1
|
Uversky VN. On the Roles of Protein Intrinsic Disorder in the Origin of Life and Evolution. Life (Basel) 2024; 14:1307. [PMID: 39459607 PMCID: PMC11509291 DOI: 10.3390/life14101307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Obviously, the discussion of different factors that could have contributed to the origin of life and evolution is clear speculation, since there is no way of checking the validity of most of the related hypotheses in practice, as the corresponding events not only already happened, but took place in a very distant past. However, there are a few undisputable facts that are present at the moment, such as the existence of a wide variety of living forms and the abundant presence of intrinsically disordered proteins (IDPs) or hybrid proteins containing ordered domains and intrinsically disordered regions (IDRs) in all living forms. Since it seems that the currently existing living forms originated from a common ancestor, their variety is a result of evolution. Therefore, one could ask a logical question of what role(s) the structureless and highly dynamic but vastly abundant and multifunctional IDPs/IDRs might have in evolution. This study represents an attempt to consider various ideas pertaining to the potential roles of protein intrinsic disorder in the origin of life and evolution.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
2
|
Mooney RA, Zhu J, Saba J, Landick R. NusG-Spt5 Transcription Factors: Universal, Dynamic Modulators of Gene Expression. J Mol Biol 2024:168814. [PMID: 39374889 DOI: 10.1016/j.jmb.2024.168814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/22/2024] [Accepted: 10/02/2024] [Indexed: 10/09/2024]
Abstract
The accurate and efficient biogenesis of RNA by cellular RNA polymerase (RNAP) requires accessory factors that regulate the initiation, elongation, and termination of transcription. Of the many discovered to date, the elongation regulator NusG-Spt5 is the only universally conserved transcription factor. With orthologs and paralogs found in all three domains of life, this ubiquity underscores their ancient and essential regulatory functions. NusG-Spt5 proteins evolved to maintain a similar binding interface to RNAP through contacts of the NusG N-terminal domain (NGN) that bridge the main DNA-binding cleft. We propose that varying strength of these contacts, modulated by tethering interactions, either decrease transcriptional pausing by smoothing the rugged thermodynamic landscape of transcript elongation or enhance pausing, depending on which conformation of RNAP is stabilized by NGN contacts. NusG-Spt5 contains one (in bacteria and archaea) or more (in eukaryotes) C-terminal domains that use a KOW fold to contact diverse targets, tether the NGN, and control RNA biogenesis. Recent work highlights these diverse functions in different organisms. Some bacteria contain multiple specialized NusG paralogs that regulate subsets of operons via sequence-specific targeting, controlling production of antibiotics, toxins, or capsule proteins. Despite their common origin, NusG orthologs can differ in their target selection, interacting partners, and effects on RNA synthesis. We describe the current understanding of NusG-Spt5 structure, interactions with RNAP and other regulators, and cellular functions including significant recent progress from genome-wide analyses, single-molecule visualization, and cryo-EM. The recent findings highlight the remarkable diversity of function among these structurally conserved proteins.
Collapse
Affiliation(s)
- Rachel A Mooney
- Department of Biochemistry, University of Wisconsin - Madison, 1550 Linden Drive, Madison, WI 53706, United States.
| | - Junqiao Zhu
- Department of Biochemistry, University of Wisconsin - Madison, 1550 Linden Drive, Madison, WI 53706, United States
| | - Jason Saba
- Department of Biochemistry, University of Wisconsin - Madison, 1550 Linden Drive, Madison, WI 53706, United States
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin - Madison, 1550 Linden Drive, Madison, WI 53706, United States; Department of Bacteriology, University of Wisconsin - Madison, 1550 Linden Drive, Madison, WI 53706, United States.
| |
Collapse
|
3
|
Zhang X, Huang G, Jiang T, Meng L, Li T, Zhang G, Wu N, Chen X, Zhao B, Li N, Wu S, Guo J, Zheng R, Ji Z, Xu Z, Wang Z, Deng D, Tan Y, Xu W. CEP112 coordinates translational regulation of essential fertility genes during spermiogenesis through phase separation in humans and mice. Nat Commun 2024; 15:8465. [PMID: 39349455 PMCID: PMC11443074 DOI: 10.1038/s41467-024-52705-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/19/2024] [Indexed: 10/02/2024] Open
Abstract
Spermiogenesis, the complex transformation of haploid spermatids into mature spermatozoa, relies on precise spatiotemporal regulation of gene expression at the post-transcriptional level. The mechanisms underlying this critical process remain incompletely understood. Here, we identify centrosomal protein 112 (CEP112) as an essential regulator of mRNA translation during this critical developmental process. Mutations in CEP112 are discovered in oligoasthenoteratospermic patients, and Cep112-deficient male mice recapitulate key phenotypes of human asthenoteratozoospermia. CEP112 localizes to the neck and atypical centrioles of mature sperm and forms RNA granules during spermiogenesis, enriching target mRNAs such as Fsip2, Cfap61, and Cfap74. Through multi-omics analyses and the TRICK reporter assay, we demonstrate that CEP112 orchestrates the translation of target mRNAs. Co-immunoprecipitation and mass spectrometry identify CEP112's interactions with translation-related proteins, including hnRNPA2B1, EEF1A1, and EIF4A1. In vitro, CEP112 undergoes liquid-liquid phase separation, forming condensates that recruit essential proteins and mRNAs. Moreover, variants in patient-derived CEP112 disrupt phase separation and impair translation efficiency. Our results suggest that CEP112 mediates the assembly of RNA granules through liquid-liquid phase separation to control the post-transcriptional expression of fertility-related genes. This study not only clarifies CEP112's role in spermatogenesis but also highlights the role of phase separation in translational regulation, providing insights into male infertility and suggesting potential therapeutic targets.
Collapse
Affiliation(s)
- Xueguang Zhang
- Joint Lab of Reproductive Medicine of SCU-CUHK, Lab of Reproductive genetics and Epigenetics, Department of Obstetrics/Gynecology, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, West China Second University Hospital, Sichuan University, 610041, Chengdu, China
| | - Gelin Huang
- Joint Lab of Reproductive Medicine of SCU-CUHK, Lab of Reproductive genetics and Epigenetics, Department of Obstetrics/Gynecology, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, West China Second University Hospital, Sichuan University, 610041, Chengdu, China
| | - Ting Jiang
- Joint Lab of Reproductive Medicine of SCU-CUHK, Lab of Reproductive genetics and Epigenetics, Department of Obstetrics/Gynecology, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, West China Second University Hospital, Sichuan University, 610041, Chengdu, China
| | - Lanlan Meng
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive & Genetic Hospital of CITIC-Xiangya, 410008, Changsha, China
| | - Tongtong Li
- Joint Lab of Reproductive Medicine of SCU-CUHK, Lab of Reproductive genetics and Epigenetics, Department of Obstetrics/Gynecology, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, West China Second University Hospital, Sichuan University, 610041, Chengdu, China
| | - Guohui Zhang
- Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, 610041, Chengdu, China
| | - Nan Wu
- State Key Laboratory of Cellular Stress Biology, National Institute for Data Science in Health and Medicine, School of Life Sciences, Xiamen University, 361005, Xiamen, China
| | - Xinyi Chen
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, 610041, China
| | - Bingwang Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Nana Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, 266237, Qingdao, China
| | - Sixian Wu
- Joint Lab of Reproductive Medicine of SCU-CUHK, Lab of Reproductive genetics and Epigenetics, Department of Obstetrics/Gynecology, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, West China Second University Hospital, Sichuan University, 610041, Chengdu, China
| | - Junceng Guo
- Joint Lab of Reproductive Medicine of SCU-CUHK, Lab of Reproductive genetics and Epigenetics, Department of Obstetrics/Gynecology, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, West China Second University Hospital, Sichuan University, 610041, Chengdu, China
| | - Rui Zheng
- Joint Lab of Reproductive Medicine of SCU-CUHK, Lab of Reproductive genetics and Epigenetics, Department of Obstetrics/Gynecology, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, West China Second University Hospital, Sichuan University, 610041, Chengdu, China
| | - Zhiliang Ji
- State Key Laboratory of Cellular Stress Biology, National Institute for Data Science in Health and Medicine, School of Life Sciences, Xiamen University, 361005, Xiamen, China
| | - Zhigang Xu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, 266237, Qingdao, China
| | - Zhenbo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Dong Deng
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, 610041, China
| | - Yueqiu Tan
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive & Genetic Hospital of CITIC-Xiangya, 410008, Changsha, China.
| | - Wenming Xu
- Joint Lab of Reproductive Medicine of SCU-CUHK, Lab of Reproductive genetics and Epigenetics, Department of Obstetrics/Gynecology, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, West China Second University Hospital, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
4
|
Heredia-Torrejón M, Montañez R, González-Meneses A, Carcavilla A, Medina MA, Lechuga-Sancho AM. VUS next in rare diseases? Deciphering genetic determinants of biomolecular condensation. Orphanet J Rare Dis 2024; 19:327. [PMID: 39243101 PMCID: PMC11380411 DOI: 10.1186/s13023-024-03307-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 08/06/2024] [Indexed: 09/09/2024] Open
Abstract
The diagnostic odysseys for rare disease patients are getting shorter as next-generation sequencing becomes more widespread. However, the complex genetic diversity and factors influencing expressivity continue to challenge accurate diagnosis, leaving more than 50% of genetic variants categorized as variants of uncertain significance.Genomic expression intricately hinges on localized interactions among its products. Conventional variant prioritization, biased towards known disease genes and the structure-function paradigm, overlooks the potential impact of variants shaping the composition, location, size, and properties of biomolecular condensates, genuine membraneless organelles swiftly sensing and responding to environmental changes, and modulating expressivity.To address this complexity, we propose to focus on the nexus of genetic variants within biomolecular condensates determinants. Scrutinizing variant effects in these membraneless organelles could refine prioritization, enhance diagnostics, and unveil the molecular underpinnings of rare diseases. Integrating comprehensive genome sequencing, transcriptomics, and computational models can unravel variant pathogenicity and disease mechanisms, enabling precision medicine. This paper presents the rationale driving our proposal and describes a protocol to implement this approach. By fusing state-of-the-art knowledge and methodologies into the clinical practice, we aim to redefine rare diseases diagnosis, leveraging the power of scientific advancement for more informed medical decisions.
Collapse
Affiliation(s)
- María Heredia-Torrejón
- Inflammation, Nutrition, Metabolism and Oxidative Stress Research Laboratory, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Cadiz, Spain
- Mother and Child Health and Radiology Department. Area of Clinical Genetics, University of Cadiz. Faculty of Medicine, Cadiz, Spain
| | - Raúl Montañez
- Inflammation, Nutrition, Metabolism and Oxidative Stress Research Laboratory, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Cadiz, Spain.
- Department of Molecular Biology and Biochemistry, University of Malaga, Andalucía Tech, E-29071, Málaga, Spain.
| | - Antonio González-Meneses
- Division of Dysmorphology, Department of Paediatrics, Virgen del Rocio University Hospital, Sevilla, Spain
- Department of Paediatrics, Medical School, University of Sevilla, Sevilla, Spain
| | - Atilano Carcavilla
- Pediatric Endocrinology Department, Hospital Universitario La Paz, 28046, Madrid, Spain
- Multidisciplinary Unit for RASopathies, Hospital Universitario La Paz, 28046, Madrid, Spain
| | - Miguel A Medina
- Department of Molecular Biology and Biochemistry, University of Malaga, Andalucía Tech, E-29071, Málaga, Spain.
- Biomedical Research Institute and nanomedicine platform of Málaga IBIMA-BIONAND, E-29071, Málaga, Spain.
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, E-28029, Madrid, Spain.
| | - Alfonso M Lechuga-Sancho
- Inflammation, Nutrition, Metabolism and Oxidative Stress Research Laboratory, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Cadiz, Spain
- Division of Endocrinology, Department of Paediatrics, Puerta del Mar University Hospital, Cádiz, Spain
- Area of Paediatrics, Department of Child and Mother Health and Radiology, Medical School, University of Cadiz, Cadiz, Spain
| |
Collapse
|
5
|
Snyder A, Ryan VH, Hawrot J, Lawton S, Ramos DM, Qi YA, Johnson KR, Reed X, Johnson NL, Kollasch AW, Duffy MF, VandeVrede L, Cochran JN, Miller BL, Toro C, Bielekova B, Marks DS, Yokoyama JS, Kwan JY, Cookson MR, Ward ME. An ANXA11 P93S variant dysregulates TDP-43 and causes corticobasal syndrome. Alzheimers Dement 2024; 20:5220-5235. [PMID: 38923692 PMCID: PMC11350008 DOI: 10.1002/alz.13915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 06/28/2024]
Abstract
INTRODUCTION Variants of uncertain significance (VUS) surged with affordable genetic testing, posing challenges for determining pathogenicity. We examine the pathogenicity of a novel VUS P93S in Annexin A11 (ANXA11) - an amyotrophic lateral sclerosis/frontotemporal dementia-associated gene - in a corticobasal syndrome kindred. Established ANXA11 mutations cause ANXA11 aggregation, altered lysosomal-RNA granule co-trafficking, and transactive response DNA binding protein of 43 kDa (TDP-43) mis-localization. METHODS We described the clinical presentation and explored the phenotypic diversity of ANXA11 variants. P93S's effect on ANXA11 function and TDP-43 biology was characterized in induced pluripotent stem cell-derived neurons alongside multiomic neuronal and microglial profiling. RESULTS ANXA11 mutations were linked to corticobasal syndrome cases. P93S led to decreased lysosome colocalization, neuritic RNA, and nuclear TDP-43 with cryptic exon expression. Multiomic microglial signatures implicated immune dysregulation and interferon signaling pathways. DISCUSSION This study establishes ANXA11 P93S pathogenicity, broadens the phenotypic spectrum of ANXA11 mutations, underscores neuronal and microglial dysfunction in ANXA11 pathophysiology, and demonstrates the potential of cellular models to determine variant pathogenicity. HIGHLIGHTS ANXA11 P93S is a pathogenic variant. Corticobasal syndrome is part of the ANXA11 phenotypic spectrum. Hybridization chain reaction fluorescence in situ hybridization (HCR FISH) is a new tool for the detection of cryptic exons due to TDP-43-related loss of splicing regulation. Microglial ANXA11 and related immune pathways are important drivers of disease. Cellular models are powerful tools for adjudicating variants of uncertain significance.
