1
|
Välisalmi T, Bettahar H, Zhou Q, Linder MB. Pulling and analyzing silk fibers from aqueous solution using a robotic device. Int J Biol Macromol 2023; 250:126161. [PMID: 37549763 DOI: 10.1016/j.ijbiomac.2023.126161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Spiders, silkworms, and many other animals can spin silk with exceptional properties. However, artificially spun fibers often fall short of their natural counterparts partly due sub-optimal production methods. A variety of methods, such as wet-, dry-, and biomimetic spinning have been used. The methods are based on extrusion, whereas natural spinning also involves pulling. Another shortcoming is that there is a lack feedback control during extension. Here we demonstrate a robotic fiber pulling device that enables controlled pulling of silk fibers and in situ measurement of extensional forces during the pulling and tensile testing of the pulled fibers. The pulling device was used to study two types of silk-one recombinant spider silk (a structural variant of ADF3) and one regenerated silk fibroin. Also, dextran-a branched polysaccharide-was used as a reference material for the procedure due to its straightforward preparation and storage. No post-treatments were applied. The pulled regenerated silk fibroin fibers achieved high tensile strength in comparison to similar extrusion-based methods. The mechanical properties of the recombinant spider silk fibers seemed to be affected by the liquid-liquid phase separation of the silk proteins.
Collapse
Affiliation(s)
- Teemu Välisalmi
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland; Centre of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Houari Bettahar
- Department of Electrical Engineering and Automation, School of Electrical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Quan Zhou
- Department of Electrical Engineering and Automation, School of Electrical Engineering, Aalto University, FI-00076 Aalto, Finland.
| | - Markus B Linder
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland; Centre of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland.
| |
Collapse
|
2
|
Wöltje M, Isenberg KL, Cherif C, Aibibu D. Continuous Wet Spinning of Regenerated Silk Fibers from Spinning Dopes Containing 4% Fibroin Protein. Int J Mol Sci 2023; 24:13492. [PMID: 37686298 PMCID: PMC10487761 DOI: 10.3390/ijms241713492] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
The wet spinning of fibers from regenerated silk fibroin has long been a research goal. Due to the degradation of the molecular structure of the fibroin protein during the preparation of the regenerated silk fibroin solution, fibroin concentrations with at least 10% protein content are required to achieve sufficient viscosity for wet spinning. In this study, a spinning dope formulation of regenerated silk fibroin is presented that shows a rheological behavior similar to that of native silk fibroin isolated from the glands of B. mori silkworm larvae. In addition, we present a wet-spinning process that enables, for the first time, the continuous wet spinning of regenerated silk fibroin with only 4% fibroin protein content into an endless fiber. Furthermore, the tensile strength of these wet-spun regenerated silk fibroin fibers per percentage of fibroin is higher than that of all continuous spinning approaches applied to regenerated and native silk fibroin published so far.
Collapse
Affiliation(s)
- Michael Wöltje
- Institute of Textile Machinery and High-Performance Material Technology, Faculty of Mechanical Science and Engineering, TUD Dresden University of Technology, 01069 Dresden, Germany
| | | | | | | |
Collapse
|
3
|
The mechanical behavior of silk-fibroin reinforced alginate hydrogel biocomposites - Toward functional tissue biomimetics. J Mech Behav Biomed Mater 2023; 138:105598. [PMID: 36455380 DOI: 10.1016/j.jmbbm.2022.105598] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/08/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
Soft tissues are constructed as fiber-reinforced composites consisting of structural mechanisms and unique mechanical behavior. Biomimetics of their mechanical behavior is currently a significant bioengineering challenge, emphasizing the need to replicate structural and mechanical mechanisms into novel biocomposite designs. Here we present a novel silk-based biocomposite laminate constructed from long natural silk and fibroin fibers embedded in an alginate hydrogel matrix. Controlling the mechanical features of these laminates were studied for different fiber volume fractions (VF) and orientations using unidirectional tensile tests. Three material systems were investigated having different fiber orientations: longitudinal (0°), transverse (90°), and cross-plied (0/90°). The general behavior of the biocomposite laminates was anisotropic hyperelastic with large deformations. Longitudinal fibroin laminates have shown a tensile modulus of 178.55 ± 14.46 MPa and tensile strength of 18.47 ± 2.01 MPa for 0.48 VF. With similar VF, cross-plied fibroin laminates demonstrated structural shielding ability, having a tensile modulus and tensile strength of 101.73 ± 8.04 MPa and 8.29 ± 1.63 MPa for only a third of the VF directed in the stretching direction. The stress-strain behavior was in a similar range to highly stiff native human soft tissues such as ligament and meniscus. These findings demonstrate the potential of the fibroin fiber-reinforced biocomposites to mimic the mechanics of tissues with a quantitatively controlled amount of fibers and designed spatial arrangement. This can lead to new solutions for the repair and replacement of damaged functional and highly stiff soft tissues.
