1
|
Mravinacová S, Bergström S, Olofsson J, de San José NG, Anderl-Straub S, Diehl-Schmid J, Fassbender K, Fliessbach K, Jahn H, Kornhuber J, Landwehrmeyer GB, Lauer M, Levin J, Ludolph AC, Prudlo J, Schneider A, Schroeter ML, Wiltfang J, Steinacker P, Otto M, Nilsson P, Månberg A. Addressing inter individual variability in CSF levels of brain derived proteins across neurodegenerative diseases. Sci Rep 2025; 15:668. [PMID: 39753643 PMCID: PMC11698900 DOI: 10.1038/s41598-024-83281-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/12/2024] [Indexed: 01/06/2025] Open
Abstract
Accurate diagnosis and monitoring of neurodegenerative diseases require reliable biomarkers. Cerebrospinal fluid (CSF) proteins are promising candidates for reflecting brain pathology; however, their diagnostic utility may be compromised by natural variability between individuals, weakening their association with disease. Here, we measured the levels of 69 pre-selected proteins in cerebrospinal fluid using antibody-based suspension bead array technology in a multi-disease cohort of 499 individuals with neurodegenerative disorders including Alzheimer's disease (AD), behavioral variant frontotemporal dementia, primary progressive aphasias, amyotrophic lateral sclerosis (ALS), corticobasal syndrome, primary supranuclear palsy, along with healthy controls. We identify significant inter-individual variability in overall CSF levels of brain-derived proteins, which could not be attributed to specific disease associations. Using linear modelling, we show that adjusting for median CSF levels of brain-derived proteins increases the diagnostic accuracy of proteins previously identified as altered in CSF in the context of neurodegenerative disorders. We further demonstrate a simplified approach for the adjustment using pairs of correlated proteins with opposite alteration in the diseases. With this approach, the proteins adjust for each other and further increase the biomarker performance through additive effect. When comparing the diseases, two proteins-neurofilament medium and myelin basic protein-showed increased levels in ALS compared to other diseases, and neurogranin showed a specific increase in AD. Several other proteins showed similar trends across the studied diseases, indicating that these proteins likely reflect shared processes related to neurodegeneration. Overall, our findings suggest that accounting for inter-individual variability is crucial in future studies to improve the identification and performance of relevant biomarkers. Importantly, we highlight the need for multi-disease studies to identify disease-specific biomarkers.
Collapse
Affiliation(s)
- Sára Mravinacová
- Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Sofia Bergström
- Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Jennie Olofsson
- Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden
| | | | | | - Janine Diehl-Schmid
- Department of Psychiatry, Technical University of Munich, Munich, Germany
- Kbo-Inn-Salzach-Klinikum Gemeinnützige GmbH, Wasserburg Am Inn, Germany
| | | | - Klaus Fliessbach
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn and DZNE Bonn, Bonn, Germany
| | - Holger Jahn
- Department of Psychiatry, University Hospital, Hamburg, Germany
| | - Johannes Kornhuber
- Department of Psychiatry, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | | | - Martin Lauer
- Center for Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Würzburg, Germany
| | - Johannes Levin
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases, Site Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Albert C Ludolph
- Department of Neurology, University Hospital Ulm (UKU), Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE E.V.), Ulm, Germany
| | - Johannes Prudlo
- Rostock University Medical Center and German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - Anja Schneider
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn and DZNE Bonn, Bonn, Germany
| | - Matthias L Schroeter
- Clinic for Cognitive Neurology, University Clinic Leipzig, and Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, and DZNE, Goettingen, Germany
- Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Petra Steinacker
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Markus Otto
- Department of Neurology, University Hospital Ulm (UKU), Ulm, Germany
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Peter Nilsson
- Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Anna Månberg
- Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
2
|
Hinsinger G, Du Trieu De Terdonck L, Urbach S, Salvetat N, Rival M, Galoppin M, Ripoll C, Cezar R, Laurent-Chabalier S, Demattei C, Agherbi H, Castelnovo G, Lehmann S, Rigau V, Marin P, Thouvenot E. CD138 as a Specific CSF Biomarker of Multiple Sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200230. [PMID: 38669615 PMCID: PMC11057439 DOI: 10.1212/nxi.0000000000200230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/30/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND AND OBJECTIVES The aim of this study was to identify novel biomarkers for multiple sclerosis (MS) diagnosis and prognosis, addressing the critical need for specific and prognostically valuable markers in the field. METHODS We conducted an extensive proteomic investigation, combining analysis of (1) CSF proteome from symptomatic controls, fast and slow converters after clinically isolated syndromes, and patients with relapsing-remitting MS (n = 10 per group) using label-free quantitative proteomics and (2) oligodendrocyte secretome changes under proinflammatory or proapoptotic conditions using stable isotope labeling by amino acids in cell culture. Proteins exhibiting differential abundance in both proteomic analyses were combined with other putative MS biomarkers, yielding a comprehensive list of 87 proteins that underwent quantification through parallel reaction monitoring (PRM) in a novel cohort, comprising symptomatic controls, inflammatory neurologic disease controls, and patients with MS at various disease stages (n = 10 per group). The 11 proteins that passed this qualification step were subjected to a new PRM assay within an expanded cohort comprising 158 patients with either MS at different disease stages or other inflammatory or noninflammatory neurologic disease controls. RESULTS This study unveiled a promising biomarker signature for MS, including previously established candidates, such as chitinase 3-like protein 1, chitinase 3-like protein 2, chitotriosidase, immunoglobulin kappa chain region C, neutrophil gelatinase-associated lipocalin, and CD27. In addition, we identified novel markers, namely cat eye syndrome critical region protein 1 (adenosine deaminase 2, a therapeutic target in multiple sclerosis) and syndecan-1, a proteoglycan, also known as plasma cell surface marker CD138 and acting as chitinase 3-like protein 1 receptor implicated in inflammation and cancer signaling. CD138 exhibited good diagnostic accuracy in distinguishing MS from inflammatory neurologic disorders (area under the curve [AUC] = 0.85, CI 0.75-0.95). CD138 immunostaining was also observed in the brains of patients with MS and cultured oligodendrocyte precursor cells but was absent in astrocytes. DISCUSSION These findings identify CD138 as a specific CSF biomarker for MS and suggest the selective activation of the chitinase 3-like protein 1/CD138 pathway within the oligodendrocyte lineage in MS. They offer promising prospects for improving MS diagnosis and prognosis by providing much-needed specificity and clinical utility. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that CD138 distinguishes multiple sclerosis from other inflammatory neurologic disorders with an AUC of 0.85 (95% CI 0.75-0.95).
Collapse
Affiliation(s)
- Geoffrey Hinsinger
- From the IGF (G.H., L.D.T.D.T., S.U., M.R., M.G., C.R., P.M., E.T.), Université de Montpellier, CNRS, INSERM, Montpellier; Sys2Diag (N.S.), UMR 9005 CNRS / ALCEDIAG, Montpellier; Department of Neurology (M.R., H.A., G.C., E.T.), Nîmes University Hospital; IRMB (R.C.), Université de Montpellier, INSERM; Department of Immunology (R.C.), Nîmes University Hospital; Department of Biostatistics (S.L.-C., C.D.), Clinical Epidemiology, Public Health, and Innovation in Methodology, Nîmes University Hospital, Université de Montpellier; Biochemistry Department (S.L.), Hôpital Saint-Eloi; and Department of Pathology (V.R.), Montpellier University Hospital, France
| | - Lucile Du Trieu De Terdonck
- From the IGF (G.H., L.D.T.D.T., S.U., M.R., M.G., C.R., P.M., E.T.), Université de Montpellier, CNRS, INSERM, Montpellier; Sys2Diag (N.S.), UMR 9005 CNRS / ALCEDIAG, Montpellier; Department of Neurology (M.R., H.A., G.C., E.T.), Nîmes University Hospital; IRMB (R.C.), Université de Montpellier, INSERM; Department of Immunology (R.C.), Nîmes University Hospital; Department of Biostatistics (S.L.-C., C.D.), Clinical Epidemiology, Public Health, and Innovation in Methodology, Nîmes University Hospital, Université de Montpellier; Biochemistry Department (S.L.), Hôpital Saint-Eloi; and Department of Pathology (V.R.), Montpellier University Hospital, France
| | - Serge Urbach
- From the IGF (G.H., L.D.T.D.T., S.U., M.R., M.G., C.R., P.M., E.T.), Université de Montpellier, CNRS, INSERM, Montpellier; Sys2Diag (N.S.), UMR 9005 CNRS / ALCEDIAG, Montpellier; Department of Neurology (M.R., H.A., G.C., E.T.), Nîmes University Hospital; IRMB (R.C.), Université de Montpellier, INSERM; Department of Immunology (R.C.), Nîmes University Hospital; Department of Biostatistics (S.L.-C., C.D.), Clinical Epidemiology, Public Health, and Innovation in Methodology, Nîmes University Hospital, Université de Montpellier; Biochemistry Department (S.L.), Hôpital Saint-Eloi; and Department of Pathology (V.R.), Montpellier University Hospital, France
| | - Nicolas Salvetat