Collapse
Affiliation(s)
- Allison Snyder
- Neurogenetics BranchNational Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMarylandUSA
| | - Veronica H. Ryan
- Center for Alzheimer's and Related DementiasNational Institutes of HealthBethesdaMarylandUSA
- National Institute of General Medical SciencesNational Institutes of HealthBethesdaMarylandUSA
| | - James Hawrot
- Neurogenetics BranchNational Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMarylandUSA
| | - Sydney Lawton
- Neurogenetics BranchNational Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMarylandUSA
| | - Daniel M. Ramos
- Center for Alzheimer's and Related DementiasNational Institutes of HealthBethesdaMarylandUSA
| | - Y. Andy Qi
- Center for Alzheimer's and Related DementiasNational Institutes of HealthBethesdaMarylandUSA
| | - Kory R. Johnson
- Intramural Bioinformatics CoreNational Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMarylandUSA
| | - Xylena Reed
- Center for Alzheimer's and Related DementiasNational Institutes of HealthBethesdaMarylandUSA
| | - Nicholas L. Johnson
- Center for Alzheimer's and Related DementiasNational Institutes of HealthBethesdaMarylandUSA
- DataTecnica LLCWashingtonDistrict of ColumbiaUSA
| | - Aaron W. Kollasch
- Department of Systems BiologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Megan F. Duffy
- Cell Biology and Gene Expression SectionLaboratory of Neurogenetics, National Institute on AgingNational Institutes of HealthBethesdaMarylandUSA
| | - Lawren VandeVrede
- Memory and Aging CenterDepartment of NeurologyWeill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | | | - Bruce L. Miller
- Memory and Aging CenterDepartment of NeurologyWeill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Camilo Toro
- Undiagnosed Diseases ProgramNational Human Genome Research InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Bibiana Bielekova
- Neuroimmunological Diseases SectionNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMarylandUSA
| | - Debora S. Marks
- Department of Systems BiologyHarvard Medical SchoolBostonMassachusettsUSA
- Broad Institute of MIT and HarvardCambridgeMassachusettsUSA
| | - Jennifer S. Yokoyama
- Memory and Aging CenterDepartment of NeurologyWeill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Department of Radiology and Biomedical ImagingUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Justin Y. Kwan
- National Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMarylandUSA
| | - Mark R. Cookson
- Cell Biology and Gene Expression SectionLaboratory of Neurogenetics, National Institute on AgingNational Institutes of HealthBethesdaMarylandUSA
| | - Michael E. Ward
- Neurogenetics BranchNational Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
6
|
Workman RJ, Huang CJ, Lynch GC, Pettitt BM. Peptide diffusion in biomolecular condensates. Biophys J 2024; 123:1668-1675. [PMID: 38751116 PMCID: PMC11213990 DOI: 10.1016/j.bpj.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/22/2024] [Accepted: 05/10/2024] [Indexed: 05/30/2024] Open
Abstract
Diffusion determines the turnover of biomolecules in liquid-liquid phase-separated condensates. We considered the mean square displacement and thus the diffusion constant for simple model systems of peptides GGGGG, GGQGG, and GGVGG in aqueous solutions after phase separation by simulating atomic-level models. These solutions readily separate into aqueous and peptide-rich droplet phases. We noted the effect of the peptides being in a solvated, surface, or droplet state on the peptide's diffusion coefficients. Both sequence and peptide conformational distribution were found to influence diffusion and condensate turnover in these systems, with sequence dominating the magnitude of the differences. We found that the most compact structures for each sequence diffused the fastest in the peptide-rich condensate phase. This model result may have implications for turnover dynamics in signaling systems.
Collapse
Affiliation(s)
- Riley J Workman
- University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas
| | - Caleb J Huang
- University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas
| | - Gillian C Lynch
- University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas
| | | |
Collapse
|
7
|
Kamps J, Bader V, Winklhofer KF, Tatzelt J. Liquid-liquid phase separation of the prion protein is regulated by the octarepeat domain independently of histidines and copper. J Biol Chem 2024; 300:107310. [PMID: 38657863 PMCID: PMC11126799 DOI: 10.1016/j.jbc.2024.107310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
Liquid-liquid phase separation (LLPS) of the mammalian prion protein is mainly driven by its intrinsically disordered N-terminal domain (N-PrP). However, the specific intermolecular interactions that promote LLPS remain largely unknown. Here, we used extensive mutagenesis and comparative analyses of evolutionarily distant PrP species to gain insight into the relationship between protein sequence and phase behavior. LLPS of mouse PrP is dependent on two polybasic motifs in N-PrP that are conserved in all tetrapods. A unique feature of mammalian N-PrP is the octarepeat domain with four histidines that mediate binding to copper ions. We now show that the octarepeat is critical for promoting LLPS and preventing the formation of PrP aggregates. Amphibian N-PrP, which contains the polybasic motifs but lacks a repeat domain and histidines, does not undergo LLPS and forms nondynamic protein assemblies indicative of aggregates. Insertion of the mouse octarepeat domain restored LLPS of amphibian N-PrP, supporting its essential role in regulating the phase transition of PrP. This activity of the octarepeat domain was neither dependent on the four highly conserved histidines nor on copper binding. Instead, the regularly spaced tryptophan residues were critical for regulating LLPS, presumably via cation-π interactions with the polybasic motifs. Our study reveals a novel role for the tryptophan residues in the octarepeat in controlling phase transition of PrP and indicates that the ability of mammalian PrP to undergo LLPS has evolved with the octarepeat in the intrinsically disordered domain but independently of the histidines.
Collapse
Affiliation(s)
- Janine Kamps
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany; Cluster of Excellence RESOLV, Bochum, Germany
| | - Verian Bader
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany; Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Konstanze F Winklhofer
- Cluster of Excellence RESOLV, Bochum, Germany; Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Jörg Tatzelt
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany; Cluster of Excellence RESOLV, Bochum, Germany.
| |
Collapse
|
8
|
Gupta MN, Uversky VN. Reexamining the diverse functions of arginine in biochemistry. Biochem Biophys Res Commun 2024; 705:149731. [PMID: 38432110 DOI: 10.1016/j.bbrc.2024.149731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Arginine in a free-state and as part of peptides and proteins shows distinct tendency to form clusters. In free-form, it has been found useful in cryoprotection, as a drug excipient for both solid and liquid formulations, as an aggregation suppressor, and an eluent in protein chromatography. In many cases, the mechanisms by which arginine acts in all these applications is either debatable or at least continues to attract interest. It is quite possible that arginine clusters may be involved in many such applications. Furthermore, it is possible that such clusters are likely to behave as intrinsically disordered polypeptides. These considerations may help in understanding the roles of arginine in diverse applications and may even lead to better strategies for using arginine in different situations.
Collapse
Affiliation(s)
- Munishwar Nath Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Hauz Khas, New Delhi, 110016, India.
| | - Vladimir N Uversky
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Institutskaya Str., 7, Pushchino, Moscow Region, 142290, Russia; Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.
| |
Collapse
|
9
|
Ramirez DA, Hough LE, Shirts MR. Coiled-coil domains are sufficient to drive liquid-liquid phase separation in protein models. Biophys J 2024; 123:703-717. [PMID: 38356260 PMCID: PMC10995412 DOI: 10.1016/j.bpj.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/09/2023] [Accepted: 02/09/2024] [Indexed: 02/16/2024] Open
Abstract
Liquid-liquid phase separation (LLPS) is thought to be a main driving force in the formation of membraneless organelles. Examples of such organelles include the centrosome, central spindle, and stress granules. Recently, it has been shown that coiled-coil (CC) proteins, such as the centrosomal proteins pericentrin, spd-5, and centrosomin, might be capable of LLPS. CC domains have physical features that could make them the drivers of LLPS, but it is unknown if they play a direct role in the process. We developed a coarse-grained simulation framework for investigating the LLPS propensity of CC proteins, in which interactions that support LLPS arise solely from CC domains. We show, using this framework, that the physical features of CC domains are sufficient to drive LLPS of proteins. The framework is specifically designed to investigate how the number of CC domains, as well as the multimerization state of CC domains, can affect LLPS. We show that small model proteins with as few as two CC domains can phase separate. Increasing the number of CC domains up to four per protein can somewhat increase LLPS propensity. We demonstrate that trimer-forming and tetramer-forming CC domains have a dramatically higher LLPS propensity than dimer-forming coils, which shows that multimerization state has a greater effect on LLPS than the number of CC domains per protein. These data support the hypothesis of CC domains as drivers of protein LLPS, and have implications in future studies to identify the LLPS-driving regions of centrosomal and central spindle proteins.
Collapse
Affiliation(s)
- Dominique A Ramirez
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado
| | - Loren E Hough
- Department of Physics and BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado
| | - Michael R Shirts
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado.
| |
Collapse
|
10
|
Rai S, Pramanik S, Mukherjee S. Deciphering the liquid-liquid phase separation induced modulation in the structure, dynamics, and enzymatic activity of an ordered protein β-lactoglobulin. Chem Sci 2024; 15:3936-3948. [PMID: 38487243 PMCID: PMC10935713 DOI: 10.1039/d3sc06802a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/23/2024] [Indexed: 03/17/2024] Open
Abstract
Owing to the significant role in the subcellular organization of biomolecules, physiology, and the realm of biomimetic materials, studies related to biomolecular condensates formed through liquid-liquid phase separation (LLPS) have emerged as a growing area of research. Despite valuable contributions of prior research, there is untapped potential in exploring the influence of phase separation on the conformational dynamics and enzymatic activities of native proteins. Herein, we investigate the LLPS of β-lactoglobulin (β-LG), a non-intrinsically disordered protein, under crowded conditions. In-depth characterization through spectroscopic and microscopic techniques revealed the formation of dynamic liquid-like droplets, distinct from protein aggregates, driven by hydrophobic interactions. Our analyses revealed that phase separation can alter structural flexibility and photophysical properties. Importantly, the phase-separated β-LG exhibited efficient enzymatic activity as an esterase; a characteristic seemingly exclusive to β-LG droplets. The droplets acted as robust catalytic crucibles, providing an ideal environment for efficient ester hydrolysis. Further investigation into the catalytic mechanism suggested the involvement of specific amino acid residues, rather than general acid or base catalysis. Also, the alteration in conformational distribution caused by phase separation unveils the latent functionality. Our study delineates the understanding of protein phase separation and insights into the diverse catalytic strategies employed by proteins. It opens exciting possibilities for designing functional artificial compartments based on phase-separated biomolecules.
Collapse
Affiliation(s)
- Saurabh Rai
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road Bhopal 462066 Madhya Pradesh India
| | - Srikrishna Pramanik
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road Bhopal 462066 Madhya Pradesh India
| | - Saptarshi Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road Bhopal 462066 Madhya Pradesh India
| |
Collapse
|
11
|
Eltayeb A, Al-Sarraj F, Alharbi M, Albiheyri R, Mattar EH, Abu Zeid IM, Bouback TA, Bamagoos A, Uversky VN, Rubio-Casillas A, Redwan EM. Intrinsic factors behind long COVID: IV. Hypothetical roles of the SARS-CoV-2 nucleocapsid protein and its liquid-liquid phase separation. J Cell Biochem 2024; 125:e30530. [PMID: 38349116 DOI: 10.1002/jcb.30530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/10/2024] [Accepted: 01/24/2024] [Indexed: 03/12/2024]
Abstract
When the SARS-CoV-2 virus infects humans, it leads to a condition called COVID-19 that has a wide spectrum of clinical manifestations, from no symptoms to acute respiratory distress syndrome. The virus initiates damage by attaching to the ACE-2 protein on the surface of endothelial cells that line the blood vessels and using these cells as hosts for replication. Reactive oxygen species levels are increased during viral replication, which leads to oxidative stress. About three-fifths (~60%) of the people who get infected with the virus eradicate it from their body after 28 days and recover their normal activity. However, a large fraction (~40%) of the people who are infected with the virus suffer from various symptoms (anosmia and/or ageusia, fatigue, cough, myalgia, cognitive impairment, insomnia, dyspnea, and tachycardia) beyond 12 weeks and are diagnosed with a syndrome called long COVID. Long-term clinical studies in a group of people who contracted SARS-CoV-2 have been contrasted with a noninfected matched group of people. A subset of infected people can be distinguished by a set of cytokine markers to have persistent, low-grade inflammation and often self-report two or more bothersome symptoms. No medication can alleviate their symptoms efficiently. Coronavirus nucleocapsid proteins have been investigated extensively as potential drug targets due to their key roles in virus replication, among which is their ability to bind their respective genomic RNAs for incorporation into emerging virions. This review highlights basic studies of the nucleocapsid protein and its ability to undergo liquid-liquid phase separation. We hypothesize that this ability of the nucleocapsid protein for phase separation may contribute to long COVID. This hypothesis unlocks new investigation angles and could potentially open novel avenues for a better understanding of long COVID and treating this condition.
