1
|
Peers de Nieuwburgh M, Hunt M, Chandrasekaran P, Vincent TL, Hayes KB, Randazzo IR, Gunder M, De Bie FR, Colson A, Lu M, Wen H, Michki SN, Rychik J, Debiève F, Katzen J, Young LR, Davey MG, Flake AW, Gaynor JW, Frank DB. Chronic Hypoxia in an EXTrauterine Environment for Neonatal Development Impairs Lung Development. Am J Respir Cell Mol Biol 2025; 72:441-452. [PMID: 39453404 DOI: 10.1165/rcmb.2024-0012oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 10/23/2024] [Indexed: 10/26/2024] Open
Abstract
Severe fetal hypoxia poses a significant risk to lung development, resulting in severe postnatal complications. Existing chronic hypoxia animal models lack the ability to achieve pathologically reduced fetal oxygen without compromising animal development, placental blood flow, or maternal health. Using an established model of isolated chronic hypoxia involving the Extrauterine Environment for Neonatal Development, we are able to investigate the direct impact of fetal hypoxia on lung development. Oxygen delivery to preterm fetal lambs (105-110 d gestational age) delivered by cesarean section was reduced, and animals were supported using the Extrauterine Environment for Neonatal Development through the canalicular or saccular stage of lung development. Fetal lambs in hypoxic conditions showed significant growth restriction compared with their normoxic counterparts. We also observed modest aberrant vascular remodeling in the saccular group after hypoxic conditions, with decreased macrovessel numbers and microvascular endothelial cell numbers and increased peripheral vessel muscularization. In addition, fetal hypoxia resulted in enlarged distal airspaces and decreased septal wall volume. Moreover, there was a reduction in mature SFTPB (surfactant protein B) and processed SFTPC protein expression concomitant with a decrease in alveolar type 2 cell number. These findings demonstrate that maternally independent fetal hypoxia predominantly affects distal airway development, alveolar type 2 cell number, and surfactant production, with mild effects on the vasculature.
Collapse
Affiliation(s)
| | - Mallory Hunt
- Division of Cardiovascular Surgery, Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Tiffany L Vincent
- Division of Pulmonology and Sleep Medicine, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | | | | - Arthur Colson
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, and
- Service d'Obstétrique, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | | | | | - Sylvia N Michki
- Division of Cardiology
- Division of Pulmonology and Sleep Medicine, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Fréderic Debiève
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, and
- Service d'Obstétrique, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Jeremy Katzen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Lisa R Young
- Division of Pulmonology and Sleep Medicine, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | | | |
Collapse
|
2
|
Vrselja A, Pillow JJ, Bensley JG, Ahmadi‐Noorbakhsh S, Noble PB, Black MJ. Dose-related cardiac outcomes in response to postnatal dexamethasone treatment in premature lambs. Anat Rec (Hoboken) 2025; 308:1214-1228. [PMID: 36924351 PMCID: PMC11889478 DOI: 10.1002/ar.25202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/06/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND Postnatal corticosteroids are used in the critical care of preterm infants for the prevention and treatment of bronchopulmonary dysplasia. We aimed to investigate the effects of early postnatal dexamethasone therapy and dose on cardiac maturation and morphology in preterm lambs. METHODS Lambs were delivered prematurely at ~128 days of gestational age and managed postnatally according to best clinical practice. Preterm lambs were administered dexamethasone daily at either a low-dose (n = 9) or a high-dose (n = 7), or were naïve to steroid treatment and administered saline (n = 9), over a 7-day time-course. Hearts were studied at postnatal Day 7 for gene expression and assessment of myocardial structure. RESULTS High-dose dexamethasone treatment in the early postnatal period led to marked differences in cardiac gene expression, altered cardiomyocyte maturation and reduced cardiomyocyte endowment in the right ventricle, as well as increased inflammatory infiltrates into the left ventricle. Low-dose exposure had minimal effects on the preterm heart. CONCLUSION Neonatal dexamethasone treatment led to adverse effects in the preterm heart in a dose-dependent manner within the first week of life. The observed cardiac changes associated with high-dose postnatal dexamethasone treatment may influence postnatal growth and remodeling of the preterm heart and subsequent long-term cardiac function.
Collapse
Affiliation(s)
- Amanda Vrselja
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
| | - Jennifer Jane Pillow
- School of Human SciencesUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Jonathan G. Bensley
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
| | | | - Peter B. Noble
- School of Human SciencesUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Mary Jane Black
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
| |
Collapse
|
3
|
Smolich JJ, Kenna KR. Antenatal betamethasone augments lung perfusion but lowers upper body blood flow and O 2 delivery with delayed cord clamping at birth in preterm lambs. J Physiol 2025. [PMID: 39799580 DOI: 10.1113/jp287817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/13/2024] [Indexed: 01/15/2025] Open
Abstract
Although the corticosteroid betamethasone is routinely administered to accelerate lung and cardiovascular maturation in the preterm fetus prior to birth, and use of delayed cord clamping (DCC) is recommended at birth by professional bodies, it is unknown whether antenatal betamethasone alters perinatal pulmonary or systemic arterial blood flow accompaniments of DCC. To address this issue, preterm fetal lambs [gestation 127 (1) days, term = 147 days] with (n = 10) or without (n = 10) antenatal betamethasone treatment were acutely instrumented under general anaesthesia with flow probes to obtain left (LV) and right ventricular (RV) outputs, major central arterial blood flows and shunt flow across both the ductus arteriosus and foramen ovale (FO). After delivery, lambs underwent initial ventilation for 2 min prior to DCC. During initial ventilation and after DCC, betamethasone (1) augmented rises in pulmonary arterial blood flow, with this greater increase supported during initial ventilation by enhanced pulmonary distribution of a higher RV output that was largely underpinned by newly emergent and substantial left-to-right (L → R) shunting across the FO, and after DCC, by an added contribution from more pronounced L → R ductal shunting; (2) increased a redistribution of LV output away from the upper body region, accompanied by lowering of upper body blood flow and O2 delivery; and (3) accentuated a progressive systemic-to-pulmonary arterial shift in the distribution of the combined LV and RV output that occurred in conjunction with more pronounced perinatal L → R shunting. These findings suggest that antenatal betamethasone substantially alters arterial blood flow effects of initial ventilation and DCC in the preterm birth transition. KEY POINTS: Betamethasone is given to increase fetal lung and cardiovascular maturation prior to preterm birth, while delayed cord clamping (DCC) is recommended at birth. Whether antenatal betamethasone alters perinatal arterial blood flow responses to DCC is unknown. Anaesthetized preterm fetal lambs with or without betamethasone pretreatment were instrumented with central arterial flow probes and, at birth, underwent ∼2 min of ventilation before DCC. Betamethasone augmented perinatal rises in pulmonary arterial blood flow, related to enhanced pulmonary distribution during initial ventilation of a higher right ventricular output largely underpinned by left-to-right (L → R) shunting across the foramen ovale, with an added contribution from more pronounced L → R ductal shunting after DCC. Betamethasone increased a redistribution of left ventricular output away from the upper body region, with lowering of upper body blood flow and O2 delivery. Betamethasone accentuated a systemic-to-pulmonary arterial shift in the distribution of combined ventricular output occurring with greater perinatal L → R shunting.
Collapse
Affiliation(s)
- Joseph J Smolich
- Heart Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Kelly R Kenna
- Heart Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| |
Collapse
|
4
|
Wang T, Wang W, Xu C, Tian X, Zhang D. Genome-wide analysis in northern Chinese twins identifies twelve new susceptibility loci for pulmonary function. BMC Genomics 2024; 25:1255. [PMID: 39736507 PMCID: PMC11684132 DOI: 10.1186/s12864-024-11165-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 12/17/2024] [Indexed: 01/01/2025] Open
Abstract
BACKGROUND Previous genome-wide association studies (GWAS) have established association between genetic variants and pulmonary function across various ethnics, whereas such associations are scarcely reported in Chinese adults. Therefore, we conducted an GWAS to explore relationships between genetic variants and pulmonary function among middle-aged Chinese dizygotic twins and further validated the top variants using data from the UK Biobank (UKB). METHODS In the discovery phase, 139 dizygotic twin pairs were drawn from the Qingdao Twin Registry. Pulmonary function was assessed using three parameters: forced expiratory volume the first second (FEV1), forced vital capacity (FVC), and FEV1/FVC ratio. GWAS was performed using GEMMA, Gene-based analysis was conducted by VEGAS2. And pathway enrichment analysis was performed using PASCAL. In the validation phase, Single-nucleotide polymorphisms (SNPs) with suggestive significance were examined through linear regression analysis of the additive effect model among 1573 Chinese ethnic participants from UKB. RESULTS The median age of twin pairs in the study was 49 years. 3 SNPs (rs80345886, rs117883876, and 75139439) related to FEV1 achieved genome-wide significance. Moreover, 222, 150, and 73 SNPs surpassed suggestive evidence level (p < 1 × 10- 5) for FEV1, FVC, and FEV1/FVC, respectively. Among them, 16 SNPs located in TBC1D16 for FEV1, 25 SNPs located in GPR126 for FVC, and 2 SNPs located in CCDC110 for FEV1/FVC, the three genes were also revealed by gene-based analysis. Moreover, 12 novel SNPs related to pulmonary function were validated to reach the nominal significance level (p < 0.05) in the UKB, with some located in the TBC1D16, TAFA5, and MTHFD1L genes. CONCLUSION Our GWAS results on Chinese dizygotic twins provide new references for the genetic regulation on pulmonary function. Twelve novel susceptibility loci are considered as possible crucial to pulmonary function.
Collapse
Affiliation(s)
- Tong Wang
- Department of Epidemiology and Health Statistics, The College of Public Health, Qingdao University, NO. 308 Ning Xia Street, Qingdao, Shandong Province, 266071, People's Republic of China
| | - Weijing Wang
- Department of Epidemiology and Health Statistics, The College of Public Health, Qingdao University, NO. 308 Ning Xia Street, Qingdao, Shandong Province, 266071, People's Republic of China
| | - Chunsheng Xu
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, Shandong Province, China
| | - Xiaocao Tian
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, Shandong Province, China.
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, The College of Public Health, Qingdao University, NO. 308 Ning Xia Street, Qingdao, Shandong Province, 266071, People's Republic of China.
| |
Collapse
|
5
|
Pelizzo G, Calcaterra V, Baldassarre P, Marinaro M, Taranto S, Ceresola M, Capelo G, Gazzola C, Zuccotti G. The impact of hormones on lung development and function: an overlooked aspect to consider from early childhood. Front Endocrinol (Lausanne) 2024; 15:1425149. [PMID: 39371928 PMCID: PMC11449876 DOI: 10.3389/fendo.2024.1425149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/29/2024] [Indexed: 10/08/2024] Open
Abstract
The impact of hormones on the respiratory system constitutes a multifaceted and intricate facet of human biology. We propose a comprehensive review of recent advancements in understanding the interactions between hormones and pulmonary development and function, focusing on pediatric populations. We explore how hormones can influence ventilation, perfusion, and pulmonary function, from regulating airway muscle tone to modulating the inflammatory response. Hormones play an important role in the growth and development of lung tissues, influencing them from early stages through infancy, childhood, adolescence, and into adulthood. Glucocorticoids, thyroid hormones, insulin, ghrelin, leptin, glucagon-like peptide 1 (GLP-1), retinoids, cholecalciferol sex steroids, hormones derived from adipose tissue, factors like insulin, granulocyte-macrophage colony-stimulating factor (GM-CSF) and glucagon are key players in modulating respiratory mechanics and inflammation. While ample evidence underscores the impact of hormones on lung development and function, along with sex-related differences in the prevalence of respiratory disorders, further research is needed to clarify their specific roles in these conditions. Further research into the mechanisms underlying hormonal effects is essential for the development of customizing therapeutic approaches for respiratory diseases. Understanding the impact of hormones on lung function could be valuable for developing personalized monitoring approaches in both medical and surgical pediatric settings, in order to improve outcomes and the quality of care for pediatric patients.
