1
|
Stow SM, Gibbons BC, Rorrer Iii LC, Royer L, Glaskin RS, Slysz GW, Kurulugama RT, Fjeldsted JC, DeBord D, Bilbao A. Exploring Ion Mobility Mass Spectrometry Data File Conversions to Leverage Existing Tools and Enable New Workflows. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1991-2001. [PMID: 39056469 DOI: 10.1021/jasms.4c00220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Ion mobility (IM) is often combined with LC-MS experiments to provide an additional dimension of separation for complex sample analysis. While highly complex samples are better characterized by the full dimensionality of LC-IM-MS experiments to uncover new information, downstream data analysis workflows are often not equipped to properly mine the additional IM dimension. For many samples the data acquisition benefits of including IM separations are all that is necessary to uncover sample information and the full dimensionality of the data is not required for data analysis. Postacquisition reduction and adaptation of the dimensions of LC-IM-MS and IM-MS experiments into an LC-MS format opens the possibility to use a plethora of existing software tools. In this work, we developed data file conversion tools to reduce the complexity of IM data analysis. Three data file transformations are introduced in the PNNL PreProcessor software: (1) mapping the IM axis to the LC axis for IM-MS data, (2) converting the drift time vs m/z space to CCS/z vs m/z space, and (3) transforming All Ions IM/MS mobility aligned fragmentation data to a standard LC-MS DDA data file format. These new data file conversions are demonstrated with corresponding lipidomics and proteomics workflows that leverage existing LC-MS data analysis software to highlight the benefits of the data transformations.
Collapse
Affiliation(s)
- Sarah M Stow
- Agilent Technologies, Santa Clara, California 95051, United States
| | - Bryson C Gibbons
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | | | - Lauren Royer
- MOBILion Systems, Chadds Ford, Pennsylvania 19317, United States
| | | | - Gordon W Slysz
- Agilent Technologies, Santa Clara, California 95051, United States
| | | | - John C Fjeldsted
- Agilent Technologies, Santa Clara, California 95051, United States
| | - Daniel DeBord
- MOBILion Systems, Chadds Ford, Pennsylvania 19317, United States
| | - Aivett Bilbao
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
2
|
Kwantwi-Barima P, Hollerbach AL, Attah IK, Norheim RV, Ibrahim YM. Ion Mobility Separations Using Cocentric Architecture. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1576-1583. [PMID: 38859729 DOI: 10.1021/jasms.4c00163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Ion mobility separations, especially using drift tube ion mobility spectrometers, are usually performed in linear channels, which can have a large footprint when extended to achieve higher resolving powers. In this work, we explored the performance of an ion mobility device with a curved architecture, which can have a more compact form. The cocentric ion mobility spectrometer (CoCIMS) manipulates ions between two cocentric surfaces containing a serpentine track. The mobility separation inside the CoCIMS is achieved using traveling waveforms (TWs). We initially evaluated the device using ion trajectory simulations using SIMION, which indicated that when ions traveled circularly inside the CoCIMS they resulted in similar resolving powers and transmitted m/z range as traveling in a straight path. We then performed experimental validation of the CoCIMS in conjunction with a TOF MS. The CoCIMS was made of two flexible printed circuit board materials folded into cocentric cylinders separated by a gap of 2.8 mm. The device was about 50 mm diameter ×152 mm long and provided 1.846 m of serpentine path length. Three sets of mixtures (Agilent tune mixture, tetraalkylammonium salts, and an eight-peptide mixture) and four traveling waveform profiles (square, sine, triangle, and sawtooth) were used. The sawtooth TW profile produced a slightly higher resolving power for the Agilent tuning mixture and tetraalkylammonium ions. The average resolving power for Agilent tune mixture ions ranged from 37 (using sawtooth TW) to 27 (using square TW). The average resolving powers ranged from 45 (sawtooth TW) to 31 (square TW) for tetraalkylammonium ions. The resolving power of the peptide mixture ions was similar among the four TW profiles and ranged from 51 to 56. The average percent error in TWCCS for the peptide mixture ions was about 0.4%. The new device showed promising results, but improvements are needed to further increase the resolving power.
Collapse
Affiliation(s)
- Pearl Kwantwi-Barima
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Adam L Hollerbach
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Isaac K Attah
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Randolph V Norheim
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Yehia M Ibrahim
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| |
Collapse
|
3
|
Roberts DS, Loo JA, Tsybin YO, Liu X, Wu S, Chamot-Rooke J, Agar JN, Paša-Tolić L, Smith LM, Ge Y. Top-down proteomics. NATURE REVIEWS. METHODS PRIMERS 2024; 4:38. [PMID: 39006170 PMCID: PMC11242913 DOI: 10.1038/s43586-024-00318-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/24/2024] [Indexed: 07/16/2024]
Abstract
Proteoforms, which arise from post-translational modifications, genetic polymorphisms and RNA splice variants, play a pivotal role as drivers in biology. Understanding proteoforms is essential to unravel the intricacies of biological systems and bridge the gap between genotypes and phenotypes. By analysing whole proteins without digestion, top-down proteomics (TDP) provides a holistic view of the proteome and can decipher protein function, uncover disease mechanisms and advance precision medicine. This Primer explores TDP, including the underlying principles, recent advances and an outlook on the future. The experimental section discusses instrumentation, sample preparation, intact protein separation, tandem mass spectrometry techniques and data collection. The results section looks at how to decipher raw data, visualize intact protein spectra and unravel data analysis. Additionally, proteoform identification, characterization and quantification are summarized, alongside approaches for statistical analysis. Various applications are described, including the human proteoform project and biomedical, biopharmaceutical and clinical sciences. These are complemented by discussions on measurement reproducibility, limitations and a forward-looking perspective that outlines areas where the field can advance, including potential future applications.
Collapse
Affiliation(s)
- David S Roberts
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, Department of Biological Chemistry, University of California - Los Angeles, Los Angeles, CA, USA
| | | | - Xiaowen Liu
- Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Si Wu
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL, USA
| | | | - Jeffrey N Agar
- Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Ljiljana Paša-Tolić
- Environmental and Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin, Madison, WI, USA
| | - Ying Ge
- Department of Chemistry, University of Wisconsin, Madison, WI, USA
- Department of Cell and Regenerative Biology, Human Proteomics Program, University of Wisconsin - Madison, Madison, WI, USA
| |
Collapse
|
4
|
Liu FC, Ridgeway ME, Wootton CA, Theisen A, Panczyk EM, Meier F, Park MA, Bleiholder C. Top-Down Protein Analysis by Tandem-Trapped Ion Mobility Spectrometry/Mass Spectrometry (Tandem-TIMS/MS) Coupled with Ultraviolet Photodissociation (UVPD) and Parallel Accumulation/Serial Fragmentation (PASEF) MS/MS Analysis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2232-2246. [PMID: 37638640 PMCID: PMC11162218 DOI: 10.1021/jasms.3c00187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
"Top-down" proteomics analyzes intact proteins and identifies proteoforms by their intact mass as well as the observed fragmentation pattern in tandem mass spectrometry (MS/MS) experiments. Recently, hybrid ion mobility spectrometry-mass spectrometry (IM/MS) methods have gained traction for top-down experiments, either by allowing top-down analysis of individual isomers or alternatively by improving signal/noise and dynamic range for fragment ion assignment. We recently described the construction of a tandem-trapped ion mobility spectrometer/mass spectrometer (tandem-TIMS/MS) coupled with an ultraviolet (UV) laser and demonstrated a proof-of-principle for top-down analysis by UV photodissociation (UVPD) at 2-3 mbar. The present work builds on this with an exploration of a top-down method that couples tandem-TIMS/MS with UVPD and parallel-accumulation serial fragmentation (PASEF) MS/MS analysis. We first survey types and structures of UVPD-specific fragment ions generated in the 2-3 mbar pressure regime of our instrument. Notably, we observe UVPD-induced fragment ions with multiple conformations that differ from those produced in the absence of UV irradiation. Subsequently, we discuss how MS/MS spectra of top-down fragment ions lend themselves ideally for probability-based scoring methods developed in the bottom-up proteomics field and how the ability to record automated PASEF-MS/MS spectra resolves ambiguities in the assignment of top-down fragment ions. Finally, we describe the coupling of tandem-TIMS/MS workflows with UVPD and PASEF-MS/MS analysis for native top-down protein analysis.
Collapse
Affiliation(s)
- Fanny C. Liu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32304, USA
| | | | | | | | | | - Florian Meier
- Functional Proteomics, Jena University Hospital, 07747 Jena, Germany
| | | | - Christian Bleiholder
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32304, USA
| |
Collapse
|
5
|
Cropley TC, Liu FC, Pedrete T, Hossain MA, Agar JN, Bleiholder C. Structure Relaxation Approximation (SRA) for Elucidation of Protein Structures from Ion Mobility Measurements (II). Protein Complexes. J Phys Chem B 2023. [PMID: 37311097 DOI: 10.1021/acs.jpcb.3c01024] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Characterizing structures of protein complexes and their disease-related aberrations is essential to understanding molecular mechanisms of many biological processes. Electrospray ionization coupled with hybrid ion mobility/mass spectrometry (ESI-IM/MS) methods offer sufficient sensitivity, sample throughput, and dynamic range to enable systematic structural characterization of proteomes. However, because ESI-IM/MS characterizes ionized protein systems in the gas phase, it generally remains unclear to what extent the protein ions characterized by IM/MS have retained their solution structures. Here, we discuss the first application of our computational structure relaxation approximation [Bleiholder, C.; et al. J. Phys. Chem. B 2019, 123 (13), 2756-2769] to assign structures of protein complexes in the range from ∼16 to ∼60 kDa from their "native" IM/MS spectra. Our analysis shows that the computed IM/MS spectra agree with the experimental spectra within the errors of the methods. The structure relaxation approximation (SRA) indicates that native backbone contacts appear largely retained in the absence of solvent for the investigated protein complexes and charge states. Native contacts between polypeptide chains of the protein complex appear to be retained to a comparable extent as contacts within a folded polypeptide chain. Our computations also indicate that the hallmark "compaction" often observed for protein systems in native IM/MS measurements appears to be a poor indicator of the extent to which native residue-residue interactions are lost in the absence of solvent. Further, the SRA indicates that structural reorganization of the protein systems in IM/MS measurements appears driven largely by remodeling of the protein surface that increases its hydrophobic content by approximately 10%. For the systems studied here, this remodeling of the protein surface appears to occur mainly by structural reorganization of surface-associated hydrophilic amino acid residues not associated with β-strand secondary structure elements. Properties related to the internal protein structure, as assessed by void volume or packing density, appear unaffected by remodeling of the surface. Taken together, the structural reorganization of the protein surface appears to be generic in nature and to sufficiently stabilize protein structures to render them metastable on the time scale of IM/MS measurements.