Collapse
Affiliation(s)
- Ahmed Eltayeb
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Faisal Al-Sarraj
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mona Alharbi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Raed Albiheyri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Immunology Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ehab H Mattar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Isam M Abu Zeid
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Thamer A Bouback
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Atif Bamagoos
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Moscow Region, Russia
| | - Alberto Rubio-Casillas
- Autlan Regional Hospital, Health Secretariat, Autlan, Jalisco, Mexico
- Biology Laboratory, Autlan Regional Preparatory School, University of Guadalajara, Autlan, Jalisco, Mexico
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
12
|
Yamaguchi T, Chong SH, Yoshida N. Coexistence of two coacervate phases of polyglycine in water suggested by polymer reference interaction site model theory. J Chem Phys 2023; 159:245101. [PMID: 38131487 DOI: 10.1063/5.0185157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023] Open
Abstract
Mixing Gibbs energy and phase equilibria of aqueous solutions of polyglycine were studied theoretically by means of polymer reference interaction site model integral equation theory combined with the Gibbs-Duhem method. In addition to the ordinary liquid-liquid phase separation between dilute and concentrated solutions, the theoretical calculation predicted the coexistence of two coacervate phases, namely, the lower- and higher-density coacervates. The relative thermodynamic stabilities of these two phases change with the polymerization degree of polyglycine. The higher-density coacervate phase was rapidly stabilized by increasing the polymer length, and the lower-density phase became metastable at large polymers. The hydrogen bonds between the peptide chains were strengthened, and water was thermodynamically destabilized in the higher-density coacervate. A possible relation with the formation of amyloid fibril within a liquid droplet is also discussed.
Collapse
Affiliation(s)
- Tsuyoshi Yamaguchi
- Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8603, Japan
| | - Song-Ho Chong
- Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, Oe-honmachi 5-1, Chuo-ku, Kumamoto 862-0973, Japan
| | - Norio Yoshida
- Graduate School of Informatics, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| |
Collapse
|
13
|
Sołtys K, Tarczewska A, Bystranowska D. Modulation of biomolecular phase behavior by metal ions. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119567. [PMID: 37582439 DOI: 10.1016/j.bbamcr.2023.119567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/17/2023]
Abstract
Liquid-liquid phase separation (LLPS) appears to be a newly appreciated aspect of the cellular organization of biomolecules that leads to the formation of membraneless organelles (MLOs). MLOs generate distinct microenvironments where particular biomolecules are highly concentrated compared to those in the surrounding environment. Their thermodynamically driven formation is reversible, and their liquid nature allows them to fuse with each other. Dysfunctional biomolecular condensation is associated with human diseases. Pathological states of MLOs may originate from the mutation of proteins or may be induced by other factors. In most aberrant MLOs, transient interactions are replaced by stronger and more rigid interactions, preventing their dissolution, and causing their uncontrolled growth and dysfunction. For these reasons, there is great interest in identifying factors that modulate LLPS. In this review, we discuss an enigmatic and mostly unexplored aspect of this process, namely, the regulatory effects of metal ions on the phase behavior of biomolecules.
Collapse
Affiliation(s)
- Katarzyna Sołtys
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Aneta Tarczewska
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Dominika Bystranowska
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
14
|
Guo Q, Jing Y, Gao Y, Liu Y, Fang X, Lin R. The PIF1/PIF3-MED25-HDA19 transcriptional repression complex regulates phytochrome signaling in Arabidopsis. THE NEW PHYTOLOGIST 2023; 240:1097-1115. [PMID: 37606175 DOI: 10.1111/nph.19205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/25/2023] [Indexed: 08/23/2023]
Abstract
Light signals are perceived by photoreceptors, triggering the contrasting developmental transition in dark-germinated seedlings. Phytochrome-interacting factors (PIFs) are key regulators of this transition. Despite their prominent functions in transcriptional activation, little is known about PIFs' roles in transcriptional repression. Here, we provide evidence that histone acetylation is involved in regulating phytochrome-PIFs signaling in Arabidopsis. The histone deacetylase HDA19 interacts and forms a complex with PIF1 and PIF3 and the Mediator subunit MED25. The med25/hda19 double mutant mimics and enhances the phenotype of pif1/pif3 in both light and darkness. HDA19 and MED25 are recruited by PIF1/PIF3 to the target loci to reduce histone acetylation and chromatin accessibility, providing a mechanism for PIF1/PIF3-mediated transcriptional repression. Furthermore, MED25 forms liquid-like condensates, which can compartmentalize PIF1/PIF3 and HDA19 in vitro and in vivo, and the number of MED25 puncta increases in darkness. Collectively, our study establishes a mechanism wherein PIF1/PIF3 interact with HDA19 and MED25 to mediate transcriptional repression in the phytochrome signaling pathway and suggests that condensate formation with Mediator may explain the distinct and specific transcriptional activity of PIF proteins.
Collapse
Affiliation(s)
- Qiang Guo
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanjun Jing
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yuan Gao
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yitong Liu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaofeng Fang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
15
|
Snyder A, Ryan VH, Hawrot J, Lawton S, Ramos DM, Qi YA, Johnson K, Reed X, Johnson NL, Kollasch AW, Duffy M, VandeVrede L, Cochran JN, Miller BL, Toro C, Bielekova B, Yokoyama JS, Marks DS, Kwan JY, Cookson MR, Ward ME. An ANXA11 P93S variant dysregulates TDP-43 and causes corticobasal syndrome. RESEARCH SQUARE 2023:rs.3.rs-3462973. [PMID: 37886540 PMCID: PMC10602153 DOI: 10.21203/rs.3.rs-3462973/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
As genetic testing has become more accessible and affordable, variants of uncertain significance (VUS) are increasingly identified, and determining whether these variants play causal roles in disease is a major challenge. The known disease-associated Annexin A11 (ANXA11) mutations result in ANXA11 aggregation, alterations in lysosomal-RNA granule co-trafficking, and TDP-43 mis-localization and present as amyotrophic lateral sclerosis or frontotemporal dementia. We identified a novel VUS in ANXA11 (P93S) in a kindred with corticobasal syndrome and unique radiographic features that segregated with disease. We then queried neurodegenerative disorder clinic databases to identify the phenotypic spread of ANXA11 mutations. Multi-modal computational analysis of this variant was performed and the effect of this VUS on ANXA11 function and TDP-43 biology was characterized in iPSC-derived neurons. Single-cell sequencing and proteomic analysis of iPSC-derived neurons and microglia were used to determine the multiomic signature of this VUS. Mutations in ANXA11 were found in association with clinically diagnosed corticobasal syndrome, thereby establishing corticobasal syndrome as part of ANXA11 clinical spectrum. In iPSC-derived neurons expressing mutant ANXA11, we found decreased colocalization of lysosomes and decreased neuritic RNA as well as decreased nuclear TDP-43 and increased formation of cryptic exons compared to controls. Multiomic assessment of the P93S variant in iPSC-derived neurons and microglia indicates that the pathogenic omic signature in neurons is modest compared to microglia. Additionally, omic studies reveal that immune dysregulation and interferon signaling pathways in microglia are central to disease. Collectively, these findings identify a new pathogenic variant in ANXA11, expand the range of clinical syndromes caused by ANXA11 mutations, and implicate both neuronal and microglia dysfunction in ANXA11 pathophysiology. This work illustrates the potential for iPSC-derived cellular models to revolutionize the variant annotation process and provides a generalizable approach to determining causality of novel variants across genes.
Collapse
Affiliation(s)
- Allison Snyder
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke
| | - Veronica H Ryan
- Center for Alzheimer's and Related Dementias, National Institutes of Health
| | - James Hawrot
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke
| | - Sydney Lawton
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke
| | - Daniel M Ramos
- Center for Alzheimer's and Related Dementias, National Institutes of Health
| | - Y Andy Qi
- Center for Alzheimer's and Related Dementias, National Institutes of Health
| | - Kory Johnson
- Intramural Bioinformatics, National Institute of Neurological Disorders and Stroke
| | - Xylena Reed
- Center for Alzheimer's and Related Dementias, National Institutes of Health
| | | | | | - Megan Duffy
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging
| | - Lawren VandeVrede
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco
| | | | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco
| | - Camilo Toro
- Undiagnosed Diseases Program, National Human Genome Research Institute
| | - Bibiana Bielekova
- Neuroimmunological Diseases Section, National Institute of Allergy and Infectious Disease
| | - Jennifer S Yokoyama
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco
| | - Debora S Marks
- Department of Systems Biology, Harvard Medical School, Boston
| | - Justin Y Kwan
- Office of the Clinical Director, National Institute of Neurological Disorders and Stroke
| | - Mark R Cookson
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging
| | - Michael E Ward
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke
| |
Collapse
|
16
|
Qin C, Wang YL, Zhou JY, Shi J, Zhao WW, Zhu YX, Bai SM, Feng LL, Bie SY, Zeng B, Zheng J, Zeng GD, Feng WX, Wan XB, Fan XJ. RAP80 phase separation at DNA double-strand break promotes BRCA1 recruitment. Nucleic Acids Res 2023; 51:9733-9747. [PMID: 37638744 PMCID: PMC10570032 DOI: 10.1093/nar/gkad686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 07/29/2023] [Accepted: 08/17/2023] [Indexed: 08/29/2023] Open
Abstract
RAP80 has been characterized as a component of the BRCA1-A complex and is responsible for the recruitment of BRCA1 to DNA double-strand breaks (DSBs). However, we and others found that the recruitment of RAP80 and BRCA1 were not absolutely temporally synchronized, indicating that other mechanisms, apart from physical interaction, might be implicated. Recently, liquid-liquid phase separation (LLPS) has been characterized as a novel mechanism for the organization of key signaling molecules to drive their particular cellular functions. Here, we characterized that RAP80 LLPS at DSB was required for RAP80-mediated BRCA1 recruitment. Both cellular and in vitro experiments showed that RAP80 phase separated at DSB, which was ascribed to a highly disordered region (IDR) at its N-terminal. Meanwhile, the Lys63-linked poly-ubiquitin chains that quickly formed after DSBs occur, strongly enhanced RAP80 phase separation and were responsible for the induction of RAP80 condensation at the DSB site. Most importantly, abolishing the condensation of RAP80 significantly suppressed the formation of BRCA1 foci, encovering a pivotal role of RAP80 condensates in BRCA1 recruitment and radiosensitivity. Together, our study disclosed a new mechanism underlying RAP80-mediated BRCA1 recruitment, which provided new insight into the role of phase separation in DSB repair.
Collapse
Affiliation(s)
- Caolitao Qin
- Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Yun-Long Wang
- Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Jin-Ying Zhou
- Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jie Shi
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Wan-Wen Zhao
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Ya-Xi Zhu
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Shao-Mei Bai
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Li-Li Feng
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510655, P.R. China
| | - Shu-Ying Bie
- Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Bing Zeng
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
- Department of Gastroenterology, Hernia and Abdominal Wall Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Jian Zheng
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Guang-Dong Zeng
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Wei-Xing Feng
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Xiang-Bo Wan
- Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Xin-Juan Fan
- Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| |
Collapse
|
17
|
Belli V, Maiello D, Di Lorenzo C, Furia M, Vicidomini R, Turano M. New Insights into Dyskerin-CypA Interaction: Implications for X-Linked Dyskeratosis Congenita and Beyond. Genes (Basel) 2023; 14:1766. [PMID: 37761906 PMCID: PMC10531313 DOI: 10.3390/genes14091766] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/27/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
The highly conserved family of cyclophilins comprises multifunctional chaperones that interact with proteins and RNAs, facilitating the dynamic assembly of multimolecular complexes involved in various cellular processes. Cyclophilin A (CypA), the predominant member of this family, exhibits peptidyl-prolyl cis-trans isomerase activity. This enzymatic function aids with the folding and activation of protein structures and often serves as a molecular regulatory switch for large multimolecular complexes, ensuring appropriate inter- and intra-molecular interactions. Here, we investigated the involvement of CypA in the nucleus, where it plays a crucial role in supporting the assembly and trafficking of heterogeneous ribonucleoproteins (RNPs). We reveal that CypA is enriched in the nucleolus, where it colocalizes with the pseudouridine synthase dyskerin, the catalytic component of the multifunctional H/ACA RNPs involved in the modification of cellular RNAs and telomere stability. We show that dyskerin, whose mutations cause the X-linked dyskeratosis (X-DC) and the Hoyeraal-Hreidarsson congenital ribosomopathies, can directly interact with CypA. These findings, together with the remark that substitution of four dyskerin prolines are known to cause X-DC pathogenic mutations, lead us to indicate this protein as a CypA client. The data presented here suggest that this chaperone can modulate dyskerin activity influencing all its partecipated RNPs.