Collapse
Affiliation(s)
- Gloria Pelizzo
- Pediatric Surgery Department, Buzzi Children’s Hospital, Milan, Italy
- Department of Biomedical and Clinical Science, University of Milan, Milan, Italy
| | - Valeria Calcaterra
- Pediatrics and Adolescentology Unit, Department of Internal Medicine, University of Pavia, Pavia, Italy
- Pediatric Department, Buzzi Children’s Hospital, Milan, Italy
| | | | - Michela Marinaro
- Pediatric Surgery Department, Buzzi Children’s Hospital, Milan, Italy
| | - Silvia Taranto
- Pediatric Department, Buzzi Children’s Hospital, Milan, Italy
| | - Michele Ceresola
- Pediatric Surgery Department, Buzzi Children’s Hospital, Milan, Italy
| | - Gerson Capelo
- Pediatric Surgery Department, Buzzi Children’s Hospital, Milan, Italy
| | | | - Gianvincenzo Zuccotti
- Department of Biomedical and Clinical Science, University of Milan, Milan, Italy
- Pediatric Department, Buzzi Children’s Hospital, Milan, Italy
| |
Collapse
|
6
|
Ling LJ, Zhou Q, Zhang F, Lei WJ, Li MD, Lu JW, Wang WS, Sun K, Ying H. The dual role of glucocorticoid regeneration in inflammation at parturition. Front Immunol 2024; 15:1459489. [PMID: 39290694 PMCID: PMC11405189 DOI: 10.3389/fimmu.2024.1459489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction Fetal membrane inflammation is an integral event of parturition. However, excessive pro-inflammatory cytokines can impose threats to the fetus. Coincidentally, the fetal membranes express abundant 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1), which generates biologically active cortisol to promote labor through induction of prostaglandin synthesis. Given the well-recognized anti-inflammatory actions of glucocorticoids, we hypothesized that cortisol regenerated in the fetal membranes might be engaged in restraining fetus-hazardous pro-inflammatory cytokine production for the safety of the fetus, while reserving pro-labor effect on prostaglandin synthesis to ensure safe delivery of the fetus. Methods The hypothesis was examined in human amnion tissue and cultured primary human amnion fibroblasts as well as a mouse model. Results 11β-HSD1 was significantly increased in the human amnion in infection-induced preterm birth. Studies in human amnion fibroblasts showed that lipopolysaccharide (LPS) induced 11β-HSD1 expression synergistically with cortisol. Cortisol completely blocked NF-κB-mediated pro-inflammatory cytokine expression by LPS, but STAT3-mediated cyclooxygenase 2 expression, a crucial prostaglandin synthetic enzyme, remained. Further studies in pregnant mice showed that corticosterone did not delay LPS-induced preterm birth, but alleviated LPS-induced fetal organ damages, along with increased 11β-HSD1, cyclooxygenase 2, and decreased pro-inflammatory cytokine in the fetal membranes. Discussion There is a feed-forward cortisol regeneration in the fetal membranes in infection, and cortisol regenerated restrains pro-inflammatory cytokine expression, while reserves pro-labor effect on prostaglandin synthesis. This dual role of cortisol regeneration can prevent excessive pro-inflammatory cytokine production, while ensure in-time delivery for the safety of the fetus.
Collapse
Affiliation(s)
- Li-Jun Ling
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai, China
| | - Qiong Zhou
- Department of Obstetrics and Gynecology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fan Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Wen-Jia Lei
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Meng-Die Li
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Jiang-Wen Lu
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Wang-Sheng Wang
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Kang Sun
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Hao Ying
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai, China
| |
Collapse
|
7
|
Varghese NP, Austin ED, Galambos C, Mullen MP, Yung D, Guillerman RP, Vargas SO, Avitabile CM, Chartan CA, Cortes-Santiago N, Ibach M, Jackson EO, Jarrell JA, Keller RL, Krishnan US, Patel KR, Pogoriler J, Whalen EC, Wikenheiser-Brokamp KA, Villafranco NM, Hopper RK, Usha Raj J, Abman SH. An interdisciplinary consensus approach to pulmonary hypertension in developmental lung disease. Eur Respir J 2024; 64:2400639. [PMID: 39147412 PMCID: PMC11424926 DOI: 10.1183/13993003.00639-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024]
Abstract
It is increasingly recognised that diverse genetic respiratory disorders present as severe pulmonary hypertension (PH) in the neonate and young infant, but many controversies and uncertainties persist regarding optimal strategies for diagnosis and management to maximise long-term outcomes. To better define the nature of PH in the setting of developmental lung disease (DEVLD), in addition to the common diagnoses of bronchopulmonary dysplasia and congenital diaphragmatic hernia, we established a multidisciplinary group of expert clinicians from stakeholder paediatric specialties to highlight current challenges and recommendations for clinical approaches, as well as counselling and support of families. In this review, we characterise clinical features of infants with DEVLD/DEVLD-PH and identify decision-making challenges including genetic evaluations, the role of lung biopsies, the use of imaging modalities and treatment approaches. The importance of working with team members from multiple disciplines, enhancing communication and providing sufficient counselling services for families is emphasised to create an interdisciplinary consensus.
Collapse
Affiliation(s)
- Nidhy P Varghese
- Department of Pediatrics, Division of Pulmonology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Eric D Austin
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Csaba Galambos
- Department of Pathology and Laboratory Medicine, University of Colorado and Pediatric Heart Lung Center, Children's Hospital Colorado, Aurora, CO, USA
| | - Mary P Mullen
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Delphine Yung
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - R Paul Guillerman
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Sara O Vargas
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Catherine M Avitabile
- Division of Cardiology, University of Pennsylvania, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Corey A Chartan
- Department of Pediatrics, Divisions of Critical Care Medicine and Pulmonology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | | | - Michaela Ibach
- Section of Palliative Care, Division of Hospital Medicine, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Emma O Jackson
- Heart Center, Pulmonary Hypertension Program, Seattle Children's Hospital, Seattle, WA, USA
| | - Jill Ann Jarrell
- Division of Palliative Care, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Roberta L Keller
- Department of Pediatrics/Neonatology, University of California San Francisco and Benioff Children's Hospital, San Francisco, CA, USA
| | - Usha S Krishnan
- Department of Pediatrics, Division of Pediatric Cardiology, Columbia University Irving Medical Center and Morgan Stanley Children's Hospital of New York Presbyterian Hospital, New York, NY, USA
| | - Kalyani R Patel
- Department of Pathology and Immunology, Texas Children's Hospital, Houston, TX, USA
| | - Jennifer Pogoriler
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elise C Whalen
- Department of Pediatrics, Division of Pulmonology, Advanced Practice Providers, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Kathryn A Wikenheiser-Brokamp
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine and Division of Pathology & Laboratory Medicine and The Perinatal Institute Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Natalie M Villafranco
- Department of Pediatrics, Division of Pulmonology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Rachel K Hopper
- Department of Pediatrics, Division of Cardiology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - J Usha Raj
- Department of Pediatrics, Division of Neonatology, University of Illinois at Chicago, Chicago, IL, USA
| | - Steven H Abman
- Department of Pediatrics, University of Colorado and Pediatric Heart Lung Center, Children's Hospital Colorado, Aurora, CO, USA
| |
Collapse
|
8
|
Kawahata T, Tanaka K, Oyama K, Ueda J, Okamoto K, Makino Y. HIF3A gene disruption causes abnormal alveoli structure and early neonatal death. PLoS One 2024; 19:e0300751. [PMID: 38717999 PMCID: PMC11078382 DOI: 10.1371/journal.pone.0300751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/04/2024] [Indexed: 05/12/2024] Open
Abstract
Transcriptional response to changes in oxygen concentration is mainly controlled by hypoxia-inducible transcription factors (HIFs). Besides regulation of hypoxia-responsible gene expression, HIF-3α has recently been shown to be involved in lung development and in the metabolic process of fat tissue. However, the precise mechanism for such properties of HIF-3α is still largely unknown. To this end, we generated HIF3A gene-disrupted mice by means of genome editing technology to explore the pleiotropic role of HIF-3α in development and physiology. We obtained adult mice carrying homozygous HIF3A gene mutations with comparable body weight and height to wild-type mice. However, the number of litters and ratio of homozygous mutation carriers born from the mating between homozygous mutant mice was lower than expected due to sporadic deaths on postnatal day 1. HIF3A gene-disrupted mice exhibited abnormal configuration of the lung such as a reduced number of alveoli and thickened alveolar walls. Transcriptome analysis showed, as well as genes associated with lung development, an upregulation of stearoyl-Coenzyme A desaturase 1, a pivotal enzyme for fatty acid metabolism. Analysis of fatty acid composition in the lung employing gas chromatography indicated an elevation in palmitoleic acid and a reduction in oleic acid, suggesting an imbalance in distribution of fatty acid, a constituent of lung surfactant. Accordingly, administration of glucocorticoid injections during pregnancy resulted in a restoration of normal alveolar counts and a decrease in neonatal mortality. In conclusion, these observations provide novel insights into a pivotal role of HIF-3α in the preservation of critically important structure and function of alveoli beyond the regulation of hypoxia-mediated gene expression.
Collapse
Affiliation(s)
- Tomoki Kawahata
- Division of Endocrinology, Metabolism, and Rheumatology, Department of Internal Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Kitaru Tanaka
- Division of Endocrinology, Metabolism, and Rheumatology, Department of Internal Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Kyohei Oyama
- Department of Cardiac Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Jun Ueda
- Department of Advanced Medical Science, Asahikawa Medical University, Asahikawa, Japan
| | - Kensaku Okamoto
- Division of Endocrinology, Metabolism, and Rheumatology, Department of Internal Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Yuichi Makino
- Center for Integrated Medical Education and Regional Symbiosis, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
9
|
Yaremenko AV, Pechnikova NA, Porpodis K, Damdoumis S, Aggeli A, Theodora P, Domvri K. Association of Fetal Lung Development Disorders with Adult Diseases: A Comprehensive Review. J Pers Med 2024; 14:368. [PMID: 38672994 PMCID: PMC11051200 DOI: 10.3390/jpm14040368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Fetal lung development is a crucial and complex process that lays the groundwork for postnatal respiratory health. However, disruptions in this delicate developmental journey can lead to fetal lung development disorders, impacting neonatal outcomes and potentially influencing health outcomes well into adulthood. Recent research has shed light on the intriguing association between fetal lung development disorders and the development of adult diseases. Understanding these links can provide valuable insights into the developmental origins of health and disease, paving the way for targeted preventive measures and clinical interventions. This review article aims to comprehensively explore the association of fetal lung development disorders with adult diseases. We delve into the stages of fetal lung development, examining key factors influencing fetal lung maturation. Subsequently, we investigate specific fetal lung development disorders, such as respiratory distress syndrome (RDS), bronchopulmonary dysplasia (BPD), congenital diaphragmatic hernia (CDH), and other abnormalities. Furthermore, we explore the potential mechanisms underlying these associations, considering the role of epigenetic modifications, transgenerational effects, and intrauterine environmental factors. Additionally, we examine the epidemiological evidence and clinical findings linking fetal lung development disorders to adult respiratory diseases, including asthma, chronic obstructive pulmonary disease (COPD), and other respiratory ailments. This review provides valuable insights for healthcare professionals and researchers, guiding future investigations and shaping strategies for preventive interventions and long-term care.
Collapse
Affiliation(s)
- Alexey V. Yaremenko
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Oncology Unit, Pulmonary Department, George Papanikolaou Hospital, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (K.P.); (S.D.)
| | - Nadezhda A. Pechnikova
- Laboratory of Chemical Engineering A’, School of Chemical Engineering, Faculty of Engineering, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (N.A.P.); (A.A.)
- Saint Petersburg Pasteur Institute, Saint Petersburg 197101, Russia
| | - Konstantinos Porpodis
- Oncology Unit, Pulmonary Department, George Papanikolaou Hospital, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (K.P.); (S.D.)
| | - Savvas Damdoumis
- Oncology Unit, Pulmonary Department, George Papanikolaou Hospital, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (K.P.); (S.D.)
| | - Amalia Aggeli
- Laboratory of Chemical Engineering A’, School of Chemical Engineering, Faculty of Engineering, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (N.A.P.); (A.A.)
| | - Papamitsou Theodora
- Laboratory of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Kalliopi Domvri
- Oncology Unit, Pulmonary Department, George Papanikolaou Hospital, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (K.P.); (S.D.)