Collapse
Affiliation(s)
- Tyler C Cropley
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32306, United States
| | - Fanny C Liu
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32306, United States
| | - Thais Pedrete
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32306, United States
| | - Md Amin Hossain
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave, Boston, Massachusetts 02115, United States
- Barnett Institute of Chemical and Biological Analysis, 140 The Fenway, Boston, Massachusetts 02115, United States
| | - Jeffrey N Agar
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave, Boston, Massachusetts 02115, United States
- Barnett Institute of Chemical and Biological Analysis, 140 The Fenway, Boston, Massachusetts 02115, United States
- Department of Pharmaceutical Sciences, Northeastern University, 10 Leon St, Boston, Massachusetts 02115, United States
| | - Christian Bleiholder
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32306, United States
- Institute of Molecular Biophysics, Florida State University, 91 Chieftain Way, Tallahassee, Florida 32306, United States
| |
Collapse
|
6
|
Comprehensive Steroid Assay with Non-Targeted Analysis Using Liquid Chromatography Ion Mobility Mass Spectrometry. Int J Mol Sci 2022; 23:ijms232213858. [PMID: 36430339 PMCID: PMC9697045 DOI: 10.3390/ijms232213858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/28/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Aldosterone-producing adenomas (APAs) have different steroid profiles in serum, depending on the causative genetic mutation. Ion mobility is a separation technique for gas-phase ions based on their m/z values, shapes, and sizes. Human serum (100 µL) was purified by liquid-liquid extraction using tert-butyl methyl ether/ethyl acetate at 1/1 (v/v) and mixed with deuterium-labeled steroids as the internal standard. The separated supernatant was dried, re-dissolved in water containing 20% methanol, and injected into a liquid chromatography-ion mobility-mass spectrometer (LC/IM/MS). We established a highly sensitive assay system by separating 20 steroids based on their retention time, m/z value, and drift time. Twenty steroids were measured in the serum of patients with primary aldosteronism, essential hypertension, and healthy subjects and were clearly classified using principal component analysis. This method was also able to detect phosphatidylcholine and phosphatidylethanolamine, which were not targeted. LC/IM/MS has a high selectivity for known compounds and has the potential to provide information on unknown compounds. This analytical method has the potential to elucidate the pathogenesis of APA and identify unknown steroids that could serve as biomarkers for APA with different genetic mutations.
Collapse
|
7
|
Liu FC, Kirk SR, Caldwell KA, Pedrete T, Meier F, Bleiholder C. Tandem Trapped Ion Mobility Spectrometry/Mass Spectrometry (tTIMS/MS) Reveals Sequence-Specific Determinants of Top-Down Protein Fragment Ion Cross Sections. Anal Chem 2022; 94:8146-8155. [PMID: 35621336 PMCID: PMC10032035 DOI: 10.1021/acs.analchem.1c05171] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Top-down proteomics provides a straightforward approach to the level of proteoforms but remains technologically challenging. Using ion mobility spectrometry/mass spectrometry (IMS/MS) to separate top-down fragment ions improves signal/noise and dynamic range. Such applications, however, do not yet leverage the primary information obtained from IMS/MS, which is the characterization of the fragment ion structure by the measured momentum transfer cross sections. Here, we perform top-down analysis of intact proteins and assemblies using our tandem trapped ion mobility spectrometer/mass spectrometer (tTIMS/MS) and compile over 1400 cross section values of fragment ions. Our analysis reveals that most fragment ions exhibit multiple, stable conformations similar to those of intact polypeptides and proteins. The data further indicate that the conformational heterogeneity is strongly influenced by the amino acid sequences of the fragment ions. Moreover, time-resolved tTIMS/MS experiments reveal that conformations of top-down fragment ions can be metastable on the timescale of ion mobility measurements. Taken together, our analysis indicates that top-down fragment ions undergo a folding process in the gas phase and that this folding process can lead to kinetic trapping of intermediate states in ion mobility measurements. Hence, because the folding free energy surface of a polypeptide ion is encoded by its amino acid sequence and charge state, our analysis suggests that cross sections can be exploited as sequence-specific determinants of top-down fragment ions.
Collapse
Affiliation(s)
- Fanny C. Liu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| | - Samuel R. Kirk
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| | - Kirsten A. Caldwell
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| | - Thais Pedrete
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| | - Florian Meier
- Functional Proteomics, Jena University Hospital, 07747 Jena, Germany
| | - Christian Bleiholder
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4390, USA
- Corresponding Author
| |
Collapse
|
8
|
Aliyari E, Konermann L. Formation of Gaseous Peptide Ions from Electrospray Droplets: Competition between the Ion Evaporation Mechanism and Charged Residue Mechanism. Anal Chem 2022; 94:7713-7721. [PMID: 35587384 DOI: 10.1021/acs.analchem.2c01355] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The transfer of peptide ions from solution into the gas phase by electrospray ionization (ESI) is an integral component of mass spectrometry (MS)-based proteomics. The mechanisms whereby gaseous peptide ions are released from charged ESI nanodroplets remain unclear. This is in contrast to intact protein ESI, which has been the focus of detailed investigations using molecular dynamics (MD) simulations and other methods. Under acidic liquid chromatography/MS conditions, many peptides carry a solution charge of 3+ or 2+. Because of this pre-existing charge and their relatively small size, prevailing views suggest that peptides follow the ion evaporation mechanism (IEM). The IEM entails analyte ejection from ESI droplets, driven by electrostatic repulsion between the analyte and droplet. Surprisingly, recent peptide MD investigations reported a different behavior, that is, the release of peptide ions via droplet evaporation to dryness which represents the hallmark of the charged residue mechanism (CRM). Here, we resolved this conundrum by performing MD simulations on a common model peptide (bradykinin) in Rayleigh-charged aqueous droplets. The primary focus was on pH 2 conditions (bradykinin solution charge = 3+), but we also verified that our MD strategy captured pH-dependent charge state shifts seen in ESI-MS experiments. In agreement with earlier simulations, we found that droplets with initial radii of 1.5-3 nm predominantly release peptide ions via the CRM. In contrast, somewhat larger radii (4-5 nm) favor IEM behavior. It appears that these are the first MD data to unequivocally demonstrate the viability of peptide IEM events. Electrostatic arguments can account for the observed droplet size dependence. In summary, both CRM and IEM can be operative in peptide ESI-MS. The prevalence of one over the other mechanism depends on the droplet size distribution in the ESI plume.
Collapse
Affiliation(s)
- Elnaz Aliyari
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
9
|
Rogawski R, Sharon M. Characterizing Endogenous Protein Complexes with Biological Mass Spectrometry. Chem Rev 2022; 122:7386-7414. [PMID: 34406752 PMCID: PMC9052418 DOI: 10.1021/acs.chemrev.1c00217] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Indexed: 01/11/2023]
Abstract
Biological mass spectrometry (MS) encompasses a range of methods for characterizing proteins and other biomolecules. MS is uniquely powerful for the structural analysis of endogenous protein complexes, which are often heterogeneous, poorly abundant, and refractive to characterization by other methods. Here, we focus on how biological MS can contribute to the study of endogenous protein complexes, which we define as complexes expressed in the physiological host and purified intact, as opposed to reconstituted complexes assembled from heterologously expressed components. Biological MS can yield information on complex stoichiometry, heterogeneity, topology, stability, activity, modes of regulation, and even structural dynamics. We begin with a review of methods for isolating endogenous complexes. We then describe the various biological MS approaches, focusing on the type of information that each method yields. We end with future directions and challenges for these MS-based methods.
Collapse
Affiliation(s)
- Rivkah Rogawski
- Department of Biomolecular
Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Michal Sharon
- Department of Biomolecular
Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
10
|
Cintron-Diaz YL, Gomez-Hernandez ME, Verhaert MMHA, Verhaert PDEM, Fernandez-Lima F. Spatially Resolved Neuropeptide Characterization from Neuropathological Formalin-Fixed, Paraffin-Embedded Tissue Sections by a Combination of Imaging MALDI FT-ICR Mass Spectrometry Histochemistry and Liquid Extraction Surface Analysis-Trapped Ion Mobility Spectrometry-Tandem Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:681-687. [PMID: 35258288 PMCID: PMC9390806 DOI: 10.1021/jasms.1c00376] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
To make the vast collections of well-documented human clinical samples archived in biobanks accessible for mass spectrometry imaging (MSI), recent developments have focused on the label-free top-down MS analysis of neuropeptides in sections of formalin-fixed, paraffin-embedded (FFPE) tissues. In analogy to immunohistochemistry (IHC), this variant of MSI has been designated MSHC (mass spectrometry histochemistry). Besides the detection and localization of neuropeptide and other biomolecular MS signals in these FFPE samples, there is great interest in their molecular identification and full characterization. We here used matrix assisted laser desorption ionization (MALDI) MSI employing ultrahigh-resolution FT-ICR MS on 2,5-dihydroxybenzoic acid (DHB) coated five-micron sections of human FFPE pituitary to demonstrate clear isotope patterns and elemental composition assignment of neuropeptides (with ∼1 ppm mass accuracy). Besides tandem MS fragmentation pattern analysis to deduce or confirm amino acid sequence information (Arg-vasopressin for the case presented here), there is a need for orthogonal primary structure characterization of the peptide-like MS signals of biomolecules desorbed directly off FFPE tissue sections. In the present work, we performed liquid extraction surface analysis (LESA) extractions on consecutive (uncoated) tissue slices. This enables the successful characterization by ion mobility MS of vasopressin present in FFPE material. Differences in sequence coverage are discussed on the basis of the mobility selected collision induced dissociation (CID), electron capture dissociation (ECD), and UV photodissociation (UVPD) MS/MS. Using Arg-vasopressin as model case (a peptide with a disulfide bridged ring structure), we illustrate the use of LESA in combination with a reduction agent for effective sequencing using mobility selected CID, ECD, and UVPD MS/MS.