Collapse
|
4
|
Li C, Wu J, Shi H, Xia Z, Sahoo JK, Yeo J, Kaplan DL. Fiber-Based Biopolymer Processing as a Route toward Sustainability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105196. [PMID: 34647374 PMCID: PMC8741650 DOI: 10.1002/adma.202105196] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/04/2021] [Indexed: 05/02/2023]
Abstract
Some of the most abundant biomass on earth is sequestered in fibrous biopolymers like cellulose, chitin, and silk. These types of natural materials offer unique and striking mechanical and functional features that have driven strong interest in their utility for a range of applications, while also matching environmental sustainability needs. However, these material systems are challenging to process in cost-competitive ways to compete with synthetic plastics due to the limited options for thermal processing. This results in the dominance of solution-based processing for fibrous biopolymers, which presents challenges for scaling, cost, and consistency in outcomes. However, new opportunities to utilize thermal processing with these types of biopolymers, as well as fibrillation approaches, can drive renewed opportunities to bridge this gap between synthetic plastic processing and fibrous biopolymers, while also holding sustainability goals as critical to long-term successful outcomes.
Collapse
Affiliation(s)
- Chunmei Li
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Junqi Wu
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Haoyuan Shi
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca NY 14853, USA
| | - Zhiyu Xia
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Jugal Kishore Sahoo
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Jingjie Yeo
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca NY 14853, USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
5
|
Yao Y, Allardyce BJ, Rajkhowa R, Hegh D, Qin S, Usman KA, Mota-Santiago P, Zhang J, Lynch P, Wang X, Kaplan DL, Razal JM. Toughening Wet-Spun Silk Fibers by Silk Nanofiber Templating. Macromol Rapid Commun 2021; 43:e2100891. [PMID: 34939252 DOI: 10.1002/marc.202100891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Indexed: 11/10/2022]
Abstract
Regenerated silk fibers typically fall short of silkworm cocoon fibers in mechanical properties due to reduced fiber crystal structure and alignment. One approach to address this has been to employ inorganic materials as reinforcing agents. The present study avoids the need for synthetic additives, demonstrating the first use of exfoliated silk nanofibers to control silk solution crystallization, resulting in all-silk pseudocomposite fibers with remarkable mechanical properties. Incorporating only 0.06 wt. % silk nanofibers led to a ∼44% increase in tensile strength (over 600 MPa) and ∼33% increase in toughness (over 200 kJ/kg) compared with fibers without silk nanofibers. These remarkable properties can be attributed to nanofiber crystal seeding in conjunction with fiber draw. The crystallinity nearly doubled from ∼17% for fiber spun from pure silk solution to ∼30% for the silk nanofiber reinforced sample. The latter fiber also shows a high degree of crystal orientation with a Herman's orientation factor of 0.93, a value which approaches that of natural degummed B. mori silk cocoon fiber (0.96). This study provides a strong foundation to guide the development of simple, eco-friendly methods to spin regenerated silk with excellent properties and a hierarchical structure that mimics natural silk. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ya Yao
- Institute for Frontier Materials, Deakin University, Geelong, VIC, 3216, Australia
| | - Benjamin J Allardyce
- Institute for Frontier Materials, Deakin University, Geelong, VIC, 3216, Australia
| | - Rangam Rajkhowa
- Institute for Frontier Materials, Deakin University, Geelong, VIC, 3216, Australia
| | - Dylan Hegh
- Institute for Frontier Materials, Deakin University, Geelong, VIC, 3216, Australia
| | - Si Qin
- Institute for Frontier Materials, Deakin University, Geelong, VIC, 3216, Australia
| | - Ken Aldren Usman
- Institute for Frontier Materials, Deakin University, Geelong, VIC, 3216, Australia
| | | | - Jizhen Zhang