Collapse
Affiliation(s)
- Valentina Belli
- Istituto Nazionale Tumori—IRCSS—Fondazione G. Pascale, 80131 Naples, Italy;
| | - Daniela Maiello
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (D.M.); (C.D.L.); (M.F.)
| | - Concetta Di Lorenzo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (D.M.); (C.D.L.); (M.F.)
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Maria Furia
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (D.M.); (C.D.L.); (M.F.)
| | - Rosario Vicidomini
- Section on Cellular Communication, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Mimmo Turano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (D.M.); (C.D.L.); (M.F.)
| |
Collapse
|
18
|
Basalla JL, Mak CA, Byrne JA, Ghalmi M, Hoang Y, Vecchiarelli AG. Dissecting the phase separation and oligomerization activities of the carboxysome positioning protein McdB. eLife 2023; 12:e81362. [PMID: 37668016 PMCID: PMC10554743 DOI: 10.7554/elife.81362] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/01/2023] [Indexed: 09/06/2023] Open
Abstract
Across bacteria, protein-based organelles called bacterial microcompartments (BMCs) encapsulate key enzymes to regulate their activities. The model BMC is the carboxysome that encapsulates enzymes for CO2 fixation to increase efficiency and is found in many autotrophic bacteria, such as cyanobacteria. Despite their importance in the global carbon cycle, little is known about how carboxysomes are spatially regulated. We recently identified the two-factor system required for the maintenance of carboxysome distribution (McdAB). McdA drives the equal spacing of carboxysomes via interactions with McdB, which associates with carboxysomes. McdA is a ParA/MinD ATPase, a protein family well studied in positioning diverse cellular structures in bacteria. However, the adaptor proteins like McdB that connect these ATPases to their cargos are extremely diverse. In fact, McdB represents a completely unstudied class of proteins. Despite the diversity, many adaptor proteins undergo phase separation, but functional roles remain unclear. Here, we define the domain architecture of McdB from the model cyanobacterium Synechococcus elongatus PCC 7942, and dissect its mode of biomolecular condensate formation. We identify an N-terminal intrinsically disordered region (IDR) that modulates condensate solubility, a central coiled-coil dimerizing domain that drives condensate formation, and a C-terminal domain that trimerizes McdB dimers and provides increased valency for condensate formation. We then identify critical basic residues in the IDR, which we mutate to glutamines to solubilize condensates. Finally, we find that a condensate-defective mutant of McdB has altered association with carboxysomes and influences carboxysome enzyme content. The results have broad implications for understanding spatial organization of BMCs and the molecular grammar of protein condensates.
Collapse
Affiliation(s)
- Joseph L Basalla
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Claudia A Mak
- Department of Biological Chemistry, University of Michigan-Ann ArborAnn ArborUnited States
| | - Jordan A Byrne
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Maria Ghalmi
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Y Hoang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States
| | - Anthony G Vecchiarelli
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan-Ann ArborAnn ArborUnited States
| |
Collapse
|
19
|
Manyilov VD, Ilyinsky NS, Nesterov SV, Saqr BMGA, Dayhoff GW, Zinovev EV, Matrenok SS, Fonin AV, Kuznetsova IM, Turoverov KK, Ivanovich V, Uversky VN. Chaotic aging: intrinsically disordered proteins in aging-related processes. Cell Mol Life Sci 2023; 80:269. [PMID: 37634152 PMCID: PMC11073068 DOI: 10.1007/s00018-023-04897-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/03/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023]
Abstract
The development of aging is associated with the disruption of key cellular processes manifested as well-established hallmarks of aging. Intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs) have no stable tertiary structure that provide them a power to be configurable hubs in signaling cascades and regulate many processes, potentially including those related to aging. There is a need to clarify the roles of IDPs/IDRs in aging. The dataset of 1702 aging-related proteins was collected from established aging databases and experimental studies. There is a noticeable presence of IDPs/IDRs, accounting for about 36% of the aging-related dataset, which is however less than the disorder content of the whole human proteome (about 40%). A Gene Ontology analysis of the used here aging proteome reveals an abundance of IDPs/IDRs in one-third of aging-associated processes, especially in genome regulation. Signaling pathways associated with aging also contain IDPs/IDRs on different hierarchical levels, revealing the importance of "structure-function continuum" in aging. Protein-protein interaction network analysis showed that IDPs present in different clusters associated with different aging hallmarks. Protein cluster with IDPs enrichment has simultaneously high liquid-liquid phase separation (LLPS) probability, "nuclear" localization and DNA-associated functions, related to aging hallmarks: genomic instability, telomere attrition, epigenetic alterations, and stem cells exhaustion. Intrinsic disorder, LLPS, and aggregation propensity should be considered as features that could be markers of pathogenic proteins. Overall, our analyses indicate that IDPs/IDRs play significant roles in aging-associated processes, particularly in the regulation of DNA functioning. IDP aggregation, which can lead to loss of function and toxicity, could be critically harmful to the cell. A structure-based analysis of aging and the identification of proteins that are particularly susceptible to disturbances can enhance our understanding of the molecular mechanisms of aging and open up new avenues for slowing it down.
Collapse
Affiliation(s)
- Vladimir D Manyilov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Institutskiy Pereulok, 9, Dolgoprudny, 141700, Russia
| | - Nikolay S Ilyinsky
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Institutskiy Pereulok, 9, Dolgoprudny, 141700, Russia.
| | - Semen V Nesterov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Institutskiy Pereulok, 9, Dolgoprudny, 141700, Russia
- Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, 194064, Russia
| | - Baraa M G A Saqr
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Institutskiy Pereulok, 9, Dolgoprudny, 141700, Russia
| | - Guy W Dayhoff
- Department of Chemistry, University of South Florida, Tampa, FL, USA
| | - Egor V Zinovev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Institutskiy Pereulok, 9, Dolgoprudny, 141700, Russia
| | - Simon S Matrenok
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Institutskiy Pereulok, 9, Dolgoprudny, 141700, Russia
| | - Alexander V Fonin
- Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, 194064, Russia
| | - Irina M Kuznetsova
- Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, 194064, Russia
| | | | - Valentin Ivanovich
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Institutskiy Pereulok, 9, Dolgoprudny, 141700, Russia
| | - Vladimir N Uversky
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Institutskiy Pereulok, 9, Dolgoprudny, 141700, Russia.
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC07, Tampa, FL, 33612, USA.
| |
Collapse
|
20
|
Viola G, Floriani F, Barracchia CG, Munari F, D'Onofrio M, Assfalg M. Ultrasmall Gold Nanoparticles as Clients of Biomolecular Condensates. Chemistry 2023; 29:e202301274. [PMID: 37293933 DOI: 10.1002/chem.202301274] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/29/2023] [Accepted: 06/09/2023] [Indexed: 06/10/2023]
Abstract
Liquid-liquid phase separation (LLPS) of biopolymers to form condensates is a widespread phenomenon in living cells. Agents that target or alter condensation can help uncover elusive physiological and pathological mechanisms. Owing to their unique material properties and modes of interaction with biomolecules, nanoparticles represent attractive condensate-targeting agents. Our work focused on elucidating the interaction between ultrasmall gold nanoparticles (usGNPs) and diverse types of condensates of tau, a representative phase-separating protein associated with neurodegenerative disorders. usGNPs attract considerable interest in the biomedical community due to unique features, including emergent optical properties and good cell penetration. We explored the interaction of usGNPs with reconstituted self-condensates of tau, two-component tau/polyanion and three-component tau/RNA/alpha-synuclein coacervates. The usGNPs were found to concentrate into condensed liquid droplets, consistent with the formation of dynamic client (nanoparticle) - scaffold (tau) interactions, and were observable thanks to their intrinsic luminescence. Furthermore, usGNPs were capable to promote LLPS of a protein domain which is unable to phase separate on its own. Our study demonstrates the ability of usGNPs to interact with and illuminate protein condensates. We anticipate that nanoparticles will have broad applicability as nanotracers to interrogate phase separation, and as nanoactuators controlling the formation and dissolution of condensates.
Collapse
Affiliation(s)
- Giovanna Viola
- Department of Biotechnology, University of Verona, 37134, Verona, Italy
| | - Fulvio Floriani
- Department of Biotechnology, University of Verona, 37134, Verona, Italy
| | | | - Francesca Munari
- Department of Biotechnology, University of Verona, 37134, Verona, Italy
| | | | - Michael Assfalg
- Department of Biotechnology, University of Verona, 37134, Verona, Italy
| |
Collapse
|
21
|
Ramirez DA, Hough LE, Shirts MR. Coiled-coil domains are sufficient to drive liquid-liquid phase separation of proteins in molecular models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.31.543124. [PMID: 37398035 PMCID: PMC10312653 DOI: 10.1101/2023.05.31.543124] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Liquid-liquid phase separation (LLPS) is thought to be a main driving force in the formation of membraneless organelles. Examples of such organelles include the centrosome, central spindle, and stress granules. Recently, it has been shown that coiled-coil (CC) proteins, such as the centrosomal proteins pericentrin, spd-5, and centrosomin, might be capable of LLPS. CC domains have physical features that could make them the drivers of LLPS, but it is unknown if they play a direct role in the process. We developed a coarse-grained simulation framework for investigating the LLPS propensity of CC proteins, in which interactions which support LLPS arise solely from CC domains. We show, using this framework, that the physical features of CC domains are sufficient to drive LLPS of proteins. The framework is specifically designed to investigate how the number of CC domains, as well as multimerization state of CC domains, can affect LLPS. We show that small model proteins with as few as two CC domains can phase separate. Increasing the number of CC domains up to four per protein can somewhat increase LLPS propensity. We demonstrate that trimer-forming and tetramer-forming CC domains have a dramatically higher LLPS propensity than dimer-forming coils, which shows that multimerization state has a greater effect on LLPS than the number of CC domains per protein. These data support the hypothesis of CC domains as drivers of protein LLPS, and has implications in future studies to identify the LLPS-driving regions of centrosomal and central spindle proteins.
Collapse
Affiliation(s)
| | - Loren E. Hough
- Department of Physics and BioFrontiers Institute, University of Colorado Boulder, Boulder CO, 80309
| | - Michael R. Shirts
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder CO, 80309
| |
Collapse
|
22
|
McGregor LA, Deckard CE, Smolen JA, Porter GM, Sczepanski JT. Thymine DNA glycosylase mediates chromatin phase separation in a DNA methylation-dependent manner. J Biol Chem 2023; 299:104907. [PMID: 37307918 PMCID: PMC10404674 DOI: 10.1016/j.jbc.2023.104907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 06/14/2023] Open
Abstract
Thymine DNA glycosylase (TDG) is an essential enzyme involved in numerous biological pathways, including DNA repair, DNA demethylation, and transcriptional activation. Despite these important functions, the mechanisms surrounding the actions and regulation of TDG are poorly understood. In this study, we demonstrate that TDG induces phase separation of DNA and nucleosome arrays under physiologically relevant conditions in vitro and show that the resulting chromatin droplets exhibited behaviors typical of phase-separated liquids, supporting a liquid-liquid phase separation model. We also provide evidence that TDG has the capacity to form phase-separated condensates in the cell nucleus. The ability of TDG to induce chromatin phase separation is dependent on its intrinsically disordered N- and C-terminal domains, which in isolation, promote the formation of chromatin-containing droplets having distinct physical properties, consistent with their unique mechanistic roles in the phase separation process. Interestingly, DNA methylation alters the phase behavior of the disordered domains of TDG and compromises formation of chromatin condensates by full-length TDG, indicating that DNA methylation regulates the assembly and coalescence of TDG-mediated condensates. Overall, our results shed new light on the formation and physical nature of TDG-mediated chromatin condensates, which have broad implications for the mechanism and regulation of TDG and its associated genomic processes.