Collapse
Affiliation(s)
- Yarixa L Cintron-Diaz
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, AHC4-233, Miami, Florida 33199, United States
| | - Mario E Gomez-Hernandez
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, AHC4-233, Miami, Florida 33199, United States
| | - Marthe M H A Verhaert
- ProteoFormiX, JLABS@BE, Janssen Pharmaceutica Campus, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Peter D E M Verhaert
- ProteoFormiX, JLABS@BE, Janssen Pharmaceutica Campus, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, AHC4-233, Miami, Florida 33199, United States
- Biomolecular Science Institute, Florida International University, 11200 SW 8th Street, AHC4-233, Miami, Florida 33199, United States
| |
Collapse
|
11
|
Butler KE, Kalmar JG, Muddiman DC, Baker ES. Utilizing liquid chromatography, ion mobility spectrometry, and mass spectrometry to assess INLIGHT™ derivatized N-linked glycans in biological samples. Anal Bioanal Chem 2022; 414:623-637. [PMID: 34347113 PMCID: PMC8336533 DOI: 10.1007/s00216-021-03570-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/06/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023]
Abstract
Glycosylation is a ubiquitous co- and post-translational modification involved in the sorting, folding, and trafficking of proteins in biological systems; in humans, >50% of gene products are glycosylated with the cellular machinery of glycosylation compromising ~2% of the genome. Perturbations in glycosylation have been implicated in a variety of diseases including neurodegenerative diseases and certain types of cancer. However, understanding the relationship between a glycan and its biological role is often difficult due to the numerous glycan isomers that exist. To address this challenge, nanoflow liquid chromatography, ion mobility spectrometry, and mass spectrometry (nLC-IMS-MS) were combined with the Individuality Normalization when Labeling with the Isotopic Glycan Hydrazide Tags (INLIGHT™) strategy to study a series of glycan standards and those enzymatically released from the glycoproteins horseradish peroxidase, fetuin, and pooled human plasma. The combination of IMS and the natural (NAT) and stable-isotope label (SIL) in the INLIGHT™ strategy provided additional confidence for each glycan identification due to the mobility aligned NAT- and SIL-labeled glycans and further capabilities for isomer examinations. Additionally, molecular trend lines based on the IMS and MS dimensions were investigated for the INLIGHT™ derivatized glycans, facilitating rapid identification of putative glycans in complex biological samples.
Collapse
Affiliation(s)
- Karen E Butler
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Jaclyn Gowen Kalmar
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - David C Muddiman
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695, USA
- Molecular Education, Technology, and Research Innovation Center (METRIC), North Carolina State University, Raleigh, NC, 27695, USA
| | - Erin S Baker
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA.
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695, USA.
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
12
|
Charkow J, Röst HL. Trapped Ion Mobility Spectrometry Reduces Spectral Complexity in Mass Spectrometry-Based Proteomics. Anal Chem 2021; 93:16751-16758. [PMID: 34881875 DOI: 10.1021/acs.analchem.1c01399] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In bottom-up mass spectrometry-based proteomics, deep proteome coverage is limited by high cofragmentation rates. Cofragmentation occurs when more than one analyte is isolated by the quadrupole and the subsequent fragmentation event produces fragment ions of heterogeneous origin. One strategy to reduce cofragmentation rates is through effective peptide separation techniques such as chromatographic separation and, the more recently popularized, ion mobility (IM) spectrometry, which separates peptides by their collisional cross section. Here, we use a computational model to investigate the capability of the trapped IM spectrometry (TIMS) device at effectively separating peptide ions and quantify the separation power of the TIMS device in the context of a parallel accumulation-serial fragmentation (PASEF) workflow. We found that TIMS separation increases the number of interference-free MS1 peptide features 9.2-fold, while decreasing the average peptide density in precursor spectra 6.5-fold. In a data-dependent acquisition PASEF workflow, IM separation increases the number of spectra without cofragmentation by a factor of 4.1 and the number of high-quality spectra 17-fold. Using a categorical model, we estimate that this observed decrease in spectral complexity results in an increased likelihood for peptide spectral matches, which may improve peptide identification rates. In the context of a data-independent acquisition workflow, the reduction in spectral complexity resulting from IM separation is estimated to be equivalent to a 4-fold decrease in the isolation window width (from 25 to 6.5 Da). Our study demonstrates that TIMS separation decreases spectral complexity by reducing cofragmentation rates, suggesting that TIMS separation may contribute toward the high identification rates observed in PASEF workflows.
Collapse
Affiliation(s)
- Joshua Charkow
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1A8, Canada
| | - Hannes L Röst
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1A8, Canada.,Department of Computer Science, University of Toronto, Toronto, Ontario M5T 3A1, Canada
| |
Collapse
|
13
|
Chang CH, Yeung D, Spicer V, Ogata K, Krokhin O, Ishihama Y. Sequence-Specific Model for Predicting Peptide Collision Cross Section Values in Proteomic Ion Mobility Spectrometry. J Proteome Res 2021; 20:3600-3610. [PMID: 34133192 DOI: 10.1021/acs.jproteome.1c00185] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The contribution of peptide amino acid sequence to collision cross section values (CCS) has been investigated using a dataset of ∼134 000 peptides of four different charge states (1+ to 4+). The migration data were acquired using a two-dimensional liquid chromatography (LC)/trapped ion mobility spectrometry/quadrupole/time-of-flight mass spectrometry (MS) analysis of HeLa cell digests created using seven different proteases and was converted to CCS values. Following the previously reported modeling approaches using intrinsic size parameters (ISP), we extended this methodology to encode the position of individual residues within a peptide sequence. A generalized prediction model was built by dividing the dataset into eight groups (four charges for both tryptic/nontryptic peptides). Position-dependent ISPs were independently optimized for the eight subsets of peptides, resulting in prediction accuracy of ∼0.981 for the entire population of peptides. We find that ion mobility is strongly affected by the peptide's ability to solvate the positively charged sites. Internal positioning of polar residues and proline leads to decreased CCS values as they improve charge solvation; conversely, this ability decreases with increasing peptide charge due to electrostatic repulsion. Furthermore, higher helical propensity and peptide hydrophobicity result in a preferential formation of extended structures with higher than predicted CCS values. Finally, acidic/basic residues exhibit position-dependent ISP behavior consistent with electrostatic interaction with the peptide macrodipole, which affects the peptide helicity. The MS raw data files have been deposited with the ProteomeXchange Consortium via the jPOST partner repository (http://jpostdb.org) with the dataset identifiers PXD021440/JPST000959, PXD022800/JPST001017, and PXD026087/ JPST001176.
Collapse
Affiliation(s)
- Chih-Hsiang Chang
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Darien Yeung
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
| | - Victor Spicer
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
| | - Kosuke Ogata
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Oleg Krokhin
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
- Department of Chemistry, University of Manitoba, 360 Parker Building, Winnipeg, Manitoba R3T 2N2, Canada
| | - Yasushi Ishihama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
- Laboratory of Clinical and Analytical Chemistry, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| |
Collapse
|
14
|
Melby JA, Roberts DS, Larson EJ, Brown KA, Bayne EF, Jin S, Ge Y. Novel Strategies to Address the Challenges in Top-Down Proteomics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1278-1294. [PMID: 33983025 PMCID: PMC8310706 DOI: 10.1021/jasms.1c00099] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Top-down mass spectrometry (MS)-based proteomics is a powerful technology for comprehensively characterizing proteoforms to decipher post-translational modifications (PTMs) together with genetic variations and alternative splicing isoforms toward a proteome-wide understanding of protein functions. In the past decade, top-down proteomics has experienced rapid growth benefiting from groundbreaking technological advances, which have begun to reveal the potential of top-down proteomics for understanding basic biological functions, unraveling disease mechanisms, and discovering new biomarkers. However, many challenges remain to be comprehensively addressed. In this Account & Perspective, we discuss the major challenges currently facing the top-down proteomics field, particularly in protein solubility, proteome dynamic range, proteome complexity, data analysis, proteoform-function relationship, and analytical throughput for precision medicine. We specifically review the major technology developments addressing these challenges with an emphasis on our research group's efforts, including the development of top-down MS-compatible surfactants for protein solubilization, functionalized nanoparticles for the enrichment of low-abundance proteoforms, strategies for multidimensional chromatography separation of proteins, and a new comprehensive user-friendly software package for top-down proteomics. We have also made efforts to connect proteoforms with biological functions and provide our visions on what the future holds for top-down proteomics.
Collapse
Affiliation(s)
- Jake A Melby
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - David S Roberts
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Eli J Larson
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Kyle A Brown
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Elizabeth F Bayne
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Song Jin
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Human Proteomics Program, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
15
|
Richardson K, Langridge D, Dixit SM, Ruotolo BT. An Improved Calibration Approach for Traveling Wave Ion Mobility Spectrometry: Robust, High-Precision Collision Cross Sections. Anal Chem 2021; 93:3542-3550. [PMID: 33555172 DOI: 10.1021/acs.analchem.0c04948] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The combination of ion-mobility (IM) separation with mass spectrometry (MS) has impacted global measurement efforts in areas ranging from food analysis to drug discovery. Reasons for the broad adoption of IM-MS include its significantly increased peak capacity, duty-cycle, and ability to reconstruct fragmentation data in parallel, all of which greatly enable the analyses of complex mixtures. More fundamentally, however, measurements of ion-gas molecule collision cross sections (CCSs) are used to support compound identification and quantitation efforts as well as study the structures of large biomolecules. As the first commercialized form of IM-MS, Traveling Wave Ion Mobility (TWIM) devices are operated at low pressures (∼3 mbar) and voltages, are relatively short (∼25 cm), and separate ions on a timescale of tens of milliseconds. These qualities make TWIM ideally suited for hybridization with MS. Owing to the complicated motion of ions in TWIM devices, however, IM transit times must be calibrated to enable CCS measurements. Applicability of these calibrations has hitherto been restricted to primarily singly charged small molecules and some classes of large, multiply charged ions under a significantly narrower range of instrument conditions. Here, we introduce and extensively characterize a dramatically improved TWIM calibration methodology. Using over 2500 experimental TWIM data sets, covering ions that span over 3.5 orders of magnitude of molecular mass, we demonstrate robust calibrations for a significantly expanded range of instrument conditions, thereby opening up new analytical application areas and enabling the expansion of high-precision CCS measurements for both existing and next-generation TWIM instrumentation.
