple methane oxidation to dissimilatory sulfate reduction, but a genetic and biochemical basis for this proposal has not been identified. Using comparative genomic and phylogenetic analyses, we found the genetic capacity in ANME and related methanogenic archaea for sulfate reduction, including sulfate adenylyltransferase, APS kinase, APS/PAPS reductase and two different sulfite reductases. Based on characterized homologs and the lack of associated energy conserving complexes, the sulfate reduction pathways in ANME are likely used for assimilation but not dissimilation of sulfate. Environmental metaproteomic analysis confirmed the expression of 6 proteins in the sulfate assimilation pathway of ANME. The highest expressed proteins related to sulfate assimilation were two sulfite reductases, namely assimilatory-type low-molecular-weight sulfite reductase (alSir) and a divergent group of coenzyme F420-dependent sulfite reductase (Group II Fsr). In methane seep sediment microcosm experiments, however, sulfite and zero-valent sulfur amendments were inhibitory to ANME-2a/2c while growth in their syntrophic SRB partner was not observed. Combined with our genomic and metaproteomic results, the passage of sulfur species by ANME as metabolic intermediates for their SRB partners is unlikely. Instead, our findings point to a possible niche for ANME to assimilate inorganic sulfur compounds more oxidized than sulfide in anoxic marine environments.
Collapse
Affiliation(s)
- Hang Yu
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, United States.,Ronald and Maxine Linde Center for Global Environmental Science, California Institute of Technology, Pasadena, CA, United States
| | - Dwi Susanti
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, United States
| | - Shawn E McGlynn
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, United States
| | - Connor T Skennerton
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, United States
| | - Karuna Chourey
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Ramsunder Iyer
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Silvan Scheller
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, United States
| | - Patricia L Tavormina
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, United States
| | - Robert L Hettich
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Biswarup Mukhopadhyay
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, United States.,Biocomplexity Institute, Virginia Tech, Blacksburg, VA, United States.,Virginia Tech Carilion School of Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Victoria J Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
22
|
Bell E, Lamminmäki T, Alneberg J, Andersson AF, Qian C, Xiong W, Hettich RL, Balmer L, Frutschi M, Sommer G, Bernier-Latmani R. Biogeochemical Cycling by a Low-Diversity Microbial Community in Deep Groundwater. Front Microbiol 2018; 9:2129. [PMID: 30245678 PMCID: PMC6137086 DOI: 10.3389/fmicb.2018.02129] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/20/2018] [Indexed: 11/13/2022] Open
Abstract
Olkiluoto, an island on the south-west coast of Finland, will host a deep geological repository for the storage of spent nuclear fuel. Microbially induced corrosion from the generation of sulphide is therefore a concern as it could potentially compromise the longevity of the copper waste canisters. Groundwater at Olkiluoto is geochemically stratified with depth and elevated concentrations of sulphide are observed when sulphate-rich and methane-rich groundwaters mix. Particularly high sulphide is observed in methane-rich groundwater from a fracture at 530.6 mbsl, where mixing with sulphate-rich groundwater occurred as the result of an open drill hole connecting two different fractures at different depths. To determine the electron donors fuelling sulphidogenesis, we combined geochemical, isotopic, metagenomic and metaproteomic analyses. This revealed a low diversity microbial community fuelled by hydrogen and organic carbon. Sulphur and carbon isotopes of sulphate and dissolved inorganic carbon, respectively, confirmed that sulphate reduction was ongoing and that CO2 came from the degradation of organic matter. The results demonstrate the impact of introducing sulphate to a methane-rich groundwater with limited electron acceptors and provide insight into extant metabolisms in the terrestrial subsurface.
Collapse
Affiliation(s)
- Emma Bell
- Environmental Microbiology Laboratory, Environmental Engineering Institute, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Johannes Alneberg
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Anders F Andersson
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Chen Qian
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Weili Xiong
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Robert L Hettich
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Louise Balmer
- Environmental Microbiology Laboratory, Environmental Engineering Institute, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Manon Frutschi
- Environmental Microbiology Laboratory, Environmental Engineering Institute, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Guillaume Sommer
- Environmental Microbiology Laboratory, Environmental Engineering Institute, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Rizlan Bernier-Latmani
- Environmental Microbiology Laboratory, Environmental Engineering Institute, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
23
|
Kolhe N, Zinjarde S, Acharya C. Responses exhibited by various microbial groups relevant to uranium exposure. Biotechnol Adv 2018; 36:1828-1846. [PMID: 30017503 DOI: 10.1016/j.biotechadv.2018.07.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 07/08/2018] [Accepted: 07/09/2018] [Indexed: 11/28/2022]
Abstract
There is a strong interest in knowing how various microbial systems respond to the presence of uranium (U), largely in the context of bioremediation. There is no known biological role for uranium so far. Uranium is naturally present in rocks and minerals. The insoluble nature of the U(IV) minerals keeps uranium firmly bound in the earth's crust minimizing its bioavailability. However, anthropogenic nuclear reaction processes over the last few decades have resulted in introduction of uranium into the environment in soluble and toxic forms. Microbes adsorb, accumulate, reduce, oxidize, possibly respire, mineralize and precipitate uranium. This review focuses on the microbial responses to uranium exposure which allows the alteration of the forms and concentrations of uranium within the cell and in the local environment. Detailed information on the three major bioprocesses namely, biosorption, bioprecipitation and bioreduction exhibited by the microbes belonging to various groups and subgroups of bacteria, fungi and algae is provided in this review elucidating their intrinsic and engineered abilities for uranium removal. The survey also highlights the instances of the field trials undertaken for in situ uranium bioremediation. Advances in genomics and proteomics approaches providing the information on the regulatory and physiologically important determinants in the microbes in response to uranium challenge have been catalogued here. Recent developments in metagenomics and metaproteomics indicating the ecologically relevant traits required for the adaptation and survival of environmental microbes residing in uranium contaminated sites are also included. A comprehensive understanding of the microbial responses to uranium can facilitate the development of in situ U bioremediation strategies.