Collapse
Affiliation(s)
- Lauren A McGregor
- Department of Chemistry, Texas A&M University, College Station, Texas, USA
| | - Charles E Deckard
- Department of Chemistry, Texas A&M University, College Station, Texas, USA
| | - Justin A Smolen
- Department of Chemistry, Texas A&M University, College Station, Texas, USA
| | - Gabriela M Porter
- Department of Chemistry, Texas A&M University, College Station, Texas, USA
| | | |
Collapse
|
23
|
Joosten J, van Sluijs B, Vree Egberts W, Emmaneel M, W T C Jansen P, Vermeulen M, Boelens W, Bonger KM, Spruijt E. Dynamics and composition of small heat shock protein condensates and aggregates. J Mol Biol 2023; 435:168139. [PMID: 37146746 DOI: 10.1016/j.jmb.2023.168139] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/07/2023]
Abstract
Small heat shock proteins (sHSPs) are essential ATP-independent chaperones that protect the cellular proteome. These proteins assemble into polydisperse oligomeric structures, the composition of which dramatically affects their chaperone activity. The biomolecular consequences of variations in sHSP ratios, especially inside living cells, remain elusive. Here, we study the consequences of altering the relative expression levels of HspB2 and HspB3 in HEK293T cells. These chaperones are partners in a hetero-oligomeric complex, and genetic mutations that abolish their mutual interaction are associated with myopathic disorders. HspB2 displays three distinct phenotypes when co-expressed with HspB3 at varying ratios. Expression of HspB2 alone leads to formation of liquid nuclear condensates, while shifting the stoichiometry towards HspB3 resulted in the formation of large solid-like aggregates. Only cells co-expressing HspB2 with a limited amount of HspB3 formed fully soluble complexes that were distributed homogeneously throughout the nucleus. Strikingly, both condensates and aggregates were reversible, as shifting the HspB2:HspB3 balance in situ resulted in dissolution of these structures. To uncover the molecular composition of HspB2 condensates and aggregates, we used APEX-mediated proximity labelling. Most proteins interact transiently with the condensates and were neither enriched nor depleted in these cells. In contrast, we found that HspB2:HspB3 aggregates sequestered several disordered proteins and autophagy factors, suggesting that the cell is actively attempting to clear these aggregates. This study presents a striking example of how changes in the relative expression levels of interacting proteins affects their phase behavior. Our approach could be applied to study the role of protein stoichiometry and the influence of client binding on phase behavior in other biomolecular condensates and aggregates.
Collapse
Affiliation(s)
- Joep Joosten
- Biomolecular Chemistry, Radboud University Institute for Molecular and Materials, Nijmegen, the Netherlands; Physical Organic Chemistry, Radboud University Institute for Molecular and Materials, Nijmegen, the Netherlands; Synthetic Organic Chemistry, Radboud University Institute for Molecular and Materials, the Netherlands.
| | - Bob van Sluijs
- Physical Organic Chemistry, Radboud University Institute for Molecular and Materials, Nijmegen, the Netherlands
| | - Wilma Vree Egberts
- Biomolecular Chemistry, Radboud University Institute for Molecular and Materials, Nijmegen, the Netherlands
| | - Martin Emmaneel
- Biomolecular Chemistry, Radboud University Institute for Molecular and Materials, Nijmegen, the Netherlands
| | - Pascal W T C Jansen
- Molecular Biology, Radboud University Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Michiel Vermeulen
- Molecular Biology, Radboud University Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Wilbert Boelens
- Biomolecular Chemistry, Radboud University Institute for Molecular and Materials, Nijmegen, the Netherlands
| | - Kimberly M Bonger
- Synthetic Organic Chemistry, Radboud University Institute for Molecular and Materials, the Netherlands
| | - Evan Spruijt
- Physical Organic Chemistry, Radboud University Institute for Molecular and Materials, Nijmegen, the Netherlands
| |
Collapse
|
24
|
Di Nunzio F, Uversky VN, Mouland AJ. Biomolecular condensates: insights into early and late steps of the HIV-1 replication cycle. Retrovirology 2023; 20:4. [PMID: 37029379 PMCID: PMC10081342 DOI: 10.1186/s12977-023-00619-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/16/2023] [Indexed: 04/09/2023] Open
Abstract
A rapidly evolving understanding of phase separation in the biological and physical sciences has led to the redefining of virus-engineered replication compartments in many viruses with RNA genomes. Condensation of viral, host and genomic and subgenomic RNAs can take place to evade the innate immunity response and to help viral replication. Divergent viruses prompt liquid-liquid phase separation (LLPS) to invade the host cell. During HIV replication there are several steps involving LLPS. In this review, we characterize the ability of individual viral and host partners that assemble into biomolecular condensates (BMCs). Of note, bioinformatic analyses predict models of phase separation in line with several published observations. Importantly, viral BMCs contribute to function in key steps retroviral replication. For example, reverse transcription takes place within nuclear BMCs, called HIV-MLOs while during late replication steps, retroviral nucleocapsid acts as a driver or scaffold to recruit client viral components to aid the assembly of progeny virions. Overall, LLPS during viral infections represents a newly described biological event now appreciated in the virology field, that can also be considered as an alternative pharmacological target to current drug therapies especially when viruses become resistant to antiviral treatment.
Collapse
Affiliation(s)
- Francesca Di Nunzio
- Advanced Molecular Virology Unit, Department of Virology, Institut Pasteur, Université Paris Cité, 75015, Paris, France
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Andrew J Mouland
- Lady Davis Institute at the Jewish General Hospital, Montréal, QC, H3T 1E2, Canada.
- Department of Microbiology and Immunology, McGill University, Montréal, QC, H3A 2B4, Canada.
- Department of Medicine, McGill University, Montréal, QC, H4A 3J1, Canada.
| |
Collapse
|
25
|
Kamagata K, Hando A, Ariefai M, Iwaki N, Kanbayashi S, Koike R, Ikeda K. Rational design of phase separating peptides based on phase separating protein sequence of p53. Sci Rep 2023; 13:5648. [PMID: 37024567 PMCID: PMC10079954 DOI: 10.1038/s41598-023-32632-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
Artificial phase-separating (PS) peptides can be used in various applications such as microreactors and drug delivery; however, the design of artificial PS peptides remains a challenge. This can be attributed to the limitation of PS-relevant residues that drive phase separation by interactions of their pairs in short peptides and the difficulty in the design involving interaction with target PS proteins. In this study, we propose a rational method to design artificial PS peptides that satisfy the requirements of liquid droplet formation and co-phase separation with target PS proteins based on the target PS protein sequence. As a proof of concept, we designed five artificial peptides from the model PS protein p53 using this method and confirmed their PS properties using differential interference contrast and fluorescence microscopy. Single-molecule fluorescent tracking demonstrated rapid diffusion of the designed peptides in their droplets compared to that of p53 in p53 droplets. In addition, size-dependent uptake of p53 oligomers was observed in the designed peptide droplets. Large oligomers were excluded from the droplet voids and localized on the droplet surface. The uptake of high-order p53 oligomers into the droplets was enhanced by the elongated linker of the designed peptides. Furthermore, we found that the designed peptide droplets recruited p53 to suppress gel-like aggregate formation. Finally, we discuss aspects that were crucial in the successful design of the artificial PS peptides.
Collapse
Affiliation(s)
- Kiyoto Kamagata
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan.
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan.
- Department of Chemistry, Faculty of Science, Tohoku University, Sendai, 980-8578, Japan.
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan.
| | - Atsumi Hando
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Maulana Ariefai
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan
- Department of Chemistry, Faculty of Science, Tohoku University, Sendai, 980-8578, Japan
| | - Nanako Iwaki
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan
| | - Saori Kanbayashi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan
| | - Ryotaro Koike
- Graduate School of Informatics, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Keisuke Ikeda
- Department of Biointerface Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| |
Collapse
|
26
|
Kohler V, Andréasson C. Reversible protein assemblies in the proteostasis network in health and disease. Front Mol Biosci 2023; 10:1155521. [PMID: 37021114 PMCID: PMC10067754 DOI: 10.3389/fmolb.2023.1155521] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/09/2023] [Indexed: 04/07/2023] Open
Abstract
While proteins populating their native conformations constitute the functional entities of cells, protein aggregates are traditionally associated with cellular dysfunction, stress and disease. During recent years, it has become clear that large aggregate-like protein condensates formed via liquid-liquid phase separation age into more solid aggregate-like particles that harbor misfolded proteins and are decorated by protein quality control factors. The constituent proteins of the condensates/aggregates are disentangled by protein disaggregation systems mainly based on Hsp70 and AAA ATPase Hsp100 chaperones prior to their handover to refolding and degradation systems. Here, we discuss the functional roles that condensate formation/aggregation and disaggregation play in protein quality control to maintain proteostasis and why it matters for understanding health and disease.
Collapse
Affiliation(s)
- Verena Kohler
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Claes Andréasson
- Department of Molecular Biosciences, Stockholm University, Stockholm, Sweden
| |
Collapse
|
27
|
Burrell A, Marugan-Hernandez V, Graefin Von Der Recke K, Aguiar-Martins K, Gabriel HB, Tomley FM, Vaughan S. Refractile bodies of Eimeria tenella are proteinaceous membrane-less organelles that undergo dynamic changes during infection. Front Cell Infect Microbiol 2023; 13:1082622. [PMID: 37033474 PMCID: PMC10081493 DOI: 10.3389/fcimb.2023.1082622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
IntroductionRefractile bodies (RB) are large membrane-less organelles (MLO) of unknown function found as a prominent mismatched pair within the sporozoite stages of all species of Eimeria, parasitic coccidian protozoa.MethodsHigh resolution imaging methods including time-lapse live confocal microscopy and serial block face-scanning electron microscopy (SBF-SEM) were used to investigate the morphology of RB and other intracellular organelles before and after sporozoite invasion of host cells.ResultsLive cell imaging of MDBK cells infected with E. tenella sporozoites confirmed previous reports that RB reduce from two to one post-infection and showed that reduction in RB number occurs via merger of the anterior RB with the posterior RB, a process that lasts 20-40 seconds and takes place between 2- and 5-hours post-infection. Ultrastructural studies using SBF-SEM on whole individual sporozoites, both pre- and post-host cell invasion, confirmed the live cell imaging observations and showed also that changes to the overall sporozoite cell shape accompanied RB merger. Furthermore, the single RB post-merger was found to be larger in volume than the two RB pre-merger. Actin inhibitors were used to investigate a potential role for actin in RB merger, Cytochalasin D significantly inhibited both RB merger and the accompanying changes in sporozoite cell shape.DiscussionMLOs in eukaryotic organisms are characterised by their lack of a membrane and ability to undergo liquid-liquid phase separation (LLPS) and fusion, usually in an actin-mediated fashion. Based on the changes in sporozoite cell shape observed at the time of RB merger together with a potential role for actin in this process, we propose that RB are classed as an MLO and recognised as one of the largest MLOs so far characterised.
Collapse
Affiliation(s)
- Alana Burrell
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, University of London, North Mymms, United Kingdom
| | - Virginia Marugan-Hernandez
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, University of London, North Mymms, United Kingdom
- *Correspondence: Virginia Marugan-Hernandez, ; Sue Vaughan,
| | - Karolin Graefin Von Der Recke
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, University of London, North Mymms, United Kingdom
| | - Kelsilandia Aguiar-Martins
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, University of London, North Mymms, United Kingdom
| | - Heloisa Berti Gabriel
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Fiona M. Tomley
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, University of London, North Mymms, United Kingdom
| | - Sue Vaughan
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
- *Correspondence: Virginia Marugan-Hernandez, ; Sue Vaughan,
| |
Collapse
|
28
|
Figueiredo AS, Loureiro JR, Macedo-Ribeiro S, Silveira I. Advances in Nucleotide Repeat Expansion Diseases: Transcription Gets in Phase. Cells 2023; 12:826. [PMID: 36980167 PMCID: PMC10047669 DOI: 10.3390/cells12060826] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023] Open
Abstract
Unstable DNA repeat expansions and insertions have been found to cause more than 50 neurodevelopmental, neurodegenerative, and neuromuscular disorders. One of the main hallmarks of repeat expansion diseases is the formation of abnormal RNA or protein aggregates in the neuronal cells of affected individuals. Recent evidence indicates that alterations of the dynamic or material properties of biomolecular condensates assembled by liquid/liquid phase separation are critical for the formation of these aggregates. This is a thermodynamically-driven and reversible local phenomenon that condenses macromolecules into liquid-like compartments responsible for compartmentalizing molecules required for vital cellular processes. Disease-associated repeat expansions modulate the phase separation properties of RNAs and proteins, interfering with the composition and/or the material properties of biomolecular condensates and resulting in the formation of abnormal aggregates. Since several repeat expansions have arisen in genes encoding crucial players in transcription, this raises the hypothesis that wide gene expression dysregulation is common to multiple repeat expansion diseases. This review will cover the impact of these mutations in the formation of aberrant aggregates and how they modify gene transcription.
