1
|
Mierke CT. Bioprinting of Cells, Organoids and Organs-on-a-Chip Together with Hydrogels Improves Structural and Mechanical Cues. Cells 2024; 13:1638. [PMID: 39404401 PMCID: PMC11476109 DOI: 10.3390/cells13191638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
The 3D bioprinting technique has made enormous progress in tissue engineering, regenerative medicine and research into diseases such as cancer. Apart from individual cells, a collection of cells, such as organoids, can be printed in combination with various hydrogels. It can be hypothesized that 3D bioprinting will even become a promising tool for mechanobiological analyses of cells, organoids and their matrix environments in highly defined and precisely structured 3D environments, in which the mechanical properties of the cell environment can be individually adjusted. Mechanical obstacles or bead markers can be integrated into bioprinted samples to analyze mechanical deformations and forces within these bioprinted constructs, such as 3D organoids, and to perform biophysical analysis in complex 3D systems, which are still not standard techniques. The review highlights the advances of 3D and 4D printing technologies in integrating mechanobiological cues so that the next step will be a detailed analysis of key future biophysical research directions in organoid generation for the development of disease model systems, tissue regeneration and drug testing from a biophysical perspective. Finally, the review highlights the combination of bioprinted hydrogels, such as pure natural or synthetic hydrogels and mixtures, with organoids, organoid-cell co-cultures, organ-on-a-chip systems and organoid-organ-on-a chip combinations and introduces the use of assembloids to determine the mutual interactions of different cell types and cell-matrix interferences in specific biological and mechanical environments.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth System Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
2
|
Ramaraju H, Garcia-Gomez E, McAtee AM, Verga AS, Hollister SJ. Shape memory cycle conditions impact human bone marrow stromal cell binding to RGD- and YIGSR-conjugated poly (glycerol dodecanedioate). Acta Biomater 2024; 186:246-259. [PMID: 39111679 DOI: 10.1016/j.actbio.2024.07.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/21/2024] [Accepted: 07/30/2024] [Indexed: 08/16/2024]
Abstract
Bioresorbable shape memory polymers (SMP) are an emerging class of polymers that can help address several challenges associated with minimally invasive surgery by providing a solution for structural tissue repair. Like most synthetic polymer networks, SMPs require additional biorelevance and modification for biomedical applications. Methodologies used to incorporate bioactive ligands must preserve SMP thermomechanics and ensure biofunctionality following in vivo delivery. We have previously described the development of a novel thermoresponsive bioresorbable SMP, poly (glycerol dodecanedioate) (PGD). In this study, cell-adhesive peptide sequences RGD and YIGSR were conjugated with PGD. We investigated 1) the impact of conjugated peptides on the fixity (Rf), recovery (Rr), and recovery rate (dRr/dT), 2) the impact of conjugated peptides on cell binding, and 3) the impact of the shape memory cycle (Tprog) on conjugated peptide functionality towards binding human bone marrow stromal cells (BMSC). Peptide conjugation conditions impact fixity but not the recovery or recovery rate (p < 0.01). Peptide-conjugated substrates increased cell attachment and proliferation compared with controls (p < 0.001). Using complementary integrin binding cell-adhesive peptides increased proliferation compared with using single peptides (p < 0.05). Peptides bound to PGD substrates exhibited specificity to their respective integrin targets. Following the shape memory cycle, peptides maintained functionality and specificity depending on the shape memory cycle conditions (p < 0.001). The dissipation of strain energy during recovery can drive differential arrangement of conjugated sequences impacting functionality, an important design consideration for functionalized SMPs. STATEMENT OF SIGNIFICANCE: Shape memory elastomers are an emerging class of polymers that are well-suited for minimally invasive repair of soft tissues. Tissue engineering approaches commonly utilize biodegradable scaffolds to deliver instructive cues, including cells and bioactive signals. Delivering these instructive cues on biodegradable shape memory elastomers requires modification with bioactive ligands. Furthermore, it is necessary to ensure the specificity of the ligands to their biological targets when conjugated to the polymer. Moreover, the bioactive ligand functionality must be conserved after completing the shape memory cycle, for applications in tissue engineering.
Collapse
Affiliation(s)
- Harsha Ramaraju
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States.
| | - Elisa Garcia-Gomez
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Annabel M McAtee
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Adam S Verga
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Scott J Hollister
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
3
|
Barrera-Quintero V, Correa-Gómez E, Caballero-Ruiz A, Ruiz-Huerta L. Influence of Infill Patterns on the Shape Memory Effect of Cold-Programmed Additively Manufactured PLA. Polymers (Basel) 2024; 16:2460. [PMID: 39274093 PMCID: PMC11397651 DOI: 10.3390/polym16172460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/10/2024] [Accepted: 08/20/2024] [Indexed: 09/16/2024] Open
Abstract
In four-dimensional additive manufacturing (4DAM), specific external stimuli are applied in conjunction with additive manufacturing technologies. This combination allows the development of tailored stimuli-responsive properties in various materials, structures, or components. For shape-changing functionalities, the programming step plays a crucial role in recovery after exposure to a stimulus. Furthermore, precise tuning of the 4DAM process parameters is essential to achieve shape-change specifications. Within this context, this study investigated how the structural arrangement of infill patterns (criss-cross and concentric) affects the shape memory effect (SME) of compression cold-programmed PLA under a thermal stimulus. The stress-strain curves reveal a higher yield stress for the criss-cross infill pattern. Interestingly, the shape recovery ratio shows a similar trend across both patterns at different displacements with shallower slopes compared to a higher shape fixity ratio. This suggests that the infill pattern primarily affects the mechanical strength (yield stress) and not the recovery. Finally, the recovery force increases proportionally with displacement. These findings suggest a consistent SME under the explored interval (15-45% compression) despite the infill pattern; however, the variations in the mechanical properties shown by the stress-strain curves appear more pronounced, particularly the yield stress.