Collapse
Affiliation(s)
- K Richardson
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, United Kingdom
| | - D Langridge
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, United Kingdom
| | - S M Dixit
- Department of Chemistry, University of Michigan, University Ave., Ann Arbor, Michigan 48109, United States
| | - B T Ruotolo
- Department of Chemistry, University of Michigan, University Ave., Ann Arbor, Michigan 48109, United States
| |
Collapse
|
16
|
Alikord M, Mohammadi A, Kamankesh M, Shariatifar N. Food safety and quality assessment: comprehensive review and recent trends in the applications of ion mobility spectrometry (IMS). Crit Rev Food Sci Nutr 2021; 62:4833-4866. [PMID: 33554631 DOI: 10.1080/10408398.2021.1879003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ion mobility spectrometry (IMS) is an analytical separation and diagnostic technique that is simple and sensitive and a rapid response and low-priced technique for detecting trace levels of chemical compounds in different matrices. Chemical agents and environmental contaminants are successfully detected by IMS and have been recently considered to employ in food safety. In addition, IMS uses stand-alone or coupled analytical diagnostic tools with chromatographic and spectroscopic methods. Scientific publications show that IMS has been applied 21% in the pharmaceutical industry, 9% in environmental studies and 13% in quality control and food safety. Nevertheless, applications of IMS in food safety and quality analysis have not been adequately explored. This review presents the IMS-related analysis and focuses on the application of IMS in food safety and quality. This review presents the important topics including detection of traces of chemicals, rate of food spoilage and freshness, food adulteration and authenticity as well as natural toxins, pesticides, herbicides, fungicides, veterinary, and growth promoter drug residues. Further, persistent organic pollutants (POPs), acrylamide, polycyclic aromatic hydrocarbon (PAH), biogenic amines, nitrosamine, furfural, phenolic compounds, heavy metals, food packaging materials, melamine, and food additives were also examined for the first time. Therefore, it is logical to predict that the application of the IMS technique in food safety, food quality, and contaminant analysis will be impressively increased in the future. HighlightsCurrent status of IMS for residues and contaminant detection in food safety.To assess all the detected contaminants in food safety, for the first time.Identified IMS-related parameters and chemical compounds in food safety control.
Collapse
Affiliation(s)
- Mahsa Alikord
- Department of Environmental Health, Food Safety Division, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdorreza Mohammadi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marzieh Kamankesh
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Nabi Shariatifar
- Department of Environmental Health, Food Safety Division, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Halal Research Center of the Islamic Republic of Iran, Tehran, Iran
| |
Collapse
|
17
|
Kelly RT. Single-cell Proteomics: Progress and Prospects. Mol Cell Proteomics 2020; 19:1739-1748. [PMID: 32847821 PMCID: PMC7664119 DOI: 10.1074/mcp.r120.002234] [Citation(s) in RCA: 208] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/20/2020] [Indexed: 01/19/2023] Open
Abstract
MS-based proteome profiling has become increasingly comprehensive and quantitative, yet a persistent shortcoming has been the relatively large samples required to achieve an in-depth measurement. Such bulk samples, typically comprising thousands of cells or more, provide a population average and obscure important cellular heterogeneity. Single-cell proteomics capabilities have the potential to transform biomedical research and enable understanding of biological systems with a new level of granularity. Recent advances in sample processing, separations and MS instrumentation now make it possible to quantify >1000 proteins from individual mammalian cells, a level of coverage that required an input of thousands of cells just a few years ago. This review discusses important factors and parameters that should be optimized across the workflow for single-cell and other low-input measurements. It also highlights recent developments that have advanced the field and opportunities for further development.
Collapse
Affiliation(s)
- Ryan T Kelly
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA.
| |
Collapse
|
18
|
Pino LK, Rose J, O'Broin A, Shah S, Schilling B. Emerging mass spectrometry-based proteomics methodologies for novel biomedical applications. Biochem Soc Trans 2020; 48:1953-1966. [PMID: 33079175 PMCID: PMC7609030 DOI: 10.1042/bst20191091] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 12/14/2022]
Abstract
Research into the basic biology of human health and disease, as well as translational human research and clinical applications, all benefit from the growing accessibility and versatility of mass spectrometry (MS)-based proteomics. Although once limited in throughput and sensitivity, proteomic studies have quickly grown in scope and scale over the last decade due to significant advances in instrumentation, computational approaches, and bio-sample preparation. Here, we review these latest developments in MS and highlight how these techniques are used to study the mechanisms, diagnosis, and treatment of human diseases. We first describe recent groundbreaking technological advancements for MS-based proteomics, including novel data acquisition techniques and protein quantification approaches. Next, we describe innovations that enable the unprecedented depth of coverage in protein signaling and spatiotemporal protein distributions, including studies of post-translational modifications, protein turnover, and single-cell proteomics. Finally, we explore new workflows to investigate protein complexes and structures, and we present new approaches for protein-protein interaction studies and intact protein or top-down MS. While these approaches are only recently incipient, we anticipate that their use in biomedical MS proteomics research will offer actionable discoveries for the improvement of human health.
Collapse
Affiliation(s)
- Lindsay K. Pino
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, U.S.A
| | - Jacob Rose
- Buck Institute for Research on Aging, Novato, CA, U.S.A
| | - Amy O'Broin
- Buck Institute for Research on Aging, Novato, CA, U.S.A
| | - Samah Shah
- Buck Institute for Research on Aging, Novato, CA, U.S.A
| | | |
Collapse
|
19
|
Nys G, Nix C, Cobraiville G, Servais AC, Fillet M. Enhancing protein discoverability by data independent acquisition assisted by ion mobility mass spectrometry. Talanta 2020; 213:120812. [DOI: 10.1016/j.talanta.2020.120812] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/01/2020] [Accepted: 02/07/2020] [Indexed: 11/28/2022]
|
20
|
Pino LK, Searle BC, Bollinger JG, Nunn B, MacLean B, MacCoss MJ. The Skyline ecosystem: Informatics for quantitative mass spectrometry proteomics. MASS SPECTROMETRY REVIEWS 2020; 39:229-244. [PMID: 28691345 PMCID: PMC5799042 DOI: 10.1002/mas.21540] [Citation(s) in RCA: 443] [Impact Index Per Article: 110.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 06/01/2017] [Indexed: 05/03/2023]
Abstract
Skyline is a freely available, open-source Windows client application for accelerating targeted proteomics experimentation, with an emphasis on the proteomics and mass spectrometry community as users and as contributors. This review covers the informatics encompassed by the Skyline ecosystem, from computationally assisted targeted mass spectrometry method development, to raw acquisition file data processing, and quantitative analysis and results sharing.
Collapse
Affiliation(s)
- Lindsay K Pino
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington
| | - Brian C Searle
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington
| | - James G Bollinger
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington
| | - Brook Nunn
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington
| | - Brendan MacLean
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
21
|
Sobsey CA, Ibrahim S, Richard VR, Gaspar V, Mitsa G, Lacasse V, Zahedi RP, Batist G, Borchers CH. Targeted and Untargeted Proteomics Approaches in Biomarker Development. Proteomics 2020; 20:e1900029. [DOI: 10.1002/pmic.201900029] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/10/2019] [Indexed: 01/24/2023]
Affiliation(s)
- Constance A. Sobsey
- Segal Cancer Proteomics CentreLady Davis InstituteJewish General HospitalMcGill University Montreal Quebec H3T 1E2 Canada
| | - Sahar Ibrahim
- Segal Cancer Proteomics CentreLady Davis InstituteJewish General HospitalMcGill University Montreal Quebec H3T 1E2 Canada
| | - Vincent R. Richard
- Segal Cancer Proteomics CentreLady Davis InstituteJewish General HospitalMcGill University Montreal Quebec H3T 1E2 Canada
| | - Vanessa Gaspar
- Segal Cancer Proteomics CentreLady Davis InstituteJewish General HospitalMcGill University Montreal Quebec H3T 1E2 Canada
| | - Georgia Mitsa
- Segal Cancer Proteomics CentreLady Davis InstituteJewish General HospitalMcGill University Montreal Quebec H3T 1E2 Canada
| | - Vincent Lacasse
- Segal Cancer Proteomics CentreLady Davis InstituteJewish General HospitalMcGill University Montreal Quebec H3T 1E2 Canada
| | - René P. Zahedi
- Segal Cancer Proteomics CentreLady Davis InstituteJewish General HospitalMcGill University Montreal Quebec H3T 1E2 Canada
| | - Gerald Batist
- Gerald Bronfman Department of OncologyJewish General HospitalMcGill University Montreal Quebec H4A 3T2 Canada
| | - Christoph H. Borchers
- Segal Cancer Proteomics CentreLady Davis InstituteJewish General HospitalMcGill University Montreal Quebec H3T 1E2 Canada
- Gerald Bronfman Department of OncologyJewish General HospitalMcGill University Montreal Quebec H4A 3T2 Canada
- Department of Data Intensive Science and EngineeringSkolkovo Institute of Science and TechnologySkolkovo Innovation Center Moscow 143026 Russia
| |
Collapse
|
22
|
Odenkirk MT, Baker ES. Utilizing Drift Tube Ion Mobility Spectrometry for the Evaluation of Metabolites and Xenobiotics. Methods Mol Biol 2020; 2084:35-54. [PMID: 31729652 DOI: 10.1007/978-1-0716-0030-6_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Metabolites and xenobiotics are small molecules with a molecular weight that often falls below 600 Da. Over the last few decades, multiple small molecule databases have been curated listing structures, masses, and fragmentation spectra possible in metabolomic and exposomic measurements. To date only a small portion of the spectra in these databases are experimentally derived due to the high expense of obtaining, synthesizing, and analyzing standards. A vast majority of spectra have thus been created using theoretical programs to fit the available experimental data. The errors associated with theoretical data have however caused problems with current small molecule identifications, and accurate quantitation as searching the databases using just one or two analysis dimensions (i.e., chromatography retention times and mass spectrometry (MS) m/z values) results in numerous annotations for each experimental feature. Additional analysis dimensions are therefore needed to better annotate and identify small molecules. Drift tube ion mobility spectrometry coupled with MS (DTIMS-MS) is a promising technique to address this challenge as it is able to perform rapid structural evaluations of small molecules in complex matrices by assessing the collision cross section values for each in addition to their m/z values. The use of IMS in conjunction with other separation techniques such as gas or liquid chromatography and MS has therefore enabled more accurate identifications for the small molecules present in complex biological and environmental samples. Here, we present a review of relevant parameter considerations for DTIMS application with emphasis on xenobiotics and metabolomics isomer separations.
Collapse
Affiliation(s)
- Melanie T Odenkirk
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - Erin S Baker
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
23
|
Dodds JN, Baker ES. Ion Mobility Spectrometry: Fundamental Concepts, Instrumentation, Applications, and the Road Ahead. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2185-2195. [PMID: 31493234 PMCID: PMC6832852 DOI: 10.1007/s13361-019-02288-2] [Citation(s) in RCA: 250] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/08/2019] [Accepted: 07/15/2019] [Indexed: 05/07/2023]
Abstract
Ion mobility spectrometry (IMS) is a rapid separation technique that has experienced exponential growth as a field of study. Interfacing IMS with mass spectrometry (IMS-MS) provides additional analytical power as complementary separations from each technique enable multidimensional characterization of detected analytes. IMS separations occur on a millisecond timescale, and therefore can be readily nested into traditional GC and LC/MS workflows. However, the continual development of novel IMS methods has generated some level of confusion regarding the advantages and disadvantages of each. In this critical insight, we aim to clarify some common misconceptions for new users in the community pertaining to the fundamental concepts of the various IMS instrumental platforms (i.e., DTIMS, TWIMS, TIMS, FAIMS, and DMA), while addressing the strengths and shortcomings associated with each. Common IMS-MS applications are also discussed in this review, such as separating isomeric species, performing signal filtering for MS, and incorporating collision cross-section (CCS) values into both targeted and untargeted omics-based workflows as additional ion descriptors for chemical annotation. Although many challenges must be addressed by the IMS community before mobility information is collected in a routine fashion, the future is bright with possibilities.