Collapse
Affiliation(s)
- Nilesh Kolhe
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune 411007, India; Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Smita Zinjarde
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune 411007, India; Department of Microbiology, Savitribai Phule Pune University, Pune 411007, India.
| | - Celin Acharya
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Trombay, Mumbai 400094, India.
| |
Collapse
|
24
|
Sandrin TR, Demirev PA. Characterization of microbial mixtures by mass spectrometry. MASS SPECTROMETRY REVIEWS 2018; 37:321-349. [PMID: 28509357 DOI: 10.1002/mas.21534] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/09/2017] [Accepted: 03/09/2017] [Indexed: 05/27/2023]
Abstract
MS applications in microbiology have increased significantly in the past 10 years, due in part to the proliferation of regulator-approved commercial MALDI MS platforms for rapid identification of clinical infections. In parallel, with the expansion of MS technologies in the "omics" fields, novel MS-based research efforts to characterize organismal as well as environmental microbiomes have emerged. Successful characterization of microorganisms found in complex mixtures of other organisms remains a major challenge for researchers and clinicians alike. Here, we review recent MS advances toward addressing that challenge. These include sample preparation methods and protocols, and established, for example, MALDI, as well as newer, for example, atmospheric pressure ionization (API) techniques. MALDI mass spectra of intact cells contain predominantly information on the highly expressed house-keeping proteins used as biomarkers. The API methods are applicable for small biomolecule analysis, for example, phospholipids and lipopeptides, and facilitate species differentiation. MS hardware and techniques, for example, tandem MS, including diverse ion source/mass analyzer combinations are discussed. Relevant examples for microbial mixture characterization utilizing these combinations are provided. Chemometrics and bioinformatics methods and algorithms, including those applied to large scale MS data acquisition in microbial metaproteomics and MS imaging of biofilms, are highlighted. Select MS applications for polymicrobial culture analysis in environmental and clinical microbiology are reviewed as well.
Collapse
Affiliation(s)
- Todd R Sandrin
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, Arizona
| | - Plamen A Demirev
- Applied Physics Laboratory, Johns Hopkins University, Laurel, Maryland
| |
Collapse
|
25
|
Zhang X, Hu Z, Zhang J, Fan J, Ngo HH, Guo W, Zeng C, Wu Y, Wang S. A novel aerated surface flow constructed wetland using exhaust gas from biological wastewater treatment: Performance and mechanisms. BIORESOURCE TECHNOLOGY 2018; 250:94-101. [PMID: 29156370 DOI: 10.1016/j.biortech.2017.08.172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 08/26/2017] [Accepted: 08/29/2017] [Indexed: 06/07/2023]
Abstract
In this study, a novel aerated surface flow constructed wetland (SFCW) using exhaust gas from biological wastewater treatment was investigated. Compared with un-aerated SFCW, the introduction of exhaust gas into SFCW significantly improved NH4+-N, TN and COD removal efficiencies by 68.30 ± 2.06%, 24.92 ± 1.13% and 73.92 ± 2.36%, respectively. The pollutants removal mechanism was related to the microbial abundance and the highest microbial abundance was observed in the SFCW with exhaust gas because of the introduction of exhaust gas from sequencing batch reactor (SBR), and thereby optimizing nitrogen transformation processes. Moreover, SFCW would significantly mitigate the risk of exhaust gas pollution. SFCW removed 20.00 ± 1.23%, 34.78 ± 1.39%, and 59.50 ± 2.33% of H2S, NH3 and N2O in the exhaust gas, respectively. And 31.32 ± 2.23% and 32.02 ± 2.86% of bacterial and fungal aerosols in exhaust gas were also removed through passing SFCW, respectively.
Collapse
Affiliation(s)
- Xinwen Zhang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 27 Shanda Nanlu, Jinan 250100, Shandong, PR China
| | - Zhen Hu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 27 Shanda Nanlu, Jinan 250100, Shandong, PR China
| | - Jian Zhang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 27 Shanda Nanlu, Jinan 250100, Shandong, PR China.
| | - Jinlin Fan
- National Engineering Laboratory of Coal-Fired Pollutants Emission Reduction, Shandong University, Jinan 250061, PR China
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Wenshan Guo
- School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Chujun Zeng
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 27 Shanda Nanlu, Jinan 250100, Shandong, PR China
| | - Yiwen Wu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 27 Shanda Nanlu, Jinan 250100, Shandong, PR China
| | - Siyuan Wang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 27 Shanda Nanlu, Jinan 250100, Shandong, PR China
| |
Collapse
|
26
|
Utilization of a Detergent-Based Method for Direct Microbial Cellular Lysis/Proteome Extraction from Soil Samples for Metaproteomics Studies. Methods Mol Biol 2018; 1841:293-302. [PMID: 30259494 DOI: 10.1007/978-1-4939-8695-8_20] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Soil metaproteomics is a rapidly developing and rather complex field aimed at understanding the functionalities of soil microbial communities. One of the main challenges of such an approach is the availability of a robust and efficient protocol to extract proteins from soil microbes inhabiting this complex matrix. The wide range of soil types and the innumerable variations in soil properties confound this experimental goal. Here we present a detergent based, heat-assisted cellular lysis method coupled with trichloroacetic acid (TCA) precipitation of soil microbial proteins that has been developed in our lab and found to be reasonably robust and unbiased in extracting microbial proteins from a broad range of soils for downstream mass spectrometric characterizations of microbial metabolic activities in natural ecosystems.