Collapse
Affiliation(s)
- Vladimir Barrera-Quintero
- Programa de Maestría y Doctorado en Ingeniería, Universidad Nacional Autónoma de México (UNAM), Edificio "T-Bernardo Quintana Arrioja", Primer Piso, Ciudad Universitaria, Mexico City 04510, Mexico
- Instituto de Ciencias Aplicadas y Tecnología (ICAT), Universidad Nacional Autónoma de México (UNAM), Circuito Exterior S/N, Ciudad Universitaria, Mexico City 04510, Mexico
| | - Erasmo Correa-Gómez
- Instituto de Ciencias Aplicadas y Tecnología (ICAT), Universidad Nacional Autónoma de México (UNAM), Circuito Exterior S/N, Ciudad Universitaria, Mexico City 04510, Mexico
- Programa Investigadoras e Investigadores por México-Consejo Nacional de Humanidades, Ciencias y Tecnologías CONAHCYT, Benito Juárez, Mexico City 03940, Mexico
| | - Alberto Caballero-Ruiz
- Instituto de Ciencias Aplicadas y Tecnología (ICAT), Universidad Nacional Autónoma de México (UNAM), Circuito Exterior S/N, Ciudad Universitaria, Mexico City 04510, Mexico
- National Laboratory for Additive and Digital Manufacturing, MADiT, Mexico
| | - Leopoldo Ruiz-Huerta
- Instituto de Ciencias Aplicadas y Tecnología (ICAT), Universidad Nacional Autónoma de México (UNAM), Circuito Exterior S/N, Ciudad Universitaria, Mexico City 04510, Mexico
- National Laboratory for Additive and Digital Manufacturing, MADiT, Mexico
| |
Collapse
|
4
|
Chalissery D, Pretsch T. 4D-Printed Tool for Compressing a Shape Memory Polyurethane Foam during Programming. Polymers (Basel) 2024; 16:1393. [PMID: 38794586 PMCID: PMC11124973 DOI: 10.3390/polym16101393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Although several force application concepts are known that can be used to deform shape memory polymers (SMPs) within the scope of programming, controlled deformation is challenging in the case of samples with a cylinder-like shape, which need to be homogeneously compressed starting from the lateral surface. To solve this problem, this contribution follows a material approach that takes advantage of four-dimensional (4D) printing. Fused filament fabrication (FFF) was used as an additive manufacturing (AM) technique to produce a thermoresponsive tool in a cylindrical shape from a polyether urethane (PEU) having a glass transition temperature (Tg) close to 55 °C, as determined by differential scanning calorimetry (DSC). Once it was 4D-printed, a sample of laser cut polyester urethane urea (PEUU) foam with a cylindrical wall was placed inside of it. Subsequent heating to 75 °C and keeping that temperature constant for 15 min resulted in the compression of the foam, because the internal stresses of the PEU were transferred to the PEUU, whose soft segments were completely molten at 65 °C as verified by DSC. Upon cooling to -15 °C and thus below the offset temperature of the soft segment crystallization transition of the PEUU, the foam was fixed in its new shape. After 900 days of storage at temperatures close to 23 °C, the foam recovered its original shape upon reheating to 75 °C. In another experiment, a 4D-printed cylinder was put into hibernation for 900 days before its thermoresponsiveness was investigated. In the future, 4D-printed tools may be produced in many geometries, which fit well to the shapes of the SMPs to be programmed. Beyond programming SMP foams, transferring the forces released by 4D-printed tools to other programmable materials can further expand technical possibilities.
Collapse
Affiliation(s)
| | - Thorsten Pretsch
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstraße 69, 14476 Potsdam, Germany;
| |
Collapse
|
5
|
Mandal A, Chatterjee K. 4D printing for biomedical applications. J Mater Chem B 2024; 12:2985-3005. [PMID: 38436200 DOI: 10.1039/d4tb00006d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
While three-dimensional (3D) printing excels at fabricating static constructs, it fails to emulate the dynamic behavior of native tissues or the temporal programmability desired for medical devices. Four-dimensional (4D) printing is an advanced additive manufacturing technology capable of fabricating constructs that can undergo pre-programmed changes in shape, property, or functionality when exposed to specific stimuli. In this Perspective, we summarize the advances in materials chemistry, 3D printing strategies, and post-printing methodologies that collectively facilitate the realization of temporal dynamics within 4D-printed soft materials (hydrogels, shape-memory polymers, liquid crystalline elastomers), ceramics, and metals. We also discuss and present insights about the diverse biomedical applications of 4D printing, including tissue engineering and regenerative medicine, drug delivery, in vitro models, and medical devices. Finally, we discuss the current challenges and emphasize the importance of an application-driven design approach to enable the clinical translation and widespread adoption of 4D printing.
Collapse
Affiliation(s)
- Arkodip Mandal
- Department of Materials Engineering, Indian Institute of Science, Bengaluru, Karnataka 560012, India.
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, Bengaluru, Karnataka 560012, India.
| |
Collapse
|
6
|
Staszczak M, Urbański L, Cristea M, Ionita D, Pieczyska EA. Investigation of Shape Memory Polyurethane Properties in Cold Programming Process Towards Its Applications. Polymers (Basel) 2024; 16:219. [PMID: 38257020 PMCID: PMC10819366 DOI: 10.3390/polym16020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Thermoresponsive shape memory polymers (SMPs) with the remarkable ability to remember a temporary shape and recover their original one using temperature have been gaining more and more attention in a wide range of applications. Traditionally, SMPs are investigated using a method named often "hot-programming", since they are heated above their glass transition temperature (Tg) and after that, reshaped and cooled below Tg to achieve and fix the desired configuration. Upon reheating, these materials return to their original shape. However, the heating of SMPs above their Tg during a thermomechanical cycle to trigger a change in their shape creates a temperature gradient within the material structure and causes significant thermal expansion of the polymer sample resulting in a reduction in its shape recovery property. These phenomena, in turn, limit the application fields of SMPs, in which fast actuation, dimensional stability and low thermal expansion coefficient are crucial. This paper aims at a comprehensive experimental investigation of thermoplastic polyurethane shape memory polymer (PU-SMP) using the cold programming approach, in which the deformation of the SMP into the programmed shape is conducted at temperatures below Tg. The PU-SMP glass transition temperature equals approximately 65 °C. Structural, mechanical and thermomechanical characterization was performed, and the results on the identification of functional properties of PU-SMPs in quite a large strain range beyond yield limit were obtained. The average shape fixity ratio of the PU-SMP at room temperature programming was found to be approximately 90%, while the average shape fixity ratio at 45 °C (Tg - 20 °C) was approximately 97%. Whereas, the average shape recovery ratio was 93% at room temperature programming and it was equal to approximately 90% at 45 °C. However, the results obtained using the traditional method, the so-called hot programming at 65 °C, indicate a higher shape fixity value of 98%, but a lower shape recovery of 90%. Thus, the obtained results confirmed good shape memory properties of the PU-SMPs at a large strain range at various temperatures. Furthermore, the experiments conducted at both temperatures below Tg demonstrated that cold programming can be successfully applied to PU-SMPs with a relatively high Tg. Knowledge of the PU-SMP shape memory and shape fixity properties, estimated without risk of material degradation, caused by heating above Tg, makes them attractive for various applications, e.g., in electronic components, aircraft or aerospace structures.