- From the IGF (G.H., L.D.T.D.T., S.U., M.R., M.G., C.R., P.M., E.T.), Université de Montpellier, CNRS, INSERM, Montpellier; Sys2Diag (N.S.), UMR 9005 CNRS / ALCEDIAG, Montpellier; Department of Neurology (M.R., H.A., G.C., E.T.), Nîmes University Hospital; IRMB (R.C.), Université de Montpellier, INSERM; Department of Immunology (R.C.), Nîmes University Hospital; Department of Biostatistics (S.L.-C., C.D.), Clinical Epidemiology, Public Health, and Innovation in Methodology, Nîmes University Hospital, Université de Montpellier; Biochemistry Department (S.L.), Hôpital Saint-Eloi; and Department of Pathology (V.R.), Montpellier University Hospital, France
| | - Manon Rival
- From the IGF (G.H., L.D.T.D.T., S.U., M.R., M.G., C.R., P.M., E.T.), Université de Montpellier, CNRS, INSERM, Montpellier; Sys2Diag (N.S.), UMR 9005 CNRS / ALCEDIAG, Montpellier; Department of Neurology (M.R., H.A., G.C., E.T.), Nîmes University Hospital; IRMB (R.C.), Université de Montpellier, INSERM; Department of Immunology (R.C.), Nîmes University Hospital; Department of Biostatistics (S.L.-C., C.D.), Clinical Epidemiology, Public Health, and Innovation in Methodology, Nîmes University Hospital, Université de Montpellier; Biochemistry Department (S.L.), Hôpital Saint-Eloi; and Department of Pathology (V.R.), Montpellier University Hospital, France
| | - Manon Galoppin
- From the IGF (G.H., L.D.T.D.T., S.U., M.R., M.G., C.R., P.M., E.T.), Université de Montpellier, CNRS, INSERM, Montpellier; Sys2Diag (N.S.), UMR 9005 CNRS / ALCEDIAG, Montpellier; Department of Neurology (M.R., H.A., G.C., E.T.), Nîmes University Hospital; IRMB (R.C.), Université de Montpellier, INSERM; Department of Immunology (R.C.), Nîmes University Hospital; Department of Biostatistics (S.L.-C., C.D.), Clinical Epidemiology, Public Health, and Innovation in Methodology, Nîmes University Hospital, Université de Montpellier; Biochemistry Department (S.L.), Hôpital Saint-Eloi; and Department of Pathology (V.R.), Montpellier University Hospital, France
| | - Chantal Ripoll
- From the IGF (G.H., L.D.T.D.T., S.U., M.R., M.G., C.R., P.M., E.T.), Université de Montpellier, CNRS, INSERM, Montpellier; Sys2Diag (N.S.), UMR 9005 CNRS / ALCEDIAG, Montpellier; Department of Neurology (M.R., H.A., G.C., E.T.), Nîmes University Hospital; IRMB (R.C.), Université de Montpellier, INSERM; Department of Immunology (R.C.), Nîmes University Hospital; Department of Biostatistics (S.L.-C., C.D.), Clinical Epidemiology, Public Health, and Innovation in Methodology, Nîmes University Hospital, Université de Montpellier; Biochemistry Department (S.L.), Hôpital Saint-Eloi; and Department of Pathology (V.R.), Montpellier University Hospital, France
| | - Renaud Cezar
- From the IGF (G.H., L.D.T.D.T., S.U., M.R., M.G., C.R., P.M., E.T.), Université de Montpellier, CNRS, INSERM, Montpellier; Sys2Diag (N.S.), UMR 9005 CNRS / ALCEDIAG, Montpellier; Department of Neurology (M.R., H.A., G.C., E.T.), Nîmes University Hospital; IRMB (R.C.), Université de Montpellier, INSERM; Department of Immunology (R.C.), Nîmes University Hospital; Department of Biostatistics (S.L.-C., C.D.), Clinical Epidemiology, Public Health, and Innovation in Methodology, Nîmes University Hospital, Université de Montpellier; Biochemistry Department (S.L.), Hôpital Saint-Eloi; and Department of Pathology (V.R.), Montpellier University Hospital, France
| | - Sabine Laurent-Chabalier
- From the IGF (G.H., L.D.T.D.T., S.U., M.R., M.G., C.R., P.M., E.T.), Université de Montpellier, CNRS, INSERM, Montpellier; Sys2Diag (N.S.), UMR 9005 CNRS / ALCEDIAG, Montpellier; Department of Neurology (M.R., H.A., G.C., E.T.), Nîmes University Hospital; IRMB (R.C.), Université de Montpellier, INSERM; Department of Immunology (R.C.), Nîmes University Hospital; Department of Biostatistics (S.L.-C., C.D.), Clinical Epidemiology, Public Health, and Innovation in Methodology, Nîmes University Hospital, Université de Montpellier; Biochemistry Department (S.L.), Hôpital Saint-Eloi; and Department of Pathology (V.R.), Montpellier University Hospital, France
| | - Christophe Demattei
- From the IGF (G.H., L.D.T.D.T., S.U., M.R., M.G., C.R., P.M., E.T.), Université de Montpellier, CNRS, INSERM, Montpellier; Sys2Diag (N.S.), UMR 9005 CNRS / ALCEDIAG, Montpellier; Department of Neurology (M.R., H.A., G.C., E.T.), Nîmes University Hospital; IRMB (R.C.), Université de Montpellier, INSERM; Department of Immunology (R.C.), Nîmes University Hospital; Department of Biostatistics (S.L.-C., C.D.), Clinical Epidemiology, Public Health, and Innovation in Methodology, Nîmes University Hospital, Université de Montpellier; Biochemistry Department (S.L.), Hôpital Saint-Eloi; and Department of Pathology (V.R.), Montpellier University Hospital, France
| | - Hanane Agherbi
- From the IGF (G.H., L.D.T.D.T., S.U., M.R., M.G., C.R., P.M., E.T.), Université de Montpellier, CNRS, INSERM, Montpellier; Sys2Diag (N.S.), UMR 9005 CNRS / ALCEDIAG, Montpellier; Department of Neurology (M.R., H.A., G.C., E.T.), Nîmes University Hospital; IRMB (R.C.), Université de Montpellier, INSERM; Department of Immunology (R.C.), Nîmes University Hospital; Department of Biostatistics (S.L.-C., C.D.), Clinical Epidemiology, Public Health, and Innovation in Methodology, Nîmes University Hospital, Université de Montpellier; Biochemistry Department (S.L.), Hôpital Saint-Eloi; and Department of Pathology (V.R.), Montpellier University Hospital, France
| | - Giovanni Castelnovo
- From the IGF (G.H., L.D.T.D.T., S.U., M.R., M.G., C.R., P.M., E.T.), Université de Montpellier, CNRS, INSERM, Montpellier; Sys2Diag (N.S.), UMR 9005 CNRS / ALCEDIAG, Montpellier; Department of Neurology (M.R., H.A., G.C., E.T.), Nîmes University Hospital; IRMB (R.C.), Université de Montpellier, INSERM; Department of Immunology (R.C.), Nîmes University Hospital; Department of Biostatistics (S.L.-C., C.D.), Clinical Epidemiology, Public Health, and Innovation in Methodology, Nîmes University Hospital, Université de Montpellier; Biochemistry Department (S.L.), Hôpital Saint-Eloi; and Department of Pathology (V.R.), Montpellier University Hospital, France
| | - Sylvain Lehmann
- From the IGF (G.H., L.D.T.D.T., S.U., M.R., M.G., C.R., P.M., E.T.), Université de Montpellier, CNRS, INSERM, Montpellier; Sys2Diag (N.S.), UMR 9005 CNRS / ALCEDIAG, Montpellier; Department of Neurology (M.R., H.A., G.C., E.T.), Nîmes University Hospital; IRMB (R.C.), Université de Montpellier, INSERM; Department of Immunology (R.C.), Nîmes University Hospital; Department of Biostatistics (S.L.-C., C.D.), Clinical Epidemiology, Public Health, and Innovation in Methodology, Nîmes University Hospital, Université de Montpellier; Biochemistry Department (S.L.), Hôpital Saint-Eloi; and Department of Pathology (V.R.), Montpellier University Hospital, France
| | - Valérie Rigau
- From the IGF (G.H., L.D.T.D.T., S.U., M.R., M.G., C.R., P.M., E.T.), Université de Montpellier, CNRS, INSERM, Montpellier; Sys2Diag (N.S.), UMR 9005 CNRS / ALCEDIAG, Montpellier; Department of Neurology (M.R., H.A., G.C., E.T.), Nîmes University Hospital; IRMB (R.C.), Université de Montpellier, INSERM; Department of Immunology (R.C.), Nîmes University Hospital; Department of Biostatistics (S.L.-C., C.D.), Clinical Epidemiology, Public Health, and Innovation in Methodology, Nîmes University Hospital, Université de Montpellier; Biochemistry Department (S.L.), Hôpital Saint-Eloi; and Department of Pathology (V.R.), Montpellier University Hospital, France
| | - Philippe Marin
- From the IGF (G.H., L.D.T.D.T., S.U., M.R., M.G., C.R., P.M., E.T.), Université de Montpellier, CNRS, INSERM, Montpellier; Sys2Diag (N.S.), UMR 9005 CNRS / ALCEDIAG, Montpellier; Department of Neurology (M.R., H.A., G.C., E.T.), Nîmes University Hospital; IRMB (R.C.), Université de Montpellier, INSERM; Department of Immunology (R.C.), Nîmes University Hospital; Department of Biostatistics (S.L.-C., C.D.), Clinical Epidemiology, Public Health, and Innovation in Methodology, Nîmes University Hospital, Université de Montpellier; Biochemistry Department (S.L.), Hôpital Saint-Eloi; and Department of Pathology (V.R.), Montpellier University Hospital, France
| | - Eric Thouvenot
- From the IGF (G.H., L.D.T.D.T., S.U., M.R., M.G., C.R., P.M., E.T.), Université de Montpellier, CNRS, INSERM, Montpellier; Sys2Diag (N.S.), UMR 9005 CNRS / ALCEDIAG, Montpellier; Department of Neurology (M.R., H.A., G.C., E.T.), Nîmes University Hospital; IRMB (R.C.), Université de Montpellier, INSERM; Department of Immunology (R.C.), Nîmes University Hospital; Department of Biostatistics (S.L.-C., C.D.), Clinical Epidemiology, Public Health, and Innovation in Methodology, Nîmes University Hospital, Université de Montpellier; Biochemistry Department (S.L.), Hôpital Saint-Eloi; and Department of Pathology (V.R.), Montpellier University Hospital, France
| |
Collapse
|
3
|
Zhang D, Shi X, Zheng W, Zhang X, Chen Y. Rare HER2 L796P missense mutation promotes the growth and oncogenic signaling in breast cancer cells. Proteomics Clin Appl 2024; 18:e2300061. [PMID: 37672800 DOI: 10.1002/prca.202300061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/28/2023] [Indexed: 09/08/2023]
Abstract
PURPOSE This research aimed to find potential HER2 mutations that would have an impact on breast cancer and investigate the underlying mechanism. EXPERIMENTAL DESIGN This study first investigated 238 pairs of breast cancer and para-cancerous tissue samples from patients on the targeted next-generation sequencing (tNGS) platform. CCK-8 and clone formation assay were used to investigate whether the mutation exerts proliferative effects on breast cancer cells. In addition, mass spectrometry-based comparative proteomic and phosphoproteomic analyses of the mutation types and wild types of MCF-7 cell lines were carried out. RESULTS Among the identified mutations, a new mutation HER2 L796P promoted the proliferation of breast cancer cells and had resistance to lapatinib using CCK-8 cell proliferation assay and clone formation assay. The bioinformatic analysis showed that RAS family proteins and ERK phosphorylated proteins significantly increased in the L796P mutant cells. The Gene Ontology (GO) analysis revealed that L796P mutation affected the function of breast cancer at the level of upstream genes in the MAPK and PI3K-AKT-TOR pathways. CONCLUSIONS AND CLINICAL RELEVANCE This study demonstrated that a rare mutation HER2 L796P could be a potential therapeutic target for the clinical management of breast cancer.