Collapse
|
27
|
Ontiveros-Valencia A, Zhou C, Ilhan ZE, de Saint Cyr LC, Krajmalnik-Brown R, Rittmann BE. Total electron acceptor loading and composition affect hexavalent uranium reduction and microbial community structure in a membrane biofilm reactor. WATER RESEARCH 2017; 125:341-349. [PMID: 28881210 DOI: 10.1016/j.watres.2017.08.060] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 08/26/2017] [Accepted: 08/28/2017] [Indexed: 06/07/2023]
Abstract
Molecular microbiology tools (i.e., 16S rDNA gene sequencing) were employed to elucidate changes in the microbial community structure according to the total electron acceptor loading (controlled by influent flow rate and/or medium composition) in a H2-based membrane biofilm reactor evaluated for removal of hexavalent uranium. Once nitrate, sulfate, and dissolved oxygen were replaced by U(VI) and bicarbonate and the total acceptor loading was lowered, slow-growing bacteria capable of reducing U(VI) to U(IV) dominated in the biofilm community: Replacing denitrifying bacteria Rhodocyclales and Burkholderiales were spore-producing Clostridiales and Natranaerobiales. Though potentially competing for electrons with U(VI) reducers, homo-acetogens helped attain steady U(VI) reduction, while methanogenesis inhibited U(VI) reduction. U(VI) reduction was reinstated through suppression of methanogenesis by addition of bromoethanesulfonate or by competition from SRB when sulfate was re-introduced. Predictive metagenome analysis further points out community changes in response to alterations in the electron-acceptor loading: Sporulation and homo-acetogenesis were critical factors for strengthening stable microbial U(VI) reduction. This study documents that sporulation was important to long-term U(VI) reduction, whether or not microorganisms that carry out U(VI) reduction mediated by cytochrome c3, such as SRB and ferric-iron-reducers, were inhibited.
Collapse
Affiliation(s)
- Aura Ontiveros-Valencia
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 1001 South McAllister Ave, Tempe, AZ 85287-5701, USA; Escuela de Ingenieria y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, NL 64849, Mexico; Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46617, USA
| | - Chen Zhou
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 1001 South McAllister Ave, Tempe, AZ 85287-5701, USA.
| | - Zehra Esra Ilhan
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 1001 South McAllister Ave, Tempe, AZ 85287-5701, USA
| | - Louis Cornette de Saint Cyr
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 1001 South McAllister Ave, Tempe, AZ 85287-5701, USA; Institut Sup'Biotech de Paris, France
| | - Rosa Krajmalnik-Brown
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 1001 South McAllister Ave, Tempe, AZ 85287-5701, USA
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 1001 South McAllister Ave, Tempe, AZ 85287-5701, USA
| |
Collapse
|
28
|
Yang Y, Higgins SA, Yan J, Şimşir B, Chourey K, Iyer R, Hettich RL, Baldwin B, Ogles DM, Löffler FE. Grape pomace compost harbors organohalide-respiring Dehalogenimonas species with novel reductive dehalogenase genes. ISME JOURNAL 2017; 11:2767-2780. [PMID: 28809851 DOI: 10.1038/ismej.2017.127] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 06/12/2017] [Accepted: 06/16/2017] [Indexed: 12/15/2022]
Abstract
Organohalide-respiring bacteria have key roles in the natural chlorine cycle; however, most of the current knowledge is based on cultures from contaminated environments. We demonstrate that grape pomace compost without prior exposure to chlorinated solvents harbors a Dehalogenimonas (Dhgm) species capable of using chlorinated ethenes, including the human carcinogen and common groundwater pollutant vinyl chloride (VC) as electron acceptors. Grape pomace microcosms and derived solid-free enrichment cultures were able to dechlorinate trichloroethene (TCE) to less chlorinated daughter products including ethene. 16S rRNA gene amplicon and qPCR analyses revealed a predominance of Dhgm sequences, but Dehalococcoides mccartyi (Dhc) biomarker genes were not detected. The enumeration of Dhgm 16S rRNA genes demonstrated VC-dependent growth, and 6.55±0.64 × 108 cells were measured per μmole of chloride released. Metagenome sequencing enabled the assembly of a Dhgm draft genome, and 52 putative reductive dehalogenase (RDase) genes were identified. Proteomic workflows identified a putative VC RDase with 49 and 56.1% amino acid similarity to the known VC RDases VcrA and BvcA, respectively. A survey of 1,173 groundwater samples collected from 111 chlorinated solvent-contaminated sites in the United States and Australia revealed that Dhgm 16S rRNA genes were frequently detected and outnumbered Dhc in 65% of the samples. Dhgm are likely greater contributors to reductive dechlorination of chlorinated solvents in contaminated aquifers than is currently recognized, and non-polluted environments represent sources of organohalide-respiring bacteria with novel RDase genes.