Collapse
Affiliation(s)
- Maria Staszczak
- Institute of Fundamental Technological Research, Polish Academy of Sciences, 02-106 Warsaw, Poland; (M.S.); (L.U.)
| | - Leszek Urbański
- Institute of Fundamental Technological Research, Polish Academy of Sciences, 02-106 Warsaw, Poland; (M.S.); (L.U.)
| | - Mariana Cristea
- “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania; (M.C.); (D.I.)
| | - Daniela Ionita
- “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania; (M.C.); (D.I.)
| | - Elżbieta Alicja Pieczyska
- Institute of Fundamental Technological Research, Polish Academy of Sciences, 02-106 Warsaw, Poland; (M.S.); (L.U.)
| |
Collapse
|
7
|
Mahmud S, Konlan J, Deicaza J, Li G. Hybrid hemp/glass fiber reinforced high-temperature shape memory photopolymer with mechanical and flame-retardant analysis. Sci Rep 2023; 13:17830. [PMID: 37857742 PMCID: PMC10587156 DOI: 10.1038/s41598-023-44710-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
Cultivated natural fibers have a huge possibility for green and sustainable reinforcement for polymers, but their limited load-bearing ability and flammability prevent them from wide applications in composites. According to the beam theory, normal stress is the maximum at the outermost layers but zero at the mid-plane under bending (with (non)linear strain distribution). Shear stress is the maximum at the mid-plane but manageable for most polymers. Accordingly, a laminated composite made of hybrid fiber-reinforced shape memory photopolymer was developed, incorporating strong synthetic glass fibers over a weak core of natural hemp fibers. Even with a significant proportion of natural hemp fibers, the mechanical properties of the hybrid composites were close to those reinforced solely with glass fibers. The composites exhibited good shape memory properties, with at least 52% shape fixity ratio and 71% shape recovery ratio, and 24 MPa recovery stress. After 40 s burning, a hybrid composite still maintained 83.53% of its load carrying capacity. Therefore, in addition to largely maintaining the load carrying capacity through the hybrid reinforcement design, the use of shape memory photopolymer endowed a couple of new functionalities to the composites: the plastically deformed laminated composite beam can largely return to its original shape due to the shape memory effect of the polymer matrix, and the flame retardancy of the polymer matrix makes the flammable hemp fiber survive the fire hazard. The findings of this study present exciting prospects for utilizing low-strength and flammable natural fibers in multifunctional load-bearing composites that possess both flame retardancy and shape memory properties.
Collapse
Affiliation(s)
- Sakil Mahmud
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - John Konlan
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Jenny Deicaza
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Guoqiang Li
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA.
- Department of Mechanical Engineering, Southern University and A&M College, Baton Rouge, LA, 70813, USA.
| |
Collapse
|
8
|
Yue L, Sun X, Yu L, Li M, Montgomery SM, Song Y, Nomura T, Tanaka M, Qi HJ. Cold-programmed shape-morphing structures based on grayscale digital light processing 4D printing. Nat Commun 2023; 14:5519. [PMID: 37684245 PMCID: PMC10491591 DOI: 10.1038/s41467-023-41170-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Shape-morphing structures that can reconfigure their shape to adapt to diverse tasks are highly desirable for intelligent machines in many interdisciplinary fields. Shape memory polymers are one of the most widely used stimuli-responsive materials, especially in 3D/4D printing, for fabricating shape-morphing systems. They typically go through a hot-programming step to obtain the shape-morphing capability, which possesses limited freedom of reconfigurability. Cold-programming, which directly deforms the structure into a temporary shape without increasing the temperature, is simple and more versatile but has stringent requirements on material properties. Here, we introduce grayscale digital light processing (g-DLP) based 3D printing as a simple and effective platform for fabricating shape-morphing structures with cold-programming capabilities. With the multimaterial-like printing capability of g-DLP, we develop heterogeneous hinge modules that can be cold-programmed by simply stretching at room temperature. Different configurations can be encoded during 3D printing with the variable distribution and direction of the modular-designed hinges. The hinge module allows controllable independent morphing enabled by cold programming. By leveraging the multimaterial-like printing capability, multi-shape morphing structures are presented. The g-DLP printing with cold-programming morphing strategy demonstrates enormous potential in the design and fabrication of shape-morphing structures.
Collapse
Affiliation(s)
- Liang Yue
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Xiaohao Sun
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Luxia Yu
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Mingzhe Li
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - S Macrae Montgomery
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Yuyang Song
- Toyota Research Institute of North America, Toyota Motor North America, Ann Arbor, Michigan, 48105, USA
| | - Tsuyoshi Nomura
- Toyota Central R&D Laboratories, Inc., Bunkyo-ku, Tokyo, 112-0004, Japan
| | - Masato Tanaka
- Toyota Research Institute of North America, Toyota Motor North America, Ann Arbor, Michigan, 48105, USA
| | - H Jerry Qi
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
9
|
Agyapong JN, Van Durme B, Van Vlierberghe S, Henderson JH. Surface Functionalization of 4D Printed Substrates Using Polymeric and Metallic Wrinkles. Polymers (Basel) 2023; 15:polym15092117. [PMID: 37177262 PMCID: PMC10181229 DOI: 10.3390/polym15092117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Wrinkle topographies have been studied as simple, versatile, and in some cases biomimetic surface functionalization strategies. To fabricate surface wrinkles, one material phenomenon employed is the mechanical-instability-driven wrinkling of thin films, which occurs when a deforming substrate produces sufficient compressive strain to buckle a surface thin film. Although thin-film wrinkling has been studied on shape-changing functional materials, including shape-memory polymers (SMPs), work to date has been primarily limited to simple geometries, such as flat, uniaxially-contracting substrates. Thus, there is a need for a strategy that would allow deformation of complex substrates or 3D parts to generate wrinkles on surfaces throughout that complex substrate or part. Here, 4D printing of SMPs is combined with polymeric and metallic thin films to develop and study an approach for fiber-level topographic functionalization suitable for use in printing of arbitrarily complex shape-changing substrates or parts. The effect of nozzle temperature, substrate architecture, and film thickness on wrinkles has been characterized, as well as wrinkle topography on nuclear alignment using scanning electron microscopy, atomic force microscopy, and fluorescent imaging. As nozzle temperature increased, wrinkle wavelength increased while strain trapping and nuclear alignment decreased. Moreover, with increasing film thickness, the wavelength increased as well.
Collapse
Affiliation(s)
- Johnson N Agyapong
- The Bioinspired Institute, Syracuse University, Syracuse, NY 13244, USA
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA
| | - Bo Van Durme
- The Bioinspired Institute, Syracuse University, Syracuse, NY 13244, USA
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, 9000 Ghent, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, 9000 Ghent, Belgium
| | - James H Henderson
- The Bioinspired Institute, Syracuse University, Syracuse, NY 13244, USA
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
10
|
Tran TM, de Alaniz JR. Controlled Synthesis of a Homopolymer Network Using a Well-Defined Single-Component Diels-Alder Cyclopentadiene Monomer. J Am Chem Soc 2023; 145:3462-3469. [PMID: 36722948 DOI: 10.1021/jacs.2c11416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cyclopentadiene is known for its high reactivity and propensity to dimerize, making monomer synthesis and polymerization notoriously challenging. In fact, despite its long history and compelling chemistry, only two reports have appeared in the literature since the first attempt to homopolymerize cyclopentadiene by Staudinger in 1926. Herein, we present a strategy not only to synthesize, isolate, and homopolymerize a well-defined tetracyclopentadiene monomer but also to de-cross-link the network homopolymer. Mechanical properties are also investigated, including creep-recovery, shape memory, and tensile behaviors. Interestingly, the tensile test reflects a tough and elastic material, in contrast to prior Cp-based homopolymer networks. This work provides a versatile platform to access and study new cyclopentadiene-based and better-defined homopolymer networks with potential applications ranging from shape memory polymers to degradable thermosets.