- Laboratory of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
- Pathology Department, George Papanikolaou Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| |
Collapse
|
10
|
Orlandi L, Rodriguez Y, Leostic A, Giraud C, Lang ML, Vialard F, Mauffré V, Motte-Signoret E. Preterm birth affects both surfactant synthesis and lung liquid resorption actors in fetal sheep. Dev Biol 2024; 506:64-71. [PMID: 38081502 DOI: 10.1016/j.ydbio.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/22/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023]
Abstract
INTRODUCTION After birth, the lungs must resorb the fluid they contain. This process involves multiple actors such as surfactant, aquaporins and ENaC channels. Preterm newborns often exhibit respiratory distress syndrome due to surfactant deficiency, and transitory tachypnea caused by a delay in lung liquid resorption. Our hypothesis is that surfactant, ENaC and aquaporins are involved in respiratory transition to extrauterine life and altered by preterm birth. We compared these candidates in preterm and term fetal sheeps. MATERIALS AND METHODS We performed cesarean sections in 8 time-dated pregnant ewes (4 at 100 days and 4 at 140 days of gestation, corresponding to 24 and 36 weeks of gestation in humans), and obtained 13 fetal sheeps in each group. We studied surfactant synthesis (SP-A, SP-B, SP-C), lung liquid resorption (ENaC, aquaporins) and corticosteroid regulation (glucocorticoid receptor, mineralocorticoid receptor and 11-betaHSD2) at mRNA and protein levels. RESULTS The mRNA expression level of SFTPA, SFTPB and SFTPC was higher in the term group. These results were confirmed at the protein level for SP-B on Western Blot analysis and for SP-A, SP-B and SP-C on immunohistochemical analysis. Regarding aquaporins, ENaC and receptors, mRNA expression levels for AQP1, AQP3, AQP5, ENaCα, ENaCβ, ENaCγ and 11βHSD2 mRNA were also higher in the term group. DISCUSSION Expression of surfactant proteins, aquaporins and ENaC increases between 100 and 140 days of gestation in an ovine model. Further exploring these pathways and their hormonal regulation could highlight some new explanations in the pathophysiology of neonatal respiratory diseases.
Collapse
Affiliation(s)
- Leona Orlandi
- Paris-Saclay University, UVSQ, UFR-SVS, UMR1198-BREED-RHuMA, 2 avenue de la source de la Bièvre, 78180, Montigny le Bretonneux, France
| | - Yoann Rodriguez
- Paris-Saclay University, UVSQ, UFR-SVS, UMR1198-BREED-RHuMA, 2 avenue de la source de la Bièvre, 78180, Montigny le Bretonneux, France
| | - Anne Leostic
- Paris-Saclay University, UVSQ, UFR-SVS, UMR1198-BREED-RHuMA, 2 avenue de la source de la Bièvre, 78180, Montigny le Bretonneux, France; Poissy St Germain Hospital, Obstetrics and Gynaecology, Poissy, France
| | - Corinne Giraud
- Paris-Saclay University, UVSQ, UFR-SVS, UMR1198-BREED-RHuMA, 2 avenue de la source de la Bièvre, 78180, Montigny le Bretonneux, France
| | - Maya-Laure Lang
- Poissy St Germain Hospital, Neonatal Intensive Care Unit, Poissy, France
| | - François Vialard
- Paris-Saclay University, UVSQ, UFR-SVS, UMR1198-BREED-RHuMA, 2 avenue de la source de la Bièvre, 78180, Montigny le Bretonneux, France; Poissy St Germain Hospital, Genetics, Poissy, France
| | - Vincent Mauffré
- Paris-Saclay University, UVSQ, UFR-SVS, UMR1198-BREED-RHuMA, 2 avenue de la source de la Bièvre, 78180, Montigny le Bretonneux, France; Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Emmanuelle Motte-Signoret
- Paris-Saclay University, UVSQ, UFR-SVS, UMR1198-BREED-RHuMA, 2 avenue de la source de la Bièvre, 78180, Montigny le Bretonneux, France; Poissy St Germain Hospital, Neonatal Intensive Care Unit, Poissy, France.
| |
Collapse
|
11
|
Merk VM, Phan TS, Wiedmann A, Hardy RS, Lavery GG, Brunner T. Local glucocorticoid synthesis regulates house dust mite-induced airway hypersensitivity in mice. Front Immunol 2023; 14:1252874. [PMID: 37936704 PMCID: PMC10626452 DOI: 10.3389/fimmu.2023.1252874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/11/2023] [Indexed: 11/09/2023] Open
Abstract
Background Extra-adrenal glucocorticoid (GC) synthesis at epithelial barriers, such as skin and intestine, has been shown to be important in the local regulation of inflammation. However, the role of local GC synthesis in the lung is less well studied. Based on previous studies and the uncontentious efficacy of corticosteroid therapy in asthma patients, we here investigated the role of 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1/Hsd11b1)-dependent local GC reactivation in the regulation of allergic airway inflammation. Methods Airway inflammation in Hsd11b1-deficient and C57BL/6 wild type mice was analyzed after injection of lipopolysaccharide (LPS) and anti-CD3 antibody, and in acute and chronic models of airway hypersensitivity induced by house dust mite (HDM) extract. The role of 11β-HSD1 in normal and inflammatory conditions was assessed by high dimensional flow cytometry, histological staining, RT-qPCR analysis, ex vivo tissue cultures, GC-bioassays and protein detection by ELISA and immunoblotting. Results Here we show that lung tissue from Hsd11b1-deficient mice synthesized significantly less GC ex vivo compared with wild type animals in response to immune cell stimulation. We further observed a drastically aggravated phenotype in Hsd11b1-deficient mice treated with HDM extract compared to wild type animals. Besides eosinophilic infiltration, Hsd11b1-deficient mice exhibited aggravated neutrophilic infiltration caused by a strong Th17-type immune response. Conclusion We propose an important role of 11β-HSD1 and local GC in regulating Th17-type rather than Th2-type immune responses in HDM-induced airway hypersensitivity in mice by potentially controlling Toll-like receptor 4 (TLR4) signaling and cytokine/chemokine secretion by airway epithelial cells.
Collapse
Affiliation(s)
- Verena M. Merk
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Truong San Phan
- Department of Biology, University of Konstanz, Konstanz, Germany
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Alice Wiedmann
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Rowan S. Hardy
- Institute of Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Gareth G. Lavery
- Department of Biosciences, Nottingham Trent University, Nottingham, United Kingdom
| | - Thomas Brunner
- Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
12
|
Deer LK, Su C, Thwaites NA, Davis EP, Doom JR. A framework for testing pathways from prenatal stress-responsive hormones to cardiovascular disease risk. Front Endocrinol (Lausanne) 2023; 14:1111474. [PMID: 37223037 PMCID: PMC10200937 DOI: 10.3389/fendo.2023.1111474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/10/2023] [Indexed: 05/25/2023] Open
Abstract
Cardiovascular disease (CVD) is a leading cause of death globally, with the prevalence projected to keep rising. Risk factors for adult CVD emerge at least as early as the prenatal period. Alterations in stress-responsive hormones in the prenatal period are hypothesized to contribute to CVD in adulthood, but little is known about relations between prenatal stress-responsive hormones and early precursors of CVD, such as cardiometabolic risk and health behaviors. The current review presents a theoretical model of the relation between prenatal stress-responsive hormones and adult CVD through cardiometabolic risk markers (e.g., rapid catch-up growth, high BMI/adiposity, high blood pressure, and altered blood glucose, lipids, and metabolic hormones) and health behaviors (e.g., substance use, poor sleep, poor diet and eating behaviors, and low physical activity levels). Emerging evidence in human and non-human animal literatures suggest that altered stress-responsive hormones during gestation predict higher cardiometabolic risk and poorer health behaviors in offspring. This review additionally highlights limitations of the current literature (e.g., lack of racial/ethnic diversity, lack of examination of sex differences), and discusses future directions for this promising area of research.
Collapse
Affiliation(s)
- LillyBelle K. Deer
- Department of Psychology, University of Denver, Denver, CO, United States
| | - Chen Su
- Department of Psychology, University of Denver, Denver, CO, United States
| | | | - Elysia Poggi Davis
- Department of Psychology, University of Denver, Denver, CO, United States
- Department of Psychiatry & Human Behavior, University of California, Irvine, Irvine, CA, United States
| | - Jenalee R. Doom
- Department of Psychology, University of Denver, Denver, CO, United States
| |
Collapse
|
13
|
McDougall AR, Aboud L, Lavin T, Cao J, Dore G, Ramson J, Oladapo OT, Vogel JP. Effect of antenatal corticosteroid administration-to-birth interval on maternal and newborn outcomes: a systematic review. EClinicalMedicine 2023; 58:101916. [PMID: 37007738 PMCID: PMC10050784 DOI: 10.1016/j.eclinm.2023.101916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 04/04/2023] Open
Abstract
Background Antenatal corticosteroids (ACS) are highly effective at improving outcomes for preterm newborns. Evidence suggests the benefits of ACS may vary with the time interval between administration-to-birth. However, the optimal ACS administration-to-birth interval is not yet known. In this systematic review, we synthesised available evidence on the relationship between ACS administration-to-birth interval and maternal and newborn outcomes. Methods This review was registered with PROSPERO (CRD42021253379). We searched Medline, Embase, CINAHL, Cochrane Library, Global Index Medicus on 11 Nov 2022 with no date or language restrictions. Randomised and non-randomised studies of pregnant women receiving ACS for preterm birth where maternal and newborn outcomes were reported for different administration-to-birth intervals were eligible. Eligibility screening, data extraction and risk of bias assessment were performed by two authors independently. Fetal and neonatal outcomes included perinatal and neonatal mortality, preterm birth-related morbidity outcomes and mean birthweight. Maternal outcomes included chorioamnionitis, maternal mortality, endometritis, and maternal intensive care unit admission. Findings Ten trials (4592 women; 5018 neonates), 45 cohort studies (at least 22,992 women; 30,974 neonates) and two case-control studies (355 women; 360 neonates) met the eligibility criteria. Across studies, 37 different time interval combinations were identified. There was considerable heterogeneity in included administration-to-birth intervals and populations. The odds of neonatal mortality, respiratory distress syndrome and intraventricular haemorrhage were associated with the ACS administration-to-birth interval. However, the interval associated with the greatest improvements in newborn outcomes was not consistent across studies. No reliable data were available for maternal outcomes, though odds of chorioamnionitis might be associated with longer intervals. Intepretation An optimal ACS administration-to-birth interval likely exists, however variations in study design limit identification of this interval from available evidence. Future research should consider advanced analysis techniques such as individual patient data meta-analysis to identify which ACS administration-to-birth intervals are most beneficial, and how these benefits can be optimised for women and newborns. Funding This study was conducted with funding support from the UNDP-UNFPA-UNICEF-WHO-World Bank Special Programme of Research, Development and Research Training in Human Reproduction (HRP), Department of Sexual and Reproductive Health and Research (SRH), a co-sponsored programme executed by the World Health Organization.
Collapse
Affiliation(s)
- Annie R.A. McDougall
- Maternal, Child and Adolescent Health Program, Burnet Institute, Melbourne, Australia
| | - Lily Aboud
- Maternal, Child and Adolescent Health Program, Burnet Institute, Melbourne, Australia
| | - Tina Lavin
- Department of Sexual and Reproductive Health and Research, UNDP/UNFPA/UNICEF/WHO/World Bank Special Programme of Research, Development and Research Training in Human Reproduction (HRP), World Health Organization, Geneva, Switzerland
| | - Jenny Cao
- Maternal, Child and Adolescent Health Program, Burnet Institute, Melbourne, Australia
| | - Gabrielle Dore
- Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Jen Ramson
- Maternal, Child and Adolescent Health Program, Burnet Institute, Melbourne, Australia
| | - Olufemi T. Oladapo
- Department of Sexual and Reproductive Health and Research, UNDP/UNFPA/UNICEF/WHO/World Bank Special Programme of Research, Development and Research Training in Human Reproduction (HRP), World Health Organization, Geneva, Switzerland
| | - Joshua P. Vogel
- Maternal, Child and Adolescent Health Program, Burnet Institute, Melbourne, Australia
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| |
Collapse
|
14
|
Pinson K, Gyamfi-Bannerman C. Antenatal Steroids and Tocolytics in Pregnancy. Obstet Gynecol Clin North Am 2023; 50:109-119. [PMID: 36822697 DOI: 10.1016/j.ogc.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Preterm birth, typically defined as birth between 20 0/7 weeks and 36 6/7 weeks of gestation, is a major cause of neonatal morbidity, and rates of preterm birth continue to rise. Antenatal corticosteroids have demonstrated benefit for reduction of morbidities and mortality associated with preterm birth, with few observed maternal risks. As such, antenatal corticosteroids have become the standard of care for treating pregnant people at risk of preterm birth. Tocolytics may be beneficial in temporarily slowing uterine contractions to prolong pregnancy long enough for the administration of corticosteroids or stabilization and transfer of a parturient in preterm labor.