Collapse
Affiliation(s)
- Yi Yang
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, USA.,Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, USA.,Joint Institute for Biological Sciences (JIBS), Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Steven A Higgins
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, USA.,Joint Institute for Biological Sciences (JIBS), Oak Ridge National Laboratory, Oak Ridge, TN, USA.,Department of Microbiology, University of Tennessee, Knoxville, TN, USA.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Jun Yan
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, USA.,Joint Institute for Biological Sciences (JIBS), Oak Ridge National Laboratory, Oak Ridge, TN, USA.,Department of Microbiology, University of Tennessee, Knoxville, TN, USA.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.,Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China
| | - Burcu Şimşir
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, USA
| | - Karuna Chourey
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Ramsunder Iyer
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.,Genome Science and Technology, University of Tennessee, Knoxville, TN, USA
| | - Robert L Hettich
- Joint Institute for Biological Sciences (JIBS), Oak Ridge National Laboratory, Oak Ridge, TN, USA.,Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.,Genome Science and Technology, University of Tennessee, Knoxville, TN, USA
| | | | | | - Frank E Löffler
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, USA.,Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, USA.,Joint Institute for Biological Sciences (JIBS), Oak Ridge National Laboratory, Oak Ridge, TN, USA.,Department of Microbiology, University of Tennessee, Knoxville, TN, USA.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.,Genome Science and Technology, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
29
|
Methane-Fueled Syntrophy through Extracellular Electron Transfer: Uncovering the Genomic Traits Conserved within Diverse Bacterial Partners of Anaerobic Methanotrophic Archaea. mBio 2017; 8:mBio.00530-17. [PMID: 28765215 PMCID: PMC5539420 DOI: 10.1128/mbio.00530-17] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The anaerobic oxidation of methane by anaerobic methanotrophic (ANME) archaea in syntrophic partnership with deltaproteobacterial sulfate-reducing bacteria (SRB) is the primary mechanism for methane removal in ocean sediments. The mechanism of their syntrophy has been the subject of much research as traditional intermediate compounds, such as hydrogen and formate, failed to decouple the partners. Recent findings have indicated the potential for extracellular electron transfer from ANME archaea to SRB, though it is unclear how extracellular electrons are integrated into the metabolism of the SRB partner. We used metagenomics to reconstruct eight genomes from the globally distributed SEEP-SRB1 clade of ANME partner bacteria to determine what genomic features are required for syntrophy. The SEEP-SRB1 genomes contain large multiheme cytochromes that were not found in previously described free-living SRB and also lack periplasmic hydrogenases that may prevent an independent lifestyle without an extracellular source of electrons from ANME archaea. Metaproteomics revealed the expression of these cytochromes at in situ methane seep sediments from three sites along the Pacific coast of the United States. Phylogenetic analysis showed that these cytochromes appear to have been horizontally transferred from metal-respiring members of the Deltaproteobacteria such as Geobacter and may allow these syntrophic SRB to accept extracellular electrons in place of other chemical/organic electron donors. Some archaea, known as anaerobic methanotrophs, are capable of converting methane into carbon dioxide when they are growing syntopically with sulfate-reducing bacteria. This partnership is the primary mechanism for methane removal in ocean sediments; however, there is still much to learn about how this syntrophy works. Previous studies have failed to identify the metabolic intermediate, such as hydrogen or formate, that is passed between partners. However, recent analysis of methanotrophic archaea has suggested that the syntrophy is formed through direct electron transfer. In this research, we analyzed the genomes of multiple partner bacteria and showed that they also contain the genes necessary to perform extracellular electron transfer, which are absent in related bacteria that do not form syntrophic partnerships with anaerobic methanotrophs. This genomic evidence shows a possible mechanism for direct electron transfer from methanotrophic archaea into the metabolism of the partner bacteria.
Collapse
|
30
|
Meyers A, Chourey K, Weiskittel TM, Pfiffner S, Dunlap JR, Hettich RL, Dalhaimer P. The protein and neutral lipid composition of lipid droplets isolated from the fission yeast, Schizosaccharomyces pombe. J Microbiol 2017; 55:112-122. [PMID: 28120187 DOI: 10.1007/s12275-017-6205-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 10/04/2016] [Accepted: 10/20/2016] [Indexed: 12/17/2022]
Abstract
Lipid droplets consist of a core of neutral lipids surrounded by a phospholipid monolayer with bound proteins. Much of the information on lipid droplet function comes from proteomic and lipodomic studies that identify the components of droplets isolated from organisms throughout the phylogenetic tree. Here, we add to that important inventory by reporting lipid droplet factors from the fission yeast, Schizosaccharomyces pombe. Unique to this study was the fact that cells were cultured in three different environments: 1) late log growth phase in glucose-based media, 2) stationary phase in glucosebased media, and 3) late log growth phase in media containing oleic acid. We confirmed colocalization of major factors with lipid droplets using live-cell fluorescent microscopy. We also analyzed droplets from each of the three conditions for sterol ester (SE) and triacylglycerol (TAG) content, along with their respective fatty acid compositions. We identified a previously undiscovered lipid droplet protein, Vip1p, which affects droplet size distribution. The results provide further insight into the workings of these ubiquitous organelles.
Collapse
Affiliation(s)
- Alex Meyers
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996-2200, USA
| | - Karuna Chourey
- Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Taylor M Weiskittel
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996-2200, USA
| | - Susan Pfiffner
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - John R Dunlap
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA.,Advanced Microscopy and Imaging Center, University of Tennessee, Knoxville, TN, 37996, USA
| | | | - Paul Dalhaimer
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996-2200, USA. .,Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA. .,Institute of Biomedical Engineering, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
31
|
Bagnoud A, Chourey K, Hettich RL, de Bruijn I, Andersson AF, Leupin OX, Schwyn B, Bernier-Latmani R. Reconstructing a hydrogen-driven microbial metabolic network in Opalinus Clay rock. Nat Commun 2016; 7:12770. [PMID: 27739431 PMCID: PMC5067608 DOI: 10.1038/ncomms12770] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 07/29/2016] [Indexed: 11/25/2022] Open
Abstract
The Opalinus Clay formation will host geological nuclear waste repositories in Switzerland. It is expected that gas pressure will build-up due to hydrogen production from steel corrosion, jeopardizing the integrity of the engineered barriers. In an in situ experiment located in the Mont Terri Underground Rock Laboratory, we demonstrate that hydrogen is consumed by microorganisms, fuelling a microbial community. Metagenomic binning and metaproteomic analysis of this deep subsurface community reveals a carbon cycle driven by autotrophic hydrogen oxidizers belonging to novel genera. Necromass is then processed by fermenters, followed by complete oxidation to carbon dioxide by heterotrophic sulfate-reducing bacteria, which closes the cycle. This microbial metabolic web can be integrated in the design of geological repositories to reduce pressure build-up. This study shows that Opalinus Clay harbours the potential for chemolithoautotrophic-based system, and provides a model of microbial carbon cycle in deep subsurface environments where hydrogen and sulfate are present. Hydrogen build-up in geological nuclear waste repositories poses risks, but it may be alleviated by H2 consumption by deep subsurface microbial communities. Here, the authors inject H2 in a borehole and use metagenomics and metaproteomics to identify a carbon cycle driven by autotrophic H2 oxidizers.