Collapse
Affiliation(s)
- Dongxue Zhang
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Xiaoyu Shi
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Weimin Zheng
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Xian Zhang
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Yun Chen
- School of Pharmacy, Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing, China
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Nanjing, China
| |
Collapse
|
4
|
Gomes Moreira D, Jan A. A beginner's guide into curated analyses of open access datasets for biomarker discovery in neurodegeneration. Sci Data 2023; 10:432. [PMID: 37414779 PMCID: PMC10325954 DOI: 10.1038/s41597-023-02338-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023] Open
Abstract
The discovery of surrogate biomarkers reflecting neuronal dysfunction in neurodegenerative diseases (NDDs) remains an active area of research. To boost these efforts, we demonstrate the utility of publicly available datasets for probing the pathogenic relevance of candidate markers in NDDs. As a starting point, we introduce the readers to several open access resources, which contain gene expression profiles and proteomics datasets from patient studies in common NDDs, including proteomics analyses of cerebrospinal fluid (CSF). Then, we illustrate the method for curated gene expression analyses across select brain regions from four cohorts of Parkinson disease patients (and from one study in common NDDs), probing glutathione biogenesis, calcium signaling and autophagy. These data are complemented by findings of select markers in CSF-based studies in NDDs. Additionally, we enclose several annotated microarray studies, and summarize reports on CSF proteomics across the NDDs, which the readers can utilize for translational purposes. We anticipate that this "beginner's guide" will benefit the research community in NDDs, and would serve as a useful educational tool.
Collapse
Affiliation(s)
- Diana Gomes Moreira
- Department of Clinical Medicine, Palle Juul-Jensens Boulevard 165, DK-8200, Aarhus N, Denmark
| | - Asad Jan
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, DK-8000, Aarhus C, Denmark.
| |
Collapse
|
5
|
Martinez AE, Weissberger G, Kuklenyik Z, He X, Meuret C, Parekh T, Rees JC, Parks BA, Gardner MS, King SM, Collier TS, Harrington MG, Sweeney MD, Wang X, Zlokovic BV, Joe E, Nation DA, Schneider LS, Chui HC, Barr JR, Han SD, Krauss RM, Yassine HN. The small HDL particle hypothesis of Alzheimer's disease. Alzheimers Dement 2023; 19:391-404. [PMID: 35416404 PMCID: PMC10563117 DOI: 10.1002/alz.12649] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/08/2022] [Accepted: 02/12/2022] [Indexed: 01/03/2023]
Abstract
We propose the hypothesis that small high-density lipoprotein (HDL) particles reduce the risk of Alzheimer's disease (AD) by virtue of their capacity to exchange lipids, affecting neuronal membrane composition and vascular and synaptic functions. Concentrations of small HDLs in cerebrospinal fluid (CSF) and plasma were measured in 180 individuals ≥60 years of age using ion mobility methodology. Small HDL concentrations in CSF were positively associated with performance in three domains of cognitive function independent of apolipoprotein E (APOE) ε4 status, age, sex, and years of education. Moreover, there was a significant correlation between levels of small HDLs in CSF and plasma. Further studies will be aimed at determining whether specific components of small HDL exchange across the blood, brain, and CSF barriers, and developing approaches to exploit small HDLs for therapeutic purposes.
Collapse
Affiliation(s)
- Ashley E. Martinez
- Department of Medicine, University of Southern California, Los Angeles, California, USA
| | - Gali Weissberger
- The Interdisciplinary Department of Social Sciences, Bar Ilan University, Israel
| | - Zsuzsanna Kuklenyik
- Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Xulei He
- Department of Medicine, University of Southern California, Los Angeles, California, USA
| | - Cristiana Meuret
- Department of Medicine, University of Southern California, Los Angeles, California, USA
| | - Trusha Parekh
- Department of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jon C. Rees
- Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Bryan A. Parks
- Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Michael S. Gardner
- Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sarah M. King
- Departments of Pediatrics and Medicine, University of California, San Francisco, California, USA
| | | | - Michael G. Harrington
- Department of Neurology, University of Southern California, Los Angeles, California, USA
| | - Melanie D. Sweeney
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California, USA
| | - Xinhui Wang
- Department of Neurology, University of Southern California, Los Angeles, California, USA
| | - Berislav V. Zlokovic
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California, USA
| | - Elizabeth Joe
- Department of Neurology, University of Southern California, Los Angeles, California, USA
| | - Daniel A. Nation
- Irvine, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, California, USA
| | - Lon S. Schneider
- Department of Neurology, University of Southern California, Los Angeles, California, USA
- Department of Psychiatry and Behavioral Sciences, University of Southern California, Los Angeles, California, USA
| | - Helena C. Chui
- Department of Neurology, University of Southern California, Los Angeles, California, USA
| | - John R. Barr
- Clinical Chemistry Branch, Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - S. Duke Han
- Department of Family Medicine, University of Southern California, Los Angeles, California, USA
| | - Ronald M. Krauss
- Departments of Pediatrics and Medicine, University of California, San Francisco, California, USA
| | - Hussein N. Yassine
- Department of Medicine, University of Southern California, Los Angeles, California, USA
- Department of Neurology, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
6
|
Liu H, Wang Z, Li H, Li M, Han B, Qi Y, Wang H, Gao J. Label-free Quantitative Proteomic Analysis of Cerebrospinal Fluid and Serum in Patients With Relapse-Remitting Multiple Sclerosis. Front Genet 2022; 13:892491. [PMID: 35571066 PMCID: PMC9092947 DOI: 10.3389/fgene.2022.892491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Background: The lack of effective serum and cerebrospinal fluid (CSF) biomarkers remains a barrier to early diagnosis and treatment of multiple sclerosis (MS). The study is to identify the diagnostic biomarkers of serum and CSF in patients who suffered MS. Methods: At first, we performed differential analysis of CSF and serum proteomics on control and relapse-remitting multiple sclerosis (RRMS) patients. Secondly, CSF and serum’s differential proteins were compared, in order to identify the significative proteins. Finally, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analysis were performed on the differential proteins in serum and CSF respectively to clarify their common biological functions and pathways. Results: At the first step, in CSF, 73 proteins were significantly differentially expressed in the RRMS set compared with the controls. In serum, 22 proteins were differentially expressed. Secondly, we found MMP2 C8G and CFH were the same high expression trend in CSF and serum. Finally, we found the differential proteins in serum and CSF are mostly participated in biological processes: immuno-inflammatory response, neuronal development, cell adhesion and signaling. Conclusion: MMP2, C8G and CFH may participate in the pathogenesis of RRMS, which are the potential diagnostic biomarkers of the disease.
Collapse
Affiliation(s)
- Haijie Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ziwen Wang
- Department of Neurology, Baoding No. 1 Central Hospital, Baoding, China
| | - He Li
- Department of Automation, College of Information Science and Engineering, Tianjin Tianshi College, Tianjin, China
| | - Meijie Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Bo Han
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuan Qi
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Huailu Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Juan Gao
- Department of Neurology, Baoding No. 1 Central Hospital, Baoding, China
| |
Collapse
|
7
|
Cuttler K, Hassan M, Carr J, Cloete R, Bardien S. Emerging evidence implicating a role for neurexins in neurodegenerative and neuropsychiatric disorders. Open Biol 2021; 11:210091. [PMID: 34610269 PMCID: PMC8492176 DOI: 10.1098/rsob.210091] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Synaptopathies are brain disorders characterized by dysfunctional synapses, which are specialized junctions between neurons that are essential for the transmission of information. Synaptic dysfunction can occur due to mutations that alter the structure and function of synaptic components or abnormal expression levels of a synaptic protein. One class of synaptic proteins that are essential to their biology are cell adhesion proteins that connect the pre- and post-synaptic compartments. Neurexins are one type of synaptic cell adhesion molecule that have, recently, gained more pathological interest. Variants in both neurexins and their common binding partners, neuroligins, have been associated with several neuropsychiatric disorders. In this review, we summarize some of the key physiological functions of the neurexin protein family and the protein networks they are involved in. Furthermore, examination of published literature has implicated neurexins in both neuropsychiatric and neurodegenerative disorders. There is a clear link between neurexins and neuropsychiatric disorders, such as autism spectrum disorder and schizophrenia. However, multiple expression studies have also shown changes in neurexin expression in several neurodegenerative disorders, including Alzheimer's disease and Parkinson's disease. Therefore, this review highlights the potential importance of neurexins in brain disorders and the importance of doing more targeted studies on these genes and proteins.
Collapse
Affiliation(s)
- Katelyn Cuttler
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa
| | - Maryam Hassan
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Cape Town, South Africa
| | - Jonathan Carr
- Division of Neurology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa,South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Cape Town, South Africa
| | - Ruben Cloete
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Cape Town, South Africa
| | - Soraya Bardien
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa,South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Cape Town, South Africa
| |
Collapse
|
8
|
Bakochi A, Mohanty T, Pyl PT, Gueto-Tettay CA, Malmström L, Linder A, Malmström J. Cerebrospinal fluid proteome maps detect pathogen-specific host response patterns in meningitis. eLife 2021; 10:64159. [PMID: 33821792 PMCID: PMC8043743 DOI: 10.7554/elife.64159] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 04/04/2021] [Indexed: 12/21/2022] Open
Abstract
Meningitis is a potentially life-threatening infection characterized by the inflammation of the leptomeningeal membranes. Many different viral and bacterial pathogens can cause meningitis, with differences in mortality rates, risk of developing neurological sequelae, and treatment options. Here, we constructed a compendium of digital cerebrospinal fluid (CSF) proteome maps to define pathogen-specific host response patterns in meningitis. The results revealed a drastic and pathogen-type specific influx of tissue-, cell-, and plasma proteins in the CSF, where, in particular, a large increase of neutrophil-derived proteins in the CSF correlated with acute bacterial meningitis. Additionally, both acute bacterial and viral meningitis result in marked reduction of brain-enriched proteins. Generation of a multiprotein LASSO regression model resulted in an 18-protein panel of cell- and tissue-associated proteins capable of classifying acute bacterial meningitis and viral meningitis. The same protein panel also enabled classification of tick-borne encephalitis, a subgroup of viral meningitis, with high sensitivity and specificity. The work provides insights into pathogen-specific host response patterns in CSF from different disease etiologies to support future classification of pathogen type based on host response patterns in meningitis.
Collapse
Affiliation(s)
- Anahita Bakochi
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Tirthankar Mohanty
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Paul Theodor Pyl
- Division of Surgery, Oncology, and Pathology, Department of Clinical Sciences, Biomedical Center, Lund University, Lund, Sweden
| | | | - Lars Malmström
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Adam Linder
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Johan Malmström
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| |
Collapse
|
9
|
Mosleth EF, Vedeler CA, Liland KH, McLeod A, Bringeland GH, Kroondijk L, Berven FS, Lysenko A, Rawlings CJ, Eid KEH, Opsahl JA, Gjertsen BT, Myhr KM, Gavasso S. Cerebrospinal fluid proteome shows disrupted neuronal development in multiple sclerosis. Sci Rep 2021; 11:4087. [PMID: 33602999 PMCID: PMC7892850 DOI: 10.1038/s41598-021-82388-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/18/2021] [Indexed: 12/11/2022] Open
Abstract
Despite intensive research, the aetiology of multiple sclerosis (MS) remains unknown. Cerebrospinal fluid proteomics has the potential to reveal mechanisms of MS pathogenesis, but analyses must account for disease heterogeneity. We previously reported explorative multivariate analysis by hierarchical clustering of proteomics data of MS patients and controls, which resulted in two groups of individuals. Grouping reflected increased levels of intrathecal inflammatory response proteins and decreased levels of proteins involved in neural development in one group relative to the other group. MS patients and controls were present in both groups. Here we reanalysed these data and we also reanalysed data from an independent cohort of patients diagnosed with clinically isolated syndrome (CIS), who have symptoms of MS without evidence of dissemination in space and/or time. Some, but not all, CIS patients had intrathecal inflammation. The analyses reported here identified a common protein signature of MS/CIS that was not linked to elevated intrathecal inflammation. The signature included low levels of complement proteins, semaphorin-7A, reelin, neural cell adhesion molecules, inter-alpha-trypsin inhibitor heavy chain H2, transforming growth factor beta 1, follistatin-related protein 1, malate dehydrogenase 1 cytoplasmic, plasma retinol-binding protein, biotinidase, and transferrin, all known to play roles in neural development. Low levels of these proteins suggest that MS/CIS patients suffer from abnormally low oxidative capacity that results in disrupted neural development from an early stage of the disease.