- Institute for Frontier Materials, Deakin University, Geelong, VIC, 3216, Australia
| | - Peter Lynch
- Institute for Frontier Materials, Deakin University, Geelong, VIC, 3216, Australia
| | - Xungai Wang
- Institute for Frontier Materials, Deakin University, Geelong, VIC, 3216, Australia
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Joselito M Razal
- Institute for Frontier Materials, Deakin University, Geelong, VIC, 3216, Australia
| |
Collapse
|
6
|
Li S, Hang Y, Ding Z, Lu Q, Lu G, Chen H, Kaplan DL. Microfluidic Silk Fibers with Aligned Hierarchical Microstructures. ACS Biomater Sci Eng 2020; 6:2847-2854. [PMID: 33463289 DOI: 10.1021/acsbiomaterials.0c00060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The hierarchical structure of the ECM provides specific niches for tissues to regulate cell behavior, yet the challenge remains to design biomaterial systems for tissue regeneration to recreate such features in vitro. Here, we achieved this goal through the use of aligned hierarchical structures of native silk fibers, generated through the integration of "bottom-up" and "top-down" strategies to generate regenerated silk fibers with aligned nano- to micro-hierarchical structures. To achieve these designs, we assembled and dispersed silk nanofibers (SNF) in formic acid and spun them into fibers using bioinspired microfluidic chips with a geometry mimicking the native silk gland. The fibers generated using this device exhibited aligned hierarchical structure with fiber mechanical properties superior to fibers derived from more traditional spinning approaches with regenerated silk solutions. Besides the improved mechanical properties, Raman spectroscopic results indicated similarly aligned structures to native fibers and active control of cell proliferation, migration, and aggregate orientation. The results indicate the feasibility of developing bioactive silk fiber materials with hierarchical structures to facilitate utility in a range of cell and tissue regeneration scenarios.
Collapse
Affiliation(s)
- Siyuan Li
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi 214041, China.,College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yingjie Hang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhaozhao Ding
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi 214041, China
| | - Qiang Lu
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi 214041, China.,National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Guozhong Lu
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi 214041, China
| | - Hong Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
7
|
Frydrych M, Greenhalgh A, Vollrath F. Artificial spinning of natural silk threads. Sci Rep 2019; 9:15428. [PMID: 31659185 PMCID: PMC6817873 DOI: 10.1038/s41598-019-51589-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/27/2019] [Indexed: 01/28/2023] Open
Abstract
Silk producing arthropods spin solid fibres from an aqueous protein feedstock apparently relying on the complex structure of the silk protein and its controlled aggregation by shear forces, alongside biochemical changes. This flow-induced phase-transition of the stored native silk molecules is irreversible, environmentally sound and remarkably energy efficient. The process seemingly relies on a self-assembling, fibrillation process. Here we test this hypothesis by biomimetically spinning a native-based silk feedstock, extracted by custom processes, into silk fibres that equal their natural models' mechanical properties. Importantly, these filaments, which featured cross-section morphologies ranged from large crescent-like to small ribbon-like shapes, also had the slender cross-sectional areas of native fibres and their hierarchical nanofibrillar structures. The modulation of the post-draw conditions directly affected mechanical properties, correlated with the extent of fibre crystallinity, i.e. degree of molecular order. We believe our study contributes significantly to the understanding and development of artificial silks by demonstrating successful biomimetic spinning relies on appropriately designed feedstock properties. In addition, our study provides inspiration for low-energy routes to novel synthetic polymers.