Collapse
Affiliation(s)
- Alexandre Bagnoud
- Ecole Polytechnique Fédérale de Lausanne, Environmental Microbiology Laboratory, Station 6, Lausanne CH-1015, Switzerland
| | - Karuna Chourey
- Oak Ridge National Laboratory, Chemical Sciences Division, Oak Ridge, Tennessee 37831, USA
| | - Robert L Hettich
- Oak Ridge National Laboratory, Chemical Sciences Division, Oak Ridge, Tennessee 37831, USA
| | - Ino de Bruijn
- Bioinformatics Infrastructure for Life Sciences (BILS), Stockholm 171 65, Sweden.,KTH Royal Institute of Technology, Science for Life Laboratory, School of Biotechnology, Division of Gene Technology, Stockholm 171 65, Sweden
| | - Anders F Andersson
- KTH Royal Institute of Technology, Science for Life Laboratory, School of Biotechnology, Division of Gene Technology, Stockholm 171 65, Sweden
| | | | | | - Rizlan Bernier-Latmani
- Ecole Polytechnique Fédérale de Lausanne, Environmental Microbiology Laboratory, Station 6, Lausanne CH-1015, Switzerland
| |
Collapse
|
32
|
Zhang X, Wang X, Zhang J, Huang X, Wei D, Lan W, Hu Z. Reduction of nitrous oxide emissions from partial nitrification process by using innovative carbon source (mannitol). BIORESOURCE TECHNOLOGY 2016; 218:789-795. [PMID: 27423546 DOI: 10.1016/j.biortech.2016.07.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/04/2016] [Accepted: 07/09/2016] [Indexed: 06/06/2023]
Abstract
The purpose of this study was to evaluate the effect of mannitol as carbon source on nitrogen removal and nitrous oxide (N2O) emission during partial nitrification (PN) process. Laboratory-scale PN sequencing batch reactors (SBRs) were operated with mannitol and sodium acetate as carbon sources, respectively. Results showed that mannitol could remarkably reduce N2O-N emission by 41.03%, without influencing the removal efficiency of NH4(+)-N. However, it has a significant influence on nitrite accumulation ratio (NAR) and TN removal, which were 19.97% and 13.59% lower than that in PN with sodium acetate, respectively. Microbial analysis showed that the introduction of mannitol could increase the abundance of bacteria encoding nosZ genes. In addition, anti-oxidant enzymes (T-SOD, POD and CAT) activities were significantly reduced and the dehydrogenase activity had an obvious increase in mannitol system, indicating that mannitol could alleviate the inhibition of N2O reductase (N2OR) activities caused by high NO2(-)-N concentration.
Collapse
Affiliation(s)
- Xinwen Zhang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 27 Shanda Nanlu, Jinan 250100, Shandong, PR China
| | - Xiaoqing Wang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 27 Shanda Nanlu, Jinan 250100, Shandong, PR China
| | - Jian Zhang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 27 Shanda Nanlu, Jinan 250100, Shandong, PR China
| | - Xiaoyu Huang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 27 Shanda Nanlu, Jinan 250100, Shandong, PR China
| | - Dong Wei
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 27 Shanda Nanlu, Jinan 250100, Shandong, PR China
| | - Wei Lan
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 27 Shanda Nanlu, Jinan 250100, Shandong, PR China
| | - Zhen Hu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 27 Shanda Nanlu, Jinan 250100, Shandong, PR China.
| |
Collapse
|
33
|
Wang DZ, Kong LF, Li YY, Xie ZX. Environmental Microbial Community Proteomics: Status, Challenges and Perspectives. Int J Mol Sci 2016; 17:E1275. [PMID: 27527164 PMCID: PMC5000673 DOI: 10.3390/ijms17081275] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/08/2016] [Accepted: 07/29/2016] [Indexed: 01/17/2023] Open
Abstract
Microbial community proteomics, also termed metaproteomics, is an emerging field within the area of microbiology, which studies the entire protein complement recovered directly from a complex environmental microbial community at a given point in time. Although it is still in its infancy, microbial community proteomics has shown its powerful potential in exploring microbial diversity, metabolic potential, ecological function and microbe-environment interactions. In this paper, we review recent advances achieved in microbial community proteomics conducted in diverse environments, such as marine and freshwater, sediment and soil, activated sludge, acid mine drainage biofilms and symbiotic communities. The challenges facing microbial community proteomics are also discussed, and we believe that microbial community proteomics will greatly enhance our understanding of the microbial world and its interactions with the environment.
Collapse
Affiliation(s)
- Da-Zhi Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| | - Ling-Fen Kong
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| | - Yuan-Yuan Li
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| | - Zhang-Xian Xie
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
34
|
Muth T, Renard BY, Martens L. Metaproteomic data analysis at a glance: advances in computational microbial community proteomics. Expert Rev Proteomics 2016; 13:757-69. [DOI: 10.1080/14789450.2016.1209418] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
35
|
Song K, Suenaga T, Harper WF, Hori T, Riya S, Hosomi M, Terada A. Effects of aeration and internal recycle flow on nitrous oxide emissions from a modified Ludzak-Ettinger process fed with glycerol. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:19562-19570. [PMID: 26268623 DOI: 10.1007/s11356-015-5129-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 07/27/2015] [Indexed: 06/04/2023]
Abstract
Nitrous oxide (N2O) is emitted from a modified Ludzak-Ettinger (MLE) process, as a primary activated sludge system, which requires mitigation. The effects of aeration rates and internal recycle flow (IRF) ratios on N2O emission were investigated in an MLE process fed with glycerol. Reducing the aeration rate from 1.5 to 0.5 L/min increased gaseous the N2O concentration from the aerobic tank and the dissolved N2O concentration in the anoxic tank by 54.4 and 53.4 %, respectively. During the period of higher aeration, the N2O-N conversion ratio was 0.9 % and the potential N2O reducers were predominantly Rhodobacter, which accounted for 21.8 % of the total population. Increasing the IRF ratio from 3.6 to 7.2 decreased the N2O emission rate from the aerobic tank and the dissolved N2O concentration in the anoxic tank by 56 and 48 %, respectively. This study suggests effective N2O mitigation strategies for MLE systems.