Collapse
Affiliation(s)
- Kelsey Pinson
- University of California, San Diego, 9300 Campus Point Drive, Mail Code 7433, La Jolla, CA 92037, USA.
| | - Cynthia Gyamfi-Bannerman
- University of California, San Diego, 9300 Campus Point Drive, Mail Code 7433, La Jolla, CA 92037, USA
| |
Collapse
|
15
|
Chen M, Xu Y, Guo X, Sun B. Efficacy of perinatal pharmacotherapeutic actions for survival of very preterm newborn rabbits at 26-day gestation. J Appl Physiol (1985) 2023; 134:558-568. [PMID: 36701481 DOI: 10.1152/japplphysiol.00606.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/28/2022] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Investigation of the pathophysiology of lung impairment and protection in very preterm neonates at birth requires adequate experimental models. This study aimed to elucidate the efficacy and mechanism of perinatal pharmacotherapeutic action in postnatal survival of very preterm rabbits. Pregnant New Zealand White rabbits on 25-day gestation (term 31 days) were given dexamethasone (D), or sham injection as control (C), and cesarean delivered 24 hours later on day 26. Newborns were anesthetized, intratracheally intubated, randomly received either saline or porcine surfactant (S), allocated to four groups (C, S, D, and DS), and ventilated with low tidal volume. Under the identical protocol, another four groups were added with nitric oxide (N) inhalation (CN, SN, DN, and DSN). Survival length, lung mechanics, histopathology, and pathobiology of lung tissue were measured for benefits and injury patterns. DSN had the longest median survival time (ST50, 10.3 h), whereas C had the shortest (3.5 h), with remaining groups in-between. The survival was mainly benefited by S, when additive effects with D and/or N were discernible, by improved lung mechanics and alveolar aeration, ameliorated lung injury severity and pneumothorax, and augmented lung phospholipid pools, with DSN being the most optimal. Variable mRNA expression profiles of alveolar epithelia-associated cytokines and inflammatory mediators further characterized injury and response patterns as phenotyping conditioned in pharmacotherapeutic actions. In conclusion, the combined regimens of perinatal medications achieved remarkable survival in very preterm rabbits with lung protective ventilation strategy, offering a unique model in investigation of very preterm birth-associated respiratory physiology and morbidities.NEW & NOTEWORTHY By establishing a very preterm rabbit model with 26-day gestation (term 31 days), optimal survival length for 50% of animals in groups was achieved by comparing regimens of combined antenatal glucocorticoids, postnatal surfactant and inhaled nitric oxide, with a low tidal volume ventilation strategy. The efficacies of pharmacotherapeutic action were associated with significantly improved lung mechanics, ameliorated lung injury and pneumothorax, and enhanced surfactant phospholipid metabolism, along with variable mRNA expression profiles characterizing the response patterns.
Collapse
Affiliation(s)
- Meimei Chen
- Departments of Pediatrics and Neonatology, Children's Hospital of Fudan University, Shanghai, People's Republic of China
- National Children's Medical Center, the Laboratory of Neonatal Diseases, National Commission of Health, Shanghai, People's Republic of China
| | - Yaling Xu
- Departments of Pediatrics and Neonatology, Children's Hospital of Fudan University, Shanghai, People's Republic of China
- National Children's Medical Center, the Laboratory of Neonatal Diseases, National Commission of Health, Shanghai, People's Republic of China
| | - Xiaojing Guo
- Departments of Pediatrics and Neonatology, Children's Hospital of Fudan University, Shanghai, People's Republic of China
- National Children's Medical Center, the Laboratory of Neonatal Diseases, National Commission of Health, Shanghai, People's Republic of China
| | - Bo Sun
- Departments of Pediatrics and Neonatology, Children's Hospital of Fudan University, Shanghai, People's Republic of China
- National Children's Medical Center, the Laboratory of Neonatal Diseases, National Commission of Health, Shanghai, People's Republic of China
| |
Collapse
|
16
|
Riikonen R. Biochemical mechanisms in pathogenesis of infantile epileptic spasm syndrome. Seizure 2023; 105:1-9. [PMID: 36634586 DOI: 10.1016/j.seizure.2023.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/01/2023] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
The molecular mechanisms leading to infantile epileptic spasm syndrome (IESS) remain obscure. The only common factor seems to be that the spasms are restricted to a limited period of infancy, during a certain maturational state. Here the current literature regarding the biochemical mechanisms of brain maturation in IESS is reviewed, and various hypotheses of the pathophysiology are put together. They include: (1) imbalance of inhibitory (NGF, IGF-1, ACTH, GABA) and excitatory factors (glutamate, nitrites) which distinguishes the different etiological subgroups, (2) abnormality of the hypothalamic pituitary adrenal (HPA) axis linking insults and early life stress, (3) inflammation (4) yet poorly known genetic and epigenetic factors, and (5) glucocorticoid and vigabatrin action on brain development, pinpointing at molecular targets of the pathophysiology from another angle. An altered maturational process may explain why so many, seemingly independent etiological factors lead to the same clinical syndrome and frequently to developmental delay. Understanding these factors can provide ideas for novel therapies.
Collapse
Affiliation(s)
- Raili Riikonen
- Children's Hospital, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland.
| |
Collapse
|
17
|
Riva F, Filipe J, Pavlovic R, Luciano AM, Dall'Ara P, Arioli F, Pecile A, Groppetti D. Canine amniotic fluid at birth: From a discarded sample to a potential diagnostic of neonatal maturity. Anim Reprod Sci 2023; 248:107184. [PMID: 36587591 DOI: 10.1016/j.anireprosci.2022.107184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/17/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
The definition of new reliable markers for neonatal maturity evaluation is crucial in canine clinical practice. Concerns about the safety of amniotic sampling in pregnant dogs have prevented its collection for diagnostic purposes. Moreover, amniotic fluid had been considered waste material until the latest studies reported amniocentesis as a reliable and safe procedure, even in the canine species. In our study, amniotic fluid (n = 63) collected at birth from ten dogs undergoing elective Caesarean sections at term was analysed to discover new potential indices of canine neonatal maturity. Based on gestational age, mothers and puppies were divided into two groups: the early group (≤65 days from luteinizing hormone (LH) surge, n = 5) and the late group (>65 days from LH surge, n = 5). Amniotic parameters of the lightest and heaviest puppy in individual/each litter, with a birth weight difference of at least 20% among littermates, were also compared. In particular, the content of lecithin, sphingomyelin, surfactant protein A (SP-A), cortisol, and pentraxin 3 (PTX3) in amniotic fluid, which is considered predictive of foetal development in humans, were investigated. Maternal serum SP-A and cortisol were also measured simultaneously. All amniotic parameters were detectable in canine amniotic fluid. Interestingly, the concentrations of different amniotic parameters correlated with each other. Lecithin was positively correlated with sphingomyelin (p < 0.0001), maternal SP-A (p < 0.0005), and the ratio of amniotic and maternal cortisol (p < 0.004). Amniotic SP-A was inversely correlated to maternal SP-A (p < 0.05), lecithin (p < 0.005), and lecithin-sphingomyelin ratio (p < 0.05). A positive correlation was also recorded between amniotic and maternal cortisol (p < 0.008). Considering that all puppies were born alive and mature, these data could provide a potential range of expected amniotic values in full-term new-born dogs. Furthermore, since gestational age was positively correlated with both maternal and amniotic cortisol (p < 0.0001) and amniotic PTX3 (p < 0.05), amniotic fluid seems to be an attractive, innovative, and minimally invasive matrix with potential diagnostic and prognostic utility for the investigation of canine maturity.
Collapse
Affiliation(s)
- Federica Riva
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, via dell'Università, 6 - 26900 Lodi, Italy
| | - Joel Filipe
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, via dell'Università, 6 - 26900 Lodi, Italy
| | - Radmila Pavlovic
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, via dell'Università, 6 - 26900 Lodi, Italy
| | - Alberto Maria Luciano
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, via dell'Università, 6 - 26900 Lodi, Italy.
| | - Paola Dall'Ara
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, via dell'Università, 6 - 26900 Lodi, Italy
| | - Francesco Arioli
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, via dell'Università, 6 - 26900 Lodi, Italy
| | - Alessandro Pecile
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, via dell'Università, 6 - 26900 Lodi, Italy
| | - Debora Groppetti
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, via dell'Università, 6 - 26900 Lodi, Italy
| |
Collapse
|
18
|
Fusi J, Veronesi MC, Prandi A, Meloni T, Faustini M, Peric T. Hair and Claw Dehydroepiandrosterone Concentrations in Newborn Puppies Spontaneously Dead within 30 Days of Age. Animals (Basel) 2022; 12:ani12223162. [PMID: 36428389 PMCID: PMC9686924 DOI: 10.3390/ani12223162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
The latest intrauterine fetal developmental stage and the neonatal period represent the most challenging phases for mammalian offspring. Toward the term of pregnancy, during parturition, and after birth, the hypothalamic−pituitary−adrenal axis (HPA) is a key system regulating several physiologic processes, through the production of cortisol and dehydroepiandrosterone (DHEA). This study was aimed to assess DHEA concentrations in hair and claws of 126 spontaneously dead newborn puppies, classified as premature puppies (PRE-P), stillborn puppies (STILL-P) and puppies that died from the 1st to the 30th day of life (NEON-P). The possible influence of newborn sex, breed body size, and timing of death on DHEA concentrations in both matrices was evaluated. Claw DHEA concentrations were higher in the PRE-P group when compared to STILL-P and NEON-P puppies (p < 0.05), whilst no significant differences were found in hair for all the studied factors. The results confirm the hypothesis that higher amounts of DHEA are produced during the intrauterine life in dogs, also in puppies that will die soon after birth.
Collapse
Affiliation(s)
- Jasmine Fusi
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy
| | - Maria Cristina Veronesi
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy
- Correspondence:
| | - Alberto Prandi
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio, 2/a, 33100 Udine, Italy
| | - Tea Meloni
- Free Practitioner, DVM, Ambulatorio Veterinario Dott.ssa Tea Meloni, Via Fabio Filzi 24/28, 25063 Gardone Val Trompia, Italy
| | - Massimo Faustini
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy
| | - Tanja Peric
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio, 2/a, 33100 Udine, Italy
| |
Collapse
|
19
|
Impact of different dexamethasone treatment protocols in goats for preterm neonatal outcomes. Small Rumin Res 2022. [DOI: 10.1016/j.smallrumres.2022.106818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Alachkar A, Lee J, Asthana K, Vakil Monfared R, Chen J, Alhassen S, Samad M, Wood M, Mayer EA, Baldi P. The hidden link between circadian entropy and mental health disorders. Transl Psychiatry 2022; 12:281. [PMID: 35835742 PMCID: PMC9283542 DOI: 10.1038/s41398-022-02028-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 12/22/2022] Open
Abstract
The high overlapping nature of various features across multiple mental health disorders suggests the existence of common psychopathology factor(s) (p-factors) that mediate similar phenotypic presentations across distinct but relatable disorders. In this perspective, we argue that circadian rhythm disruption (CRD) is a common underlying p-factor that bridges across mental health disorders within their age and sex contexts. We present and analyze evidence from the literature for the critical roles circadian rhythmicity plays in regulating mental, emotional, and behavioral functions throughout the lifespan. A review of the literature shows that coarse CRD, such as sleep disruption, is prevalent in all mental health disorders at the level of etiological and pathophysiological mechanisms and clinical phenotypical manifestations. Finally, we discuss the subtle interplay of CRD with sex in relation to these disorders across different stages of life. Our perspective highlights the need to shift investigations towards molecular levels, for instance, by using spatiotemporal circadian "omic" studies in animal models to identify the complex and causal relationships between CRD and mental health disorders.