Collapse
Affiliation(s)
- James N Dodds
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Erin S Baker
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
24
|
Burnum-Johnson KE, Zheng X, Dodds JN, Ash J, Fourches D, Nicora CD, Wendler JP, Metz TO, Waters KM, Jansson JK, Smith RD, Baker ES. Ion Mobility Spectrometry and the Omics: Distinguishing Isomers, Molecular Classes and Contaminant Ions in Complex Samples. Trends Analyt Chem 2019; 116:292-299. [PMID: 31798197 DOI: 10.1016/j.trac.2019.04.022] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ion mobility spectrometry (IMS) is a widely used analytical technique providing rapid gas phase separations. IMS alone is useful, but its coupling with mass spectrometry (IMS-MS) and various front-end separation techniques has greatly increased the molecular information achievable from different omic analyses. IMS-MS analyses are specifically gaining attention for improving metabolomic, lipidomic, glycomic, proteomic and exposomic analyses by increasing measurement sensitivity (e.g. S/N ratio), reducing the detection limit, and amplifying peak capacity. Numerous studies including national security-related analyses, disease screenings and environmental evaluations are illustrating that IMS-MS is able to extract information not possible with MS alone. Furthermore, IMS-MS has shown great utility in salvaging molecular information for low abundance molecules of interest when high concentration contaminant ions are present in the sample by reducing detector suppression. This review highlights how IMS-MS is currently being used in omic analyses to distinguish structurally similar molecules, isomers, molecular classes and contaminant ions.
Collapse
Affiliation(s)
| | - Xueyun Zheng
- Department of Chemistry, Texas A &M University, College Station, TX
| | - James N Dodds
- Department of Chemistry, NC State University, Raleigh, NC
| | - Jeremy Ash
- Department of Chemistry, NC State University, Raleigh, NC
| | - Denis Fourches
- Department of Chemistry, NC State University, Raleigh, NC
| | - Carrie D Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA
| | - Jason P Wendler
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA
| | - Thomas O Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA
| | - Katrina M Waters
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA
| | - Janet K Jansson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA
| | - Erin S Baker
- Department of Chemistry, NC State University, Raleigh, NC
| |
Collapse
|
25
|
Bults P, Spanov B, Olaleye O, van de Merbel NC, Bischoff R. Intact protein bioanalysis by liquid chromatography – High-resolution mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1110-1111:155-167. [DOI: 10.1016/j.jchromb.2019.01.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/20/2019] [Accepted: 01/31/2019] [Indexed: 02/07/2023]
|
26
|
Sharpton SR, Yong GJM, Terrault NA, Lynch SV. Gut Microbial Metabolism and Nonalcoholic Fatty Liver Disease. Hepatol Commun 2018; 3:29-43. [PMID: 30619992 PMCID: PMC6312661 DOI: 10.1002/hep4.1284] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 10/23/2018] [Indexed: 12/18/2022] Open
Abstract
The gut microbiome, the multispecies community of microbes that exists in the gastrointestinal tract, encodes several orders of magnitude more functional genes than the human genome. It also plays a pivotal role in human health, in part due to metabolism of environmental, dietary, and host‐derived substrates, which produce bioactive metabolites. Perturbations to the composition and associated metabolic output of the gut microbiome have been associated with a number of chronic liver diseases, including nonalcoholic fatty liver disease (NAFLD). Here, we review the rapidly evolving suite of next‐generation techniques used for studying gut microbiome composition, functional gene content, and bioactive products and discuss relationships with the pathogenesis of NAFLD.
Collapse
Affiliation(s)
- Suzanne R Sharpton
- Department of Medicine, Division of Gastroenterology University of California San Francisco San Francisco CA
| | - Germaine J M Yong
- Department of Medicine, Division of Gastroenterology University of California San Francisco San Francisco CA
| | - Norah A Terrault
- Department of Medicine, Division of Gastroenterology University of California San Francisco San Francisco CA
| | - Susan V Lynch
- Department of Medicine, Division of Gastroenterology University of California San Francisco San Francisco CA
| |
Collapse
|
27
|
MacLean BX, Pratt BS, Egertson JD, MacCoss MJ, Smith RD, Baker ES. Using Skyline to Analyze Data-Containing Liquid Chromatography, Ion Mobility Spectrometry, and Mass Spectrometry Dimensions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:2182-2188. [PMID: 30047074 PMCID: PMC6191345 DOI: 10.1007/s13361-018-2028-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 05/04/2023]
Abstract
Recent advances in ion mobility spectrometry (IMS) have illustrated its power in determining the structural characteristics of a molecule, especially when coupled with other separations dimensions such as liquid chromatography (LC) and mass spectrometry (MS). However, these three separation techniques together greatly complicate data analyses, making better informatics tools essential for assessing the resulting data. In this manuscript, Skyline was adapted to analyze LC-IMS-CID-MS data from numerous instrument vendor datasets and determine the effect of adding the IMS dimension into the normal LC-MS molecular pipeline. For the initial evaluation, a tryptic digest of bovine serum albumin (BSA) was spiked into a yeast protein digest at seven different concentrations, and Skyline was able to rapidly analyze the MS and CID-MS data for 38 of the BSA peptides. Calibration curves for the precursor and fragment ions were assessed with and without the IMS dimension. In all cases, addition of the IMS dimension removed noise from co-eluting peptides with close m/z values, resulting in calibration curves with greater linearity and lower detection limits. This study presents an important informatics development since to date LC-IMS-CID-MS data from the different instrument vendors is often assessed manually and cannot be analyzed quickly. Because these evaluations require days for the analysis of only a few target molecules in a limited number of samples, it is unfeasible to evaluate hundreds of targets in numerous samples. Thus, this study showcases Skyline's ability to work with the multidimensional LC-IMS-CID-MS data and provide biological and environmental insights rapidly. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Brendan X MacLean
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Brian S Pratt
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Jarrett D Egertson
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd. MSIN K8-98, P.O. Box 999, Richland, WA, 99352, USA
| | - Erin S Baker
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd. MSIN K8-98, P.O. Box 999, Richland, WA, 99352, USA.
| |
Collapse
|
28
|
Zhu Y, Dou M, Piehowski PD, Liang Y, Wang F, Chu RK, Chrisler WB, Smith JN, Schwarz KC, Shen Y, Shukla AK, Moore RJ, Smith RD, Qian WJ, Kelly RT. Spatially Resolved Proteome Mapping of Laser Capture Microdissected Tissue with Automated Sample Transfer to Nanodroplets. Mol Cell Proteomics 2018; 17:1864-1874. [PMID: 29941660 DOI: 10.1074/mcp.tir118.000686] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/09/2018] [Indexed: 01/10/2023] Open
Abstract
Current mass spectrometry (MS)-based proteomics approaches are ineffective for mapping protein expression in tissue sections with high spatial resolution because of the limited overall sensitivity of conventional workflows. Here we report an integrated and automated method to advance spatially resolved proteomics by seamlessly coupling laser capture microdissection (LCM) with a recently developed nanoliter-scale sample preparation system termed nanoPOTS (Nanodroplet Processing in One pot for Trace Samples). The workflow is enabled by prepopulating nanowells with DMSO, which serves as a sacrificial capture liquid for microdissected tissues. The DMSO droplets efficiently collect laser-pressure catapulted LCM tissues as small as 20 μm in diameter with success rates >87%. We also demonstrate that tissue treatment with DMSO can significantly improve proteome coverage, likely due to its ability to dissolve lipids from tissue and enhance protein extraction efficiency. The LCM-nanoPOTS platform was able to identify 180, 695, and 1827 protein groups on average from 12-μm-thick rat brain cortex tissue sections having diameters of 50, 100, and 200 μm, respectively. We also analyzed 100-μm-diameter sections corresponding to 10-18 cells from three different regions of rat brain and comparatively quantified ∼1000 proteins, demonstrating the potential utility for high-resolution spatially resolved mapping of protein expression in tissues.
Collapse
Affiliation(s)
- Ying Zhu
- From the ‡Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354
| | - Maowei Dou
- From the ‡Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354
| | - Paul D Piehowski
- §Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354
| | - Yiran Liang
- From the ‡Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354
| | - Fangjun Wang
- ¶CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
| | - Rosalie K Chu
- From the ‡Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354
| | - William B Chrisler
- §Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354
| | - Jordan N Smith
- §Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354
| | - Kaitlynn C Schwarz
- From the ‡Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354
| | - Yufeng Shen
- §Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354
| | - Anil K Shukla
- §Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354
| | - Ronald J Moore
- §Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354
| | - Richard D Smith
- §Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354
| | - Wei-Jun Qian
- §Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354
| | - Ryan T Kelly
- From the ‡Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354;
| |
Collapse
|
29
|
Zheng X, Dupuis KT, Aly NA, Zhou Y, Smith FB, Tang K, Smith RD, Baker ES. Utilizing ion mobility spectrometry and mass spectrometry for the analysis of polycyclic aromatic hydrocarbons, polychlorinated biphenyls, polybrominated diphenyl ethers and their metabolites. Anal Chim Acta 2018; 1037:265-273. [PMID: 30292301 DOI: 10.1016/j.aca.2018.02.054] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 02/15/2018] [Accepted: 02/18/2018] [Indexed: 10/17/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) are persistent environmental pollutants originating from incomplete combustion of organic materials and synthetic sources. PAHs, PCBs, and PBDEs have all been shown to have a significant effect on human health with correlations to cancer and other diseases. Therefore, measuring the presence of these xenobiotics in the environment and human body is imperative for assessing their health risks. To date, their analyses require both gas chromatography and liquid chromatography separations in conjunction with mass spectrometry measurements for detection of both the parent molecules and their hydroxylated metabolites, making their studies extremely time consuming. In this work, we characterized PAHs, PCBs, PBDEs and their hydroxylated metabolites using ion mobility spectrometry coupled with mass spectrometry (IMS-MS) and in combination with different ionization methods including electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI). The collision cross section and m/z trend lines derived from the IMS-MS analyses displayed distinct trends for each molecule type. Additionally, the rapid isomeric and molecular separations possible with IMS-MS showed great promise for quickly distinguishing the parent and metabolized PAH, PCB, and PDBE molecules in complex environmental and biological samples.