Collapse
Affiliation(s)
- Ellen F Mosleth
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, Osloveien 1, 1430, Ås, Norway.
- Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK.
| | - Christian Alexander Vedeler
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Kristian Hovde Liland
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, Osloveien 1, 1430, Ås, Norway
- Faculty of Science and Technology, Norwegian University of Life Sciences, 1430, Ås, Norway
| | - Anette McLeod
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, Osloveien 1, 1430, Ås, Norway
- Center for Laboratory Medicine, Østfold Hospital Trust, Grålum, Norway
| | - Gerd Haga Bringeland
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Liesbeth Kroondijk
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | | | - Artem Lysenko
- Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | | | - Karim El-Hajj Eid
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, Osloveien 1, 1430, Ås, Norway
- Faculty of Science and Technology, Norwegian University of Life Sciences, 1430, Ås, Norway
| | - Jill Anette Opsahl
- Proteomics Unit (PROBE), Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Bjørn Tore Gjertsen
- Center for Cancer Biomarkers (CCBIO), Department of Clinical Science, Precision Oncology Research Group, University of Bergen, Bergen, Norway
- Department of Medicine, Haematology Section, Haukeland University Hospital, Bergen, Norway
| | - Kjell-Morten Myhr
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Sonia Gavasso
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
10
|
Chase Huizar C, Raphael I, Forsthuber TG. Genomic, proteomic, and systems biology approaches in biomarker discovery for multiple sclerosis. Cell Immunol 2020; 358:104219. [PMID: 33039896 PMCID: PMC7927152 DOI: 10.1016/j.cellimm.2020.104219] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/13/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022]
Abstract
Multiple sclerosis (MS) is a neuroinflammatory disorder characterized by autoimmune-mediated inflammatory lesions in CNS leading to myelin damage and axonal loss. MS is a heterogenous disease with variable and unpredictable disease course. Due to its complex nature, MS is difficult to diagnose and responses to specific treatments may vary between individuals. Therefore, there is an indisputable need for biomarkers for early diagnosis, prediction of disease exacerbations, monitoring the progression of disease, and for measuring responses to therapy. Genomic and proteomic studies have sought to understand the molecular basis of MS and find biomarker candidates. Advances in next-generation sequencing and mass-spectrometry techniques have yielded an unprecedented amount of genomic and proteomic data; yet, translation of the results into the clinic has been underwhelming. This has prompted the development of novel data science techniques for exploring these large datasets to identify biologically relevant relationships and ultimately point towards useful biomarkers. Herein we discuss optimization of omics study designs, advances in the generation of omics data, and systems biology approaches aimed at improving biomarker discovery and translation to the clinic for MS.
Collapse
Affiliation(s)
- Carol Chase Huizar
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, USA
| | - Itay Raphael
- Department of Neurological Surgery, University of Pittsburgh, UPMC Children's Hospital, Pittsburgh, PA, USA.
| | - Thomas G Forsthuber
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
11
|
Guldbrandsen A, Lereim RR, Jacobsen M, Garberg H, Kroksveen AC, Barsnes H, Berven FS. Development of robust targeted proteomics assays for cerebrospinal fluid biomarkers in multiple sclerosis. Clin Proteomics 2020; 17:33. [PMID: 32963504 PMCID: PMC7499868 DOI: 10.1186/s12014-020-09296-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/08/2020] [Indexed: 12/25/2022] Open
Abstract
Background Verification of cerebrospinal fluid (CSF) biomarkers for multiple sclerosis and other neurological diseases is a major challenge due to a large number of candidates, limited sample material availability, disease and biological heterogeneity, and the lack of standardized assays. Furthermore, verification studies are often based on a low number of proteins from a single discovery experiment in medium-sized cohorts, where antibodies and surrogate peptides may differ, thus only providing an indication of proteins affected by the disease and not revealing the bigger picture or concluding on the validity of the markers. We here present a standard approach for locating promising biomarker candidates based on existing knowledge, resulting in high-quality assays covering the main biological processes affected by multiple sclerosis for comparable measurements over time. Methods Biomarker candidates were located in CSF-PR (proteomics.uib.no/csf-pr), and further filtered based on estimated concentration in CSF and biological function. Peptide surrogates for internal standards were selected according to relevant criteria, parallel reaction monitoring (PRM) assays created, and extensive assay quality testing performed, i.e. intra- and inter-day variation, trypsin digestion status over time, and whether the peptides were able to separate multiple sclerosis patients and controls. Results Assays were developed for 25 proteins, represented by 72 peptides selected according to relevant guidelines and available literature and tested for assay peptide suitability. Stability testing revealed 64 peptides with low intra- and inter-day variations, with 44 also being stably digested after 16 h of trypsin digestion, and 37 furthermore showing a significant difference between multiple sclerosis and controls, thereby confirming literature findings. Calibration curves and the linear area of measurement have, so far, been determined for 17 of these peptides. Conclusions We present 37 high-quality PRM assays across 21 CSF-proteins found to be affected by multiple sclerosis, along with a recommended workflow for future development of new assays. The assays can directly be used by others, thus enabling better comparison between studies. Finally, the assays can robustly and stably monitor biological processes in multiple sclerosis patients over time, thus potentially aiding in diagnosis and prognosis, and ultimately in treatment decisions.
Collapse
Affiliation(s)
- Astrid Guldbrandsen
- Proteomics Unit, PROBE, Department of Biomedicine, University of Bergen, Bergen, Norway.,Computational Biology Unit, CBU, Department of Informatics, University of Bergen, Bergen, Norway
| | - Ragnhild Reehorst Lereim
- Proteomics Unit, PROBE, Department of Biomedicine, University of Bergen, Bergen, Norway.,Computational Biology Unit, CBU, Department of Informatics, University of Bergen, Bergen, Norway
| | - Mari Jacobsen
- Proteomics Unit, PROBE, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Hilde Garberg
- Biobank Haukeland, Haukeland University Hospital, Bergen, Norway
| | | | - Harald Barsnes
- Proteomics Unit, PROBE, Department of Biomedicine, University of Bergen, Bergen, Norway.,Computational Biology Unit, CBU, Department of Informatics, University of Bergen, Bergen, Norway
| | - Frode S Berven
- Proteomics Unit, PROBE, Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
12
|
Magliozzi R, Scalfari A, Pisani AI, Ziccardi S, Marastoni D, Pizzini FB, Bajrami A, Tamanti A, Guandalini M, Bonomi S, Rossi S, Mazziotti V, Castellaro M, Montemezzi S, Rasia S, Capra R, Pitteri M, Romualdi C, Reynolds R, Calabrese M. The CSF Profile Linked to Cortical Damage Predicts Multiple Sclerosis Activity. Ann Neurol 2020; 88:562-573. [PMID: 32418239 DOI: 10.1002/ana.25786] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Intrathecal inflammation correlates with the grey matter damage since the early stages of multiple sclerosis (MS), but whether the cerebrospinal fluid (CSF) profile can help to identify patients at risk of disease activity is still unclear. METHODS We evaluated the association between CSF levels of 18 cytokines, previously found to be associated to grey matter damage, and the disease activity, among 99 patients with relapsing-remitting MS, who underwent blinded clinical and 3 T magnetic resonance imaging (MRI) evaluations for 4 years. Groups with evidence of disease activity (EDA) or no evidence of disease activity (NEDA; occurrence of relapses, new white matter lesions, and Expanded Disability Status Scale [EDSS] change) were identified. Cortical lesions and the annualized cortical thinning were also evaluated. RESULTS Forty-one patients experienced EDA and, compared to the NEDA group, had at diagnosis higher CSF levels of CXCL13, CXCL12, IFNγ, TNF, sCD163, LIGHT, and APRIL (p < 0.001). In the multivariate analysis, CXCL13 (hazard ratio [HR] = 1.35; p = 0.0002), LIGHT (HR = 1.22; p = 0.005) and APRIL (HR = 1.78; p = 0.0001) were the CSF molecules more strongly associated with the risk of EDA. The model, including CSF variables, predicted more accurately the occurrence of disease activity than the model with only clinical/MRI parameters (C-index at 4 years = 71% vs 44%). Finally, higher CSF levels of CXCL13 (β = 4.7*10-4 ; p < 0.001), TNF (β = 3.1*10-3 ; p = 0.004), LIGHT (β = 2.6*10-4 ; p = 0.003), sCD163 (β = 4.3*10-3 ; p = 0.009), and TWEAK (β = 3.4*10-3 ; p = 0.024) were associated with more severe cortical thinning. INTERPRETATION A specific CSF profile, mainly characterized by elevated levels of B-cell related cytokines, distinguishes patients at high risk of disease activity and severe cortical damage. The CSF analysis may allow stratifications of patients at diagnosis for optimizing therapeutic approaches. ANN NEUROL 2020;88:562-573.