Collapse
Affiliation(s)
- Amal Alachkar
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA, USA. .,Institute for Genomics and Bioinformatics, University of California, Irvine, CA, USA. .,Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, USA.
| | - Justine Lee
- grid.266093.80000 0001 0668 7243Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA USA
| | - Kalyani Asthana
- grid.266093.80000 0001 0668 7243Department of Computer Science, School of Information and Computer Sciences, University of California, Irvine, CA USA
| | - Roudabeh Vakil Monfared
- grid.266093.80000 0001 0668 7243Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA USA
| | - Jiaqi Chen
- grid.266093.80000 0001 0668 7243Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA USA
| | - Sammy Alhassen
- grid.266093.80000 0001 0668 7243Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA USA
| | - Muntaha Samad
- grid.266093.80000 0001 0668 7243Institute for Genomics and Bioinformatics, University of California, Irvine, CA USA ,grid.266093.80000 0001 0668 7243Department of Computer Science, School of Information and Computer Sciences, University of California, Irvine, CA USA
| | - Marcelo Wood
- grid.266093.80000 0001 0668 7243Institute for Genomics and Bioinformatics, University of California, Irvine, CA USA ,grid.266093.80000 0001 0668 7243Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA USA ,grid.266093.80000 0001 0668 7243Department of Neurobiology and Behavior, School of Biological Sciences, University of California, Irvine, CA USA
| | - Emeran A. Mayer
- grid.266093.80000 0001 0668 7243Institute for Genomics and Bioinformatics, University of California, Irvine, CA USA ,grid.19006.3e0000 0000 9632 6718G. Oppenheimer Center of Neurobiology of Stress & Resilience and Goldman Luskin Microbiome Center, Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, CA USA
| | - Pierre Baldi
- Institute for Genomics and Bioinformatics, University of California, Irvine, CA, USA. .,Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, USA. .,Department of Computer Science, School of Information and Computer Sciences, University of California, Irvine, CA, USA.
| |
Collapse
|
21
|
Prenatal or postnatal corticosteroids favor clinical, respiratory, metabolic outcomes and oxidative balance of preterm lambs corticotherapy for premature neonatal lambs. Theriogenology 2022; 182:129-137. [DOI: 10.1016/j.theriogenology.2022.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/24/2022] [Accepted: 02/07/2022] [Indexed: 11/17/2022]
|
22
|
Biedermann R, Schleussner E, Lauten A, Heimann Y, Lehmann T, Proquitté H, Weschenfelder F. Inadequate Timing Limits the Benefit of Antenatal Corticosteroids on Neonatal Outcome: Retrospective Analysis of a High-Risk Cohort of Preterm Infants in a Tertiary Center in
Germany. Geburtshilfe Frauenheilkd 2022; 82:317-325. [PMID: 35250380 PMCID: PMC8893984 DOI: 10.1055/a-1608-1138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/22/2021] [Indexed: 11/04/2022] Open
Abstract
Introduction
A common problem in the treatment of threatened preterm birth is the timing and the unrestricted use of antenatal corticosteroids (ACS). This study was performed to
evaluate the independent effects of the distinct timing of antenatal corticosteroids on neonatal outcome parameters in a cohort of very low (VLBW; 1000 – 1500 g) and extreme low birth weight
infants (ELBW; < 1000 g). We hypothesize that a prolonged ACS-to-delivery interval leads to an increase in respiratory complications.
Materials and Methods
Main data source was the prospectively collected single center data for the German nosocomial infection surveillance system (KISS) between 2015 and 2018.
Multivariate regression analysis was performed to determine independent effects of the ACS-to-delivery interval on the need for ventilation, surfactant or the occurrence of bronchopulmonary
dysplasia, neonatal sepsis or necrotizing enterocolitis. Subgroup analysis was performed for ELBW and VLBW neonates.
Results
A total of 239 neonates were included. We demonstrate a significantly increased risk of respiratory distress characterized by the need for ventilation (OR 1.045; CI
1.011 – 1.080) and surfactant administration (OR 1.050, CI 1.018 – 1.083) depending on the ACS-to-delivery interval irrespective of other confounders. Every additional day between ACS and
delivery increased the risk for ventilation by 4.5% and for surfactant administration by 5%. Subgroup analysis revealed significant differences of respiratory complications in VLBW
infants.
Conclusions
Our data strongly support the deliberate use and timing of antenatal corticosteroids in pregnancies with threatened preterm birth versus a liberal strategy. When given
more than 7 days before birth, each day between application and delivery increases is relevant concerning major effects on the infant. Especially VLBW preterm neonates benefit from optimal
timing.
Collapse
Affiliation(s)
- Richard Biedermann
- University Hospital Jena, Unit Neonatology, Department of Paediatrics, Jena, Germany
| | | | - Angela Lauten
- University Hospital Jena, Department of Obstetrics, Jena, Germany
| | - Yvonne Heimann
- University Hospital Jena, Department of Obstetrics, Jena, Germany
| | - Thomas Lehmann
- University Hospital Jena, Institute of Medical Statistics and Computer Science, Jena, Germany
| | - Hans Proquitté
- University Hospital Jena, Unit Neonatology, Department of Paediatrics, Jena, Germany
| | | |
Collapse
|
23
|
Müller S, Moser D, Frach L, Wimberger P, Nitzsche K, Li SC, Kirschbaum C, Alexander N. No long-term effects of antenatal synthetic glucocorticoid exposure on epigenetic regulation of stress-related genes. Transl Psychiatry 2022; 12:62. [PMID: 35173143 PMCID: PMC8850596 DOI: 10.1038/s41398-022-01828-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/10/2021] [Accepted: 01/04/2022] [Indexed: 11/09/2022] Open
Abstract
Antenatal synthetic glucocorticoid (sGC) treatment is a potent modifier of the hypothalamic-pituitary-adrenal (HPA) axis. In this context, epigenetic modifications are discussed as potential regulators explaining how prenatal exposure to GCs might translate into persistent changes of HPA axis "functioning". The purpose of this study was to investigate whether DNA methylation and gene expression profiles of stress-associated genes (NR3C1; FKBP5; SLC6A4) may mediate the persistent effects of sGC on cortisol stress reactivity that have been previously observed. In addition, hair cortisol concentrations (hairC) were investigated as a valid biomarker of long-term HPA axis activity. This cross-sectional study comprised 108 term-born children and adolescents, including individuals with antenatal GC treatment and controls. From whole blood, DNA methylation was analyzed by targeted deep bisulfite sequencing. Relative mRNA expression was determined by RT-qPCR experiments and qBase analysis. Acute stress reactivity was assessed by the Trier Social Stress Test (TSST) measuring salivary cortisol by ELISA and hairC concentrations were determined from hair samples by liquid chromatography coupled with tandem mass spectrometry. First, no differences in DNA methylation and mRNA expression levels of the stress-associated genes between individuals treated with antenatal sGC compared to controls were found. Second, DNA methylation and mRNA expression levels were neither associated with cortisol stress reactivity nor with hairC. These findings do not corroborate the belief that DNA methylation and mRNA expression profiles of stress-associated genes (NR3C1; FKBP5; SLC6A4) play a key mediating role of the persistent effects of sGC on HPA axis functioning.
Collapse
Affiliation(s)
- Svenja Müller
- Department of Genetic Psychology, Faculty of Psychology, Ruhr Universität Bochum, Universitätsstr. 150, 44801, Bochum, Germany.
| | - Dirk Moser
- grid.5570.70000 0004 0490 981XDepartment of Genetic Psychology, Faculty of Psychology, Ruhr Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Leonard Frach
- grid.5570.70000 0004 0490 981XDepartment of Genetic Psychology, Faculty of Psychology, Ruhr Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany ,grid.83440.3b0000000121901201Department of Clinical, Educational and Health Psychology, Division of Psychology and Language Sciences, University College London, 26 Bedford Way, London, WC1H 0AP UK
| | - Pauline Wimberger
- grid.4488.00000 0001 2111 7257Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Katharina Nitzsche
- grid.4488.00000 0001 2111 7257Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Shu-Chen Li
- grid.4488.00000 0001 2111 7257Faculty of Psychology, Technische Universität Dresden, Zellescher Weg 17, 01602 Dresden, Germany ,grid.4488.00000 0001 2111 7257CeTI – Centre for Tactile Internet with Human-in-the-Loop, Technische Universität Dresden, Georg-Schumann-Str. 9, 01187 Dresden, Germany
| | - Clemens Kirschbaum
- grid.4488.00000 0001 2111 7257Faculty of Psychology, Technische Universität Dresden, Zellescher Weg 17, 01602 Dresden, Germany
| | - Nina Alexander
- Department of Psychiatry and Psychotherapy, Philipps University Marburg, Rudolf-Bultmann-Str. 8, 35039, Marburg, Germany. .,Center for Mind, Brain and Behavior, Philipps University Marburg, Hans-Meerwein-Str. 6, 35032, Marburg, Germany.
| |
Collapse
|
24
|
Pal S, Sardar S, Sarkar N, Ghosh M, Chatterjee S. Effect of Antenatal Dexamethasone in Late Preterm Period on Neonatal Hypoglycemia: A Prospective Cohort Study from a Developing Country. J Trop Pediatr 2022; 68:6535685. [PMID: 35201359 DOI: 10.1093/tropej/fmac021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVES This study compared the risk of hypoglycemia within 72 h of life in infants with and without exposure to antenatal dexamethasone in the late preterm period (34-366/7 week's gestational age). METHODS This prospective cohort study was conducted in a tertiary care neonatal unit of Eastern India from May 2021 to November 2021. Babies in the exposed group received at least one dose of antenatal dexamethasone in the late preterm period between 7 days before delivery and birth. 'Complete course' of antenatal steroid was defined as four doses of injection dexamethasone at 12 h intervals and <4 doses were considered as 'Partial course'. Primary outcome was incidence of hypoglycemia within 72 h of life, defined as whole blood glucose <45 mg/dl. RESULTS Total 298 infants (98 in control, 134 in partial and 66 in complete group) were assessed for final outcome. No significant difference in outcomes were seen in the exposed group compared to unexposed group. However, incidence of hypoglycemia within 72 h (complete vs. partial p= 0.008, complete vs. control p=0.005) and 12 h of life (complete vs. partial p=0.013, complete vs. control p=0.013) was significantly less in complete steroid group. Logistic regression analysis revealed complete course of antenatal corticosteroid significantly decreased the risk of hypoglycemia [adjusted odds ratio, 95% confidence interval (CI) 0.15 (0.03-0.69), p=0.015]. Number needed to be exposed for one additional benefit was 7 (95% CI, 6.35-22.14). CONCLUSION Complete course of dexamethasone administered to mothers at risk of late preterm delivery reduces risk of neonatal hypoglycemia within 72 h of life.
Collapse
Affiliation(s)
- Somnath Pal
- Department of Neonatology, IPGME&R, Kolkata 700020, India
| | - Syamal Sardar
- Department of Neonatology, IPGME&R, Kolkata 700020, India
| | | | - Moumita Ghosh
- Neonatology Division, Department of Pediatrics, Medical College and Hospital, Kolkata 700073, India
| | | |
Collapse
|
25
|
Cellular Senescence in Adrenocortical Biology and Its Disorders. Cells 2021; 10:cells10123474. [PMID: 34943980 PMCID: PMC8699888 DOI: 10.3390/cells10123474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/26/2021] [Accepted: 12/06/2021] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is considered a physiological process along with aging and has recently been reported to be involved in the pathogenesis of many age-related disorders. Cellular senescence was first found in human fibroblasts and gradually explored in many other organs, including endocrine organs. The adrenal cortex is essential for the maintenance of blood volume, carbohydrate metabolism, reaction to stress and the development of sexual characteristics. Recently, the adrenal cortex was reported to harbor some obvious age-dependent features. For instance, the circulating levels of aldosterone and adrenal androgen gradually descend, whereas those of cortisol increase with aging. The detailed mechanisms have remained unknown, but cellular senescence was considered to play an essential role in age-related changes of the adrenal cortex. Recent studies have demonstrated that the senescent phenotype of zona glomerulosa (ZG) acts in association with reduced aldosterone production in both physiological and pathological aldosterone-producing cells, whereas senescent cortical-producing cells seemed not to have a suppressed cortisol-producing ability. In addition, accumulated lipofuscin formation, telomere shortening and cellular atrophy in zona reticularis cells during aging may account for the age-dependent decline in adrenal androgen levels. In adrenocortical disorders, including both aldosterone-producing adenoma (APA) and cortisol-producing adenoma (CPA), different cellular subtypes of tumor cells presented divergent senescent phenotypes, whereby compact cells in both APA and CPA harbored more senescent phenotypes than clear cells. Autonomous cortisol production from CPA reinforced a local cellular senescence that was more severe than that in APA. Adrenocortical carcinoma (ACC) was also reported to harbor oncogene-induced senescence, which compensatorily follows carcinogenesis and tumor progress. Adrenocortical steroids can induce not only a local senescence but also a periphery senescence in many other tissues. Therefore, herein, we systemically review the recent advances related to cellular senescence in adrenocortical biology and its associated disorders.