Collapse
Affiliation(s)
- Xueyun Zheng
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Kevin T Dupuis
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Noor A Aly
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Yuxuan Zhou
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Francesca B Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Keqi Tang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Erin S Baker
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States.
| |
Collapse
|
30
|
Evaluating lipid mediator structural complexity using ion mobility spectrometry combined with mass spectrometry. Bioanalysis 2018; 10:279-289. [PMID: 29494212 DOI: 10.4155/bio-2017-0245] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
AIM Lipid mediators (LMs) are broadly defined as a class of bioactive lipophilic molecules that regulate cell-to-cell communication events with many having a strong correlation with various human diseases and conditions. LMs are usually analyzed with LC-MS, but their numerous isomers greatly complicate the measurements with essentially identical fragmentation spectra and LC separations are not always sufficient for distinguishing the features. Results/methodology: In this work, we characterized LMs using ion mobility spectrometry (IMS) coupled with MS (IMS-MS). The collision cross-sections and m/z values from the IMS and MS analyses displayed distinct trend lines. Specifically, the structural trend lines for sodiated LMs originating from docosahexaenoic acid had the smallest collision cross-section values in relation to m/z, while those from linoleic acid had the largest. LC-IMS-MS analyses were also performed on LMs in flu infected mouse tissue samples. These multidimensional studies were able to assess known LMs while also detecting new species. CONCLUSION Adding IMS separations to conventional LC-MS analyses show great utility for enabling better identification and characterization of LMs in complex biological samples.
Collapse
|
31
|
Avtonomov DM, Polasky DA, Ruotolo BT, Nesvizhskii AI. IMTBX and Grppr: Software for Top-Down Proteomics Utilizing Ion Mobility-Mass Spectrometry. Anal Chem 2018; 90:2369-2375. [PMID: 29278491 PMCID: PMC5826643 DOI: 10.1021/acs.analchem.7b04999] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Top-down proteomics has emerged as a transformative method for the analysis of protein sequence and post-translational modifications (PTMs). Top-down experiments have historically been performed primarily on ultrahigh resolution mass spectrometers due to the complexity of spectra resulting from fragmentation of intact proteins, but recent advances in coupling ion mobility separations to faster, lower resolution mass analyzers now offer a viable alternative. However, software capable of interpreting the highly complex two-dimensional spectra that result from coupling ion mobility separation to top-down experiments is currently lacking. In this manuscript we present a software suite consisting of two programs, IMTBX ("IM Toolbox") and Grppr ("Grouper"), that enable fully automated processing of such data. We demonstrate the capabilities of this software suite by examining a series of intact proteins on a Waters Synapt G2 ion-mobility equipped mass spectrometer and compare the results to the manual and semiautomated data analysis procedures we have used previously.
Collapse
Affiliation(s)
- Dmitry M Avtonomov
- Department of Pathology, ‡Department of Chemistry, and §Department of Computational Medicine and Bioinformatics, University of Michigan , Ann Arbor, Michigan United States
| | - Daniel A Polasky
- Department of Pathology, ‡Department of Chemistry, and §Department of Computational Medicine and Bioinformatics, University of Michigan , Ann Arbor, Michigan United States
| | - Brandon T Ruotolo
- Department of Pathology, ‡Department of Chemistry, and §Department of Computational Medicine and Bioinformatics, University of Michigan , Ann Arbor, Michigan United States
| | - Alexey I Nesvizhskii
- Department of Pathology, ‡Department of Chemistry, and §Department of Computational Medicine and Bioinformatics, University of Michigan , Ann Arbor, Michigan United States
| |
Collapse
|
32
|
Brown CJ, Kaufman T, Trinidad JC, Clemmer DE. Proteome changes in the aging Drosophila melanogaster head. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2018; 425:36-46. [PMID: 30906200 PMCID: PMC6426325 DOI: 10.1016/j.ijms.2018.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
A combination of liquid chromatography, ion mobility spectrometry, mass spectrometry, and database searching techniques were used to characterize the proteomes of four biological replicates of adult Drosophila melanogaster heads at seven time points across their lifespans. Based on the detection of tryptic peptides, the identities of 1281 proteins were determined. An estimate of the abundance of each protein, based on the three most intense peptide ions, shows that the quantified species vary in concentration over a factor of ~103. Compared to initial studies in the field of Drosophila proteomics, our current results show an eight-fold higher temporal protein coverage with increased quantitative accuracy. Across the lifespan, we observe a range of trends in the abundance of different proteins, including: an increase in abundance of proteins involved in oxidative phosphorylation, and the tricarboxylic acid cycle; a decrease in proteasomal proteins, as well as ribosomal proteins; and, many types of proteins, which remain relatively unchanged. For younger flies, proteomes are relatively similar within their age group. For older flies, proteome similarity decreases within their age group. These combined results illustrate a correlation between increasing age and decreasing proteostasis.
Collapse
Affiliation(s)
- Christopher J. Brown
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, United States
| | - Thomas Kaufman
- Department of Biology, Indiana University, Bloomington, IN, 47405, United States
| | - Jonathan C. Trinidad
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, United States
| | - David E. Clemmer
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, United States
| |
Collapse
|
33
|
The application of ion mobility mass spectrometry to metabolomics. Curr Opin Chem Biol 2018; 42:60-66. [DOI: 10.1016/j.cbpa.2017.11.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/01/2017] [Accepted: 11/02/2017] [Indexed: 12/20/2022]
|
34
|
Mookherjee A, Guttman M. Bridging the structural gap of glycoproteomics with ion mobility spectrometry. Curr Opin Chem Biol 2018; 42:86-92. [DOI: 10.1016/j.cbpa.2017.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/17/2017] [Accepted: 11/21/2017] [Indexed: 12/31/2022]
|
35
|
Orton DJ, Tfaily MM, Moore RJ, LaMarche BL, Zheng X, Fillmore TL, Chu RK, Weitz KK, Monroe ME, Kelly RT, Smith RD, Baker ES. A Customizable Flow Injection System for Automated, High Throughput, and Time Sensitive Ion Mobility Spectrometry and Mass Spectrometry Measurements. Anal Chem 2018; 90:737-744. [PMID: 29161511 PMCID: PMC5764703 DOI: 10.1021/acs.analchem.7b02986] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To better understand disease conditions and environmental perturbations, multiomic studies combining proteomic, lipidomic, and metabolomic analyses are vastly increasing in popularity. In a multiomic study, a single sample is typically extracted in multiple ways, and various analyses are performed using different instruments, most often based upon mass spectrometry (MS). Thus, one sample becomes many measurements, making high throughput and reproducible evaluations a necessity. One way to address the numerous samples and varying instrumental conditions is to utilize a flow injection analysis (FIA) system for rapid sample injections. While some FIA systems have been created to address these challenges, many have limitations such as costly consumables, low pressure capabilities, limited pressure monitoring, and fixed flow rates. To address these limitations, we created an automated, customizable FIA system capable of operating at a range of flow rates (∼50 nL/min to 500 μL/min) to accommodate both low- and high-flow MS ionization sources. This system also functions at varying analytical throughputs from 24 to 1200 samples per day to enable different MS analysis approaches. Applications ranging from native protein analyses to molecular library construction were performed using the FIA system, and results showed a highly robust and reproducible platform capable of providing consistent performance over many days without carryover, as long as washing buffers specific to each molecular analysis were utilized.
Collapse
Affiliation(s)
- Daniel J. Orton
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Malak M. Tfaily
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Ronald J. Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Brian L. LaMarche
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | | | - Thomas L. Fillmore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Rosalie K. Chu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Karl K. Weitz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Matthew E. Monroe
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Ryan T. Kelly
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | | | - Erin S. Baker
- Corresponding Author Mailing Address: 902 Battelle Boulevard, P.O. Box 999, MSIN K8-98, Richland, WA 99352, United States; Phone: 509-371-6219; (E.S.B.)
| |
Collapse
|
36
|
Zheng X, Wojcik R, Zhang X, Ibrahim YM, Burnum-Johnson KE, Orton DJ, Monroe ME, Moore RJ, Smith RD, Baker ES. Coupling Front-End Separations, Ion Mobility Spectrometry, and Mass Spectrometry For Enhanced Multidimensional Biological and Environmental Analyses. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2017; 10:71-92. [PMID: 28301728 PMCID: PMC5627998 DOI: 10.1146/annurev-anchem-061516-045212] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Ion mobility spectrometry (IMS) is a widely used analytical technique for rapid molecular separations in the gas phase. Though IMS alone is useful, its coupling with mass spectrometry (MS) and front-end separations is extremely beneficial for increasing measurement sensitivity, peak capacity of complex mixtures, and the scope of molecular information available from biological and environmental sample analyses. In fact, multiple disease screening and environmental evaluations have illustrated that the IMS-based multidimensional separations extract information that cannot be acquired with each technique individually. This review highlights three-dimensional separations using IMS-MS in conjunction with a range of front-end techniques, such as gas chromatography, supercritical fluid chromatography, liquid chromatography, solid-phase extractions, capillary electrophoresis, field asymmetric ion mobility spectrometry, and microfluidic devices. The origination, current state, various applications, and future capabilities of these multidimensional approaches are described in detail to provide insight into their uses and benefits.
Collapse
Affiliation(s)
- Xueyun Zheng
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352;
| | - Roza Wojcik
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352;
| | - Xing Zhang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Anschutz Medical Campus, University of Colorado, Denver, Colorado 80045
| | - Yehia M Ibrahim
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352;
| | - Kristin E Burnum-Johnson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352;
| | - Daniel J Orton
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352;
| | - Matthew E Monroe
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352;
| | - Ronald J Moore
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352;
| | - Richard D Smith
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352;
| | - Erin S Baker
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352;
| |
Collapse
|
37
|
Gray CJ, Sánchez-Ruíz A, Šardzíková I, Ahmed YA, Miller RL, Reyes Martinez JE, Pallister E, Huang K, Both P, Hartmann M, Roberts HN, Šardzík R, Mandal S, Turnbull JE, Eyers CE, Flitsch SL. Label-Free Discovery Array Platform for the Characterization of Glycan Binding Proteins and Glycoproteins. Anal Chem 2017; 89:4444-4451. [PMID: 28318230 DOI: 10.1021/acs.analchem.6b04122] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The identification of carbohydrate-protein interactions is central to our understanding of the roles of cell-surface carbohydrates (the glycocalyx), fundamental for cell-recognition events. Therefore, there is a need for fast high-throughput biochemical tools to capture the complexity of these biological interactions. Here, we describe a rapid method for qualitative label-free detection of carbohydrate-protein interactions on arrays of simple synthetic glycans, more complex natural glycosaminoglycans (GAG), and lectins/carbohydrate binding proteins using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. The platform can unequivocally identify proteins that are captured from either purified or complex sample mixtures, including biofluids. Identification of proteins bound to the functionalized array is achieved by analyzing either the intact protein mass or, after on-chip proteolytic digestion, the peptide mass fingerprint and/or tandem mass spectrometry of selected peptides, which can yield highly diagnostic sequence information. The platform described here should be a valuable addition to the limited analytical toolbox that is currently available for glycomics.