Collapse
Affiliation(s)
- Ana S. Figueiredo
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal
| | - Joana R. Loureiro
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal
| | - Sandra Macedo-Ribeiro
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal
| | - Isabel Silveira
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
29
|
Abramov VM, Kosarev IV, Machulin AV, Priputnevich TV, Deryusheva EI, Nemashkalova EL, Chikileva IO, Abashina TN, Panin AN, Melnikov VG, Suzina NE, Nikonov IN, Selina MV, Khlebnikov VS, Sakulin VK, Samoilenko VA, Gordeev AB, Sukhikh GT, Uversky VN, Karlyshev AV. Limosilactobacillus fermentum 3872 That Produces Class III Bacteriocin Forms Co-Aggregates with the Antibiotic-Resistant Staphylococcus aureus Strains and Induces Their Lethal Damage. Antibiotics (Basel) 2023; 12:antibiotics12030471. [PMID: 36978338 PMCID: PMC10044573 DOI: 10.3390/antibiotics12030471] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/19/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
LF3872 was isolated from the milk of a healthy lactating and breastfeeding woman. Earlier, the genome of LF3872 was sequenced, and a gene encoding unique bacteriocin was discovered. We have shown here that the LF3872 strain produces a novel thermolabile class III bacteriolysin (BLF3872), exhibiting antimicrobial activity against antibiotic-resistant Staphylococcus aureus strains. Sequence analysis revealed the two-domain structural (lysozyme-like domain and peptidase M23 domain) organization of BLF3872. At least 25% residues of this protein are expected to be intrinsically disordered. Furthermore, BLF3872 is predicted to have a very high liquid-liquid phase separation. According to the electron microscopy data, the bacterial cells of LF3872 strain form co-aggregates with the S. aureus 8325-4 bacterial cells. LF3872 produced bacteriolysin BLF3872 that lyses the cells of the S. aureus 8325-4 mastitis-inducing strain. The sensitivity of the antibiotic-resistant S. aureus collection strains and freshly isolated antibiotic-resistant strains was tested using samples from women with lactation mastitis; the human nasopharynx and oral cavity; the oropharynx of pigs; and the cows with a diagnosis of clinical mastitis sensitive to the lytic action of the LF3872 strain producing BLF3872. The co-cultivation of LF3872 strain with various antibiotic-resistant S. aureus strains for 24 h reduced the level of living cells of these pathogens by six log. The LF3872 strain was found to be able to co-aggregate with all studied S. aureus strains. The cell-free culture supernatant of LF3872 (CSLF3872) induced S. aureus cell damage and ATP leakage. The effectiveness of the bacteriolytic action of LF3872 strain did not depend on the origin of the S. aureus strains. The results reported here are important for the creation of new effective drugs against antibiotic-resistant strains of S. aureus circulating in humans and animals.
Collapse
Affiliation(s)
- Vyacheslav M. Abramov
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia
- Correspondence:
| | - Igor V. Kosarev
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia
| | - Andrey V. Machulin
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Tatiana V. Priputnevich
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia
| | - Evgenia I. Deryusheva
- Institute for Biological Instrumentation, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Ekaterina L. Nemashkalova
- Institute for Biological Instrumentation, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Irina O. Chikileva
- Laboratory of Cell Immunity, Blokhin National Research Center of Oncology, Ministry of Health RF, 115478 Moscow, Russia
| | - Tatiana N. Abashina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Alexander N. Panin
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
| | - Vyacheslav G. Melnikov
- Gabrichevsky Research Institute for Epidemiology and Microbiology, 125212 Moscow, Russia
| | - Nataliya E. Suzina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Ilia N. Nikonov
- Federal State Educational Institution of Higher Professional Education, Moscow State Academy of Veterinary Medicine and Biotechnology named after K.I. Skryabin, 109472 Moscow, Russia
| | - Marina V. Selina
- Federal State Educational Institution of Higher Professional Education, Moscow State Academy of Veterinary Medicine and Biotechnology named after K.I. Skryabin, 109472 Moscow, Russia
| | | | - Vadim K. Sakulin
- Institute of Immunological Engineering, 142380 Lyubuchany, Russia
| | - Vladimir A. Samoilenko
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Alexey B. Gordeev
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia
| | - Gennady T. Sukhikh
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Andrey V. Karlyshev
- Department of Biomolecular Sciences, Faculty of Health, Science, Social Care and Education, Kingston University London, Kingston upon Thames KT1 2EE, UK
| |
Collapse
|
30
|
Félix SS, Laurents DV, Oroz J, Cabrita EJ. Fused in sarcoma undergoes cold denaturation: Implications for phase separation. Protein Sci 2023; 32:e4521. [PMID: 36453011 PMCID: PMC9793971 DOI: 10.1002/pro.4521] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 12/04/2022]
Abstract
The mediation of liquid-liquid phase separation (LLPS) for fused in sarcoma (FUS) protein is generally attributed to the low-complexity, disordered domains and is enhanced at low temperature. The role of FUS folded domains on the LLPS process remains relatively unknown since most studies are mainly based on fragmented FUS domains. Here, we investigate the effect of metabolites on full-length (FL) FUS LLPS using turbidity assays and differential interference contrast (DIC) microscopy, and explore the behavior of the folded domains by nuclear magnetic resonance (NMR) spectroscopy. FL FUS LLPS is maximal at low concentrations of glucose and glutamate, moderate concentrations of NaCl, Zn2+ , and Ca2+ and at the isoelectric pH. The FUS RNA recognition motif (RRM) and zinc-finger (ZnF) domains are found to undergo cold denaturation above 0°C at a temperature that is determined by the conformational stability of the ZnF domain. Cold unfolding exposes buried nonpolar residues that can participate in LLPS-promoting hydrophobic interactions. Therefore, these findings constitute the first evidence that FUS globular domains may have an active role in LLPS under cold stress conditions and in the assembly of stress granules, providing further insight into the environmental regulation of LLPS.
Collapse
Affiliation(s)
- Sara S. Félix
- UCIBIO, Department of ChemistryNOVA School of Science and Technology, Universidade NOVA de LisboaCaparicaPortugal,Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de LisboaCaparicaPortugal,Instituto de Química Física Rocasolano (IQFR), CSICMadridSpain
| | | | - Javier Oroz
- Instituto de Química Física Rocasolano (IQFR), CSICMadridSpain
| | - Eurico J. Cabrita
- UCIBIO, Department of ChemistryNOVA School of Science and Technology, Universidade NOVA de LisboaCaparicaPortugal,Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de LisboaCaparicaPortugal
| |
Collapse
|
31
|
do Amaral MJ, Passos YM, Almeida MS, Pinheiro AS, Cordeiro Y. In Vitro Characterization of Protein:Nucleic Acid Liquid-Liquid Phase Separation by Microscopy Methods and Nanoparticle Tracking Analysis. Methods Mol Biol 2023; 2551:605-631. [PMID: 36310228 DOI: 10.1007/978-1-0716-2597-2_37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Uncontrolled assembly/disassembly of physiologically formed liquid condensates is linked to irreversible aggregation. Hence, the quest for understanding protein-misfolding disease mechanism might lie in the studies of protein:nucleic acid coacervation. Several proteins with intrinsically disordered regions as well as nucleic acids undergo phase separation in the cellular context, and this process is key to physiological signaling and is related to pathologies. Phase separation is reproducible in vitro by mixing the target recombinant protein with specific nucleic acids at various stoichiometric ratios and then examined by microscopy and nanotracking methods presented herein. We describe protocols to qualitatively assess hallmarks of protein-rich condensates, characterize their structure using intrinsic and extrinsic dyes, quantify them, and analyze their morphology over time. Analysis by nanoparticle tracking provides information on the concentration and diameter of high-order protein oligomers formed in the presence of nucleic acid. Using the model protein (globular domain of recombinant murine PrP) and DNA aptamers (high-affinity oligonucleotides with 25 nucleotides in length), we provide examples of a systematic screening of liquid-liquid phase separation in vitro.
Collapse
Affiliation(s)
- Mariana J do Amaral
- Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Yulli M Passos
- Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcius S Almeida
- Protein Advanced Biochemistry, Institute of Medical Biochemistry Leopoldo de Meis and National Center for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anderson S Pinheiro
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Yraima Cordeiro
- Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
32
|
Balu R, Wanasingha N, Mata JP, Rekas A, Barrett S, Dumsday G, Thornton AW, Hill AJ, Roy Choudhury N, Dutta NK. Crowder-directed interactions and conformational dynamics in multistimuli-responsive intrinsically disordered protein. SCIENCE ADVANCES 2022; 8:eabq2202. [PMID: 36542701 PMCID: PMC9770960 DOI: 10.1126/sciadv.abq2202] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
The consequences of crowding on the dynamic conformational ensembles of intrinsically disordered proteins (IDPs) remain unresolved because of their ultrafast motion. Here, we report crowder-induced interactions and conformational dynamics of a prototypical multistimuli-responsive IDP, Rec1-resilin. The effects of a range of crowders of varying sizes, forms, topologies, and concentrations were examined using spectroscopic, spectrofluorimetric, and contrast-matching small- and ultrasmall-angle neutron scattering investigation. To achieve sufficient neutron contrast against the crowders, deuterium-labeled Rec1-resilin was biosynthesized successfully. Moreover, the ab initio "shape reconstruction" approach was used to obtain three-dimensional models of the conformational assemblies. The IDP revealed crowder-specific systematic extension and compaction with the level of macromolecular crowding. Last, a robust extension-contraction model has been postulated to capture the fundamental phenomena governing the observed behavior of IDPs. The study provides insights and fresh perspectives for understanding the interactions and structural dynamics of IDPs in crowded states.
Collapse
Affiliation(s)
- Rajkamal Balu
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Nisal Wanasingha
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Jitendra P. Mata
- Australian Center for Neutron Scattering, ANSTO, Lucas Heights, NSW 2234, Australia
| | - Agata Rekas
- National Deuteration Facility, ANSTO, Lucas Heights, NSW 2234, Australia
| | - Susan Barrett
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC 3168, Australia
| | - Geoff Dumsday
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC 3168, Australia
| | | | - Anita J. Hill
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC 3168, Australia
| | - Namita Roy Choudhury
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Naba K. Dutta
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| |
Collapse
|
33
|
Biological soft matter: intrinsically disordered proteins in liquid-liquid phase separation and biomolecular condensates. Essays Biochem 2022; 66:831-847. [PMID: 36350034 DOI: 10.1042/ebc20220052] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/10/2022]
Abstract
The facts that many proteins with crucial biological functions do not have unique structures and that many biological processes are compartmentalized into the liquid-like biomolecular condensates, which are formed via liquid-liquid phase separation (LLPS) and are not surrounded by the membrane, are revolutionizing the modern biology. These phenomena are interlinked, as the presence of intrinsic disorder represents an important requirement for a protein to undergo LLPS that drives biogenesis of numerous membrane-less organelles (MLOs). Therefore, one can consider these phenomena as crucial constituents of a new IDP-LLPS-MLO field. Furthermore, intrinsically disordered proteins (IDPs), LLPS, and MLOs represent a clear link between molecular and cellular biology and soft matter and condensed soft matter physics. Both IDP and LLPS/MLO fields are undergoing explosive development and generate the ever-increasing mountain of crucial data. These new data provide answers to so many long-standing questions that it is difficult to imagine that in the very recent past, protein scientists and cellular biologists operated without taking these revolutionary concepts into account. The goal of this essay is not to deliver a comprehensive review of the IDP-LLPS-MLO field but to provide a brief and rather subjective outline of some of the recent developments in these exciting fields.
Collapse
|
34
|
Workman RJ, Gorle S, Pettitt BM. Effects of Conformational Constraint on Peptide Solubility Limits. J Phys Chem B 2022; 126:10510-10518. [PMID: 36450134 DOI: 10.1021/acs.jpcb.2c06458] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Liquid-liquid phase separation of proteins preferentially involves intrinsically disordered proteins or disordered regions. Understanding the solution chemistry of these phase separations is key to learning how to quantify and manipulate systems that involve such processes. Here, we investigate the effect of cyclization on the liquid-liquid phase separation of short polyglycine peptides. We simulated separate aqueous systems of supersaturated cyclic and linear GGGGG and observed spontaneous liquid-liquid phase separation in each of the solutions. The cyclic GGGGG phase separates less robustly than linear GGGGG and has a higher aqueous solubility, even though linear GGGGG has a more favorable single molecule solvation free energy. The versatile and abundant interpeptide contacts formed by the linear GGGGG stabilize the condensed droplet phase, driving the phase separation in this system. In particular, we find that van der Waals close contact interactions are enriched in the droplet phase as opposed to electrostatic interactions. An analysis of the change in backbone conformational entropy that accompanies the phase transition revealed that cyclic peptides lose significantly less entropy in this process as expected. However, we find that the enhanced interaction enthalpy of linear GGGGG in the droplet phase is enough to compensate for a larger decrease in conformational entropy.
Collapse
Affiliation(s)
- Riley J Workman
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-0304, United States
| | - Suresh Gorle
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-0304, United States
| | - B Montgomery Pettitt
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-0304, United States
| |
Collapse
|
35
|
Hong Y, Najafi S, Casey T, Shea JE, Han SI, Hwang DS. Hydrophobicity of arginine leads to reentrant liquid-liquid phase separation behaviors of arginine-rich proteins. Nat Commun 2022; 13:7326. [PMID: 36443315 PMCID: PMC9705477 DOI: 10.1038/s41467-022-35001-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/14/2022] [Indexed: 11/29/2022] Open
Abstract
Intrinsically disordered proteins rich in cationic amino acid groups can undergo Liquid-Liquid Phase Separation (LLPS) in the presence of charge-balancing anionic counterparts. Arginine and Lysine are the two most prevalent cationic amino acids in proteins that undergo LLPS, with arginine-rich proteins observed to undergo LLPS more readily than lysine-rich proteins, a feature commonly attributed to arginine's ability to form stronger cation-π interactions with aromatic groups. Here, we show that arginine's ability to promote LLPS is independent of the presence of aromatic partners, and that arginine-rich peptides, but not lysine-rich peptides, display re-entrant phase behavior at high salt concentrations. We further demonstrate that the hydrophobicity of arginine is the determining factor giving rise to the reentrant phase behavior and tunable viscoelastic properties of the dense LLPS phase. Controlling arginine-induced reentrant LLPS behavior using temperature and salt concentration opens avenues for the bioengineering of stress-triggered biological phenomena and drug delivery systems.