Collapse
Affiliation(s)
- Martin Frydrych
- Department of Zoology, University of Oxford, Mansfield Road, Oxford, OX1 3SZ, United Kingdom
| | - Alexander Greenhalgh
- Department of Zoology, University of Oxford, Mansfield Road, Oxford, OX1 3SZ, United Kingdom
| | - Fritz Vollrath
- Department of Zoology, University of Oxford, Mansfield Road, Oxford, OX1 3SZ, United Kingdom.
| |
Collapse
|
8
|
Pérez-Rigueiro J, Madurga R, Gañán-Calvo AM, Elices M, Guinea GV, Tasei Y, Nishimura A, Matsuda H, Asakura T. Emergence of supercontraction in regenerated silkworm (Bombyx mori) silk fibers. Sci Rep 2019; 9:2398. [PMID: 30787337 PMCID: PMC6382804 DOI: 10.1038/s41598-019-38712-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/17/2018] [Indexed: 12/01/2022] Open
Abstract
The conditions required for the emergence of supercontraction in regenerated silkworm (Bombyx mori) silk fibers are assessed through an experimental approach that combines the spinning of regenerated fibers with controlled properties and their characterization by 13C solid-state nuclear magnetic resonance (NMR). Both supercontracting and non-supercontracting regenerated fibers are produced using the straining flow spinning (SFS) technique from 13C labeled cocoons. The short-range microstructure of the fibers is assessed through 13C CP/MAS in air and 13C DD/MAS in water, and the main microstructural features are identified and quantified. The mechanical properties of the regenerated fibers and their microstructures are compared with those of natural silkworm silk. The combined analysis highlights two possible key elements as responsible for the emergence of supercontraction: (1) the existence of an upper and a lower limit of the amorphous phase compatible with supercontraction, and (2) the existence of two ordered phases, β-sheet A and B, which correspond to different packing arrangements of the protein chains.
Collapse
Affiliation(s)
- José Pérez-Rigueiro
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223, Pozuelo de Alarcón, (Madrid), Spain. .,Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040, Madrid, Spain. .,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.
| | - Rodrigo Madurga
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223, Pozuelo de Alarcón, (Madrid), Spain.,Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | - Alfonso M Gañán-Calvo
- Escuela Técnica Superior de Ingenieros, Universidad de Sevilla, 41092, Sevilla, Spain
| | - Manuel Elices
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223, Pozuelo de Alarcón, (Madrid), Spain.,Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | - Gustavo V Guinea
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223, Pozuelo de Alarcón, (Madrid), Spain.,Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040, Madrid, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Yugo Tasei
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan
| | - Akio Nishimura
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan
| | - Hironori Matsuda
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan
| | - Tetsuo Asakura
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan.
| |
Collapse
|
9
|
Ling S, Chen W, Fan Y, Zheng K, Jin K, Yu H, Buehler MJ, Kaplan DL. Biopolymer nanofibrils: structure, modeling, preparation, and applications. Prog Polym Sci 2018; 85:1-56. [PMID: 31915410 PMCID: PMC6948189 DOI: 10.1016/j.progpolymsci.2018.06.004] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biopolymer nanofibrils exhibit exceptional mechanical properties with a unique combination of strength and toughness, while also presenting biological functions that interact with the surrounding environment. These features of biopolymer nanofibrils profit from their hierarchical structures that spun angstrom to hundreds of nanometer scales. To maintain these unique structural features and to directly utilize these natural supramolecular assemblies, a variety of new methods have been developed to produce biopolymer nanofibrils. In particular, cellulose nanofibrils (CNFs), chitin nanofibrils (ChNFs), silk nanofibrils (SNFs) and collagen nanofibrils (CoNFs), as the four most abundant biopolymer nanofibrils on earth, have been the focus of research in recent years due to their renewable features, wide availability, low-cost, biocompatibility, and biodegradability. A series of top-down and bottom-up strategies have been accessed to exfoliate and regenerate these nanofibrils for versatile advanced applications. In this review, we first summarize the structures of biopolymer nanofibrils in nature and outline their related computational models with the aim of disclosing fundamental structure-property relationships in biological materials. Then, we discuss the underlying methods used for the preparation of CNFs, ChNFs, SNF and CoNFs, and discuss emerging applications for these biopolymer nanofibrils.