Collapse
Affiliation(s)
- Thi M Tran
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Javier Read de Alaniz
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
11
|
Ramaraju H, Massarella D, Wong C, Verga AS, Kish EC, Bocks ML, Hollister SJ. Percutaneous delivery and degradation of a shape memory elastomer poly(glycerol dodecanedioate) in porcine pulmonary arteries. Biomaterials 2023; 293:121950. [PMID: 36580715 DOI: 10.1016/j.biomaterials.2022.121950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Shape memory biodegradable elastomers are an emergent class of biomaterials well-suited for percutaneous cardiovascular repair requiring nonlinear elastic materials with facile handling. We have previously developed a chemically crosslinked shape memory elastomer, poly (glycerol dodecanedioate) (PGD), exhibiting tunable transition temperatures around body temperature (34-38 °C), exhibiting nonlinear elastic properties approximating cardiac tissues, and favorable degradation rates in vitro. Degree of tissue coverage, degradation and consequent changes in polymer thermomechanical properties, and inflammatory response in preclinical animal models are unknown material attributes required for translating this material into cardiovascular devices. This study investigates changes in the polymer structure, tissue coverage, endothelialization, and inflammation of percutaneously implanted PGD patches (20 mm × 9 mm x 0.5 mm) into the branch pulmonary arteries of Yorkshire pigs for three months. After three months in vivo, 5/8 samples exhibited (100%) tissue coverage, 2/8 samples exhibited 85-95% tissue coverage, and 1/8 samples exhibited limited (<20%) tissue coverage with mild-moderate inflammation. PGD explants showed a (60-70%) volume loss and (25-30%) mass loss, and a reduction in polymer crosslinks. Lumenal and mural surfaces and the cross-section of the explant demonstrated evidence of degradation. This study validates PGD as an appropriate cardiovascular engineering material due to its propensity for rapid tissue coverage and uneventful inflammatory response in a preclinical animal model, establishing a precedent for consideration in cardiovascular repair applications.
Collapse
Affiliation(s)
- Harsha Ramaraju
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology Atlanta, GA 30312, USA.
| | - Danielle Massarella
- UH Rainbow Babies & Children's Hospital, Department of Pediatrics, Division of Pediatric, Cardiology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Courtney Wong
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology Atlanta, GA 30312, USA
| | - Adam S Verga
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology Atlanta, GA 30312, USA
| | - Emily C Kish
- UH Rainbow Babies & Children's Hospital, Department of Pediatrics, Division of Pediatric, Cardiology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Martin L Bocks
- UH Rainbow Babies & Children's Hospital, Department of Pediatrics, Division of Pediatric, Cardiology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Scott J Hollister
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology Atlanta, GA 30312, USA.
| |
Collapse
|
12
|
Sun L, Lu X, Bai Q, Wang Z. Triple‐shape
memory materials based on
cross‐linked ethylene‐acrylic
acid copolymer and
ethylene‐vinyl
acetate copolymer. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Longyi Sun
- College of Material Science & Engineering Qingdao University of Science & Technology Qingdao China
| | - Xun Lu
- College of Material Science & Engineering Qingdao University of Science & Technology Qingdao China
| | - Qiang Bai
- College of Material Science & Engineering Qingdao University of Science & Technology Qingdao China
| | - Zhaobo Wang
- College of Material Science & Engineering Qingdao University of Science & Technology Qingdao China
| |
Collapse
|
13
|
Theoretical and Experimental Investigation of Shape Memory Polymers Programmed below Glass Transition Temperature. Polymers (Basel) 2022; 14:polym14132753. [PMID: 35808797 PMCID: PMC9268782 DOI: 10.3390/polym14132753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/18/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
An epoxy-based shape memory polymer (SMP) is synthesized and examined for its deterioration in shape fixity due to springback and isothermal viscoelastic recovery at different ambient temperatures. Shape fixity depends not only on material properties but also on programming conditions. A constitutive finite deformation model is incorporated to predict the behavior of the proposed SMP and find maximum shape fixity. A programming approach is followed in which, in contrast to hot programming, the SMPs are neither heated before deformation nor cooled afterward but are deformed at ambient temperature and then stress-relaxed. The proximity of the programming temperature to the glass transition temperature plays a crucial role in determining the shape fixity of SMP. It has been found that the SMP with a glass transition temperature of 42.9 °C can achieve maximum shape fixity of 92.25% when programmed at 23 °C with 100 min stress relaxation time. Thermal contraction and dynamic tests are performed in the Dynamic Mechanical Analyzer (DMA) to determine structural relaxation properties and distinguish the programming temperature in the cold, warm or hot temperature zone. The shape memory tests are carried out using temperature-controlled UTM to determine the shape fixity and shape recovery of SMP. The SMPs are subjected to a full thermomechanical cycle with different stress relaxation times and programming temperatures.
Collapse
|
14
|
Abedin R, Feng X, Pojman J, Ibekwe S, Mensah P, Warner I, Li G. A Thermoset Shape Memory Polymer-Based Syntactic Foam with Flame Retardancy and 3D Printability. ACS APPLIED POLYMER MATERIALS 2022; 4:1183-1195. [PMID: 35178525 PMCID: PMC8845046 DOI: 10.1021/acsapm.1c01596] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Here we report a thermoset shape memory polymer-based syntactic foam inherently integrated with flame retardancy, good mechanical properties, excellent shape memory effect, and 3D printability. The syntactic foam is fabricated by incorporating a high-temperature shape memory polymer (HTSMP) as the matrix, with 40 vol % hollow glass microspheres (HGM) K20, K15, and K1 as fillers. Compressive behavior, strain-controlled programming followed by free recovery, stress recovery, and flame retardancy of these three syntactic foams were studied. Dynamic mechanical analysis and thermal characterization validate their high glass transition temperature (T g = ∼250 °C) and excellent thermal stability. Our results suggest that the foam consisting of K20 HGM exhibits high compressive strength (81.8 MPa), high recovery stress (6.8 MPa), and excellent flame retardancy. Furthermore, this syntactic foam was used for three-dimensional (3D) printing by an extruder developed in our lab. Honeycomb, sinusoidal shapes, and free-standing helical spring were printed for demonstration. This high-temperature photopolymer-based syntactic foam integrated with high T g, flame retardancy, high recovery stress, and 3D printability can be beneficial in different sectors such as aerospace, construction, oil and gas, automotive, and electronic industries.