Collapse
Affiliation(s)
- Roberta Magliozzi
- Regional Multiple Sclerosis Center, Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.,Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Antonio Scalfari
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Anna Isabella Pisani
- Regional Multiple Sclerosis Center, Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Stefano Ziccardi
- Regional Multiple Sclerosis Center, Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Damiano Marastoni
- Regional Multiple Sclerosis Center, Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Francesca Benedetta Pizzini
- Neuroradiology & Radiology Units, Department of Diagnostic and Pathology, Integrated University Hospital of Verona, Verona, Italy
| | - Albulena Bajrami
- Regional Multiple Sclerosis Center, Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Agnese Tamanti
- Regional Multiple Sclerosis Center, Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Maddalena Guandalini
- Regional Multiple Sclerosis Center, Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Samuele Bonomi
- Regional Multiple Sclerosis Center, Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Stefania Rossi
- Department of Oncology and Molecular Medicine, Higher Institute of Health Care, Rome, Italy
| | - Valentina Mazziotti
- Regional Multiple Sclerosis Center, Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Marco Castellaro
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Stefania Montemezzi
- Neuroradiology & Radiology Units, Department of Diagnostic and Pathology, Integrated University Hospital of Verona, Verona, Italy
| | | | | | - Marco Pitteri
- Regional Multiple Sclerosis Center, Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | | | - Richard Reynolds
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Massimiliano Calabrese
- Regional Multiple Sclerosis Center, Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
13
|
|
14
|
Srpova B, Uher T, Hrnciarova T, Barro C, Andelova M, Michalak Z, Vaneckova M, Krasensky J, Noskova L, Havrdova EK, Kuhle J, Horakova D. Serum neurofilament light chain reflects inflammation-driven neurodegeneration and predicts delayed brain volume loss in early stage of multiple sclerosis. Mult Scler 2020; 27:52-60. [DOI: 10.1177/1352458519901272] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Serum neurofilament light chain (sNfL) is a marker of neuroaxonal injury. There is a lack of studies investigating the dynamics of relationships between sNfL levels and radiological disease activity over long-term follow-up in multiple sclerosis (MS). Objectives: To investigate the relationship among repeated measures of sNfL, lesion burden accumulation, brain volume loss and clinical measures. Methods: We investigated 172 patients in the early stages of MS (McDonald 2017 criteria). Clinical exams were performed every 3 months and brain magnetic resonance imaging (MRI) scans were collected annually over 48 months. sNfL levels were measured in serum by Simoa assay at the time of treatment initiation and then annually over 36 months. Results: In repeated-measures analysis, considering all time points, we found a strong relationship between percentage changes of sNfL and lesion burden accumulation assessed by T1 lesion volume ( p < 0.001) and T2 lesion number ( p < 0.001). There was no relationship between percentage changes of sNfL and brain volume loss over 36 months ( p > 0.1). Early sNfL levels were associated with delayed brain volume loss after 48 months ( p < 0.001). Patients with No Evidence of Disease Activity (NEDA-3) status showed lower sNfL levels compared with active MS patients. Conclusions: sNfL is associated with ongoing neuroinflammation and predictive of future neurodegeneration in early MS.
Collapse
Affiliation(s)
- Barbora Srpova
- Department of Neurology and Center of Clinical Neuroscience, General University Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Tomas Uher
- Department of Neurology and Center of Clinical Neuroscience, General University Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Tereza Hrnciarova
- Department of Neurology and Center of Clinical Neuroscience, General University Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Christian Barro
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Michaela Andelova
- Department of Neurology and Center of Clinical Neuroscience, General University Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Zuzanna Michalak
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Manuela Vaneckova
- Department of Radiology, General University Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jan Krasensky
- Department of Radiology, General University Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Libuse Noskova
- Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Eva Kubala Havrdova
- Department of Neurology and Center of Clinical Neuroscience, General University Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jens Kuhle
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Dana Horakova
- Department of Neurology and Center of Clinical Neuroscience, General University Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
15
|
Rhode H, Muckova P, Büchler R, Wendler S, Tautkus B, Vogel M, Moore T, Grosskreutz J, Klemm A, Nabity M. A next generation setup for pre-fractionation of non-denatured proteins reveals diverse albumin proteoforms each carrying several post-translational modifications. Sci Rep 2019; 9:11733. [PMID: 31409882 PMCID: PMC6692309 DOI: 10.1038/s41598-019-48278-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 07/29/2019] [Indexed: 02/07/2023] Open
Abstract
Proteomic biomarker search requires the greatest analytical reproducibility and detailed information on altered proteoforms. Our protein pre-fractionation applies orthogonal native chromatography and conserves important features of protein variants such as native molecular weight, charge and major glycans. Moreover, we maximized reproducibility of sample pre-fractionation and preparation before mass spectrometry by parallelization and automation. In blood plasma and cerebrospinal fluid (CSF), most proteins, including candidate biomarkers, distribute into a multitude of chromatographic clusters. Plasma albumin, for example, divides into 15-17 clusters. As an example of our technique, we analyzed these albumin clusters from healthy volunteers and from dogs and identified cluster-typical modification patterns. Renal disease further modifies these patterns. In human CSF, we found only a subset of proteoforms with fewer modifications than in plasma. We infer from this example that our method can be used to identify and characterize distinct proteoforms and, optionally, enrich them, thereby yielding the characteristics of proteoform-selective biomarkers.
Collapse
Affiliation(s)
- Heidrun Rhode
- Institute of Biochemistry I, Nonnenplan 2-4, University Hospital Jena, 07740, Jena, Germany.
| | - Petra Muckova
- Institute of Biochemistry I, Nonnenplan 2-4, University Hospital Jena, 07740, Jena, Germany
| | - Rita Büchler
- Institute of Biochemistry I, Nonnenplan 2-4, University Hospital Jena, 07740, Jena, Germany.,Pharmachem Straße 1, Pharmachem Pößneck GmbH & Co. KG, 07381, Pößneck, Germany
| | - Sindy Wendler
- Institute of Biochemistry I, Nonnenplan 2-4, University Hospital Jena, 07740, Jena, Germany.,Institute of Microbiology, Am Klinikum 1, University Hospital Jena, 07747, Jena, Germany
| | - Bärbel Tautkus
- Institute of Biochemistry I, Nonnenplan 2-4, University Hospital Jena, 07740, Jena, Germany
| | - Michaela Vogel
- Institute of Biochemistry I, Nonnenplan 2-4, University Hospital Jena, 07740, Jena, Germany
| | - Thomas Moore
- Analytik Jena, Konrad-Zuse-Str.1, 07745, Jena, Germany
| | - Julian Grosskreutz
- Department of Neurology, Am Klinikum 1, University Hospital Jena, 07747, Jena, Germany
| | - Andree Klemm
- KfH Kuratorium für Dialyse und Nierentransplantation e.V., Ernst-Ruska-Ring 19, 07745, Jena, Germany
| | - Mary Nabity
- Department of Veterinary Pathobiology, College of Veterinary Medicine, 4467 TAMU, Texas A&M University, College Station, TX, 77843-4467, Texas, USA
| |
Collapse
|
16
|
Larssen E, Brede C, Hjelle A, Tjensvoll AB, Norheim KB, Bårdsen K, Jonsdottir K, Ruoff P, Omdal R, Nilsen MM. Fatigue in primary Sjögren's syndrome: A proteomic pilot study of cerebrospinal fluid. SAGE Open Med 2019; 7:2050312119850390. [PMID: 31205695 PMCID: PMC6537061 DOI: 10.1177/2050312119850390] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/22/2019] [Indexed: 12/16/2022] Open
Abstract
Objectives: Fatigue is a frequent and often disabling phenomenon that occurs in patients
with chronic inflammatory and immunological diseases, and the underlying
biological mechanisms are largely unknown. Because fatigue is generated in
the brain, we aimed to investigate cerebrospinal fluid and search for
molecules that participate in the pathophysiology of fatigue processes. Methods: A label-free shotgun proteomics approach was applied to analyze the
cerebrospinal fluid proteome of 20 patients with primary Sjögren’s syndrome.
Fatigue was measured with the fatigue visual analog scale. Results: A total of 828 proteins were identified and the 15 top discriminatory
proteins between patients with high and low fatigue were selected. Among
these were apolipoprotein A4, hemopexin, pigment epithelium-derived factor,
secretogranin-1, secretogranin-3, selenium-binding protein 1, and complement
factor B. Conclusion: Most of the discriminatory proteins have important roles in regulation of
innate immunity, cellular stress defense, and/or functions in the central
nervous system. These proteins and their interacting protein networks may
therefore have central roles in the generation and regulation of fatigue,
and the findings contribute with evidence to the concept of fatigue as a
biological phenomenon signaled through specific molecular pathways.
Collapse
Affiliation(s)
- Eivind Larssen
- Research Department, Stavanger University Hospital, Stavanger, Norway.,Norwegian Research Centre AS (NORCE), Stavanger, Norway
| | - Cato Brede
- Department of Medical Biochemistry, Stavanger University Hospital, Stavanger, Norway
| | - Anne Hjelle
- Research Department, Stavanger University Hospital, Stavanger, Norway
| | | | - Katrine Brække Norheim
- Clinical Immunology Unit, Department of Internal Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Kjetil Bårdsen
- Research Department, Stavanger University Hospital, Stavanger, Norway
| | - Kristin Jonsdottir
- Department of Pathology, Stavanger University Hospital, Stavanger, Norway
| | - Peter Ruoff
- Centre for Organelle Research (CORE), University of Stavanger, Stavanger, Norway
| | - Roald Omdal
- Clinical Immunology Unit, Department of Internal Medicine, Stavanger University Hospital, Stavanger, Norway.,Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Mari Mæland Nilsen
- Research Department, Stavanger University Hospital, Stavanger, Norway.,Norwegian Research Centre AS (NORCE), Stavanger, Norway
| |
Collapse
|
17
|
Timirci-Kahraman O, Karaaslan Z, Tuzun E, Kurtuncu M, Baykal AT, Gunduz T, Tuzuner MB, Akgun E, Gurel B, Eraksoy M, Kucukali CI. Identification of candidate biomarkers in converting and non-converting clinically isolated syndrome by proteomics analysis of cerebrospinal fluid. Acta Neurol Belg 2019; 119:101-111. [PMID: 29873030 DOI: 10.1007/s13760-018-0954-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/24/2018] [Indexed: 01/28/2023]
Abstract
Multiple sclerosis (MS) often starts in the form of clinically isolated syndrome (CIS) and only some of the CIS patients progress to relapsing-remitting MS (RRMS). Biomarkers to predict conversion from CIS to MS are thus greatly needed for making correct treatment decisions. To identify a predictive cerebrospinal fluid (CSF) protein, we analyzed the first-attack CSF samples of CIS patients who converted (CIS-MS) (n = 23) and did not convert (CIS-CIS) (n = 19) to RRMS in a follow-up period of 5 years using proteomics analysis by liquid chromatography tandem-mass spectrometry (LC-MS/MS) and verified by ELISA. Label-free differential proteomics analysis of CSF ensured that 637 proteins were identified and 132 of these proteins were found to be statistically significant. Further investigation with the ingenuity pathway analysis (IPA) software led to identification of three pathway networks mostly comprised proteins involved in inflammatory response, cellular growth and tissue proliferation. CSF levels of four of the most differentially expressed proteins belonging to the cellular proliferation network function, chitinase-3-like protein 1 (CHI3L1), tumor necrosis factor receptor superfamily member 21 (TNFRSF21), homeobox protein Hox-B3 (HOXB3) and iduronate 2-sulfatase (IDS), were measured by ELISA. CSF levels of HOXB3 were significantly increased in CIS-MS patients. Our results indicate that cell and tissue proliferation functions are dysregulated in MS as early as the first clinical episode. HOXB3 has emerged as a potential novel biomarker which might be used for prediction of CIS-MS conversion.