Collapse
|
26
|
Long C, Tordiffe A, Sauther M, Cuozzo F, Millette J, Ganswindt A, Scheun J. Seasonal drivers of faecal glucocorticoid metabolite concentrations in an African strepsirrhine primate, the thick-tailed greater galago ( Otolemur crassicaudatus). CONSERVATION PHYSIOLOGY 2021; 9:coab081. [PMID: 34707874 PMCID: PMC8543700 DOI: 10.1093/conphys/coab081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/14/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
As global non-human primate populations show dramatic declines due to climate change, land transformation and other anthropogenic stressors, it has become imperative to study physiological responses to environmental change in order to understand primate adaptability and enhance species conservation strategies. We examined the effects of seasonality on faecal glucocorticoid metabolite (fGCM) concentrations of free-ranging male and female thick-tailed greater galagos (Otolemur crassicaudatus) in an Afromontane habitat. To do so, we established an enzyme immunoassay (EIA) for monitoring fGCM concentrations in the species using a biological validation. Following this, faecal samples were collected each month over the course of a year from free-ranging males and females situated in the Soutpansberg Mountains, Limpopo, South Africa. Multivariate analyses revealed lactation period was a driver of fGCM levels, whereas sex and food availability mostly influenced seasonal fGCM concentrations in the total population. Thus far, the results of this study show that drivers of fGCM levels, an indication of increased adrenocortical activity, in O. crassicaudatus are numerous and complex within the natural environment. The species may be adapted to such conditions and an extreme change to any one component may result in elevated fGCM levels. This increases our understanding of strepsirrhine primate physiology and offers initial insights into species adaptability to a challenging environment.
Collapse
Affiliation(s)
- Channen Long
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, 0110, South Africa
- National Zoological Garden, South African National Biodiversity Institute, Pretoria, 0001, South Africa
| | - Adrian Tordiffe
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, 0110, South Africa
| | - Michelle Sauther
- Department of Anthropology, University of Colorado, Boulder, CO 80309, USA
| | - Frank Cuozzo
- Lajuma Research Centre, Louis Trichardt (Makhado), 0920, South Africa
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria, 0028, South Africa
| | - James Millette
- Department of Anthropology, University of Colorado, Boulder, CO 80309, USA
| | - Andre Ganswindt
- National Zoological Garden, South African National Biodiversity Institute, Pretoria, 0001, South Africa
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria, 0028, South Africa
| | - Juan Scheun
- National Zoological Garden, South African National Biodiversity Institute, Pretoria, 0001, South Africa
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria, 0028, South Africa
- Department of Life and Consumer Sciences, University of South Africa, Johannesburg, 1710, South Africa
| |
Collapse
|
27
|
Probo M, Peric T, Fusi J, Prandi A, Faustini M, Veronesi MC. Hair cortisol and dehydroepiandrosterone sulfate concentrations in healthy beef calves from birth to 6 months of age. Theriogenology 2021; 175:89-94. [PMID: 34517287 DOI: 10.1016/j.theriogenology.2021.08.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/20/2021] [Accepted: 08/31/2021] [Indexed: 11/19/2022]
Abstract
Cortisol (C) and dehydroepiandrosterone (DHEA) are recognized as the main fetal steroids, and they are likely to influence fetal development and have long-term effects on newborn hypothalamic-pituitary-adrenal axis (HPA) function. DHEA is often measured as its sulfates and expressed as DHEA-S. Hair analysis represents a promising methodological approach for the non-invasive measurement of steroids, allowing for a retrospective analysis of the total exposure to steroids over time, and avoiding the influence of acute events or circadian fluctuations. Hair cortisol and DHEA concentrations have been investigated in cows, but no studies have been performed on calves. The object of this study was to evaluate hair cortisol (HC) and hair DHEA-S (HDHEA-S) concentrations in beef calves from birth to six months of age. Hair samples of 12 beef calves (seven males, five females) were firstly collected at birth (T1) and then every three weeks up to six months of age (T2-T10), collecting only the re-grown hair. HC and HDHEA-S were analyzed by radioimmunoassay (RIA). Calves sex, weight and APGAR score were registered immediately after birth. Statistical analysis revealed that both HC and HDHEA-S were influenced by sampling time (P < 0.001). HC concentrations were higher at T1 compared to all subsequent samplings (T2-T10, P < 0.01); HC concentrations were higher at T2 compared to T4-T10 (P < 0.01), while no further changes were detected from T3 onward. Higher HDHEA-S concentrations were registered at T1, T2 and T3 compared to all the other samplings (P < 0.01). No correlation was found between hair concentrations of both steroids and calf sex or birthweight. APGAR score was negatively correlated only with HC at birth (P < 0.05). These data demonstrate that C and DHEA-S are quantifiable in the hair of calves and are influenced by their age. The higher HC detected at birth (T1) probably reflects the high serum C concentrations present late in pregnancy and increased by the fetal HPA axis, by which parturition is initiated in cows. The highest HDHEA-S at birth (T1) in calves indicates that the largest amounts of DHEA and its sulfates are produced during fetal development. Moreover, the findings of higher HC at three weeks after birth and of higher HDHEA-S until six weeks after birth, suggest that C and DHEA secretion continues also beyond birth, and that these steroids could be involved in the events occurring during the challenging first weeks of age in the calf.
Collapse
Affiliation(s)
- M Probo
- Department of Veterinary Medicine, Università degli Studi di Milano, Via Dell'Università 6, 26900, Lodi, Italy
| | - T Peric
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio, 2/a, 33100, Udine, Italy
| | - J Fusi
- Department of Veterinary Medicine, Università degli Studi di Milano, Via Dell'Università 6, 26900, Lodi, Italy.
| | - A Prandi
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio, 2/a, 33100, Udine, Italy
| | - M Faustini
- Department of Veterinary Medicine, Università degli Studi di Milano, Via Dell'Università 6, 26900, Lodi, Italy
| | - M C Veronesi
- Department of Veterinary Medicine, Università degli Studi di Milano, Via Dell'Università 6, 26900, Lodi, Italy
| |
Collapse
|
28
|
Effect of Preterm Birth on Cardiac and Cardiomyocyte Growth and the Consequences of Antenatal and Postnatal Glucocorticoid Treatment. J Clin Med 2021; 10:jcm10173896. [PMID: 34501343 PMCID: PMC8432182 DOI: 10.3390/jcm10173896] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 12/18/2022] Open
Abstract
Preterm birth coincides with a key developmental window of cardiac growth and maturation, and thus has the potential to influence long-term cardiac function. Individuals born preterm have structural cardiac remodelling and altered cardiac growth and function by early adulthood. The evidence linking preterm birth and cardiovascular disease in later life is mounting. Advances in the perinatal care of preterm infants, such as glucocorticoid therapy, have improved survival rates, but at what cost? This review highlights the short-term and long-term impact of preterm birth on the structure and function of the heart and focuses on the impact of antenatal and postnatal glucocorticoid treatment on the immature preterm heart.
Collapse
|
29
|
Tremblay Y, Morin-Labbé A. Neonatal Lung Diseases: A Clinical Potential for Sex Steroids and a Novel Intracrine Organ. Front Med (Lausanne) 2021; 8:664969. [PMID: 34026792 PMCID: PMC8131950 DOI: 10.3389/fmed.2021.664969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Yves Tremblay
- Reproduction Axis, Perinatal and Child Health, CRCHU de Québec, Québec, QC, Canada.,Department of Obstetric, Gynecology & Reproduction, Faculty of Medicine, Laval University, Québec, QC, Canada.,Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Laval University, Québec, QC, Canada
| | - Alexia Morin-Labbé
- Reproduction Axis, Perinatal and Child Health, CRCHU de Québec, Québec, QC, Canada
| |
Collapse
|
30
|
Effect of Delivery by Emergency or Elective Cesarean Section on Nitric Oxide Metabolites and Cortisol Amniotic Concentrations in at Term Normal Newborn Dogs: Preliminary Results. Animals (Basel) 2021; 11:ani11030713. [PMID: 33807990 PMCID: PMC8000233 DOI: 10.3390/ani11030713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 11/24/2022] Open
Abstract
Simple Summary The high perinatal mortality rates in dogs are partly attributable to stress at parturition, with the production of cortisol (C), and related to the type of delivery, that is elective or emergency cesarean sections (ELCS and EMCS). Nitric oxide metabolites (NOs) are also related to the type of parturition (ELCS or EMCS), because of the different emotional and physical stresses experienced by the bitch in these two scenarios. The study aimed to assess the concentrations of C and NOs in the amniotic fluid of puppies delivered by ELCS or EMCS. In the amniotic fluid of the 32 puppies delivered by ELCS, C, and NOs concentrations were significantly lower than those found in the amniotic fluid of the 22 puppies delivered by EMCS. Lower C concentrations were found at increasing newborn viability assessed by Apgar score. Higher amniotic NOs concentrations were associated to increasing mother’s parity, puppies’ birthweight, and time of labor within the EMCS group. Due to the possible concurrence of several compartments (maternal, maybe placental, and fetal) to the final amniotic fluid composition, the definition of the role played by the three compartments in the higher C and NOs concentrations found in amniotic fluids collected from puppies delivered by EMCS than ELCS needs further clarifications. Abstract The neonatal response to stress was reported to be related to the type of delivery, that is elective or emergency cesarean sections (ELCS and EMCS, respectively). Nitric oxide (NO) is also reported to be related to uterine inertia, and high levels of NO metabolites (NOs) are associated with physical and emotional stress. The study aimed to assess the concentrations of cortisol (C) and NOs in the amniotic fluid of puppies delivered by ELCS or EMCS. In total, 32 puppies were delivered by ELCS and 22 by EMCS. ANCOVA showed an effect of the ELCS vs. EMCS on both amniotic NOs (p < 0.001) and C (p < 0.001) concentrations. Lower amniotic C concentrations were found at increasing Apgar score (p < 0.001). Higher amniotic NOs concentrations were associated to increasing mother’s parity (p < 0.001), puppies’ birthweight (p < 0.001), and time of labor within the EMCS group (p < 0.05). A positive correlation between birthweight and amniotic NOs concentrations was also found (p < 0.05) in the EMCS group. Due to the possible concurrence of several compartments (maternal, maybe placental, and fetal) to the final amniotic fluid composition, the definition of the role played by the three compartments in the higher C and NOs concentrations found in amniotic fluids collected from puppies delivered by EMCS than ELCS needs further clarification.
Collapse
|
31
|
Smolich JJ, Mynard JP. Antenatal betamethasone redistributes central blood flows and preferentially augments right ventricular output and pump function in preterm fetal lambs. Am J Physiol Regul Integr Comp Physiol 2021; 320:R611-R618. [PMID: 33596742 DOI: 10.1152/ajpregu.00273.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The glucocorticosteroid betamethasone, which is routinely administered prior to anticipated preterm birth to enhance maturation of the lungs and the cardiovascular system, has diverse fetal regional blood flow effects ranging from increased pulmonary flow to decreased cerebral flow. The aim of this study was to test the hypothesis that these diverse effects reflect alterations in major central flow patterns that are associated with complementary shifts in left ventricular (LV) and right ventricular (RV) pumping performance. Studies were performed in anesthetized preterm fetal lambs (gestation = 127 ± 1 days, term = 147 days) with (n = 14) or without (n = 12) preceding betamethasone treatment via maternal intramuscular injection. High-fidelity central arterial blood pressure and flow signals were obtained to calculate LV and RV outputs and total hydraulic power. Betamethasone therapy was accompanied by 1) increased RV, but not LV, output; 2) a greater RV than LV increase in total power; 3) a redistribution of LV output away from the fetal upper body region and toward the lower body and placenta; 4) a greater proportion of RV output passing to the lungs, and a lesser proportion to the lower body and placenta; and 5) a change in the relative contribution of venous streams to ventricular filling, with the LV having increased pulmonary venous and decreased foramen ovale components, and the RV having lesser superior vena caval and greater inferior vena caval portions. Taken together, these findings suggest that antenatal betamethasone produces a widespread redistribution of central arterial and venous flows in the fetus, accompanied by a preferential rise in RV pumping performance.
Collapse
Affiliation(s)
- Joseph J Smolich
- Heart Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Jonathan P Mynard
- Heart Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia.,Department of Cardiology, Royal Children's Hospital, Parkville, Victoria, Australia.,Department of Biomedical Engineering, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
32
|
Edris A, de Roos EW, McGeachie MJ, Verhamme KMC, Brusselle GG, Tantisira KG, Iribarren C, Lu M, Wu AC, Stricker BH, Lahousse L. Pharmacogenetics of inhaled corticosteroids and exacerbation risk in adults with asthma. Clin Exp Allergy 2021; 52:33-45. [PMID: 33428814 DOI: 10.1111/cea.13829] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/21/2020] [Accepted: 01/05/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Inhaled corticosteroids (ICS) are a cornerstone of asthma treatment. However, their efficacy is characterized by wide variability in individual responses. OBJECTIVE We investigated the association between genetic variants and risk of exacerbations in adults with asthma and how this association is affected by ICS treatment. METHODS We investigated the pharmacogenetic effect of 10 single nucleotide polymorphisms (SNPs) selected from the literature, including SNPs previously associated with response to ICS (assessed by change in lung function or exacerbations) and novel asthma risk alleles involved in inflammatory pathways, within all adults with asthma from the Dutch population-based Rotterdam study with replication in the American GERA cohort. The interaction effects of the SNPs with ICS on the incidence of asthma exacerbations were assessed using hurdle models adjusting for age, sex, BMI, smoking and treatment step according to the GINA guidelines. Haplotype analyses were also conducted for the SNPs located on the same chromosome. RESULTS rs242941 (CRHR1) homozygotes for the minor allele (A) showed a significant, replicated increased risk for frequent exacerbations (RR = 6.11, P < 0.005). In contrast, rs1134481 T allele within TBXT (chromosome 6, member of a family associated with embryonic lung development) showed better response with ICS. rs37973 G allele (GLCCI1) showed a significantly poorer response on ICS within the discovery cohort, which was also significant but in the opposite direction in the replication cohort. CONCLUSION rs242941 in CRHR1 was associated with poor ICS response. Conversely, TBXT variants were associated with improved ICS response. These associations may reveal specific endotypes, potentially allowing prediction of exacerbation risk and ICS response.