Collapse
Affiliation(s)
- Rubaiyet Abedin
- Department
of Mechanical Engineering, Southern University
and A&M College, Baton
Rouge, Louisiana 70813, United States
| | - Xiaming Feng
- Department
of Mechanical & Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - John Pojman
- Department
of Mechanical & Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Samuel Ibekwe
- Department
of Mechanical Engineering, Southern University
and A&M College, Baton
Rouge, Louisiana 70813, United States
| | - Patrick Mensah
- Department
of Mechanical Engineering, Southern University
and A&M College, Baton
Rouge, Louisiana 70813, United States
| | - Isiah Warner
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Guoqiang Li
- Department
of Mechanical Engineering, Southern University
and A&M College, Baton
Rouge, Louisiana 70813, United States
- Department
of Mechanical & Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
15
|
Cooper C, Nikzad S, Yan H, Ochiai Y, Lai JC, Yu Z, Chen G, Kang J, Bao Z. High Energy Density Shape Memory Polymers Using Strain-Induced Supramolecular Nanostructures. ACS CENTRAL SCIENCE 2021; 7:1657-1667. [PMID: 34729409 PMCID: PMC8554838 DOI: 10.1021/acscentsci.1c00829] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Indexed: 05/07/2023]
Abstract
Shape memory polymers are promising materials in many emerging applications due to their large extensibility and excellent shape recovery. However, practical application of these polymers is limited by their poor energy densities (up to ∼1 MJ/m3). Here, we report an approach to achieve a high energy density, one-way shape memory polymer based on the formation of strain-induced supramolecular nanostructures. As polymer chains align during strain, strong directional dynamic bonds form, creating stable supramolecular nanostructures and trapping stretched chains in a highly elongated state. Upon heating, the dynamic bonds break, and stretched chains contract to their initial disordered state. This mechanism stores large amounts of entropic energy (as high as 19.6 MJ/m3 or 17.9 J/g), almost six times higher than the best previously reported shape memory polymers while maintaining near 100% shape recovery and fixity. The reported phenomenon of strain-induced supramolecular structures offers a new approach toward achieving high energy density shape memory polymers.
Collapse
Affiliation(s)
- Christopher
B. Cooper
- Department
of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Shayla Nikzad
- Department
of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Hongping Yan
- Department
of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- Stanford
Synchroton Radiation Lightsource, SLAC National
Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Yuto Ochiai
- Department
of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Jian-Cheng Lai
- Department
of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Zhiao Yu
- Department
of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Gan Chen
- Department
of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- Department
of Material Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Jiheong Kang
- Department
of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Zhenan Bao
- Department
of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
16
|
|
17
|
Influence of uniaxial compression on the shape memory behavior of vitrimer composite embedded with tension‐programmed unidirectional shape memory polymer fibers. J Appl Polym Sci 2020. [DOI: 10.1002/app.50429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
A review of smart electrospun fibers toward textiles. COMPOSITES COMMUNICATIONS 2020; 22:100506. [PMCID: PMC7497400 DOI: 10.1016/j.coco.2020.100506] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 05/24/2023]
Abstract
Electrospinning as a versatile technology has attracted a large amount of attention in the past few decades due to the facile way to produce micro- and nano-scale fibers featuring flexibility, large specific surface area and high porosity. Stimuli-responsive polymers are a class of smart materials that are capable of sensing surround environment and interacting with them. Therefore, the combination of electrospinning and smart materials could have a great deal of benefits over the development of smart fibers. In this review, it offers a comprehensive understanding of smart electrospun fibers toward textile applications. Firstly, the definition of smart fibers and the differences between interactive fibers and passive interactive fibers are briefly introduced. Then some interactive fibers made from temperature-, pH-, light-, electric field/electricity-, magnetic field-, multi-responsive polymers, as well as some polymers featuring piezoelectric and triboelectric effect which are suitable flexible electrics, are emphasized with their applications in the form of electrospun fibers. Afterwards, some passive and hybrid smart electrospun fibers are introduced. Finally, associated challenges and perspectives are summarized and discussed. Understanding of passive smart electrospun fibers and interactive smart electrospun fibers. The recent progress in flexible electronics from electrospun fibers. The recent progress in stimuli-responsive polymers applied in interactive smart electrospun fibers.
Collapse
|
19
|
Thermo-responsive shape memory effect in isotactic propylene/1-butene copolymers. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Kuang X, Roach DJ, Hamel CM, Yu K, Qi HJ. Materials, design, and fabrication of shape programmable polymers. ACTA ACUST UNITED AC 2020. [DOI: 10.1088/2399-7532/aba1d9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
21
|
Xiao R, Huang WM. Heating/Solvent Responsive Shape-Memory Polymers for Implant Biomedical Devices in Minimally Invasive Surgery: Current Status and Challenge. Macromol Biosci 2020; 20:e2000108. [PMID: 32567193 DOI: 10.1002/mabi.202000108] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/03/2020] [Indexed: 12/16/2022]
Abstract
This review is about the fundamentals and practical issues in applying both heating and solvent responsive shape memory polymers (SMPs) for implant biomedical devices via minimally invasive surgery. After revealing the general requirements in the design of biomedical devices based on SMPs and the fundamentals for the shape-memory effect in SMPs, the underlying mechanisms, characterization methods, and several representative biomedical applications, including vascular stents, tissue scaffolds, occlusion devices, drug delivery systems, and the current R&D status of them, are discussed. The new opportunities arising from emerging technologies, such as 3D printing, and new materials, such as vitrimer, are also highlighted. Finally, the major challenge that limits the practical clinical applications of SMPs at present is addressed.
Collapse
Affiliation(s)
- Rui Xiao
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Wei Min Huang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
22
|
Santiago D, Guzmán D, Ferrando F, Serra À, De la Flor S. Bio-Based Epoxy Shape-Memory Thermosets from Triglycidyl Phloroglucinol. Polymers (Basel) 2020; 12:polym12030542. [PMID: 32131508 PMCID: PMC7182903 DOI: 10.3390/polym12030542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 11/16/2022] Open
Abstract
A series of bio-based epoxy shape-memory thermosetting polymers were synthesized starting from a triglycidyl phloroglucinol (3EPOPh) and trimethylolpropane triglycidyl ether (TPTE) as epoxy monomers and a polyetheramine (JEF) as crosslinking agent. The evolution of the curing process was studied by differential scanning calorimetry (DSC) and the materials obtained were characterized by means of DSC, thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), stress-strain tests, and microindentation. Shape-memory properties were evaluated under free and totally constrained conditions. All results were compared with an industrial epoxy thermoset prepared from standard diglycidyl ether of Bisphenol A (DGEBA). Results revealed that materials prepared from 3EPOPh were more reactive and showed a tighter network with higher crosslinking density and glass transition temperatures than the prepared from DGEBA. The partial substitution of 3EPOPh by TPTE as epoxy comonomer caused an increase in the molecular mobility of the materials but without worsening the thermal stability. The shape-memory polymers (SMPs) prepared from 3EPOPh showed good mechanical properties as well as an excellent shape-memory performance. They showed almost complete shape-recovery and shape-fixation, fast shape-recovery rates, and recovery stress up to 7 MPa. The results obtained in this study allow us to conclude that the triglycidyl phloroglucinol derivative of eugenol is a safe and environmentally friendly alternative to DGEBA for preparing thermosetting shape-memory polymers.