Collapse
Affiliation(s)
- Kang Song
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka, Koganei, Tokyo, 184-8588, Japan
- Research Fellow of Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan
| | - Toshikazu Suenaga
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka, Koganei, Tokyo, 184-8588, Japan
| | - Willie F Harper
- Department of Systems Engineering and Management, Air Force Institute of Technology, Wright-Patterson Air Force Base, Dayton, OH, 45433, USA
| | - Tomoyuki Hori
- National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, 305-8568, Japan
| | - Shohei Riya
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka, Koganei, Tokyo, 184-8588, Japan
| | - Masaaki Hosomi
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka, Koganei, Tokyo, 184-8588, Japan
| | - Akihiko Terada
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka, Koganei, Tokyo, 184-8588, Japan.
| |
Collapse
|
36
|
Zhang P, Van Nostrand JD, He Z, Chakraborty R, Deng Y, Curtis D, Fields MW, Hazen TC, Arkin AP, Zhou J. A Slow-Release Substrate Stimulates Groundwater Microbial Communities for Long-Term in Situ Cr(VI) Reduction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:12922-12931. [PMID: 25835088 DOI: 10.1021/acs.est.5b00024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Cr(VI) is a widespread environmental contaminant that is highly toxic and soluble. Previous work indicated that a one-time amendment of polylactate hydrogen-release compound (HRC) reduced groundwater Cr(VI) concentrations for >3.5 years at a contaminated aquifer; however, microbial communities responsible for Cr(VI) reduction are poorly understood. In this study, we hypothesized that HRC amendment would significantly change the composition and structure of groundwater microbial communities, and that the abundance of key functional genes involved in HRC degradation and electron acceptor reduction would increase long-term in response to this slowly degrading, complex substrate. To test these hypotheses, groundwater microbial communities were monitored after HRC amendment for >1 year using a comprehensive functional gene microarray. The results showed that the overall functional composition and structure of groundwater microbial communities underwent sequential shifts after HRC amendment. Particularly, the abundance of functional genes involved in acetate oxidation, denitrification, dissimilatory nitrate reduction, metal reduction, and sulfate reduction significantly increased. The overall community dynamics was significantly correlated with changes in groundwater concentrations of microbial biomass, acetate, NO3-, Cr(VI), Fe(II) and SO4(2-). Our results suggest that HRC amendment primarily stimulated key functional processes associated with HRC degradation and reduction of multiple electron acceptors in the aquifer toward long-term Cr(VI) reduction.
Collapse
Affiliation(s)
- Ping Zhang
- Institute for Environmental Genomics, and Department of Microbiology and Plant Biology, University of Oklahoma , Norman, Oklahoma 73019, United States
| | - Joy D Van Nostrand
- Institute for Environmental Genomics, and Department of Microbiology and Plant Biology, University of Oklahoma , Norman, Oklahoma 73019, United States
| | - Zhili He
- Institute for Environmental Genomics, and Department of Microbiology and Plant Biology, University of Oklahoma , Norman, Oklahoma 73019, United States
| | - Romy Chakraborty
- Earth Science Division, Lawrence Berkeley National Laboratory , Berkeley, California 94270, United States
| | - Ye Deng
- Institute for Environmental Genomics, and Department of Microbiology and Plant Biology, University of Oklahoma , Norman, Oklahoma 73019, United States
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
| | - Daniel Curtis
- Institute for Environmental Genomics, and Department of Microbiology and Plant Biology, University of Oklahoma , Norman, Oklahoma 73019, United States
| | - Matthew W Fields
- Center for Biofilm Engineering, Montana State University , Bozeman, Montana 59717, United States
| | - Terry C Hazen
- Department of Civil and Environmental Engineering, The University of Tennessee , Knoxville, Tennessee 37996, United States
- Biosciences Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831-6342, United States
| | - Adam P Arkin
- Physical Biosciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Jizhong Zhou
- Institute for Environmental Genomics, and Department of Microbiology and Plant Biology, University of Oklahoma , Norman, Oklahoma 73019, United States
- Earth Science Division, Lawrence Berkeley National Laboratory , Berkeley, California 94270, United States
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University , Beijing 100084, China
| |
Collapse
|
37
|
Complete Genome Sequence of Pelosinus fermentans JBW45, a Member of a Remarkably Competitive Group of Negativicutes in the Firmicutes Phylum. GENOME ANNOUNCEMENTS 2015; 3:3/5/e01090-15. [PMID: 26404608 PMCID: PMC4582584 DOI: 10.1128/genomea.01090-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The genome of Pelosinus fermentans JBW45, isolated from a chromium-contaminated site in Hanford, Washington, USA, has been completed with PacBio sequencing. Nine copies of the rRNA gene operon and multiple transposase genes with identical sequences resulted in breaks in the original draft genome and may suggest genomic instability of JBW45.