Collapse
Affiliation(s)
- Ahmed Edris
- Department of Bioanalysis, Ghent University, Ghent, Belgium.,Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Emmely W de Roos
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium.,Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Michael J McGeachie
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Katia M C Verhamme
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Medical Informatics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Guy G Brusselle
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium.,Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Respiratory Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Kelan G Tantisira
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA.,University of California San Diego, CA, USA
| | - Carlos Iribarren
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Meng Lu
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Ann Chen Wu
- Department of Population Medicine, Precision Medicine Translational Research (PROMoTeR) Center, Harvard Pilgrim Health Care Institute and Harvard Medical School, Boston, MA, USA
| | - Bruno H Stricker
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Lies Lahousse
- Department of Bioanalysis, Ghent University, Ghent, Belgium.,Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
33
|
Kung YP, Lin CC, Chen MH, Tsai MS, Hsieh WS, Chen PC. Intrauterine exposure to per- and polyfluoroalkyl substances may harm children's lung function development. ENVIRONMENTAL RESEARCH 2021; 192:110178. [PMID: 32991923 DOI: 10.1016/j.envres.2020.110178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS), such as perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), perfluorononanoic acid (PFNA) and perfluoroundecanoic acid (PFUA), are common persistent environmental organic pollutants. Animal studies have indicated that PFAS influence inflammatory responses and lung development. However, whether prenatal or childhood PFAS exposure affects children's lung function remains unclear. This study aimed to investigate both in utero exposure and childhood exposure to PFAS and the relationships between them and lung function development in childhood. METHODS In total, 165 children were recruited from the Taiwan Birth Panel Study (TBPS). Cord blood plasma and children's serum were collected when they were eight years old. PFAS levels were analysed by ultra-high-performance liquid chromatography/tandem mass spectrometry. When these children reached eight years of age, we administered detailed questionnaires and lung function examinations. RESULTS The mean concentrations of PFOA, PFOS, PFNA and PFUA in cord blood among the 165 study children were 2.4, 6.4, 6.0, and 15.4 ng/mL, respectively. The mean concentrations in serum from eight-year-olds were 2.7, 5.9, 0.6, and 0.3 ng/mL, respectively. At eight years of age, the mean FEV1 (forced expiratory volume per sec), FVC (forced vital capacity), PEF (peak expiratory flow) and FEV1/FVC values were 1679 mL, 1835 mL, 3846 mL/s and 92.0%, respectively. PFOA, PFOS, PFNA and PFUA levels in cord blood were inversely associated with FEV1, FVC and PEF values. The PFOS concentration in cord blood was the most consistently correlated with decreasing lung function before and after adjusting for confounding factors. The PFOS concentration was also significantly inversely correlated with lung function in subgroups with lower birth weight and allergic rhinitis. CONCLUSIONS Our cohort study revealed that the concentrations of PFOA, PFOS, PFNA and PFUA were higher in cord blood than in serum from eight-year-olds. Some trends were also noted between intrauterine PFOS exposure and children's decreasing FEV1, FVC and PEF, especially in subgroups with lower birth weight and allergic rhinitis. Therefore, intrauterine PFAS exposure, especially PFOS, may play a vital role in lung development.
Collapse
Affiliation(s)
- Yen-Ping Kung
- Institute of Environmental and Occupational Health Sciences, National Taiwan University College of Public Health, Taipei, Taiwan
| | - Ching-Chun Lin
- Institute of Environmental and Occupational Health Sciences, National Taiwan University College of Public Health, Taipei, Taiwan
| | - Mei-Huei Chen
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Meng-Shan Tsai
- Institute of Environmental and Occupational Health Sciences, National Taiwan University College of Public Health, Taipei, Taiwan
| | - Wu-Shiun Hsieh
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan; Department of Pediatrics, Cathay General Hospital, Taipei, Taiwan.
| | - Pau-Chung Chen
- Institute of Environmental and Occupational Health Sciences, National Taiwan University College of Public Health, Taipei, Taiwan; Department of Public Health, National Taiwan University College of Public Health, Taipei, Taiwan; Department of Environmental and Occupational Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan; National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Innovation and Policy Center for Population Health and Sustainable Environment, National Taiwan University College of Public Health, Taipei, Taiwan.
| |
Collapse
|
34
|
Necrotizing enterocolitis intestinal barrier function protection by antenatal dexamethasone and surfactant-D in a rat model. Pediatr Res 2021; 90:768-775. [PMID: 33469185 PMCID: PMC8566228 DOI: 10.1038/s41390-020-01334-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 12/03/2020] [Accepted: 12/09/2020] [Indexed: 01/30/2023]
Abstract
BACKGROUND Necrotizing enterocolitis (NEC) is the most common gastrointestinal disorder in premature neonates. Possible therapeutic approaches are centered on promoting maturation of the gastrointestinal mucosal barrier. Studies have demonstrated that antenatal administration of corticosteroids can decrease NEC incidence and mortality. METHODS Pregnant rat dams were administered dexamethasone 48 h prior to delivery. The pups were subjected to an experimental NEC-like injury protocol. Ileal tissues and sera were collected and evaluated for inflammatory cytokines, gut permeability and expressions and localizations of tight junction proteins, and surfactant protein-D by immunohistochemistry/immunofluorescent staining. Intestinal epithelial cells (IEC-6) were pretreated with SP-D to examine the effect of SP-D on tight junction protein expressions when challenged with platelet-activating factor and lipopolysaccharide to model proinflammatory insults. RESULTS Antenatal dexamethasone reduced systemic inflammation, preserved intestinal barrier integrity, and stimulated SP-D expression on the intestinal mucosal surface in pups exposed to NEC-like injury. Pretreatment of SP-D blocked platelet-activating factor/lipopolysaccharide-induced tight junction disruption in IEC-6 cells in vitro. CONCLUSIONS Antenatal dexamethasone preserves the development of intestinal mucosal barrier integrity and reduces incidence and morbidity from an experimental NEC-like injury model. Dexamethasone upregulation of intestinal SP-D-protective effects on tight junction proteins. IMPACT Antenatal administration of dexamethasone can function in concert with intestinal surfactant protein-D to decrease systemic inflammatory responses, and protect intestinal barrier integrity in a neonatal rat model of NEC. A novel role of intestinal SP-D in preserving tight junction protein structures under inflammatory conditions. We describe the intestinal SP-D-an overlooked role of antenatal dexamethasone in neonatal NEC?
Collapse
|
35
|
Zhang R, Guo T, Han Y, Huang H, Shi J, Hu J, Li H, Wang J, Saleem A, Zhou P, Lan F. Design of synthetic microenvironments to promote the maturation of human pluripotent stem cell derived cardiomyocytes. J Biomed Mater Res B Appl Biomater 2020; 109:949-960. [PMID: 33231364 DOI: 10.1002/jbm.b.34759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/08/2020] [Accepted: 11/10/2020] [Indexed: 12/19/2022]
Abstract
Cardiomyocyte like cells derived from human pluripotent stem cells (hPSC-CMs) have a good application perspective in many fields such as disease modeling, drug screening and clinical treatment. However, these are severely hampered by the fact that hPSC-CMs are immature compared to adult human cardiomyocytes. Therefore, many approaches such as genetic manipulation, biochemical factors supplement, mechanical stress, electrical stimulation and three-dimensional culture have been developed to promote the maturation of hPSC-CMs. Recently, establishing in vitro synthetic artificial microenvironments based on the in vivo development program of cardiomyocytes has achieved much attention due to their inherent properties such as stiffness, plasticity, nanotopography and chemical functionality. In this review, the achievements and deficiency of reported synthetic microenvironments that mainly discussed comprehensive biological, chemical, and physical factors, as well as three-dimensional culture were mainly discussed, which have significance to improve the microenvironment design and accelerate the maturation of hPSC-CMs.
Collapse
Affiliation(s)
- Rui Zhang
- School and hospital of Stomatology, Lanzhou University, Lanzhou, China.,College of Life Sciences, Lanzhou University, Lanzhou, China
| | - Tianwei Guo
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yu Han
- School and hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Hongxin Huang
- School and hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Jiamin Shi
- College of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jiaxuan Hu
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Hongjiao Li
- School and hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Jianlin Wang
- College of Life Sciences, Lanzhou University, Lanzhou, China
| | - Amina Saleem
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Ping Zhou
- School and hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Feng Lan
- National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
36
|
Ross-Munro E, Kwa F, Kreiner J, Khore M, Miller SL, Tolcos M, Fleiss B, Walker DW. Midkine: The Who, What, Where, and When of a Promising Neurotrophic Therapy for Perinatal Brain Injury. Front Neurol 2020; 11:568814. [PMID: 33193008 PMCID: PMC7642484 DOI: 10.3389/fneur.2020.568814] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/18/2020] [Indexed: 12/21/2022] Open
Abstract
Midkine (MK) is a small secreted heparin-binding protein highly expressed during embryonic/fetal development which, through interactions with multiple cell surface receptors promotes growth through effects on cell proliferation, migration, and differentiation. MK is upregulated in the adult central nervous system (CNS) after multiple types of experimental injury and has neuroprotective and neuroregenerative properties. The potential for MK as a therapy for developmental brain injury is largely unknown. This review discusses what is known of MK's expression and actions in the developing brain, areas for future research, and the potential for using MK as a therapeutic agent to ameliorate the effects of brain damage caused by insults such as birth-related hypoxia and inflammation.
Collapse
Affiliation(s)
- Emily Ross-Munro
- Neurodevelopment in Health and Disease Research Program, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT), Melbourne, VIC, Australia
| | - Faith Kwa
- Neurodevelopment in Health and Disease Research Program, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT), Melbourne, VIC, Australia.,School of Health Sciences, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Jenny Kreiner
- Neurodevelopment in Health and Disease Research Program, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT), Melbourne, VIC, Australia
| | - Madhavi Khore
- Neurodevelopment in Health and Disease Research Program, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT), Melbourne, VIC, Australia
| | - Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia
| | - Mary Tolcos
- Neurodevelopment in Health and Disease Research Program, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT), Melbourne, VIC, Australia
| | - Bobbi Fleiss
- Neurodevelopment in Health and Disease Research Program, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT), Melbourne, VIC, Australia.,Neurodiderot, Inserm U1141, Universita de Paris, Paris, France
| | - David W Walker
- Neurodevelopment in Health and Disease Research Program, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology (RMIT), Melbourne, VIC, Australia
| |
Collapse
|
37
|
Social, Reproductive and Contextual Influences on Fecal Glucocorticoid Metabolites in Captive Yangtze Finless Porpoises (Neophocaena asiaeorientalis asiaeorientalis) and Bottlenose Dolphins (Tursiops truncatus). JOURNAL OF ZOOLOGICAL AND BOTANICAL GARDENS 2020. [DOI: 10.3390/jzbg1010003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Although the use of fecal glucocorticoid metabolite (FGCM) measurements as non-invasive biomarkers for the stress response in mammals has increased, few studies have been conducted in odontocetes. We investigated if animal sex, age, pregnancy or contextual variations (season, sampling time, enrichment, social separation and presence of visitors) influenced the FGCM concentrations in presumably healthy, captive and endangered Yangtze finless porpoises (YFPs, N = 4) and bottlenose dolphins (BDs, N = 3). For YFPs, the FGCM concentrations were influenced by season (p = 0.01), diurnal variation (p = 0.01) and pregnancy (p = 0.005). Contextual variables that were associated with increases in FGCM concentrations included social separations (p = 0.003) and numbers of visitors (p = 0.0002). Concentrations of FGCMs were lower (p = 0.001) after exposure to environmental enrichment. For BDs, enrichment was associated with reduced concentrations of FGCMs (p < 0.0001). The presence of visitors also influenced this species’ FGCM concentrations (p = 0.006). These results demonstrate that changes in the FGCM concentrations in YFPs and BDs may occur in response to contextual and social changes. In combination with other behavioral and physiological assessments, measurements of FGCMs may be a useful tool for monitoring cetacean welfare. Such monitoring may help researchers identify and better understand situations that may be stressful for animals and, therefore, improve management and husbandry. Furthermore, results from our study and inferences of the FGCM concentrations in cetaceans, and their potential relationship to stress, may be extrapolated to studies of free-ranging animals, which may help detect possible environmental or anthropogenic stressors that could be affecting these populations.