Collapse
Affiliation(s)
- Christopher J Gray
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Antonio Sánchez-Ruíz
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Ivana Šardzíková
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Yassir A Ahmed
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool , Crown Street, Liverpool, L69 7ZB, United Kingdom
| | - Rebecca L Miller
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool , Crown Street, Liverpool, L69 7ZB, United Kingdom
| | - Juana E Reyes Martinez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato , Col. Noria Alta S/N, Guanajuato 36050, México
| | - Edward Pallister
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Kun Huang
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Peter Both
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Mirja Hartmann
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Hannah N Roberts
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Robert Šardzík
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Santanu Mandal
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Jerry E Turnbull
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool , Crown Street, Liverpool, L69 7ZB, United Kingdom
| | - Claire E Eyers
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool , Crown Street, Liverpool, L69 7ZB, United Kingdom
| | - Sabine L Flitsch
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester, M1 7DN, United Kingdom
| |
Collapse
|
38
|
Ma X, Liu J, Zhang Z, Bo T, Bai Y, Liu H. Drift tube ion mobility and four-dimensional molecular feature extraction enable data-independent tandem mass spectrometric 'omics' analysis without quadrupole selection. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2017; 31:33-38. [PMID: 27760459 DOI: 10.1002/rcm.7767] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/08/2016] [Accepted: 10/14/2016] [Indexed: 06/06/2023]
Abstract
RATIONALE Quadrupole-based tandem mass spectrometry (MS/MS) plays a critical role in 'omics' studies. However, when a particular m/z precursor is selected by the quadrupole, ions other than the precursor are not transmitted through, and the sensitivity and dynamic range thus diminish. Therefore, separation techniques such as ion mobility (IM) are coupled with MS/MS to improve it. METHODS In this workflow, every IM-mass spectrometry (MS) scan was followed by one high-voltage collision energy (CE) scan. The precursors were separated in IM drift time and dissociated after IM; the four-dimensional molecular feature extraction (4D MFE) algorithm was used to align the precursors and their MS/MS spectra based on retention time and drift time distribution. A complicated peptide mixture was selected to exemplify the workflow in a proteomics study. RESULTS The new IM-MS-based workflow achieved similar performance in finding proteins compared to the traditional quadrupole-based MS/MS method. However, a significant difference was found between the proteins found by these two methods. For the four concentration levels analyzed, at least 23% more proteins were found by combining the new methods than only using the traditional quadrupole-based MS/MS method. CONCLUSIONS The established workflow used the 4D MFE algorithm to analyze a complicated 4D dataset and was demonstrated to find more proteins not found by the traditional quadrupole-based MS/MS method in proteomics application. It is thus an important complementary MS/MS mode for 'omics' studies. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Xin Ma
- Agilent Technologies, Beijing, 100102, China
| | - Jing Liu
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemistry Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | | | - Tao Bo
- Agilent Technologies, Beijing, 100102, China
| | - Yu Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
39
|
Jami-Alahmadi Y, Linford BD, Fridgen TD. Distinguishing Isomeric Peptides: The Unimolecular Reactivity and Structures of (LeuPro)M+ and (ProLeu)M+ (M = Alkali Metal). J Phys Chem B 2016; 120:13039-13046. [DOI: 10.1021/acs.jpcb.6b09588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Yasaman Jami-Alahmadi
- Department of Chemistry, Memorial University, St. John’s, Newfoundland A1N 4T8, Canada
| | - Bryan D. Linford
- Department of Chemistry, Memorial University, St. John’s, Newfoundland A1N 4T8, Canada
| | - Travis D. Fridgen
- Department of Chemistry, Memorial University, St. John’s, Newfoundland A1N 4T8, Canada
| |
Collapse
|
40
|
Zhou Z, Shen X, Tu J, Zhu ZJ. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal Chem 2016; 88:11084-11091. [DOI: 10.1021/acs.analchem.6b03091] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zhiwei Zhou
- Interdisciplinary
Research
Center on Biology and Chemistry and Shanghai
Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032 P. R. China
| | - Xiaotao Shen
- Interdisciplinary
Research
Center on Biology and Chemistry and Shanghai
Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032 P. R. China
| | - Jia Tu
- Interdisciplinary
Research
Center on Biology and Chemistry and Shanghai
Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032 P. R. China
| | - Zheng-Jiang Zhu
- Interdisciplinary
Research
Center on Biology and Chemistry and Shanghai
Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032 P. R. China
| |
Collapse
|
41
|
Khadempour L, Burnum-Johnson KE, Baker ES, Nicora CD, Webb-Robertson BJM, White RA, Monroe ME, Huang EL, Smith RD, Currie CR. The fungal cultivar of leaf-cutter ants produces specific enzymes in response to different plant substrates. Mol Ecol 2016; 25:5795-5805. [PMID: 27696597 DOI: 10.1111/mec.13872] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 09/17/2016] [Accepted: 09/19/2016] [Indexed: 01/20/2023]
Abstract
Herbivores use symbiotic microbes to help derive energy and nutrients from plant material. Leaf-cutter ants are a paradigmatic example, cultivating their mutualistic fungus Leucoagaricus gongylophorus on plant biomass that workers forage from a diverse collection of plant species. Here, we investigate the metabolic flexibility of the ants' fungal cultivar for utilizing different plant biomass. Using feeding experiments and a novel approach in metaproteomics, we examine the enzymatic response of L. gongylophorus to leaves, flowers, oats or a mixture of all three. Across all treatments, our analysis identified and quantified 1766 different fungal proteins, including 161 putative biomass-degrading enzymes. We found significant differences in the protein profiles in the fungus gardens of subcolonies fed different plant substrates. When provided with leaves or flowers, which contain the majority of their energy as recalcitrant plant polymers, the fungus gardens produced more proteins predicted to break down cellulose: endoglucanase, exoglucanase and β-glucosidase. Further, the complete metaproteomes for the leaves and flowers treatments were very similar, while the mixed substrate treatment closely resembled the treatment with oats alone. This indicates that when provided a mixture of plant substrates, fungus gardens preferentially break down the simpler, more digestible substrates. This flexible, substrate-specific enzymatic response of the fungal cultivar allows leaf-cutter ants to derive energy from a wide range of substrates, which likely contributes to their ability to be dominant generalist herbivores.
Collapse
Affiliation(s)
- Lily Khadempour
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA.,Department of Zoology, University of Wisconsin-Madison, Madison, WI, 53706, USA.,Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | | | - Erin S Baker
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Carrie D Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | | | - Richard A White
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Matthew E Monroe
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Eric L Huang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Cameron R Currie
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA.,Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
42
|
Deng L, Ibrahim YM, Garimella SVB, Webb IK, Hamid AM, Norheim RV, Prost SA, Sandoval JA, Baker ES, Smith RD. Greatly Increasing Trapped Ion Populations for Mobility Separations Using Traveling Waves in Structures for Lossless Ion Manipulations. Anal Chem 2016; 88:10143-10150. [PMID: 27715008 PMCID: PMC5384881 DOI: 10.1021/acs.analchem.6b02678] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The initial use of traveling waves (TW) for ion mobility (IM) separations using structures for lossless ion manipulations (SLIM) employed an ion funnel trap (IFT) to accumulate ions from a continuous electrospray ionization source and was limited to injected ion populations of ∼106 charges due to the onset of space charge effects in the trapping region. Additional limitations arise due to the loss of resolution for the injection of ions over longer periods, such as in extended pulses. In this work a new SLIM "flat funnel" (FF) module has been developed and demonstrated to enable the accumulation of much larger ion populations and their injection for IM separations. Ion current measurements indicate a capacity of ∼3.2 × 108 charges for the extended trapping volume, over an order of magnitude greater than that of the IFT. The orthogonal ion injection into a funnel shaped separation region can greatly reduce space charge effects during the initial IM separation stage, and the gradually reduced width of the path allows the ion packet to be increasingly compressed in the lateral dimension as the separation progresses, allowing efficient transmission through conductance limits or compatibility with subsequent ion manipulations. This work examined the TW, rf, and dc confining field SLIM parameters involved in ion accumulation, injection, transmission, and IM separation in the FF module using both direct ion current and MS measurements. Wide m/z range ion transmission is demonstrated, along with significant increases in the signal-to-noise ratios (S/N) due to the larger ion populations injected. Additionally, we observed a reduction in the chemical background, which was attributed to more efficient desolvation of solvent related clusters over the extended ion accumulation periods. The TW SLIM FF IM module is anticipated to be especially effective as a front end for long path SLIM IM separation modules.
Collapse
Affiliation(s)
- Liulin Deng
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Yehia M. Ibrahim
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Sandilya V. B. Garimella
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Ian K. Webb
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Ahmed M. Hamid
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Randolph V. Norheim
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Spencer A. Prost
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jeremy A. Sandoval
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Erin S. Baker
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Richard D. Smith
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
43
|
|
44
|
Burnum-Johnson KE, Nie S, Casey CP, Monroe ME, Orton DJ, Ibrahim YM, Gritsenko MA, Clauss TRW, Shukla AK, Moore RJ, Purvine SO, Shi T, Qian W, Liu T, Baker ES, Smith RD. Simultaneous Proteomic Discovery and Targeted Monitoring using Liquid Chromatography, Ion Mobility Spectrometry, and Mass Spectrometry. Mol Cell Proteomics 2016; 15:3694-3705. [PMID: 27670688 DOI: 10.1074/mcp.m116.061143] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/23/2016] [Indexed: 12/16/2022] Open
Abstract
Current proteomic approaches include both broad discovery measurements and quantitative targeted analyses. In many cases, discovery measurements are initially used to identify potentially important proteins (e.g. candidate biomarkers) and then targeted studies are employed to quantify a limited number of selected proteins. Both approaches, however, suffer from limitations. Discovery measurements aim to sample the whole proteome but have lower sensitivity, accuracy, and quantitation precision than targeted approaches, whereas targeted measurements are significantly more sensitive but only sample a limited portion of the proteome. Herein, we describe a new approach that performs both discovery and targeted monitoring (DTM) in a single analysis by combining liquid chromatography, ion mobility spectrometry and mass spectrometry (LC-IMS-MS). In DTM, heavy labeled target peptides are spiked into tryptic digests and both the labeled and unlabeled peptides are detected using LC-IMS-MS instrumentation. Compared with the broad LC-MS discovery measurements, DTM yields greater peptide/protein coverage and detects lower abundance species. DTM also achieved detection limits similar to selected reaction monitoring (SRM) indicating its potential for combined high quality discovery and targeted analyses, which is a significant step toward the convergence of discovery and targeted approaches.