Collapse
|
38
|
Arsène-Ploetze F, Bertin PN, Carapito C. Proteomic tools to decipher microbial community structure and functioning. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:13599-13612. [PMID: 25475614 PMCID: PMC4560766 DOI: 10.1007/s11356-014-3898-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 11/20/2014] [Indexed: 06/04/2023]
Abstract
Recent advances in microbial ecology allow studying microorganisms in their environment, without laboratory cultivation, in order to get access to the large uncultivable microbial community. With this aim, environmental proteomics has emerged as an appropriate complementary approach to metagenomics providing information on key players that carry out main metabolic functions and addressing the adaptation capacities of living organisms in situ. In this review, a wide range of proteomic approaches applied to investigate the structure and functioning of microbial communities as well as recent examples of such studies are presented.
Collapse
Affiliation(s)
- Florence Arsène-Ploetze
- Génétique moléculaire, Génomique et Microbiologie, Université de Strasbourg, UMR7156 CNRS, Strasbourg, France,
| | | | | |
Collapse
|
39
|
Guthals A, Boucher C, Bandeira N. The generating function approach for Peptide identification in spectral networks. J Comput Biol 2015; 22:353-66. [PMID: 25423621 PMCID: PMC4425220 DOI: 10.1089/cmb.2014.0165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tandem mass (MS/MS) spectrometry has become the method of choice for protein identification and has launched a quest for the identification of every translated protein and peptide. However, computational developments have lagged behind the pace of modern data acquisition protocols and have become a major bottleneck in proteomics analysis of complex samples. As it stands today, attempts to identify MS/MS spectra against large databases (e.g., the human microbiome or 6-frame translation of the human genome) face a search space that is 10-100 times larger than the human proteome, where it becomes increasingly challenging to separate between true and false peptide matches. As a result, the sensitivity of current state-of-the-art database search methods drops by nearly 38% to such low identification rates that almost 90% of all MS/MS spectra are left as unidentified. We address this problem by extending the generating function approach to rigorously compute the joint spectral probability of multiple spectra being matched to peptides with overlapping sequences, thus enabling the confident assignment of higher significance to overlapping peptide-spectrum matches (PSMs). We find that these joint spectral probabilities can be several orders of magnitude more significant than individual PSMs, even in the ideal case when perfect separation between signal and noise peaks could be achieved per individual MS/MS spectrum. After benchmarking this approach on a typical lysate MS/MS dataset, we show that the proposed intersecting spectral probabilities for spectra from overlapping peptides improve peptide identification by 30-62%.
Collapse
Affiliation(s)
- Adrian Guthals
- Department of Computer Science and Engineering, University of California–San Diego, La Jolla, California
| | - Christina Boucher
- Department of Computer Science, Colorado State University, Fort Collins, Colorado
| | - Nuno Bandeira
- Department of Computer Science and Engineering, University of California–San Diego, La Jolla, California
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California–San Diego, La Jolla, California
| |
Collapse
|
40
|
Dynamic Succession of Groundwater Functional Microbial Communities in Response to Emulsified Vegetable Oil Amendment during Sustained In Situ U(VI) Reduction. Appl Environ Microbiol 2015; 81:4164-72. [PMID: 25862231 DOI: 10.1128/aem.00043-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 04/05/2015] [Indexed: 11/20/2022] Open
Abstract
A pilot-scale field experiment demonstrated that a one-time amendment of emulsified vegetable oil (EVO) reduced groundwater U(VI) concentrations for 1 year in a fast-flowing aquifer. However, little is known about how EVO amendment stimulates the functional gene composition, structure, and dynamics of groundwater microbial communities toward prolonged U(VI) reduction. In this study, we hypothesized that EVO amendment would shift the functional gene composition and structure of groundwater microbial communities and stimulate key functional genes/groups involved in EVO biodegradation and reduction of electron acceptors in the aquifer. To test these hypotheses, groundwater microbial communities after EVO amendment were analyzed using a comprehensive functional gene microarray. Our results showed that EVO amendment stimulated sequential shifts in the functional composition and structure of groundwater microbial communities. Particularly, the relative abundance of key functional genes/groups involved in EVO biodegradation and the reduction of NO3 (-), Mn(IV), Fe(III), U(VI), and SO4 (2-) significantly increased, especially during the active U(VI) reduction period. The relative abundance for some of these key functional genes/groups remained elevated over 9 months. Montel tests suggested that the dynamics in the abundance, composition, and structure of these key functional genes/groups were significantly correlated with groundwater concentrations of acetate, NO3 (-), Mn(II), Fe(II), U(VI), and SO4 (2-). Our results suggest that EVO amendment stimulated dynamic succession of key functional microbial communities. This study improves our understanding of the composition, structure, and function changes needed for groundwater microbial communities to sustain a long-term U(VI) reduction.
Collapse
|
41
|
Yu CL, Summers RM, Li Y, Mohanty SK, Subramanian M, Pope RM. Rapid identification and quantitative validation of a caffeine-degrading pathway in Pseudomonas sp. CES. J Proteome Res 2014; 14:95-106. [PMID: 25350919 DOI: 10.1021/pr500751w] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Understanding the genes and enzymes involved in caffeine metabolism can lead to applications such as production of methylxanthines and environmental waste remediation. Pseudomonas sp. CES may provide insights into these applications, since this bacterium degrades caffeine and thrives in concentrations of caffeine that are three times higher (9.0 g L(-1)) than the maximum tolerable levels of other reported bacteria. We took a novel approach toward identifying the enzymatic pathways in Pseudomonas sp. CES that metabolize caffeine, which largely circumvented the need for exhaustive isolation of enzymes and the stepwise reconstitution of their activities. Here we describe an optimized, rapid alternative strategy based on multiplexed LC-MS/MS assays and show its application by discovering caffeine-degrading enzymes in the CES strain based on quantitative comparison of proteomes from bacteria grown in the absence and presence of caffeine, the latter condition of which was found to have a highly induced capacity for caffeine degradation. Comparisons were made using stable isotope dimethyl labeling, differences in the abundance of particular proteins were substantiated by reciprocal labeling experiments, and the role of the identified proteins in caffeine degradation was independently verified by genetic sequencing. Overall, multiple new components of a N-demethylase system were identified that resulted in rapid pathway validation and gene isolation using this new approach.