Collapse
Affiliation(s)
- David Santiago
- Eurecat—Chemical Technologies Unit, c/Marcel·lí Domingo 2, 43007 Tarragona, Spain;
- Department of Mechanical Engineering, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain; (F.F.); (S.D.l.F.)
- Correspondence:
| | - Dailyn Guzmán
- Eurecat—Chemical Technologies Unit, c/Marcel·lí Domingo 2, 43007 Tarragona, Spain;
| | - Francesc Ferrando
- Department of Mechanical Engineering, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain; (F.F.); (S.D.l.F.)
| | - Àngels Serra
- Department of Analytical and Organic Chemistry, University Rovira i Virgili, c/Marcel·lí Domingo 1, 43007 Tarragona, Spain;
| | - Silvia De la Flor
- Department of Mechanical Engineering, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain; (F.F.); (S.D.l.F.)
| |
Collapse
|
23
|
|
24
|
Wu X, fu C, Tan Z, Gao Y, Ma A, Nie W, Ran X. Tunable triple‐shape memory composite fabricated by selective crosslinking of polycaprolactone/poly(butylene adipate‐
co
‐terephthalate)/bentonite. J Appl Polym Sci 2019. [DOI: 10.1002/app.48577] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xianyou Wu
- Key Laboratory of High‐performance Synthetic Rubber and Its Composite MaterialsChangchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 People's Republic of China
- University of Science and Technology of China Hefei 230026 People's Republic of China
| | - Chao fu
- Key Laboratory of High‐performance Synthetic Rubber and Its Composite MaterialsChangchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 People's Republic of China
| | - Zhongyang Tan
- Key Laboratory of High‐performance Synthetic Rubber and Its Composite MaterialsChangchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 People's Republic of China
| | - Yixing Gao
- Key Laboratory of High‐performance Synthetic Rubber and Its Composite MaterialsChangchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 People's Republic of China
| | - Antong Ma
- Key Laboratory of High‐performance Synthetic Rubber and Its Composite MaterialsChangchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 People's Republic of China
- University of Science and Technology of China Hefei 230026 People's Republic of China
| | - Wei Nie
- Key Laboratory of High‐performance Synthetic Rubber and Its Composite MaterialsChangchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 People's Republic of China
| | - Xianghai Ran
- Key Laboratory of High‐performance Synthetic Rubber and Its Composite MaterialsChangchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 People's Republic of China
| |
Collapse
|
25
|
Kang SH, Aoki T, Kwak G. Molecular-Spring Shape-Memory Polymer Based on Energy Elasticity and Local Phase Transition. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Sang-Hoon Kang
- Department of Polymer Science and Engineering, Kyungpook National University, 1370 Sankyuk-dong, Buk-ku, Daegu 702-701, Korea
| | - Toshiki Aoki
- Department of Chemistry and Chemical Engineering, Graduate School of Science and Technology, and Center for Transdisciplinary Research, Niigata University, Ikarashi 2-8050, Nishi-ku, Niigata 950-2181, Japan
| | - Giseop Kwak
- Department of Polymer Science and Engineering, Kyungpook National University, 1370 Sankyuk-dong, Buk-ku, Daegu 702-701, Korea
| |
Collapse
|
26
|
Wang S, Li G, Liu Z, Liu Z, Jiang J, Zhao Y. Controlled 3D Shape Transformation Activated by Room Temperature Stretching and Release of a Flat Polymer Sheet. ACS APPLIED MATERIALS & INTERFACES 2019; 11:30308-30316. [PMID: 31337207 DOI: 10.1021/acsami.9b10071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Shape transformation of polymeric materials, including hydrogels, liquid crystalline, and semicrystalline polymers, can be realized by exposing the shape-changing materials to the effect of a variety of stimuli such as temperature, light, pH, and magnetic and electric fields. Herein, we demonstrate a novel and different approach that allows a flat sheet or strip of a polymer to transform into a predesigned 3D shape or structure by simply stretching the polymer at room temperature and then releasing it from the external stress, that is, a 2D-to-3D shape change is activated by mechanical deformation under ambient conditions. This particular type of stimuli-controlled shape-changing polymers is based on suppressing plastic deformation in selected regions of the flat polymer sheet prior to stretching and release. We validated the design principle by using a polymer blend composed of poly(ethylene oxide) (PEO), poly(acrylic acid) (PAA), and tannic acid (TA) whose plastic deformation can be locally inhibited by surface treatment using an aqueous solution of copper sulfate pentahydrate (Cu2+ ink) that cross-links PAA chains through a Cu2+-carboxylate coordination and, consequently, increases the material's Young's modulus and yield strength. After room temperature stretching and release, elastic deformation in the Cu2+ ink-treated regions leads to 3D shape transformation that is controlled by the patterned surface treatment. This facile and effective "stretch-and-release" approach widens the scope of preparation and application for shape-changing polymers.
Collapse
Affiliation(s)
- Shuwei Wang
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an , Shaanxi Province 710062 , China
| | - Guo Li
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an , Shaanxi Province 710062 , China
| | - Zhaotie Liu
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an , Shaanxi Province 710062 , China
| | - Zhongwen Liu
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an , Shaanxi Province 710062 , China
| | - Jinqiang Jiang
- Key Laboratory of Syngas Conversion of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an , Shaanxi Province 710062 , China
| | - Yue Zhao
- Département de chimie , Université de Sherbrooke , Sherbrooke , Québec J1K 2R1 , Canada
| |
Collapse
|
27
|
Sun L, Wang TX, Chen HM, Salvekar AV, Naveen BS, Xu Q, Weng Y, Guo X, Chen Y, Huang WM. A Brief Review of the Shape Memory Phenomena in Polymers and Their Typical Sensor Applications. Polymers (Basel) 2019; 11:E1049. [PMID: 31208102 PMCID: PMC6631414 DOI: 10.3390/polym11061049] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 12/23/2022] Open
Abstract
In this brief review, an introduction of the underlying mechanisms for the shape memory effect (SME) and various shape memory phenomena in polymers is presented first. After that, a summary of typical applications in sensors based on either heating or wetting activated shape recovery using largely commercial engineering polymers, which are programmed by means of in-plane pre-deformation (load applied in the length/width direction) or out-of-plane pre-deformation (load applied in the thickness direction), is presented. As demonstrated by a number of examples, many low-cost engineering polymers are well suited to, for instance, anti-counterfeit and over-heating/wetting monitoring applications via visual sensation and/or tactual sensation, and many existing technologies and products (e.g., holography, 3D printing, nano-imprinting, electro-spinning, lenticular lens, Fresnel lens, QR/bar code, Moiré pattern, FRID, structural coloring, etc.) can be integrated with the shape memory feature.