Collapse
|
18
|
Barkovits K, Linden A, Galozzi S, Schilde L, Pacharra S, Mollenhauer B, Stoepel N, Steinbach S, May C, Uszkoreit J, Eisenacher M, Marcus K. Characterization of Cerebrospinal Fluid via Data-Independent Acquisition Mass Spectrometry. J Proteome Res 2018; 17:3418-3430. [PMID: 30207155 DOI: 10.1021/acs.jproteome.8b00308] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cerebrospinal fluid (CSF) is in direct contact with the brain and serves as a valuable specimen to examine diseases of the central nervous system through analyzing its components. These include the analysis of metabolites, cells as well as proteins. For identifying new suitable diagnostic protein biomarkers bottom-up data-dependent acquisition (DDA) mass spectrometry-based approaches are most popular. Drawbacks of this method are stochastic and irreproducible precursor ion selection. Recently, data-independent acquisition (DIA) emerged as an alternative method. It overcomes several limitations of DDA, since it combines the benefits of DDA and targeted methods like selected reaction monitoring (SRM). We established a DIA method for in-depth proteome analysis of CSF. For this, four spectral libraries were generated with samples from native CSF ( n = 5), CSF fractionation (15 in total) and substantia nigra fractionation (54 in total) and applied to three CSF DIA replicates. The DDA and DIA methods for CSF were conducted with the same nanoLC parameters using a 180 min gradient. Compared to a conventional DDA method, our DIA approach increased the number of identified protein groups from 648 identifications in DDA to 1574 in DIA using a comprehensive spectral library generated with DDA measurements from five native CSF and 54 substantia nigra fractions. We also could show that a sample specific spectral library generated from native CSF only increased the identification reproducibility from three DIA replicates to 90% (77% with a DDA method). Moreover, by utilizing a substantia nigra specific spectral library for CSF DIA, over 60 brain-originated proteins could be identified compared to only 11 with DDA. In conclusion, the here presented optimized DIA method substantially outperforms DDA and could develop into a powerful tool for biomarker discovery in CSF. Data are available via ProteomeXchange with the identifiers PXD010698, PXD010708, PXD010690, PXD010705, and PXD009624.
Collapse
Affiliation(s)
- Katalin Barkovits
- Ruhr University Bochum, Medical Faculty , Medizinisches Proteom-Center , Universitaetsstrasse 150 , D-44801 Bochum , Germany
| | - Andreas Linden
- Ruhr University Bochum, Medical Faculty , Medizinisches Proteom-Center , Universitaetsstrasse 150 , D-44801 Bochum , Germany
| | - Sara Galozzi
- Ruhr University Bochum, Medical Faculty , Medizinisches Proteom-Center , Universitaetsstrasse 150 , D-44801 Bochum , Germany
| | - Lukas Schilde
- Ruhr University Bochum, Medical Faculty , Medizinisches Proteom-Center , Universitaetsstrasse 150 , D-44801 Bochum , Germany
| | - Sandra Pacharra
- Ruhr University Bochum, Medical Faculty , Medizinisches Proteom-Center , Universitaetsstrasse 150 , D-44801 Bochum , Germany
| | - Brit Mollenhauer
- Paracelsus-Elena-Klinik , Klinikstraße 16 , D-34128 Kassel , Germany
| | - Nadine Stoepel
- Ruhr University Bochum, Medical Faculty , Medizinisches Proteom-Center , Universitaetsstrasse 150 , D-44801 Bochum , Germany
| | - Simone Steinbach
- Ruhr University Bochum, Medical Faculty , Medizinisches Proteom-Center , Universitaetsstrasse 150 , D-44801 Bochum , Germany
| | - Caroline May
- Ruhr University Bochum, Medical Faculty , Medizinisches Proteom-Center , Universitaetsstrasse 150 , D-44801 Bochum , Germany
| | - Julian Uszkoreit
- Ruhr University Bochum, Medical Faculty , Medizinisches Proteom-Center , Universitaetsstrasse 150 , D-44801 Bochum , Germany
| | - Martin Eisenacher
- Ruhr University Bochum, Medical Faculty , Medizinisches Proteom-Center , Universitaetsstrasse 150 , D-44801 Bochum , Germany
| | - Katrin Marcus
- Ruhr University Bochum, Medical Faculty , Medizinisches Proteom-Center , Universitaetsstrasse 150 , D-44801 Bochum , Germany
| |
Collapse
|
19
|
Martin NA, Nawrocki A, Molnar V, Elkjaer ML, Thygesen EK, Palkovits M, Acs P, Sejbaek T, Nielsen HH, Hegedus Z, Sellebjerg F, Molnar T, Barbosa EGV, Alcaraz N, Gallyas F, Svenningsen AF, Baumbach J, Lassmann H, Larsen MR, Illes Z. Orthologous proteins of experimental de- and remyelination are differentially regulated in the CSF proteome of multiple sclerosis subtypes. PLoS One 2018; 13:e0202530. [PMID: 30114292 PMCID: PMC6095600 DOI: 10.1371/journal.pone.0202530] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/03/2018] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE Here, we applied a multi-omics approach (i) to examine molecular pathways related to de- and remyelination in multiple sclerosis (MS) lesions; and (ii) to translate these findings to the CSF proteome in order to identify molecules that are differentially expressed among MS subtypes. METHODS To relate differentially expressed genes in MS lesions to de- and remyelination, we compared transcriptome of MS lesions to transcriptome of cuprizone (CPZ)-induced de- and remyelination. Protein products of the overlapping orthologous genes were measured within the CSF by quantitative proteomics, parallel reaction monitoring (PRM). Differentially regulated proteins were correlated with molecular markers of inflammation by using MesoScale multiplex immunoassay. Expression kinetics of differentially regulated orthologous genes and proteins were examined in the CPZ model. RESULTS In the demyelinated and remyelinated corpus callosum, we detected 1239 differentially expressed genes; 91 orthologues were also differentially expressed in MS lesions. Pathway analysis of these orthologues suggested that the TYROBP (DAP12)-TREM2 pathway, TNF-receptor 1, CYBA and the proteasome subunit PSMB9 were related to de- and remyelination. We designed 129 peptides representing 51 orthologous proteins, measured them by PRM in 97 individual CSF, and compared their levels between relapsing (n = 40) and progressive MS (n = 57). Four proteins were differentially regulated among relapsing and progressive MS: tyrosine protein kinase receptor UFO (UFO), TIMP-1, apolipoprotein C-II (APOC2), and beta-2-microglobulin (B2M). The orthologous genes/proteins in the mouse brain peaked during acute remyelination. UFO, TIMP-1 and B2M levels correlated inversely with inflammation in the CSF (IL-6, MCP-1/CCL2, TARC/CCL17). APOC2 showed positive correlation with IL-2, IL-16 and eotaxin-3/CCL26. CONCLUSIONS Pathology-based multi-omics identified four CSF markers that were differentially expressed in MS subtypes. Upregulated TIMP-1, UFO and B2M orthologues in relapsing MS were associated with reduced inflammation and reflected reparatory processes, in contrast to the upregulated orthologue APOC2 in progressive MS that reflected changes in lipid metabolism associated with increased inflammation.
Collapse
Affiliation(s)
- Nellie A. Martin
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Arkadiusz Nawrocki
- Department of Neurology, Odense University Hospital, Odense, Denmark
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Viktor Molnar
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Maria L. Elkjaer
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Eva K. Thygesen
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Miklos Palkovits
- Laboratory of Neuromorphology and Human Brain Tissue Bank/Microdissection Laboratory, Semmelweis University, Budapest, Hungary
| | - Peter Acs
- Department of Neurology, University of Pecs, Pecs, Hungary
| | - Tobias Sejbaek
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Helle H. Nielsen
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Zoltan Hegedus
- Laboratory of Bioinformatics, Biological Research Centre, Szeged, Hungary
| | - Finn Sellebjerg
- Danish Multiple Sclerosis Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Tihamer Molnar
- Department of Anaesthesiology and Intensive Therapy, University of Pecs, Pecs, Hungary
| | - Eudes G. V. Barbosa
- Computational Biology Group, Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Nicolas Alcaraz
- Computational Biology Group, Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ferenc Gallyas
- Department of Biochemistry and Medical Chemistry, University of Pecs, Pecs, Hungary
- Szentagothai Research Centre, University of Pécs, Pécs, Hungary
- Nuclear-Mitochondrial Interactions Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Asa F. Svenningsen
- Department of Neurobiology Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Jan Baumbach
- Computational Biology Group, Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Hans Lassmann
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Martin R. Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Zsolt Illes
- Department of Neurology, Odense University Hospital, Odense, Denmark
- Department of Neurology, University of Pecs, Pecs, Hungary
- Department of Clinical Research, BRIDGE, University of Southern Denmark, Odense, Denmark
- * E-mail:
| |
Collapse
|
20
|
Abreu CM, Soares-Dos-Reis R, Melo PN, Relvas JB, Guimarães J, Sá MJ, Cruz AP, Mendes Pinto I. Emerging Biosensing Technologies for Neuroinflammatory and Neurodegenerative Disease Diagnostics. Front Mol Neurosci 2018; 11:164. [PMID: 29867354 PMCID: PMC5964192 DOI: 10.3389/fnmol.2018.00164] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/30/2018] [Indexed: 01/02/2023] Open
Abstract
Neuroinflammation plays a critical role in the onset and progression of many neurological disorders, including Multiple Sclerosis, Alzheimer's and Parkinson's diseases. In these clinical conditions the underlying neuroinflammatory processes are significantly heterogeneous. Nevertheless, a common link is the chronic activation of innate immune responses and imbalanced secretion of pro and anti-inflammatory mediators. In light of this, the discovery of robust biomarkers is crucial for screening, early diagnosis, and monitoring of neurological diseases. However, the difficulty to investigate biochemical processes directly in the central nervous system (CNS) is challenging. In recent years, biomarkers of CNS inflammatory responses have been identified in different body fluids, such as blood, cerebrospinal fluid, and tears. In addition, progress in micro and nanotechnology has enabled the development of biosensing platforms capable of detecting in real-time, multiple biomarkers in clinically relevant samples. Biosensing technologies are approaching maturity where they will become deployed in community settings, at which point screening programs and personalized medicine will become a reality. In this multidisciplinary review, our goal is to highlight both clinical and recent technological advances toward the development of multiplex-based solutions for effective neuroinflammatory and neurodegenerative disease diagnostics and monitoring.