Collapse
Affiliation(s)
- Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Wenshuai Chen
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Yimin Fan
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Ke Zheng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Kai Jin
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Haipeng Yu
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Markus J. Buehler
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| |
Collapse
|
10
|
Sparkes J, Holland C. The Energy Requirements for Flow‐Induced Solidification of Silk. Macromol Biosci 2018; 19:e1800229. [DOI: 10.1002/mabi.201800229] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/01/2018] [Indexed: 01/07/2023]
Affiliation(s)
- James Sparkes
- Natural Materials GroupDepartment of Materials Science and Engineering Sir Robert Hadfield Building, Mappin Street Sheffield S1 3JD UK
| | - Chris Holland
- Natural Materials GroupDepartment of Materials Science and Engineering Sir Robert Hadfield Building, Mappin Street Sheffield S1 3JD UK
| |
Collapse
|
11
|
Comparison of the effects of post-spinning drawing and wet stretching on regenerated silk fibers produced through straining flow spinning. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.07.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Zhang W, Ye C, Zheng K, Zhong J, Tang Y, Fan Y, Buehler MJ, Ling S, Kaplan DL. Tensan Silk-Inspired Hierarchical Fibers for Smart Textile Applications. ACS NANO 2018; 12:6968-6977. [PMID: 29932636 PMCID: PMC6501189 DOI: 10.1021/acsnano.8b02430] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Tensan silk, a natural fiber produced by the Japanese oak silk moth ( Antherea yamamai, abbreviated to A. yamamai), features superior characteristics, such as compressive elasticity and chemical resistance, when compared to the more common silk produced from the domesticated silkworm, Bombyx mori ( B. mori). In this study, the "structure-property" relationships within A. yamamai silk are disclosed from the different structural hierarchies, confirming the outstanding toughness as dominated by the distinct mesoscale fibrillar architectures. Inspired by this hierarchical construction, we fabricated A. yamamai silk-like regenerated B. mori silk fibers (RBSFs) with mechanical properties (extensibility and modulus) comparable to natural A. yamamai silk. These RBSFs were further functionalized to form conductive RBSFs that were sensitive to force and temperature stimuli for applications in smart textiles. This study provides a blueprint in exploiting rational designs from A. yamanmai, which is rare and expensive in comparison to the common and cost-effective B. mori silk to empower enhanced material properties.
Collapse
Affiliation(s)
- Wenwen Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuel & Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Chao Ye
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Ke Zheng
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Jiajia Zhong
- Shanghai Advanced Research Institute (Zhangjiang Lab), Chinese Academy of Sciences, Shanghai, 201210, China
| | - Yuzhao Tang
- Shanghai Advanced Research Institute (Zhangjiang Lab), Chinese Academy of Sciences, Shanghai, 201210, China
| | - Yimin Fan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuel & Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Markus J. Buehler
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| |
Collapse
|
13
|
Valentini L, Bittolo Bon S, Pugno NM. Ice-regenerated flame retardant and robust film of Bombyx mori silk fibroin and POSS nano-cages. RSC Adv 2018; 8:9063-9069. [PMID: 35541884 PMCID: PMC9078597 DOI: 10.1039/c7ra13708g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 02/13/2018] [Indexed: 11/21/2022] Open
Abstract
In this study, we present a simple method to prepare and control the structure of regenerated hybrid silkworm silk films through icing.