Collapse
Affiliation(s)
- Chi Li Yu
- Proteomics Facility, University of Iowa , 355 EMRB, Iowa City, Iowa 52242, United States
| | | | | | | | | | | |
Collapse
|
42
|
Penzlin A, Lindner MS, Doellinger J, Dabrowski PW, Nitsche A, Renard BY. Pipasic: similarity and expression correction for strain-level identification and quantification in metaproteomics. ACTA ACUST UNITED AC 2014; 30:i149-56. [PMID: 24931978 PMCID: PMC4058918 DOI: 10.1093/bioinformatics/btu267] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
MOTIVATION Metaproteomic analysis allows studying the interplay of organisms or functional groups and has become increasingly popular also for diagnostic purposes. However, difficulties arise owing to the high sequence similarity between related organisms. Further, the state of conservation of proteins between species can be correlated with their expression level, which can lead to significant bias in results and interpretation. These challenges are similar but not identical to the challenges arising in the analysis of metagenomic samples and require specific solutions. RESULTS We introduce Pipasic (peptide intensity-weighted proteome abundance similarity correction) as a tool that corrects identification and spectral counting-based quantification results using peptide similarity estimation and expression level weighting within a non-negative lasso framework. Pipasic has distinct advantages over approaches only regarding unique peptides or aggregating results to the lowest common ancestor, as demonstrated on examples of viral diagnostics and an acid mine drainage dataset. AVAILABILITY AND IMPLEMENTATION Pipasic source code is freely available from https://sourceforge.net/projects/pipasic/. CONTACT RenardB@rki.de SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Anke Penzlin
- Research Group Bioinformatics (NG4), Centre for Biological Threats and Special Pathogens 1 (ZBS 1), Centre for Biological Threats and Special Pathogens 6 (ZBS 6) and Central Administration 4 (IT), Robert Koch Institute, 13353 Berlin, Germany
| | - Martin S Lindner
- Research Group Bioinformatics (NG4), Centre for Biological Threats and Special Pathogens 1 (ZBS 1), Centre for Biological Threats and Special Pathogens 6 (ZBS 6) and Central Administration 4 (IT), Robert Koch Institute, 13353 Berlin, Germany
| | - Joerg Doellinger
- Research Group Bioinformatics (NG4), Centre for Biological Threats and Special Pathogens 1 (ZBS 1), Centre for Biological Threats and Special Pathogens 6 (ZBS 6) and Central Administration 4 (IT), Robert Koch Institute, 13353 Berlin, GermanyResearch Group Bioinformatics (NG4), Centre for Biological Threats and Special Pathogens 1 (ZBS 1), Centre for Biological Threats and Special Pathogens 6 (ZBS 6) and Central Administration 4 (IT), Robert Koch Institute, 13353 Berlin, Germany
| | - Piotr Wojtek Dabrowski
- Research Group Bioinformatics (NG4), Centre for Biological Threats and Special Pathogens 1 (ZBS 1), Centre for Biological Threats and Special Pathogens 6 (ZBS 6) and Central Administration 4 (IT), Robert Koch Institute, 13353 Berlin, GermanyResearch Group Bioinformatics (NG4), Centre for Biological Threats and Special Pathogens 1 (ZBS 1), Centre for Biological Threats and Special Pathogens 6 (ZBS 6) and Central Administration 4 (IT), Robert Koch Institute, 13353 Berlin, Germany
| | - Andreas Nitsche
- Research Group Bioinformatics (NG4), Centre for Biological Threats and Special Pathogens 1 (ZBS 1), Centre for Biological Threats and Special Pathogens 6 (ZBS 6) and Central Administration 4 (IT), Robert Koch Institute, 13353 Berlin, Germany
| | - Bernhard Y Renard
- Research Group Bioinformatics (NG4), Centre for Biological Threats and Special Pathogens 1 (ZBS 1), Centre for Biological Threats and Special Pathogens 6 (ZBS 6) and Central Administration 4 (IT), Robert Koch Institute, 13353 Berlin, Germany
| |
Collapse
|
43
|
Abstract
Worldwide industrialization activities create vast amounts of organic and inorganic waste streams that frequently result in significant soil and groundwater contamination. Metals and radionuclides are of particular concern due to their mobility and long-term persistence in aquatic and terrestrial environments. As the global population increases, the demand for safe, contaminant-free soil and groundwater will increase as will the need for effective and inexpensive remediation strategies. Remediation strategies that include physical and chemical methods (i.e., abiotic) or biological activities have been shown to impede the migration of radionuclide and metal contaminants within soil and groundwater. However, abiotic remediation methods are often too costly owing to the quantities and volumes of soils and/or groundwater requiring treatment. The in situ sequestration of metals and radionuclides mediated by biological activities associated with microbial phosphorus metabolism is a promising and less costly addition to our existing remediation methods. This review highlights the current strategies for abiotic and microbial phosphate-mediated techniques for uranium and metal remediation.
Collapse
|
44
|
Abstract
Quantitative proteomics by LC-MS/MS is a widely used approach for quantifying a significant portion of any complex proteome. Among the different techniques used for this purpose, one is by use of Data Independent Acquisition (DIA). We present a descriptive protocol for label-free quantitation of proteins by one DIA method termed LC-MS(E), which facilitates large-scale quantification of proteins without the need for isotopic labelling and with no theoretical limit to the number of samples included in an experiment.
Collapse
Affiliation(s)
- Alon Savidor
- Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, 76100, Israel
| | | |
Collapse
|