Collapse
Affiliation(s)
- Li Sun
- School of Civil Engineering, Shenyang Jianzhu University, Shenyang 110168, China.
| | - Tao Xi Wang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
- School of Materials Engineering, Jiangsu University of Technology, Changzhou 213001, China.
| | - Hong Mei Chen
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China.
| | - Abhijit Vijay Salvekar
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| | - Balasundaram Selvan Naveen
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| | - Qinwei Xu
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| | - Yiwei Weng
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| | - Xinli Guo
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, China.
| | - Yahui Chen
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| | - Wei Min Huang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| |
Collapse
|
28
|
Li G, Wang S, Liu Z, Liu Z, Xia H, Zhang C, Lu X, Jiang J, Zhao Y. 2D-to-3D Shape Transformation of Room-Temperature-Programmable Shape-Memory Polymers through Selective Suppression of Strain Relaxation. ACS APPLIED MATERIALS & INTERFACES 2018; 10:40189-40197. [PMID: 30372013 DOI: 10.1021/acsami.8b16094] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Although shape-memory polymers (SMPs) can alter their shapes upon stimulation of environmental signals, complex shape transformations are usually realized by using advanced processing technologies (four-dimensional printing) and complicated polymer structure design or localized activation. Herein, we demonstrate that stepwise controlled complex shape transformations can be obtained from a single flat piece of SMP upon uniform heating. The shape-memory blends prepared by solution casting of poly(ethylene oxide) and poly(acrylic acid) (PAA) exhibit excellent mechanical and room-temperature shape-memory behaviors, with fracture strain beyond 800% and both shape memory and shape recovery ratio higher than 90%. After plastic deformation by stretching under ambient conditions, the material is surface-patterned to induce the formation of an Fe3+-coordinated PAA network with gradually altered cross-linking density along the thickness direction at desired areas. Upon subsequent heating for shape recovery, strain release is restricted by the PAA network to different extents depending on the cross-linking density, which results in bending deformation toward the nonpatterned side and leads to three-dimensional shape transformation of the SMP. More interestingly, by sequentially dissociating the PAA network via UV or visible light-induced photoreduction of Fe3+ to Fe2+, residual strains can be removed in a spatially controlled manner. Using this approach, a series of origami shapes are obtained from a single SMP with a tailored two-dimensional initial shape. We also demonstrate that by incorporating polydopamine nanoparticles as photothermal fillers into the material, the whole shape transformation process can be carried out at room temperature by using near-infrared light.
Collapse
Affiliation(s)
- Guo Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an , Shaanxi Province 710062 , China
| | - Shuwei Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an , Shaanxi Province 710062 , China
| | - Zhaotie Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an , Shaanxi Province 710062 , China
| | - Zhongwen Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an , Shaanxi Province 710062 , China
| | - Hesheng Xia
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute , Sichuan University , Chengdu 610065 , China
| | - Chun Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute , Sichuan University , Chengdu 610065 , China
| | - Xili Lu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute , Sichuan University , Chengdu 610065 , China
- Département de chimie , Université de Sherbrooke , Sherbrooke , Québec J1K 2R1 , Canada
| | - Jinqiang Jiang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an , Shaanxi Province 710062 , China
| | - Yue Zhao
- Département de chimie , Université de Sherbrooke , Sherbrooke , Québec J1K 2R1 , Canada
| |
Collapse
|
29
|
High enthalpy storage thermoset network with giant stress and energy output in rubbery state. Nat Commun 2018; 9:642. [PMID: 29440649 PMCID: PMC5811442 DOI: 10.1038/s41467-018-03094-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/18/2018] [Indexed: 11/08/2022] Open
Abstract
Low output in stress and energy in rubbery state has been a bottleneck for wide-spread applications of thermoset shape memory polymers (SMPs). Traditionally, stress or energy storage in thermoset network is through entropy reduction by mechanical deformation or programming. We here report another mechanism for energy storage, which stores energy primarily through enthalpy increase by stretched bonds during programming. As compared to entropy-driven counterparts, which usually have a stable recovery stress from tenths to several MPa and energy output of several tenths MJ/m3, our rubbery network achieved a recovery stress of 17.0 MPa and energy output of 2.12 MJ/m3 in bulk form. The giant stress and energy release in the rubbery state will enhance applications of thermoset SMPs in engineering structures and devices.
Collapse
|
30
|
Zhang C, Gou X, Xiao R. Controllable shape-memory recovery regions in polymers through mechanical programming. J Appl Polym Sci 2017. [DOI: 10.1002/app.45909] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Cheng Zhang
- Department of Engineering Mechanics; Hohai University; Nanjing Jiangsu 210098 China
| | - Xiaofan Gou
- Department of Engineering Mechanics; Hohai University; Nanjing Jiangsu 210098 China
| | - Rui Xiao
- Department of Engineering Mechanics; Hohai University; Nanjing Jiangsu 210098 China
| |
Collapse
|
31
|
|
32
|
Petrović ZS, Milić J, Zhang F, Ilavsky J. Fast-Responding Bio-Based Shape Memory Thermoplastic Polyurethanes. POLYMER 2017; 121:26-37. [PMID: 28970639 PMCID: PMC5621613 DOI: 10.1016/j.polymer.2017.05.072] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Novel fast response shape-memory polyurethanes were prepared from bio-based polyols, diphenyl methane diisocyanate and butane diol for the first time. The bio-based polyester polyols were synthesized from 9-hydroxynonanoic acid, a product obtained by ozonolysis of fatty acids extracted from soy oil and castor oil. The morphology of polyurethanes was investigated by synchrotron ultra-small angle X-ray scattering, which revealed the inter-domain spacing between the hard and soft phases, the degree of phase separation, and the level of intermixing between the hard and soft phases. We also conducted thorough investigations of the thermal, mechanical, and dielectric properties of the polyurethanes, and found that high crystallization rate of the soft segment gives these polyurethanes unique properties suitable for shape-memory applications, such as adjustable transition temperatures, high degree of elastic elongations, and good mechanical strength. These materials are also potentially biodegradable and biocompatible, therefore suitable for biomedical and environmental applications.