Collapse
Affiliation(s)
- Luca Valentini
- Dipartimento di Ingegneria Civile e Ambientale
- Università di Perugia
- UdR INSTM
- 05100 Terni
- Italy
| | - Silvia Bittolo Bon
- Dipartimento di Ingegneria Civile e Ambientale
- Università di Perugia
- UdR INSTM
- 05100 Terni
- Italy
| | - Nicola M. Pugno
- Laboratory of Bio-Inspired and Graphene Nanomechanics
- Department of Civil
- Environmental and Mechanical Engineering
- University of Trento
- Trento
| |
Collapse
|
14
|
Ling S, Qin Z, Li C, Huang W, Kaplan DL, Buehler MJ. Polymorphic regenerated silk fibers assembled through bioinspired spinning. Nat Commun 2017; 8:1387. [PMID: 29123097 PMCID: PMC5680232 DOI: 10.1038/s41467-017-00613-5] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 07/14/2017] [Indexed: 12/23/2022] Open
Abstract
A variety of artificial spinning methods have been applied to produce regenerated silk fibers; however, how to spin regenerated silk fibers that retain the advantages of natural silks in terms of structural hierarchy and mechanical properties remains challenging. Here, we show a bioinspired approach to spin regenerated silk fibers. First, we develop a nematic silk microfibril solution, highly viscous and stable, by partially dissolving silk fibers into microfibrils. This solution maintains the hierarchical structures in natural silks and serves as spinning dope. It is then spun into regenerated silk fibers by direct extrusion in the air, offering a useful route to generate polymorphic and hierarchical regenerated silk fibers with physical properties beyond natural fiber construction. The materials maintain the structural hierarchy and mechanical properties of natural silks, including a modulus of 11 ± 4 GPa, even higher than natural spider silk. It can further be functionalized with a conductive silk/carbon nanotube coating, responsive to changes in humidity and temperature.
Collapse
Affiliation(s)
- Shengjie Ling
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Zhao Qin
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Chunmei Li
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Wenwen Huang
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA.
| | - Markus J Buehler
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
15
|
Koeppel A, Holland C. Progress and Trends in Artificial Silk Spinning: A Systematic Review. ACS Biomater Sci Eng 2017; 3:226-237. [DOI: 10.1021/acsbiomaterials.6b00669] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Andreas Koeppel
- Department of Materials
Science
and Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, United Kingdom
| | - Chris Holland
- Department of Materials
Science
and Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, United Kingdom
| |
Collapse
|
16
|
Fang G, Huang Y, Tang Y, Qi Z, Yao J, Shao Z, Chen X. Insights into Silk Formation Process: Correlation of Mechanical Properties and Structural Evolution during Artificial Spinning of Silk Fibers. ACS Biomater Sci Eng 2016; 2:1992-2000. [DOI: 10.1021/acsbiomaterials.6b00392] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
| | | | - Yuzhao Tang
- National
Centre for Protein Science−Shanghai, Institute of Biochemistry
and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201210, People’s Republic of China
| | - Zeming Qi
- National
Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People’s Republic of China
| | | | | | | |
Collapse
|
17
|
Li G, Li Y, Chen G, He J, Han Y, Wang X, Kaplan DL. Silk-based biomaterials in biomedical textiles and fiber-based implants. Adv Healthc Mater 2015; 4:1134-51. [PMID: 25772248 PMCID: PMC4456268 DOI: 10.1002/adhm.201500002] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 02/04/2015] [Indexed: 01/25/2023]
Abstract
Biomedical textiles and fiber-based implants (BTFIs) have been in routine clinical use to facilitate healing for nearly five decades. Amongst the variety of biomaterials used, silk-based biomaterials (SBBs) have been widely used clinically viz. sutures for centuries and are being increasingly recognized as a prospective material for biomedical textiles. The ease of processing, controllable degradability, remarkable mechanical properties and biocompatibility have prompted the use of SBBs for various BTFIs for extracorporeal implants, soft tissue repair, healthcare/hygiene products and related needs. The present Review focuses on BTFIs from the perspective of types and physical and biological properties, and this discussion is followed with an examination of the advantages and limitations of BTFIs from SBBs. The Review covers progress in surface coatings, physical and chemical modifications of SBBs for BTFIs and identifies future needs and opportunities for the further development for BTFIs using SBBs.