Collapse
Affiliation(s)
- Catarina M Abreu
- International Iberian Nanotechnology Laboratory, Braga, Portugal.,Medical School, Swansea University, Swansea, United Kingdom
| | - Ricardo Soares-Dos-Reis
- Neurology Department, Centro Hospitalar de São João, Porto, Portugal.,Department of Clinical Neurosciences and Mental Health, Faculdade de Medicina, Universidade do Porto, Porto, Portugal.,Department of Biomedicine, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Pedro N Melo
- Graduate Programme in Areas of Basic and Applied Biology, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - João B Relvas
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Joana Guimarães
- Neurology Department, Centro Hospitalar de São João, Porto, Portugal.,Department of Clinical Neurosciences and Mental Health, Faculdade de Medicina, Universidade do Porto, Porto, Portugal.,Center for Drug Discovery and Innovative Medicines (MedInUP), Universidade do Porto, Porto, Portugal
| | - Maria José Sá
- Neurology Department, Centro Hospitalar de São João, Porto, Portugal.,Energy, Environment and Health Research Unit (FP-ENAS), University Fernando Pessoa, Porto, Portugal.,Faculty of Health Sciences, University Fernando Pessoa, Porto, Portugal
| | - Andrea P Cruz
- International Iberian Nanotechnology Laboratory, Braga, Portugal
| | | |
Collapse
|
21
|
Varhaug KN, Barro C, Bjørnevik K, Myhr KM, Torkildsen Ø, Wergeland S, Bindoff LA, Kuhle J, Vedeler C. Neurofilament light chain predicts disease activity in relapsing-remitting MS. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2017; 5:e422. [PMID: 29209636 PMCID: PMC5707445 DOI: 10.1212/nxi.0000000000000422] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/29/2017] [Indexed: 12/13/2022]
Abstract
Objective: To investigate whether serum neurofilament light chain (NF-L) and chitinase 3-like 1 (CHI3L1) predict disease activity in relapsing-remitting MS (RRMS). Methods: A cohort of 85 patients with RRMS were followed for 2 years (6 months without disease-modifying treatment and 18 months with interferon-beta 1a [IFNB-1a]). Expanded Disability Status Scale was scored at baseline and every 6 months thereafter. MRI was performed at baseline and monthly for 9 months and then at months 12 and 24. Serum samples were collected at baseline and months 3, 6, 12, and 24. We analyzed the serum levels of NF-L using a single-molecule array assay and CHI3L1 by ELISA and estimated the association with clinical and MRI disease activity using mixed-effects models. Results: NF-L levels were significantly higher in patients with new T1 gadolinium-enhancing lesions (37.3 pg/mL, interquartile range [IQR] 25.9–52.4) and new T2 lesions (37.3 pg/mL, IQR 25.1–48.5) compared with those without (28.0 pg/mL, IQR 21.9–36.4, β = 1.258, p < 0.001 and 27.7 pg/mL, IQR 21.8–35.1, β = 1.251, p < 0.001, respectively). NF-L levels were associated with the presence of T1 gadolinium-enhanced lesions up to 2 months before (p < 0.001) and 1 month after (p = 0.009) the time of biomarker measurement. NF-L levels fell after initiation of IFNB-1a treatment (p < 0.001). Changes in CHI3L1 were not associated with clinical or MRI disease activity or interferon-beta 1a treatment. Conclusion: Serum NF-L could be a promising biomarker for subclinical MRI activity and treatment response in RRMS. In clinically stable patients, serum NF-L may offer an alternative to MRI monitoring for subclinical disease activity. ClinicalTrials.gov identifier: NCT00360906.
Collapse
Affiliation(s)
- Kristin N Varhaug
- Department of Neurology (K.N.V., K.B., K.-M.M., Ø.T., S.W., L.A.B., C.V.), Haukeland University Hospital; Department of Clinical Medicine (K.N.V., K.-M.M., Ø.T., S.W., L.A.B., C.V.), University of Bergen, Norway; Neurologic Clinic and Policlinic (C.B., J.K.), Departments of Medicine, Clinical Research and Biomedicine, University Hospital Basel, University of Basel, Switzerland; Department of Global Public Health and Primary Care (K.B.), University of Bergen, Norway; and Norwegian MS-Registry & Biobank (K.-M.M.)
| | - Christian Barro
- Department of Neurology (K.N.V., K.B., K.-M.M., Ø.T., S.W., L.A.B., C.V.), Haukeland University Hospital; Department of Clinical Medicine (K.N.V., K.-M.M., Ø.T., S.W., L.A.B., C.V.), University of Bergen, Norway; Neurologic Clinic and Policlinic (C.B., J.K.), Departments of Medicine, Clinical Research and Biomedicine, University Hospital Basel, University of Basel, Switzerland; Department of Global Public Health and Primary Care (K.B.), University of Bergen, Norway; and Norwegian MS-Registry & Biobank (K.-M.M.)
| | - Kjetil Bjørnevik
- Department of Neurology (K.N.V., K.B., K.-M.M., Ø.T., S.W., L.A.B., C.V.), Haukeland University Hospital; Department of Clinical Medicine (K.N.V., K.-M.M., Ø.T., S.W., L.A.B., C.V.), University of Bergen, Norway; Neurologic Clinic and Policlinic (C.B., J.K.), Departments of Medicine, Clinical Research and Biomedicine, University Hospital Basel, University of Basel, Switzerland; Department of Global Public Health and Primary Care (K.B.), University of Bergen, Norway; and Norwegian MS-Registry & Biobank (K.-M.M.)
| | - Kjell-Morten Myhr
- Department of Neurology (K.N.V., K.B., K.-M.M., Ø.T., S.W., L.A.B., C.V.), Haukeland University Hospital; Department of Clinical Medicine (K.N.V., K.-M.M., Ø.T., S.W., L.A.B., C.V.), University of Bergen, Norway; Neurologic Clinic and Policlinic (C.B., J.K.), Departments of Medicine, Clinical Research and Biomedicine, University Hospital Basel, University of Basel, Switzerland; Department of Global Public Health and Primary Care (K.B.), University of Bergen, Norway; and Norwegian MS-Registry & Biobank (K.-M.M.)
| | - Øivind Torkildsen
- Department of Neurology (K.N.V., K.B., K.-M.M., Ø.T., S.W., L.A.B., C.V.), Haukeland University Hospital; Department of Clinical Medicine (K.N.V., K.-M.M., Ø.T., S.W., L.A.B., C.V.), University of Bergen, Norway; Neurologic Clinic and Policlinic (C.B., J.K.), Departments of Medicine, Clinical Research and Biomedicine, University Hospital Basel, University of Basel, Switzerland; Department of Global Public Health and Primary Care (K.B.), University of Bergen, Norway; and Norwegian MS-Registry & Biobank (K.-M.M.)
| | - Stig Wergeland
- Department of Neurology (K.N.V., K.B., K.-M.M., Ø.T., S.W., L.A.B., C.V.), Haukeland University Hospital; Department of Clinical Medicine (K.N.V., K.-M.M., Ø.T., S.W., L.A.B., C.V.), University of Bergen, Norway; Neurologic Clinic and Policlinic (C.B., J.K.), Departments of Medicine, Clinical Research and Biomedicine, University Hospital Basel, University of Basel, Switzerland; Department of Global Public Health and Primary Care (K.B.), University of Bergen, Norway; and Norwegian MS-Registry & Biobank (K.-M.M.)
| | - Laurence A Bindoff
- Department of Neurology (K.N.V., K.B., K.-M.M., Ø.T., S.W., L.A.B., C.V.), Haukeland University Hospital; Department of Clinical Medicine (K.N.V., K.-M.M., Ø.T., S.W., L.A.B., C.V.), University of Bergen, Norway; Neurologic Clinic and Policlinic (C.B., J.K.), Departments of Medicine, Clinical Research and Biomedicine, University Hospital Basel, University of Basel, Switzerland; Department of Global Public Health and Primary Care (K.B.), University of Bergen, Norway; and Norwegian MS-Registry & Biobank (K.-M.M.)
| | - Jens Kuhle
- Department of Neurology (K.N.V., K.B., K.-M.M., Ø.T., S.W., L.A.B., C.V.), Haukeland University Hospital; Department of Clinical Medicine (K.N.V., K.-M.M., Ø.T., S.W., L.A.B., C.V.), University of Bergen, Norway; Neurologic Clinic and Policlinic (C.B., J.K.), Departments of Medicine, Clinical Research and Biomedicine, University Hospital Basel, University of Basel, Switzerland; Department of Global Public Health and Primary Care (K.B.), University of Bergen, Norway; and Norwegian MS-Registry & Biobank (K.-M.M.)
| | - Christian Vedeler
- Department of Neurology (K.N.V., K.B., K.-M.M., Ø.T., S.W., L.A.B., C.V.), Haukeland University Hospital; Department of Clinical Medicine (K.N.V., K.-M.M., Ø.T., S.W., L.A.B., C.V.), University of Bergen, Norway; Neurologic Clinic and Policlinic (C.B., J.K.), Departments of Medicine, Clinical Research and Biomedicine, University Hospital Basel, University of Basel, Switzerland; Department of Global Public Health and Primary Care (K.B.), University of Bergen, Norway; and Norwegian MS-Registry & Biobank (K.-M.M.)
| |
Collapse
|
22
|
Stoop MP, Runia TF, Stingl C, van der Vuurst de Vries RM, Luider TM, Hintzen RQ. Decreased Neuro-Axonal Proteins in CSF at First Attack of Suspected Multiple Sclerosis. Proteomics Clin Appl 2017; 11. [PMID: 28941200 DOI: 10.1002/prca.201700005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 08/23/2017] [Indexed: 01/10/2023]
Abstract
The pathology of multiple sclerosis is located in the central nervous system, therefore cerebrospinal fluid (CSF) is an attractive biofluid for biomarker research for proteins related to the early stages of this disease. In this study, the CSF proteome of patients with a clinically isolated syndrome of demyelination (CIS, a first attack of multiple sclerosis) is compared to the CSF proteome of control patients to identify differentially abundant proteins. CSF samples of 47 CIS patients and 45 control subjects are enzymatically digested and subsequently measured by LC-MS/MS (LTQ-Orbitrap). Following mass spectrometry differential abundances of the identified proteins between groups are investigated. A total of 3159 peptides are identified, relating to 485 proteins. One protein is significantly more abundant in CSF of CIS patients than in controls: Ig kappa chain C region. In contrast, 35 proteins are significantly lower in CIS patients than controls, most of them with functions in nervous system development and function, such as amyloid-like protein 1 (validated by ELISA in an independent sample set (p < 0.01)), contactin 1, contactin 2 and neuronal cell adhesion molecule. A remarkably lower abundance of neuro-axonal proteins is observed in patients with a first demyelinating event compared to controls.
Collapse
Affiliation(s)
- Marcel P Stoop
- Departments of Neurology, Erasmus MC, Rotterdam, the Netherlands
| | - Tessel F Runia
- Departments of Neurology, Erasmus MC, Rotterdam, the Netherlands
| | - Christoph Stingl
- Departments of Neurology, Erasmus MC, Rotterdam, the Netherlands
| | | | - Theo M Luider
- Departments of Neurology, Erasmus MC, Rotterdam, the Netherlands
| | - Rogier Q Hintzen
- Departments of Neurology, Erasmus MC, Rotterdam, the Netherlands.,Departments of Immunology, Erasmus MC, Rotterdam, the Netherlands
| |
Collapse
|
23
|
Abstract
The members of the Tear Film Subcommittee reviewed the role of the tear film in dry eye disease (DED). The Subcommittee reviewed biophysical and biochemical aspects of tears and how these change in DED. Clinically, DED is characterized by loss of tear volume, more rapid breakup of the tear film and increased evaporation of tears from the ocular surface. The tear film is composed of many substances including lipids, proteins, mucins and electrolytes. All of these contribute to the integrity of the tear film but exactly how they interact is still an area of active research. Tear film osmolarity increases in DED. Changes to other components such as proteins and mucins can be used as biomarkers for DED. The Subcommittee recommended areas for future research to advance our understanding of the tear film and how this changes with DED. The final report was written after review by all Subcommittee members and the entire TFOS DEWS II membership.