Collapse
Affiliation(s)
- Yuri Hong
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Saeed Najafi
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Thomas Casey
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Joan-Emma Shea
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, CA, 93106, USA.
| | - Song-I Han
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, CA, 93106, USA.
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA.
| | - Dong Soo Hwang
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| |
Collapse
|
36
|
Mukherjee P, Panda P, Kasturi P. A comparative meta-analysis of membraneless organelle-associated proteins with age related proteome of C. elegans. Cell Stress Chaperones 2022; 27:619-631. [PMID: 36169889 PMCID: PMC9672229 DOI: 10.1007/s12192-022-01299-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 01/25/2023] Open
Abstract
Proteome imbalance can lead to protein misfolding and aggregation which is associated with pathologies. Protein aggregation can also be an active, organized process and can be exploited by cells as a survival strategy. In adverse conditions, it is beneficial to deposit the proteins in a condensate rather degrading and resynthesizing. Membraneless organelles (MLOs) are biological condensates formed through liquid-liquid phase separation (LLPS), involving cellular components such as nucleic acids and proteins. LLPS is a regulated process, which when perturbed, can undergo a transition from a physiological liquid condensate to pathological solid-like protein aggregates. To understand how the MLO-associated proteins (MLO-APs) behave during aging, we performed a comparative meta-analysis with age-related proteome of C. elegans. We found that the MLO-APs are highly abundant throughout the lifespan in wild-type and long-lived daf-2 mutant animals. Interestingly, they are aggregating more in long-lived mutant animals compared to the age matched wild-type and short-lived daf-16 and hsf-1 mutant animals. GO term analysis revealed that the cell cycle and embryonic development are among the top enriched processes in addition to RNP components in aggregated proteome. Considering antagonistic pleotropic nature of these developmental genes and post mitotic status of C. elegans, we assume that these proteins phase transit during post development. As the organism ages, these MLO-APs either mature to become more insoluble or dissolve in uncontrolled manner. However, in the long-lived daf-2 mutant animals, the MLOs may attain protective states due to extended availability and association of molecular chaperones.
Collapse
Affiliation(s)
- Pritam Mukherjee
- BioX Centre, School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
| | - Prajnadipta Panda
- BioX Centre, School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
| | - Prasad Kasturi
- BioX Centre, School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India.
| |
Collapse
|
37
|
Kamagata K, Ariefai M, Takahashi H, Hando A, Subekti DRG, Ikeda K, Hirano A, Kameda T. Rational peptide design for regulating liquid-liquid phase separation on the basis of residue-residue contact energy. Sci Rep 2022; 12:13718. [PMID: 35962177 PMCID: PMC9374670 DOI: 10.1038/s41598-022-17829-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/01/2022] [Indexed: 12/13/2022] Open
Abstract
Since liquid-liquid phase separation (LLPS) of proteins is governed by their intrinsically disordered regions (IDRs), it can be controlled by LLPS-regulators that bind to the IDRs. The artificial design of LLPS-regulators based on this mechanism can be leveraged in biological and therapeutic applications. However, the fabrication of artificial LLPS-regulators remains challenging. Peptides are promising candidates for artificial LLPS-regulators because of their ability to potentially bind to IDRs complementarily. In this study, we provide a rational peptide design methodology for targeting IDRs based on residue-residue contact energy obtained using molecular dynamics (MD) simulations. This methodology provides rational peptide sequences that function as LLPS regulators. The peptides designed with the MD-based contact energy showed dissociation constants of 35-280 nM for the N-terminal IDR of the tumor suppressor p53, which are significantly lower than the dissociation constants of peptides designed with the conventional 3D structure-based energy, demonstrating the validity of the present peptide design methodology. Importantly, all of the designed peptides enhanced p53 droplet formation. The droplet-forming peptides were converted to droplet-deforming peptides by fusing maltose-binding protein (a soluble tag) to the designed peptides. Thus, the present peptide design methodology for targeting IDRs is useful for regulating droplet formation.
Collapse
Affiliation(s)
- Kiyoto Kamagata
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan. .,Department of Chemistry, Faculty of Science, Tohoku University, Sendai, 980-8578, Japan. .,Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan.
| | - Maulana Ariefai
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan.,Department of Chemistry, Faculty of Science, Tohoku University, Sendai, 980-8578, Japan
| | - Hiroto Takahashi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan
| | - Atsumi Hando
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan.,Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan
| | - Dwiky Rendra Graha Subekti
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan
| | - Keisuke Ikeda
- Department of Biointerface Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Atsushi Hirano
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8565, Japan
| | - Tomoshi Kameda
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Koto, Tokyo, 135-0064, Japan.
| |
Collapse
|
38
|
Gracia P, Polanco D, Tarancón-Díez J, Serra I, Bracci M, Oroz J, Laurents DV, García I, Cremades N. Molecular mechanism for the synchronized electrostatic coacervation and co-aggregation of alpha-synuclein and tau. Nat Commun 2022; 13:4586. [PMID: 35933508 PMCID: PMC9357037 DOI: 10.1038/s41467-022-32350-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 07/26/2022] [Indexed: 01/05/2023] Open
Abstract
Amyloid aggregation of α-synuclein (αS) is the hallmark of Parkinson's disease and other synucleinopathies. Recently, Tau protein, generally associated with Alzheimer's disease, has been linked to αS pathology and observed to co-localize in αS-rich disease inclusions, although the molecular mechanisms for the co-aggregation of both proteins remain elusive. We report here that αS phase-separates into liquid condensates by electrostatic complex coacervation with positively charged polypeptides such as Tau. Condensates undergo either fast gelation or coalescence followed by slow amyloid aggregation depending on the affinity of αS for the poly-cation and the rate of valence exhaustion of the condensate network. By combining a set of advanced biophysical techniques, we have been able to characterize αS/Tau liquid-liquid phase separation and identified key factors that lead to the formation of hetero-aggregates containing both proteins in the interior of the liquid protein condensates.
Collapse
Affiliation(s)
- Pablo Gracia
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, 50018, Zaragoza, Spain
- Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza, 50009, Zaragoza, Spain
| | - David Polanco
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, 50018, Zaragoza, Spain
- Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza, 50009, Zaragoza, Spain
| | - Jorge Tarancón-Díez
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, 50018, Zaragoza, Spain
- Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza, 50009, Zaragoza, Spain
| | - Ilenia Serra
- Department of Condensed Matter Physics, Faculty of Sciences, University of Zaragoza, 50009, Zaragoza, Spain
| | - Maruan Bracci
- Department of Condensed Matter Physics, Faculty of Sciences, University of Zaragoza, 50009, Zaragoza, Spain
| | - Javier Oroz
- "Rocasolano" Institute for Physical Chemistry, CSIC, Serrano 119, Madrid, E-28006, Spain
| | - Douglas V Laurents
- "Rocasolano" Institute for Physical Chemistry, CSIC, Serrano 119, Madrid, E-28006, Spain
| | - Inés García
- Department of Condensed Matter Physics, Faculty of Sciences, University of Zaragoza, 50009, Zaragoza, Spain
- Centro Universitario de la Defensa, Academia General Militar, Ctra. de Huesca s/n, 50090, Zaragoza, Spain
| | - Nunilo Cremades
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, 50018, Zaragoza, Spain.
- Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza, 50009, Zaragoza, Spain.
| |
Collapse
|
39
|
Ishiguro A, Ishihama A. Essential Roles and Risks of G-Quadruplex Regulation: Recognition Targets of ALS-Linked TDP-43 and FUS. Front Mol Biosci 2022; 9:957502. [PMID: 35898304 PMCID: PMC9309350 DOI: 10.3389/fmolb.2022.957502] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/21/2022] [Indexed: 11/26/2022] Open
Abstract
A non-canonical DNA/RNA structure, G-quadruplex (G4), is a unique structure formed by two or more guanine quartets, which associate through Hoogsteen hydrogen bonding leading to form a square planar arrangement. A set of RNA-binding proteins specifically recognize G4 structures and play certain unique physiological roles. These G4-binding proteins form ribonucleoprotein (RNP) through a physicochemical phenomenon called liquid-liquid phase separation (LLPS). G4-containing RNP granules are identified in both prokaryotes and eukaryotes, but extensive studies have been performed in eukaryotes. We have been involved in analyses of the roles of G4-containing RNAs recognized by two G4-RNA-binding proteins, TDP-43 and FUS, which both are the amyotrophic lateral sclerosis (ALS) causative gene products. These RNA-binding proteins play the essential roles in both G4 recognition and LLPS, but they also carry the risk of agglutination. The biological significance of G4-binding proteins is controlled through unique 3D structure of G4, of which the risk of conformational stability is influenced by environmental conditions such as monovalent metals and guanine oxidation.
Collapse
|
40
|
Uversky VN. State without borders: Membrane-less organelles and liquid-liquid phase transitions. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119251. [PMID: 35245612 DOI: 10.1016/j.bbamcr.2022.119251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33620, United States.
| |
Collapse
|
41
|
Structural and Functional Insights into CP2c Transcription Factor Complexes. Int J Mol Sci 2022; 23:ijms23126369. [PMID: 35742810 PMCID: PMC9223585 DOI: 10.3390/ijms23126369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/04/2022] [Accepted: 06/05/2022] [Indexed: 02/04/2023] Open
Abstract
CP2c, also known as TFCP2, α-CP2, LSF, and LBP-1c, is a prototypic member of the transcription factor (TF) CP2 subfamily involved in diverse ubiquitous and tissue/stage-specific cellular processes and in human malignancies including cancer. Despite its importance, many fundamental regulatory mechanisms of CP2c are still unclear. Here, we uncover unprecedented structural and functional aspects of CP2c using DSP crosslinking and Western blot in addition to conventional methods. We found that a monomeric form of a CP2c homotetramer (tCP2c; [C4]) binds to the known CP2c-binding DNA motif (CNRG-N(5~6)-CNRG), whereas a dimeric form of a CP2c, CP2b, and PIAS1 heterohexamer ([C2B2P2]2) binds to the three consecutive CP2c half-sites or two staggered CP2c binding motifs, where the [C4] exerts a pioneering function for recruiting the [C2B2P2]2 to the target. All CP2c exists as a [C4], or as a [C2B2P2]2 or [C2B2P2]4 in the nucleus. Importantly, one additional cytosolic heterotetrameric CP2c and CP2a complex, ([C2A2]), exerts some homeostatic regulation of the nuclear complexes. These data indicate that these findings are essential for the transcriptional regulation of CP2c in cells within relevant timescales, providing clues not only for the transcriptional regulation mechanism by CP2c but also for future therapeutics targeting CP2c function.
Collapse
|
42
|
Zhou C. The Molecular and Functional Interaction Between Membrane-Bound Organelles and Membrane-Less Condensates. Front Cell Dev Biol 2022; 10:896305. [PMID: 35547815 PMCID: PMC9081682 DOI: 10.3389/fcell.2022.896305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/07/2022] [Indexed: 12/15/2022] Open
Abstract
A major recent advance in cell biology is the mechanistic and kinetic understanding of biogenesis of many membrane-less condensates. As membrane-less condensates and membrane-bound organelles are two major approaches used by the eukaryotic cells to organize cellular contents, it is not surprising that these membrane-less condensates interact with the membrane-bound organelles and are dynamically regulated by the cellular signaling, metabolic states, and proteostasis network. In this review, I will discuss recent progress in the biogenesis of membrane-less condensates and their connections with well-studied membrane-bound organelles. Future work will reveal the molecular and functional connectome among different condensates and membrane-bound organelles.
Collapse
Affiliation(s)
- Chuankai Zhou
- Buck Institute for Research on Aging, Novato, CA, United States.,Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
43
|
Structure-dependent recruitment and diffusion of guest proteins in liquid droplets of FUS. Sci Rep 2022; 12:7101. [PMID: 35501371 PMCID: PMC9061845 DOI: 10.1038/s41598-022-11177-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/19/2022] [Indexed: 12/26/2022] Open
Abstract
Liquid droplets of a host protein, formed by liquid–liquid phase separation, recruit guest proteins and provide functional fields. Recruitment into p53 droplets is similar between disordered and folded guest proteins, whereas the diffusion of guest proteins inside droplets depends on their structural types. In this study, to elucidate how the recruitment and diffusion properties of guest proteins are affected by a host protein, we characterized the properties of guest proteins in fused in sarcoma (FUS) droplets using single-molecule fluorescence microscopy in comparison with p53 droplets. Unlike p53 droplets, disordered guest proteins were recruited into FUS droplets more efficiently than folded guest proteins, suggesting physical exclusion of the folded proteins from the small voids of the droplet. The recruitment did not appear to depend on the physical parameters (electrostatic or cation–π) of guests, implying that molecular size exclusion limits intermolecular interaction-assisted uptake. The diffusion of disordered guest proteins was comparable to that of the host FUS, whereas that of folded proteins varied widely, similar to the results for host p53. The scaling exponent of diffusion highlights the molecular sieving of large folded proteins in droplets. Finally, we proposed a molecular recruitment and diffusion model for guest proteins in FUS droplets.