Collapse
Affiliation(s)
- Gang Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P.R. China
| | - Yi Li
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, China
| | - Guoqiang Chen
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P.R. China
| | - Jihuan He
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P.R. China
| | - Yifan Han
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xiaoqin Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P.R. China
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Room 153, Medford, MA 02155, USA
| |
Collapse
|
18
|
Solanas C, Herrero S, Dasari A, Plaza GR, Llorca J, Pérez-Rigueiro J, Elices M, Guinea GV. Insights into the production and characterization of electrospun fibers from regenerated silk fibroin. Eur Polym J 2014. [DOI: 10.1016/j.eurpolymj.2014.08.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
19
|
An B, Jenkins JE, Sampath S, Holland GP, Hinman M, Yarger JL, Lewis R. Reproducing natural spider silks' copolymer behavior in synthetic silk mimics. Biomacromolecules 2012; 13:3938-48. [PMID: 23110450 DOI: 10.1021/bm301110s] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dragline silk from orb-weaving spiders is a copolymer of two large proteins, major ampullate spidroin 1 (MaSp1) and 2 (MaSp2). The ratio of these proteins is known to have a large variation across different species of orb-weaving spiders. NMR results from gland material of two different species of spiders, N. clavipes and A. aurantia , indicates that MaSp1 proteins are more easily formed into β-sheet nanostructures, while MaSp2 proteins form random coil and helical structures. To test if this behavior of natural silk proteins could be reproduced by recombinantly produced spider silk mimic protein, recombinant MaSp1/MaSp2 mixed fibers as well as chimeric silk fibers from MaSp1 and MaSp2 sequences in a single protein were produced based on the variable ratio and conserved motifs of MaSp1 and MaSp2 in native silk fiber. Mechanical properties, solid-state NMR, and XRD results of tested synthetic fibers indicate the differing roles of MaSp1 and MaSp2 in the fiber and verify the importance of postspin stretching treatment in helping the fiber to form the proper spatial structure.
Collapse
Affiliation(s)
- Bo An
- Department of Molecular Biology, University of Wyoming, 1000 East University Avenue, Laramie, Wyoming 82070, United States.
| | | | | | | | | | | | | |
Collapse
|
20
|
Plaza GR, Corsini P, Marsano E, Pérez-Rigueiro J, Elices M, Riekel C, Vendrely C, Guinea GV. Correlation between processing conditions, microstructure and mechanical behavior in regenerated silkworm silk fibers. ACTA ACUST UNITED AC 2011. [DOI: 10.1002/polb.23025] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
21
|
Bio-inspired capillary dry spinning of regenerated silk fibroin aqueous solution. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2011. [DOI: 10.1016/j.msec.2011.07.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Elices M, Guinea G, Pérez-Rigueiro J, Plaza G. Polymeric fibers with tunable properties: Lessons from spider silk. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2011. [DOI: 10.1016/j.msec.2010.11.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Yin J, Chen E, Porter D, Shao Z. Enhancing the Toughness of Regenerated Silk Fibroin Film through Uniaxial Extension. Biomacromolecules 2010; 11:2890-5. [DOI: 10.1021/bm100643q] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Jianwei Yin
- Key Laboratory of Molecular Engineering of Polymers of Ministry of Education, Advanced Materials Laboratory, Department of Macromolecular Science, Fudan University, Shanghai 200433, China, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China, and Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, United Kingdom
| | - Erqiang Chen
- Key Laboratory of Molecular Engineering of Polymers of Ministry of Education, Advanced Materials Laboratory, Department of Macromolecular Science, Fudan University, Shanghai 200433, China, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China, and Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, United Kingdom
| | - David Porter
- Key Laboratory of Molecular Engineering of Polymers of Ministry of Education, Advanced Materials Laboratory, Department of Macromolecular Science, Fudan University, Shanghai 200433, China, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China, and Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, United Kingdom
| | - Zhengzhong Shao
- Key Laboratory of Molecular Engineering of Polymers of Ministry of Education, Advanced Materials Laboratory, Department of Macromolecular Science, Fudan University, Shanghai 200433, China, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China, and Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, United Kingdom