Collapse
|
24
|
Proteomic Biomarker Identification in Cerebrospinal Fluid for Leptomeningeal Metastases with Neurological Complications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 974:85-96. [PMID: 28353226 DOI: 10.1007/978-3-319-52479-5_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Leptomeningeal metastases (LM) from solid tumours, lymphoma and leukaemia are characterized by multifocal neurological deficits with a high mortality rate. Early diagnosis and initiation of treatment are essential to kerb neurological deterioration. However, this is not always possible as 25% of cerebrospinal fluid samples produce false-negative results at first cytological examination. The identification of biomarkers that allow stratification of individuals according to risk for developing LM would be a major benefit. Proteomic-based approaches are now in increasing use for this purpose, and these are reviewed in this chapter with a focus on cerebrospinal fluid (CSF) analyses. The construction of a CSF proteome disease database would also facilitate analysis of other neurological disorders.
Collapse
|
25
|
Guldbrandsen A, Farag Y, Kroksveen AC, Oveland E, Lereim RR, Opsahl JA, Myhr KM, Berven FS, Barsnes H. CSF-PR 2.0: An Interactive Literature Guide to Quantitative Cerebrospinal Fluid Mass Spectrometry Data from Neurodegenerative Disorders. Mol Cell Proteomics 2016; 16:300-309. [PMID: 27890865 DOI: 10.1074/mcp.o116.064477] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/18/2016] [Indexed: 01/23/2023] Open
Abstract
The rapidly growing number of biomedical studies supported by mass spectrometry based quantitative proteomics data has made it increasingly difficult to obtain an overview of the current status of the research field. A better way of organizing the biomedical proteomics information from these studies and making it available to the research community is therefore called for. In the presented work, we have investigated scientific publications describing the analysis of the cerebrospinal fluid proteome in relation to multiple sclerosis, Parkinson's disease and Alzheimer's disease. Based on a detailed set of filtering criteria we extracted 85 data sets containing quantitative information for close to 2000 proteins. This information was made available in CSF-PR 2.0 (http://probe.uib.no/csf-pr-2.0), which includes novel approaches for filtering, visualizing and comparing quantitative proteomics information in an interactive and user-friendly environment. CSF-PR 2.0 will be an invaluable resource for anyone interested in quantitative proteomics on cerebrospinal fluid.
Collapse
Affiliation(s)
- Astrid Guldbrandsen
- From the ‡Proteomics Unit (PROBE), Department of Biomedicine, University of Bergen, 5009 Bergen, Norway.,§KG Jebsen Centre for Multiple Sclerosis Research, Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway
| | - Yehia Farag
- From the ‡Proteomics Unit (PROBE), Department of Biomedicine, University of Bergen, 5009 Bergen, Norway.,§KG Jebsen Centre for Multiple Sclerosis Research, Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway
| | - Ann Cathrine Kroksveen
- From the ‡Proteomics Unit (PROBE), Department of Biomedicine, University of Bergen, 5009 Bergen, Norway.,§KG Jebsen Centre for Multiple Sclerosis Research, Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway
| | - Eystein Oveland
- From the ‡Proteomics Unit (PROBE), Department of Biomedicine, University of Bergen, 5009 Bergen, Norway.,§KG Jebsen Centre for Multiple Sclerosis Research, Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway
| | - Ragnhild R Lereim
- From the ‡Proteomics Unit (PROBE), Department of Biomedicine, University of Bergen, 5009 Bergen, Norway.,§KG Jebsen Centre for Multiple Sclerosis Research, Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway
| | - Jill A Opsahl
- From the ‡Proteomics Unit (PROBE), Department of Biomedicine, University of Bergen, 5009 Bergen, Norway.,§KG Jebsen Centre for Multiple Sclerosis Research, Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway
| | - Kjell-Morten Myhr
- §KG Jebsen Centre for Multiple Sclerosis Research, Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway.,¶Norwegian Multiple Sclerosis Registry and Biobank, Haukeland University Hospital, 5021 Bergen, Norway
| | - Frode S Berven
- From the ‡Proteomics Unit (PROBE), Department of Biomedicine, University of Bergen, 5009 Bergen, Norway; .,§KG Jebsen Centre for Multiple Sclerosis Research, Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway.,‖Norwegian Multiple Sclerosis Competence Centre, Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Harald Barsnes
- From the ‡Proteomics Unit (PROBE), Department of Biomedicine, University of Bergen, 5009 Bergen, Norway.,**Department of Clinical Science, University of Bergen, 5020 Bergen, Norway.,‡‡Computational Biology Unit, Department of Informatics, University of Bergen, 5020 Bergen, Norway
| |
Collapse
|
26
|
Kroksveen AC, Guldbrandsen A, Vaudel M, Lereim RR, Barsnes H, Myhr KM, Torkildsen Ø, Berven FS. In-Depth Cerebrospinal Fluid Quantitative Proteome and Deglycoproteome Analysis: Presenting a Comprehensive Picture of Pathways and Processes Affected by Multiple Sclerosis. J Proteome Res 2016; 16:179-194. [PMID: 27728768 DOI: 10.1021/acs.jproteome.6b00659] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In the current study, we conducted a quantitative in-depth proteome and deglycoproteome analysis of cerebrospinal fluid (CSF) from relapsing-remitting multiple sclerosis (RRMS) and neurological controls using mass spectrometry and pathway analysis. More than 2000 proteins and 1700 deglycopeptides were quantified, with 484 proteins and 180 deglycopeptides significantly changed between pools of RRMS and pools of controls. Approximately 300 of the significantly changed proteins were assigned to various biological processes including inflammation, extracellular matrix organization, cell adhesion, immune response, and neuron development. Ninety-six significantly changed deglycopeptides mapped to proteins that were not found changed in the global protein study. In addition, four mapped to the proteins oligo-myelin glycoprotein and noelin, which were found oppositely changed in the global study. Both are ligands to the nogo receptor, and the glycosylation of these proteins appears to be affected by RRMS. Our study gives the most extensive overview of the RRMS affected processes observed from the CSF proteome to date, and the list of differential proteins will have great value for selection of biomarker candidates for further verification.
Collapse
Affiliation(s)
- Ann Cathrine Kroksveen
- Proteomics Unit (PROBE), Department of Biomedicine, ‡The KG Jebsen Centre for MS Research, Department of Clinical Medicine, §KG Jebsen Center for Diabetes Research, Department of Clinical Science, and ⊥Computational Biology Unit, Department of Informatics, University of Bergen , Bergen N-5009, Norway.,Center for Medical Genetics and Molecular Medicine and ∥The Norwegian Multiple Sclerosis Competence Centre, Department of Neurology, Haukeland University Hospital , Bergen N-5021, Norway
| | - Astrid Guldbrandsen
- Proteomics Unit (PROBE), Department of Biomedicine, ‡The KG Jebsen Centre for MS Research, Department of Clinical Medicine, §KG Jebsen Center for Diabetes Research, Department of Clinical Science, and ⊥Computational Biology Unit, Department of Informatics, University of Bergen , Bergen N-5009, Norway.,Center for Medical Genetics and Molecular Medicine and ∥The Norwegian Multiple Sclerosis Competence Centre, Department of Neurology, Haukeland University Hospital , Bergen N-5021, Norway
| | - Marc Vaudel
- Proteomics Unit (PROBE), Department of Biomedicine, ‡The KG Jebsen Centre for MS Research, Department of Clinical Medicine, §KG Jebsen Center for Diabetes Research, Department of Clinical Science, and ⊥Computational Biology Unit, Department of Informatics, University of Bergen , Bergen N-5009, Norway.,Center for Medical Genetics and Molecular Medicine and ∥The Norwegian Multiple Sclerosis Competence Centre, Department of Neurology, Haukeland University Hospital , Bergen N-5021, Norway
| | - Ragnhild Reehorst Lereim
- Proteomics Unit (PROBE), Department of Biomedicine, ‡The KG Jebsen Centre for MS Research, Department of Clinical Medicine, §KG Jebsen Center for Diabetes Research, Department of Clinical Science, and ⊥Computational Biology Unit, Department of Informatics, University of Bergen , Bergen N-5009, Norway.,Center for Medical Genetics and Molecular Medicine and ∥The Norwegian Multiple Sclerosis Competence Centre, Department of Neurology, Haukeland University Hospital , Bergen N-5021, Norway
| | - Harald Barsnes
- Proteomics Unit (PROBE), Department of Biomedicine, ‡The KG Jebsen Centre for MS Research, Department of Clinical Medicine, §KG Jebsen Center for Diabetes Research, Department of Clinical Science, and ⊥Computational Biology Unit, Department of Informatics, University of Bergen , Bergen N-5009, Norway.,Center for Medical Genetics and Molecular Medicine and ∥The Norwegian Multiple Sclerosis Competence Centre, Department of Neurology, Haukeland University Hospital , Bergen N-5021, Norway
| | - Kjell-Morten Myhr
- Proteomics Unit (PROBE), Department of Biomedicine, ‡The KG Jebsen Centre for MS Research, Department of Clinical Medicine, §KG Jebsen Center for Diabetes Research, Department of Clinical Science, and ⊥Computational Biology Unit, Department of Informatics, University of Bergen , Bergen N-5009, Norway.,Center for Medical Genetics and Molecular Medicine and ∥The Norwegian Multiple Sclerosis Competence Centre, Department of Neurology, Haukeland University Hospital , Bergen N-5021, Norway
| | - Øivind Torkildsen
- Proteomics Unit (PROBE), Department of Biomedicine, ‡The KG Jebsen Centre for MS Research, Department of Clinical Medicine, §KG Jebsen Center for Diabetes Research, Department of Clinical Science, and ⊥Computational Biology Unit, Department of Informatics, University of Bergen , Bergen N-5009, Norway.,Center for Medical Genetics and Molecular Medicine and ∥The Norwegian Multiple Sclerosis Competence Centre, Department of Neurology, Haukeland University Hospital , Bergen N-5021, Norway
| | - Frode S Berven
- Proteomics Unit (PROBE), Department of Biomedicine, ‡The KG Jebsen Centre for MS Research, Department of Clinical Medicine, §KG Jebsen Center for Diabetes Research, Department of Clinical Science, and ⊥Computational Biology Unit, Department of Informatics, University of Bergen , Bergen N-5009, Norway.,Center for Medical Genetics and Molecular Medicine and ∥The Norwegian Multiple Sclerosis Competence Centre, Department of Neurology, Haukeland University Hospital , Bergen N-5021, Norway
| |
Collapse
|