Collapse
Affiliation(s)
- Zoran S Petrović
- Kansas Polymer Research Center, Pittsburg State University, Pittsburg, KS 66762
| | - Jelena Milić
- Kansas Polymer Research Center, Pittsburg State University, Pittsburg, KS 66762
| | - Fan Zhang
- Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20899
| | - Jan Ilavsky
- X-ray Science Division, Argonne National Laboratory, Argonne, IL60439
| |
Collapse
|
33
|
Belmonte A, Russo C, Ambrogi V, Fernández-Francos X, De la Flor S. Epoxy-Based Shape-Memory Actuators Obtained via Dual-Curing of Off-Stoichiometric "Thiol⁻Epoxy" Mixtures. Polymers (Basel) 2017; 9:polym9030113. [PMID: 30970791 PMCID: PMC6431884 DOI: 10.3390/polym9030113] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/10/2017] [Accepted: 03/16/2017] [Indexed: 11/25/2022] Open
Abstract
In this work, epoxy-based shape-memory actuators have been developed by taking advantage of the sequential dual-curing of off-stoichiometric “thiol–epoxy” systems. Bent-shaped designs for flexural actuation were obtained thanks to the easy processing of these materials in the intermediate stage (after the first curing process), and successfully fixed through the second curing process. The samples were programmed into a flat temporary-shape and the recovery-process was analyzed in unconstrained, partially-constrained and fully-constrained conditions using a dynamic mechanical analyzer (DMA). Different “thiol–epoxy” systems and off-stoichiometric ratios were used to analyze the effect of the network structure on the actuation performance. The results evidenced the possibility to take advantage of the flexural recovery as a potential actuator, the operation of which can be modulated by changing the network structure and properties of the material. Under unconstrained-recovery conditions, faster and narrower recovery-processes (an average speed up to 80%/min) are attained by using materials with homogeneous network structure, while in partially- or fully-constrained conditions, a higher crosslinking density and the presence of crosslinks of higher functionality lead to a higher amount of energy released during the recovery-process, thus, increasing the work or the force released. Finally, an easy approach for the prediction of the work released by the shape-memory actuator has been proposed.
Collapse
Affiliation(s)
- Alberto Belmonte
- Department of Mechanical Engineering, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain.
| | - Claudio Russo
- Department of Mechanical Engineering, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain.
- Department of Chemical, Materials and Production Engineering, University of Naples "Federico II", Piazzale Tecchio, 80, 80125 Napoli, Italy.
| | - Veronica Ambrogi
- Department of Chemical, Materials and Production Engineering, University of Naples "Federico II", Piazzale Tecchio, 80, 80125 Napoli, Italy.
- Institute for Polymers, Composites and Biomaterials, National Research Council of Italy, Via Campi Flegrei, 34, 80078 Pozzuoli, Italy.
| | - Xavier Fernández-Francos
- Thermodynamics Laboratory, ETSEIB, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona, Spain.
| | - Silvia De la Flor
- Department of Mechanical Engineering, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain.
| |
Collapse
|
34
|
Programming of One- and Two-Step Stress Recovery in a Poly(ester urethane). Polymers (Basel) 2017; 9:polym9030098. [PMID: 30970778 PMCID: PMC6431949 DOI: 10.3390/polym9030098] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/06/2017] [Accepted: 03/06/2017] [Indexed: 11/16/2022] Open
Abstract
This work demonstrates that phase-segregated poly(ester urethane) (PEU) with switching segments of crystallizable poly(1,4-butylene adipate) (PBA) can be programmed to generate two separate stress recovery events upon heating under constant strain conditions. For programming, two elongations are applied at different temperatures, followed by unloading and cooling. During the adjacent heating, two-step stress recovery is triggered. The results indicate that the magnitude of the stress recovery signals corresponds to the recovery of the two deformation stresses in reverse order. As demonstrated by further experiments, twofold stress recovery can be detected as long as the elongation at higher temperature exceeds the strain level of the deformation at lower temperature. Another finding includes that varying the lower deformation temperature enables a control over the stress recovery temperature and thus the implementation of so-called "temperature-memory effects". Moreover, exerting only one elongation during programming enables a heating-initiated one-step stress recovery close to the deformation temperature. Based on these findings, such polymers may offer new technological opportunities in the fields of active assembly when used as fastening elements and in functional clothing when utilized for compression stockings.
Collapse
|
35
|
Fang Y, Leo SY, Ni Y, Wang J, Wang B, Yu L, Dong Z, Dai Y, Basile V, Taylor C, Jiang P. Reconfigurable Photonic Crystals Enabled by Multistimuli-Responsive Shape Memory Polymers Possessing Room Temperature Shape Processability. ACS APPLIED MATERIALS & INTERFACES 2017; 9:5457-5467. [PMID: 28112957 DOI: 10.1021/acsami.6b13634] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Traditional shape memory polymers (SMPs) are mostly thermoresponsive, and their applications in nano-optics are hindered by heat-demanding programming and recovery processes. By integrating a polyurethane-based shape memory copolymer with templating nanofabrication, reconfigurable/rewritable macroporous photonic crystals have been demonstrated. This SMP coupled with the unique macroporous structure enables unusual all-room-temperature shape memory cycles. "Cold" programming involving microscopic order-disorder transitions of the templated macropores is achieved by mechanically deforming the macroporous SMP membranes. The rapid recovery of the permanent, highly ordered photonic crystal structure from the temporary, disordered configuration can be triggered by multiple stimuli including a large variety of vapors and solvents, heat, and microwave radiation. Importantly, the striking chromogenic effects associated with these athermal and thermal processes render a sensitive and noninvasive optical methodology for quantitatively characterizing the intriguing nanoscopic shape memory effects. Some critical parameters/mechanisms that could significantly affect the final performance of SMP-based reconfigurable photonic crystals including strain recovery ratio, dynamics and reversibility of shape recovery, as well as capillary condensation of vapors in macropores, which play a crucial role in vapor-triggered recovery, can be evaluated using this new optical technology.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Vito Basile
- ITIA-CNR, Industrial Technologies and Automation Institute, National Council of Research , Via Bassini, 15, 20133 Milano, Italy
| | | | | |
Collapse
|
36
|
Lu L, Li G. One-Way Multishape-Memory Effect and Tunable Two-Way Shape Memory Effect of Ionomer Poly(ethylene-co-methacrylic acid). ACS APPLIED MATERIALS & INTERFACES 2016; 8:14812-14823. [PMID: 27191832 DOI: 10.1021/acsami.6b04105] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Reversible elongation by cooling and contraction by heating, without the need for repeated programming, is well-known as the two-way shape-memory effect (2W-SME). This behavior is contrary to the common physics-contraction when cooling and expansion when heating. Materials with such behavior may find many applications in real life, such as self-sufficient grippers, fastening devices, optical gratings, soft actuators, and sealant. Here, it is shown that ionomer Surlyn 8940, a 50-year old polymer, exhibits both one-way multishape-memory effects and tunable two-way reversible actuation. The required external tensile stress to trigger the tunable 2W-SME is very low when randomly jumping the temperatures within the melting transition window. With a proper one-time programming, "true" 2W-SME (i.e., 2W-SME without the need for an external tensile load) is also achieved. A long training process is not needed to trigger the tunable 2W-SME. Instead, a proper one-time tensile programming is sufficient to trigger repeated and tunable 2W-SME. Because the 2W-SME of the ionomer Surlyn is driven by the thermally reversible network, here crystallization and melting transitions of the semicrystalline poly(ethylene-co-methacrylic acid), it is believed that a class of thermally reversible polymers should also exhibit tunable 2W-SMEs.
Collapse
Affiliation(s)
- Lu Lu
- Department of Mechanical and Industrial Engineering, Louisiana State University , Baton Rouge, Louisiana 70803, United States
| | - Guoqiang Li
- Department of Mechanical and Industrial Engineering, Louisiana State University , Baton Rouge, Louisiana 70803, United States
| |
Collapse
|