| |
Collapse
|
24
|
Liu H, Xu W, Liu X, Xu J, Li W, Liu X. Effects of superfine silk protein powders on mechanical properties of wet-spun polyurethane fibers. J Appl Polym Sci 2009. [DOI: 10.1002/app.30515] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
25
|
Yan J, Zhou G, Knight DP, Shao Z, Chen X. Wet-Spinning of Regenerated Silk Fiber from Aqueous Silk Fibroin Solution: Discussion of Spinning Parameters. Biomacromolecules 2009; 11:1-5. [DOI: 10.1021/bm900840h] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jiaping Yan
- The Key Laboratory of Molecular Engineering of Polymers of MOE, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People’s Republic of China, and Oxford Biomaterials Ltd., Unit 4 Galaxy House, New Greenham Park, Newbury, RG19 6HR, United Kingdom
| | - Guanqiang Zhou
- The Key Laboratory of Molecular Engineering of Polymers of MOE, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People’s Republic of China, and Oxford Biomaterials Ltd., Unit 4 Galaxy House, New Greenham Park, Newbury, RG19 6HR, United Kingdom
| | - David P. Knight
- The Key Laboratory of Molecular Engineering of Polymers of MOE, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People’s Republic of China, and Oxford Biomaterials Ltd., Unit 4 Galaxy House, New Greenham Park, Newbury, RG19 6HR, United Kingdom
| | - Zhengzhong Shao
- The Key Laboratory of Molecular Engineering of Polymers of MOE, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People’s Republic of China, and Oxford Biomaterials Ltd., Unit 4 Galaxy House, New Greenham Park, Newbury, RG19 6HR, United Kingdom
| | - Xin Chen
- The Key Laboratory of Molecular Engineering of Polymers of MOE, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People’s Republic of China, and Oxford Biomaterials Ltd., Unit 4 Galaxy House, New Greenham Park, Newbury, RG19 6HR, United Kingdom
| |
Collapse
|
26
|
Plaza GR, Corsini P, Marsano E, Pérez-Rigueiro J, Biancotto L, Elices M, Riekel C, Agulló-Rueda F, Gallardo E, Calleja JM, Guinea GV. Old Silks Endowed with New Properties. Macromolecules 2009. [DOI: 10.1021/ma9017235] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gustavo R. Plaza
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Paola Corsini
- Dipartimento di Chimica e Chimica Industriale, Università di Genova, Via Dodecaneso 31-16146 Genova, Italy
| | - Enrico Marsano
- Dipartimento di Chimica e Chimica Industriale, Università di Genova, Via Dodecaneso 31-16146 Genova, Italy
| | - José Pérez-Rigueiro
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Lautaro Biancotto
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Manuel Elices
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Christian Riekel
- European Synchroton Radiation Facility, B.P. 220, F-38043, Grenoble Cedex, France
| | | | - Eva Gallardo
- Departamento de Física de Materiales, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - José M. Calleja
- Departamento de Física de Materiales, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Gustavo V. Guinea
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| |
Collapse
|
27
|
Supramolecular organization of regenerated silkworm silk fibers. Int J Biol Macromol 2009; 44:195-202. [DOI: 10.1016/j.ijbiomac.2008.12.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 10/13/2008] [Accepted: 12/09/2008] [Indexed: 11/21/2022]
|
28
|
Fu C, Shao Z, Fritz V. Animal silks: their structures, properties and artificial production. Chem Commun (Camb) 2009:6515-29. [DOI: 10.1039/b911049f] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Inspiration from Natural Silks and Their Proteins. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/s0065-2377(08)00205-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
30
|
|
31
|
Marsano E, Corsini P, Canetti M, Freddi G. Regenerated cellulose-silk fibroin blends fibers. Int J Biol Macromol 2008; 43:106-14. [DOI: 10.1016/j.ijbiomac.2008.03.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 03/28/2008] [Accepted: 03/31/2008] [Indexed: 10/22/2022]
|
32
|
Kluge JA, Rabotyagova O, Leisk GG, Kaplan DL. Spider silks and their applications. Trends Biotechnol 2008; 26:244-51. [DOI: 10.1016/j.tibtech.2008.02.006] [Citation(s) in RCA: 238] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2007] [Revised: 02/10/2008] [Accepted: 02/11/2008] [Indexed: 11/16/2022]
|
33
|
Plaza GR, Corsini P, Pérez-Rigueiro J, Marsano E, Guinea GV, Elices M. Effect of water onBombyx mori regenerated silk fibers and its application in modifying their mechanical properties. J Appl Polym Sci 2008. [DOI: 10.1002/app.28288] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|