Collapse
|
44
|
Antifeeva IA, Fonin AV, Fefilova AS, Stepanenko OV, Povarova OI, Silonov SA, Kuznetsova IM, Uversky VN, Turoverov KK. Liquid-liquid phase separation as an organizing principle of intracellular space: overview of the evolution of the cell compartmentalization concept. Cell Mol Life Sci 2022; 79:251. [PMID: 35445278 PMCID: PMC11073196 DOI: 10.1007/s00018-022-04276-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/24/2022] [Accepted: 03/27/2022] [Indexed: 12/14/2022]
Abstract
At the turn of the twenty-first century, fundamental changes took place in the understanding of the structure and function of proteins and then in the appreciation of the intracellular space organization. A rather mechanistic model of the organization of living matter, where the function of proteins is determined by their rigid globular structure, and the intracellular processes occur in rigidly determined compartments, was replaced by an idea that highly dynamic and multifunctional "soft matter" lies at the heart of all living things. According this "new view", the most important role in the spatio-temporal organization of the intracellular space is played by liquid-liquid phase transitions of biopolymers. These self-organizing cellular compartments are open dynamic systems existing at the edge of chaos. They are characterized by the exceptional structural and compositional dynamics, and their multicomponent nature and polyfunctionality provide means for the finely tuned regulation of various intracellular processes. Changes in the external conditions can cause a disruption of the biogenesis of these cellular bodies leading to the irreversible aggregation of their constituent proteins, followed by the transition to a gel-like state and the emergence of amyloid fibrils. This work represents a historical overview of changes in our understanding of the intracellular space compartmentalization. It also reflects methodological breakthroughs that led to a change in paradigms in this area of science and discusses modern ideas about the organization of the intracellular space. It is emphasized here that the membrane-less organelles have to combine a certain resistance to the changes in their environment and, at the same time, show high sensitivity to the external signals, which ensures the normal functioning of the cell.
Collapse
Affiliation(s)
- Iuliia A Antifeeva
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Av., 4, St. Petersburg, 194064, Russia
| | - Alexander V Fonin
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Av., 4, St. Petersburg, 194064, Russia
| | - Anna S Fefilova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Av., 4, St. Petersburg, 194064, Russia
| | - Olesya V Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Av., 4, St. Petersburg, 194064, Russia
| | - Olga I Povarova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Av., 4, St. Petersburg, 194064, Russia
| | - Sergey A Silonov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Av., 4, St. Petersburg, 194064, Russia
| | - Irina M Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Av., 4, St. Petersburg, 194064, Russia
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC07, Tampa, FL, 33612, USA.
| | - Konstantin K Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Av., 4, St. Petersburg, 194064, Russia.
| |
Collapse
|
45
|
Liu J, Zhorabek F, Chau Y. Nucleic Acids Modulate Liquidity and Dynamics of Artificial Membraneless Organelles. ACS Macro Lett 2022; 11:562-567. [PMID: 35575335 DOI: 10.1021/acsmacrolett.2c00167] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Liquid-liquid phase separation (LLPS) emerges as a fundamental underlying mechanism for the biological organization, especially the formation of membraneless organelles (MLOs) hosting intrinsically disordered proteins (IDPs) as scaffolds. Nucleic acids are compositional biomacromolecules of MLOs with wide implications in normal cell functions as well as in pathophysiology caused by aberrant phase behavior. Exploiting a minimalist artificial membraneless organelles (AMLO) from LLPS of IDP-mimicking polymer-oligopeptide hybrid (IPH), we investigated the effect of nucleic acids with different lengths and sequence variations on AMLO. The behavior of this AMLO in the presence of DNAs and RNAs resembled natural MLOs in multiple aspects, namely, modulated propensity of formation, morphology, liquidity, and dynamics. Both DNA and RNA could enhance the LLPS of AMLO, while compared with RNA, DNA had a higher tendency to solidify and diminish dynamics thereof. These findings suggest its potential as a concise model system for the understanding of the interaction between nucleic acids and natural MLOs and for studying the molecular mechanism of diseases involving MLOs.
Collapse
Affiliation(s)
- Jianhui Liu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Fariza Zhorabek
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Ying Chau
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
46
|
Kulkarni P, Bhattacharya S, Achuthan S, Behal A, Jolly MK, Kotnala S, Mohanty A, Rangarajan G, Salgia R, Uversky V. Intrinsically Disordered Proteins: Critical Components of the Wetware. Chem Rev 2022; 122:6614-6633. [PMID: 35170314 PMCID: PMC9250291 DOI: 10.1021/acs.chemrev.1c00848] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Despite the wealth of knowledge gained about intrinsically disordered proteins (IDPs) since their discovery, there are several aspects that remain unexplored and, hence, poorly understood. A living cell is a complex adaptive system that can be described as a wetware─a metaphor used to describe the cell as a computer comprising both hardware and software and attuned to logic gates─capable of "making" decisions. In this focused Review, we discuss how IDPs, as critical components of the wetware, influence cell-fate decisions by wiring protein interaction networks to keep them minimally frustrated. Because IDPs lie between order and chaos, we explore the possibility that they can be modeled as attractors. Further, we discuss how the conformational dynamics of IDPs manifests itself as conformational noise, which can potentially amplify transcriptional noise to stochastically switch cellular phenotypes. Finally, we explore the potential role of IDPs in prebiotic evolution, in forming proteinaceous membrane-less organelles, in the origin of multicellularity, and in protein conformation-based transgenerational inheritance of acquired characteristics. Together, these ideas provide a new conceptual framework to discern how IDPs may perform critical biological functions despite their lack of structure.
Collapse
Affiliation(s)
- Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Supriyo Bhattacharya
- Integrative Genomics Core, City of Hope National Medical Center, Duarte, CA, USA
| | - Srisairam Achuthan
- Division of Research Informatics, Center for Informatics, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Amita Behal
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Mohit Kumar Jolly
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Sourabh Kotnala
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Atish Mohanty
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Govindan Rangarajan
- Department of Mathematics, Indian Institute of Science, Bangalore 560012, India
- Center for Neuroscience, Indian Institute of Science, Bangalore 560012, India
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Vladimir Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Institutskiy pereulok, 9, Dolgoprudny, Moscow region 141700, Russia
| |
Collapse
|
47
|
Tenchov R, Zhou QA. Intrinsically Disordered Proteins: Perspective on COVID-19 Infection and Drug Discovery. ACS Infect Dis 2022; 8:422-432. [PMID: 35196007 PMCID: PMC8887652 DOI: 10.1021/acsinfecdis.2c00031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Indexed: 12/23/2022]
Abstract
Since the beginning of the COVID-19 pandemic caused by SARS-CoV-2, millions of patients have been diagnosed and many of them have died from the disease worldwide. The identification of novel therapeutic targets are of utmost significance for prevention and treatment of COVID-19. SARS-CoV-2 is a single-stranded RNA virus with a 30 kb genome packaged into a membrane-enveloped virion, transcribing several tens of proteins. The belief that the amino acid sequence of proteins determines their 3D structure which, in turn, determines their function has been a central principle of molecular biology for a long time. Recently, it has been increasingly realized, however, that there is a large group of proteins that lack a fixed or ordered 3D structure, yet they exhibit important biological activities─so-called intrinsically disordered proteins and protein regions (IDPs/IDRs). Disordered regions in viral proteins are generally associated with viral infectivity and pathogenicity because they endow the viral proteins the ability to easily and promiscuously bind to host proteins; therefore, the proteome of SARS-CoV-2 has been thoroughly examined for intrinsic disorder. It has been recognized that, in fact, the SARS-CoV-2 proteome exhibits significant levels of structural order, with only the nucleocapsid (N) structural protein and two of the nonstructural proteins being highly disordered. The spike (S) protein of SARS-CoV-2 exhibits significant levels of structural order, yet its predicted percentage of intrinsic disorder is still higher than that of the spike protein of SARS-CoV. Noteworthy, however, even though IDPs/IDRs are not common in the SARS-CoV-2 proteome, the existing ones play major roles in the functioning and virulence of the virus and are thus promising drug targets for rational antiviral drug design. Presented here is a COVID-19 perspective on the intrinsically disordered proteins, summarizing recent results on the SARS-CoV-2 proteome disorder features, their physiological and pathological relevance, and their prominence as prospective drug target sites.
Collapse
Affiliation(s)
- Rumiana Tenchov
- CAS, a division of the American Chemical Society,
Columbus, Ohio 43210, United States
| | | |
Collapse
|
48
|
Abstract
RNA-binding proteins (RBPs) are of fundamental importance for post-transcriptional gene regulation and protein synthesis. They are required for pre-mRNA processing and for RNA transport, degradation and translation into protein, and can regulate every step in the life cycle of their RNA targets. In addition, RBP function can be modulated by RNA binding. RBPs also participate in the formation of ribonucleoprotein complexes that build up macromolecular machineries such as the ribosome and spliceosome. Although most research has focused on mRNA-binding proteins, non-coding RNAs are also regulated and sequestered by RBPs. Functional defects and changes in the expression levels of RBPs have been implicated in numerous diseases, including neurological disorders, muscular atrophy and cancers. RBPs also contribute to a wide spectrum of kidney disorders. For example, human antigen R has been reported to have a renoprotective function in acute kidney injury (AKI) but might also contribute to the development of glomerulosclerosis, tubulointerstitial fibrosis and diabetic kidney disease (DKD), loss of bicaudal C is associated with cystic kidney diseases and Y-box binding protein 1 has been implicated in the pathogenesis of AKI, DKD and glomerular disorders. Increasing data suggest that the modulation of RBPs and their interactions with RNA targets could be promising therapeutic strategies for kidney diseases.
Collapse
|
49
|
Abstract
The 14-3-3 family proteins are vital scaffold proteins that ubiquitously expressed in various tissues. They interact with numerous protein targets and mediate many cellular signaling pathways. The 14-3-3 binding motifs are often embedded in intrinsically disordered regions which are closely associated with liquid-liquid phase separation (LLPS). In the past ten years, LLPS has been observed for a variety of proteins and biological processes, indicating that LLPS plays a fundamental role in the formation of membraneless organelles and cellular condensates. While extensive investigations have been performed on 14-3-3 proteins, its involvement in LLPS is overlooked. To date, 14-3-3 proteins have not been reported to undergo LLPS alone or regulate LLPS of their binding partners. To reveal the potential involvement of 14-3-3 proteins in LLPS, in this review, we summarized the LLPS propensity of 14-3-3 binding partners and found that about one half of them may undergo LLPS spontaneously. We further analyzed the phase separation behavior of representative 14-3-3 binders and discussed how 14-3-3 proteins may be involved. By modulating the conformation and valence of interactions and recruiting other molecules, we speculate that 14-3-3 proteins can efficiently regulate the functions of their targets in the context of LLPS. Considering the critical roles of 14-3-3 proteins, there is an urgent need for investigating the involvement of 14-3-3 proteins in the phase separation process of their targets and the underling mechanisms.
Collapse
|
50
|
Jo Y, Jang J, Song D, Park H, Jung Y. Determinants for intrinsically disordered protein recruitment into phase-separated protein condensates. Chem Sci 2022; 13:522-530. [PMID: 35126984 PMCID: PMC8729795 DOI: 10.1039/d1sc05672g] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/10/2021] [Indexed: 12/21/2022] Open
Abstract
Multivalent interactions between amino acid residues of intrinsically disordered proteins (IDPs) drive phase separation of these proteins into liquid condensates, forming various membrane-less organelles in cells. These interactions between often biased residues of IDPs are also likely involved in selective recruitment of many other IDPs into condensates. However, determining factors for this IDP recruitment into protein condensates are not understood yet. Here, we quantitatively examined recruitment tendencies of various IDPs with different sequence compositions into IDP-clustered condensates both in vitro as well as in cells. Condensate-forming IDP scaffolds, recruited IDP clients, and phase separation conditions were carefully varied to find key factors for selective IDP partitioning in protein condensates. Regardless of scaffold sequences, charged residues in client IDPs assured potent IDP recruitment, likely via strong electrostatic interactions, where positive residues could further enhance recruitment, possibly with cation–pi interactions. Notably, poly-ethylene glycol, a widely used crowding reagent for in vitro phase separation, abnormally increased IDP recruitment, indicating the need for careful use of crowding conditions. Tyrosines of IDP clients also strongly participated in recruitment both in vitro and in cells. Lastly, we measured recruitment degrees by more conventional interactions between folded proteins instead of disordered proteins. Surprisingly, recruitment forces by an even moderate protein interaction (Kd ∼ 5 μM) were substantially stronger than those by natural IDP–IDP interactions. The present data offer valuable information on how cells might organize protein partitioning on various protein condensates. Diverse interactions between folded and disordered proteins collectively dictate selective protein recruitment into bimolecular condensates.![]()
Collapse
Affiliation(s)
- Yongsang Jo
- Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jinyoung Jang
- Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Daesun Song
- Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hyoin Park
- Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Yongwon Jung
- Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|