Collapse
Affiliation(s)
- Kristin E Burnum-Johnson
- From the ‡Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| | - Song Nie
- From the ‡Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| | - Cameron P Casey
- From the ‡Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| | - Matthew E Monroe
- From the ‡Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| | - Daniel J Orton
- From the ‡Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| | - Yehia M Ibrahim
- From the ‡Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| | - Marina A Gritsenko
- From the ‡Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| | - Therese R W Clauss
- From the ‡Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| | - Anil K Shukla
- From the ‡Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| | - Ronald J Moore
- From the ‡Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| | - Samuel O Purvine
- From the ‡Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| | - Tujin Shi
- From the ‡Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| | - Weijun Qian
- From the ‡Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| | - Tao Liu
- From the ‡Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| | - Erin S Baker
- From the ‡Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| | - Richard D Smith
- From the ‡Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| |
Collapse
|
45
|
Enhancing glycan isomer separations with metal ions and positive and negative polarity ion mobility spectrometry-mass spectrometry analyses. Anal Bioanal Chem 2016; 409:467-476. [PMID: 27604268 DOI: 10.1007/s00216-016-9866-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 07/27/2016] [Accepted: 08/06/2016] [Indexed: 02/01/2023]
Abstract
Glycomics has become an increasingly important field of research since glycans play critical roles in biology processes ranging from molecular recognition and signaling to cellular communication. Glycans often conjugate with other biomolecules, such as proteins and lipids, and alter their properties and functions, so glycan characterization is essential for understanding the effects they have on cellular systems. However, the analysis of glycans is extremely difficult due to their complexity and structural diversity (i.e., the number and identity of monomer units, and configuration of their glycosidic linkages and connectivities). In this work, we coupled ion mobility spectrometry with mass spectrometry (IMS-MS) to characterize glycan standards and biologically important isomers of synthetic αGal-containing O-glycans including glycotopes of the protozoan parasite Trypanosoma cruzi, which is the causative agent of Chagas disease. IMS-MS results showed significant differences for the glycan structural isomers when analyzed in positive and negative polarity and complexed with different metal cations. These results suggest that specific metal ions or ion polarities could be used to target and baseline separate glycan isomers of interest with IMS-MS. Graphical abstract Glycan isomers, such as fructose and glucose, show distinct separations in positive and negative ion mode.
Collapse
|
46
|
Deng L, Ibrahim YM, Hamid AM, Garimella SVB, Webb IK, Zheng X, Prost SA, Sandoval JA, Norheim RV, Anderson GA, Tolmachev AV, Baker ES, Smith RD. Ultra-High Resolution Ion Mobility Separations Utilizing Traveling Waves in a 13 m Serpentine Path Length Structures for Lossless Ion Manipulations Module. Anal Chem 2016; 88:8957-64. [PMID: 27531027 DOI: 10.1021/acs.analchem.6b01915] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We report the development and initial evaluation of a 13 m path length Structures for Lossless Manipulations (SLIM) module for achieving high resolution separations using traveling waves (TW) with ion mobility (IM) spectrometry. The TW SLIM module was fabricated using two mirror-image printed circuit boards with appropriately configured RF, DC, and TW electrodes and positioned with a 2.75 mm intersurface gap. Ions were effectively confined in field-generated conduits between the surfaces by RF-generated pseudopotential fields and moved losslessly through a serpentine path including 44 "U" turns using TWs. The ion mobility resolution was characterized at different pressures, gaps between the SLIM surfaces, and TW and RF parameters. After initial optimization, the SLIM IM-MS module provided about 5-fold higher resolution separations than present commercially available drift tube or traveling wave IM-MS platforms. Peak capacity and peak generation rates achieved were 246 and 370 s(-1), respectively, at a TW speed of 148 m/s. The high resolution achieved in the TW SLIM IM-MS enabled, e.g., isomeric sugars (lacto-N-fucopentaose I and lacto-N-fucopentaose II) to be baseline resolved, and peptides from an albumin tryptic digest were much better resolved than with existing commercial IM-MS platforms. The present work also provides a foundation for the development of much higher resolution SLIM devices based upon both considerably longer path lengths and multipass designs.
Collapse
Affiliation(s)
- Liulin Deng
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , 902 Battelle Blvd., P.O. Box 999, Richland, Washington 99352, United States
| | - Yehia M Ibrahim
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , 902 Battelle Blvd., P.O. Box 999, Richland, Washington 99352, United States
| | - Ahmed M Hamid
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , 902 Battelle Blvd., P.O. Box 999, Richland, Washington 99352, United States
| | - Sandilya V B Garimella
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , 902 Battelle Blvd., P.O. Box 999, Richland, Washington 99352, United States
| | - Ian K Webb
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , 902 Battelle Blvd., P.O. Box 999, Richland, Washington 99352, United States
| | - Xueyun Zheng
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , 902 Battelle Blvd., P.O. Box 999, Richland, Washington 99352, United States
| | - Spencer A Prost
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , 902 Battelle Blvd., P.O. Box 999, Richland, Washington 99352, United States
| | - Jeremy A Sandoval
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , 902 Battelle Blvd., P.O. Box 999, Richland, Washington 99352, United States
| | - Randolph V Norheim
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , 902 Battelle Blvd., P.O. Box 999, Richland, Washington 99352, United States
| | - Gordon A Anderson
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , 902 Battelle Blvd., P.O. Box 999, Richland, Washington 99352, United States
| | - Aleksey V Tolmachev
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , 902 Battelle Blvd., P.O. Box 999, Richland, Washington 99352, United States
| | - Erin S Baker
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , 902 Battelle Blvd., P.O. Box 999, Richland, Washington 99352, United States
| | - Richard D Smith
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory , 902 Battelle Blvd., P.O. Box 999, Richland, Washington 99352, United States
| |
Collapse
|
47
|
Rosnow JJ, Anderson LN, Nair RN, Baker ES, Wright AT. Profiling microbial lignocellulose degradation and utilization by emergent omics technologies. Crit Rev Biotechnol 2016; 37:626-640. [PMID: 27439855 DOI: 10.1080/07388551.2016.1209158] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The use of plant materials to generate renewable biofuels and other high-value chemicals is the sustainable and preferable option, but will require considerable improvements to increase the rate and efficiency of lignocellulose depolymerization. This review highlights novel and emerging technologies that are being developed and deployed to characterize the process of lignocellulose degradation. The review will also illustrate how microbial communities deconstruct and metabolize lignocellulose by identifying the necessary genes and enzyme activities along with the reaction products. These technologies include multi-omic measurements, cell sorting and isolation, nuclear magnetic resonance spectroscopy (NMR), activity-based protein profiling, and direct measurement of enzyme activity. The recalcitrant nature of lignocellulose necessitates the need to characterize the methods microbes employ to deconstruct lignocellulose to inform new strategies on how to greatly improve biofuel conversion processes. New technologies are yielding important insights into microbial functions and strategies employed to degrade lignocellulose, providing a mechanistic blueprint in order to advance biofuel production.
Collapse
Affiliation(s)
- Joshua J Rosnow
- a Biological Sciences Division , Pacific Northwest National Laboratory , Richland , WA , USA
| | - Lindsey N Anderson
- a Biological Sciences Division , Pacific Northwest National Laboratory , Richland , WA , USA
| | - Reji N Nair
- a Biological Sciences Division , Pacific Northwest National Laboratory , Richland , WA , USA
| | - Erin S Baker
- a Biological Sciences Division , Pacific Northwest National Laboratory , Richland , WA , USA
| | - Aaron T Wright
- a Biological Sciences Division , Pacific Northwest National Laboratory , Richland , WA , USA
| |
Collapse
|
48
|
Glover MS, Dilger JM, Acton MD, Arnold RJ, Radivojac P, Clemmer DE. Examining the Influence of Phosphorylation on Peptide Ion Structure by Ion Mobility Spectrometry-Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:786-94. [PMID: 26860087 PMCID: PMC5750047 DOI: 10.1007/s13361-016-1343-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 01/12/2016] [Accepted: 01/15/2016] [Indexed: 05/12/2023]
Abstract
Ion mobility spectrometry-mass spectrometry (IMS-MS) techniques are used to study the general effects of phosphorylation on peptide structure. Cross sections for a library of 66 singly phosphorylated peptide ions from 33 pairs of positional isomers, and unmodified analogues were measured. Intrinsic size parameters (ISPs) derived from these measurements yield calculated collision cross sections for 85% of these phosphopeptide sequences that are within ±2.5% of experimental values. The average ISP for the phosphoryl group (0.64 ± 0.05) suggests that in general this moiety forms intramolecular interactions with the neighboring residues and peptide backbone, resulting in relatively compact structures. We assess the capability of ion mobility to separate positional isomers (i.e., peptide sequences that differ only in the location of the modification) and find that more than half of the isomeric pairs have >1% difference in collision cross section. Phosphorylation is also found to influence populations of structures that differ in the cis/trans orientation of Xaa-Pro peptide bonds. Several sequences with phosphorylated Ser or Thr residues located N-terminally adjacent to Pro residues show fewer conformations compared to the unmodified sequences.
Collapse
Affiliation(s)
- Matthew S Glover
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA
| | - Jonathan M Dilger
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA
- Spectrum Warfare Systems Department, NSWC Crane Division, Crane, IN, 47522, USA
| | - Matthew D Acton
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA
| | - Randy J Arnold
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA
- AB SCIEX, Vaughan, ON, L4K 4V8, Canada
| | - Predrag Radivojac
- Department of Computer Science and Informatics, Indiana University, Bloomington, IN, 47405, USA
| | - David E Clemmer
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
49
|
|
50
|
Liu FC, Kirk SR, Bleiholder C. On the structural denaturation of biological analytes in trapped ion mobility spectrometry – mass spectrometry. Analyst 2016; 141:3722-30. [DOI: 10.1039/c5an02399h] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Trapped ion mobility spectra recorded for ubiquitin are consistent with structures reported for the native state by NMR.
Collapse
Affiliation(s)
- Fanny C. Liu
- Department of Chemistry and Biochemistry
- Florida State University
- Tallahassee
- USA
| | - Samuel R. Kirk
- Department of Chemistry and Biochemistry
- Florida State University
- Tallahassee
- USA
| | - Christian Bleiholder
- Department of Chemistry and Biochemistry
- Florida State University
- Tallahassee
- USA
- Institute of Molecular Biophysics
| |
Collapse
|