Collapse
|
38
|
Martin LF, Richardson LS, da Silva MG, Sheller-Miller S, Menon R. Dexamethasone induces primary amnion epithelial cell senescence through telomere-P21 associated pathway†. Biol Reprod 2020; 100:1605-1616. [PMID: 30927408 DOI: 10.1093/biolre/ioz048] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/30/2018] [Accepted: 03/29/2019] [Indexed: 02/06/2023] Open
Abstract
Dexamethasone (Dex), a corticosteroid hormone, is used during the perinatal period to help fetal lung and other organ development. Conversely, Dex-induced cell proliferation has been associated with accelerated aging. Using primary amnion epithelial cells (AECs) from term, not in labor, fetal membranes, we tested the effects of Dex on cell proliferation, senescence, and inflammation. Primary AECs treated with Dex (100 and 200 nM) for 48 h were tested for cell viability (crystal violet dye exclusion), cell cycle progression and/or type of cell death (flow cytometry), expression patterns of steroid receptors (glucocorticoid receptor, progesterone receptor membrane component 1&2), inflammatory mediators (IL-6 and IL-8), and telomere length (quantitative RT-PCR). Mechanistic mediators of senescence (p38MAPK and p21) were determined by western blot analysis. Dex treatment did not induce AEC proliferation, cell cycle, influence viability, or morphology. However, Dex caused dependent telomere length reduction and p38MAPK-independent but p21-dependent (confirmed by treatment with p21 inhibitor UC2288). Senescence was not associated with an increase in inflammatory mediators, which is often associated with senescence. Co-treatment with RU486 produced DNA damage, cell cycle arrest, and cellular necrosis with an increase in inflammatory mediators. The effect of Dex was devoid of changes to steroid receptors, whereas RU486 increased GR expression. Dex treatment of AECs produced nonreplicative and noninflammatory senescence. Extensive use of Dex during the perinatal period may lead to cellular senescence, contributing to cellular aging associated pathologies during the perinatal and neonatal periods.
Collapse
Affiliation(s)
- Laura F Martin
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA.,Department of Pathology, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Lauren S Richardson
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA.,Department of Neuroscience, Cell Biology & Anatomy, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Márcia Guimarães da Silva
- Department of Pathology, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Samantha Sheller-Miller
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Ramkumar Menon
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| |
Collapse
|
39
|
Bartman CM, Matveyenko A, Prakash YS. It's about time: clocks in the developing lung. J Clin Invest 2020; 130:39-50. [PMID: 31895049 DOI: 10.1172/jci130143] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The discovery of peripheral intracellular clocks revealed circadian oscillations of clock genes and their targets in all cell types, including those in the lung, sparking exploration of clocks in lung disease pathophysiology. While the focus has been on the role of these clocks in adult airway diseases, clock biology is also likely to be important in perinatal lung development, where it has received far less attention. Historically, fetal circadian rhythms have been considered irrelevant owing to lack of external light exposure, but more recent insights into peripheral clock biology raise questions of clock emergence, its concordance with tissue-specific structure/function, the interdependence of clock synchrony and functionality in perinatal lung development, and the possibility of lung clocks in priming the fetus for postnatal life. Understanding the perinatal molecular clock may unravel mechanistic targets for chronic airway disease across the lifespan. With current research providing more questions than answers, it is about time to investigate clocks in the developing lung.
Collapse
Affiliation(s)
| | - Aleksey Matveyenko
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine and.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
40
|
Mathieu E, MacPherson CW, Belvis J, Mathieu O, Robert V, Saint-Criq V, Langella P, Tompkins TA, Thomas M. Oral Primo-Colonizing Bacteria Modulate Inflammation and Gene Expression in Bronchial Epithelial Cells. Microorganisms 2020; 8:microorganisms8081094. [PMID: 32707845 PMCID: PMC7464694 DOI: 10.3390/microorganisms8081094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/10/2020] [Accepted: 07/18/2020] [Indexed: 02/07/2023] Open
Abstract
The microbiota of the mouth disperses into the lungs, and both compartments share similar phyla. Considering the importance of the microbiota in the maturation of the immunity and physiology during the first days of life, we hypothesized that primo-colonizing bacteria of the oral cavity may induce immune responses in bronchial epithelial cells. Herein, we have isolated and characterized 57 strains of the buccal cavity of two human newborns. These strains belong to Streptococcus, Staphylococcus, Enterococcus, Rothia and Pantoea genera, with Streptococcus being the most represented. The strains were co-incubated with a bronchial epithelial cell line (BEAS-2B), and we established their impact on a panel of cytokines/chemokines and global changes in gene expression. The Staphylococcus strains, which appeared soon after birth, induced a high production of IL-8, suggesting they can trigger inflammation, whereas the Streptococcus strains were less associated with inflammation pathways. The genera Streptococcus, Enterococcus and Pantoea induced differential profiles of cytokine/chemokine/growth factor and set of genes associated with maturation of morphology. Altogether, our results demonstrate that the microorganisms, primo-colonizing the oral cavity, impact immunity and morphology of the lung epithelial cells, with specific effects depending on the phylogeny of the strains.
Collapse
Affiliation(s)
- Elliot Mathieu
- Micalis Institute, AgroParisTech, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (E.M.); (V.R.); (V.S.-C.); (P.L.)
| | - Chad W. MacPherson
- Rosell Institute for Microbiome and Probiotics, Lallemand Health Solutions Inc., Montreal, QC H4P 2R2, Canada; (C.W.M.); (J.B.); (O.M.); (T.A.T.)
| | - Jocelyn Belvis
- Rosell Institute for Microbiome and Probiotics, Lallemand Health Solutions Inc., Montreal, QC H4P 2R2, Canada; (C.W.M.); (J.B.); (O.M.); (T.A.T.)
| | - Olivier Mathieu
- Rosell Institute for Microbiome and Probiotics, Lallemand Health Solutions Inc., Montreal, QC H4P 2R2, Canada; (C.W.M.); (J.B.); (O.M.); (T.A.T.)
| | - Véronique Robert
- Micalis Institute, AgroParisTech, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (E.M.); (V.R.); (V.S.-C.); (P.L.)
| | - Vinciane Saint-Criq
- Micalis Institute, AgroParisTech, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (E.M.); (V.R.); (V.S.-C.); (P.L.)
| | - Philippe Langella
- Micalis Institute, AgroParisTech, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (E.M.); (V.R.); (V.S.-C.); (P.L.)
| | - Thomas A. Tompkins
- Rosell Institute for Microbiome and Probiotics, Lallemand Health Solutions Inc., Montreal, QC H4P 2R2, Canada; (C.W.M.); (J.B.); (O.M.); (T.A.T.)
| | - Muriel Thomas
- Micalis Institute, AgroParisTech, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (E.M.); (V.R.); (V.S.-C.); (P.L.)
- Correspondence:
| |
Collapse
|
41
|
Bridges JP, Sudha P, Lipps D, Wagner A, Guo M, Du Y, Brown K, Filuta A, Kitzmiller J, Stockman C, Chen X, Weirauch MT, Jobe AH, Whitsett JA, Xu Y. Glucocorticoid regulates mesenchymal cell differentiation required for perinatal lung morphogenesis and function. Am J Physiol Lung Cell Mol Physiol 2020; 319:L239-L255. [PMID: 32460513 DOI: 10.1152/ajplung.00459.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
While antenatal glucocorticoids are widely used to enhance lung function in preterm infants, cellular and molecular mechanisms by which glucocorticoid receptor (GR) signaling influences lung maturation remain poorly understood. Deletion of the glucocorticoid receptor gene (Nr3c1) from fetal pulmonary mesenchymal cells phenocopied defects caused by global Nr3c1 deletion, while lung epithelial- or endothelial-specific Nr3c1 deletion did not impair lung function at birth. We integrated genome-wide gene expression profiling, ATAC-seq, and single cell RNA-seq data in mice in which GR was deleted or activated to identify the cellular and molecular mechanisms by which glucocorticoids control prenatal lung maturation. GR enhanced differentiation of a newly defined proliferative mesenchymal progenitor cell (PMP) into matrix fibroblasts (MFBs), in part by directly activating extracellular matrix-associated target genes, including Fn1, Col16a4, and Eln and by modulating VEGF, JAK-STAT, and WNT signaling. Loss of mesenchymal GR signaling blocked fibroblast progenitor differentiation into mature MFBs, which in turn increased proliferation of SOX9+ alveolar epithelial progenitor cells and inhibited differentiation of mature alveolar type II (AT2) and AT1 cells. GR signaling controls genes required for differentiation of a subset of proliferative mesenchymal progenitors into matrix fibroblasts, in turn, regulating signals controlling AT2/AT1 progenitor cell proliferation and differentiation and identifying cells and processes by which glucocorticoid signaling regulates fetal lung maturation.
Collapse
Affiliation(s)
- James P Bridges
- Perinatal Institute, Section of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, Ohio
| | - Parvathi Sudha
- Perinatal Institute, Section of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Dakota Lipps
- College of Engineering and Applied Science, University of Cincinnati, Cincinnati, Ohio
| | - Andrew Wagner
- College of Engineering and Applied Science, University of Cincinnati, Cincinnati, Ohio
| | - Minzhe Guo
- Perinatal Institute, Section of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Yina Du
- Perinatal Institute, Section of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Kari Brown
- Perinatal Institute, Section of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Alyssa Filuta
- Perinatal Institute, Section of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Joseph Kitzmiller
- Perinatal Institute, Section of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Courtney Stockman
- Perinatal Institute, Section of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Xiaoting Chen
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Matthew T Weirauch
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, Ohio.,Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Alan H Jobe
- Perinatal Institute, Section of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, Ohio
| | - Jeffrey A Whitsett
- Perinatal Institute, Section of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, Ohio
| | - Yan Xu
- Perinatal Institute, Section of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, Ohio.,Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
42
|
Sterner ZR, Shewade LH, Mertz KM, Sturgeon SM, Buchholz DR. Glucocorticoid receptor is required for survival through metamorphosis in the frog Xenopus tropicalis. Gen Comp Endocrinol 2020; 291:113419. [PMID: 32032606 DOI: 10.1016/j.ygcen.2020.113419] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/23/2020] [Accepted: 02/03/2020] [Indexed: 02/07/2023]
Abstract
Stress hormones, also known as glucocorticoids, are critical for survival at birth in mammals due at least in part to their importance in lung maturation. However, because air breathing is not always required for amphibian survival and because stress hormones have no known developmental impact except to modulate the developmental actions of thyroid hormone (TH), the requirement for stress hormone signaling during metamorphosis is not well understoodi. Here, we produced a glucocorticoid receptor knockout (GRKO) Xenopus line with a frameshift mutation in the first exon of the glucocorticoid receptor. Induction by exogenous corticosterone (CORT, the frog stress hormone) of the CORT response genes, klf9 (Krüppel-like factor 9, also regulated by TH) and ush1g (Usher's syndrome 1G), was completely abrogated in GRKO tadpoles. Surprisingly, GRKO tadpoles developed faster than wild-type tadpoles until forelimb emergence and then developed more slowly until their death at the climax of metamorphosis. Growth rate was not affected in GRKO tadpoles, but they achieved a smaller maximum size. Gene expression analysis of the TH response genes, thrb (TH receptor beta) and klf9 showed reduced expression in the tail at metamorphic climax consistent with the reduced development rate. These results indicate that glucocorticoid receptor is required for survival through metamorphosis and support dual roles for GR signaling in control of developmental rate.
Collapse
Affiliation(s)
- Zachary R Sterner
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Leena H Shewade
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Kala M Mertz
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Savannah M Sturgeon
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Daniel R Buchholz
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States.
| |
Collapse
|
43
|
Morphometric and functional pulmonary changes of premature neonatal puppies after antenatal corticoid therapy. Theriogenology 2020; 153:19-26. [PMID: 32417607 DOI: 10.1016/j.theriogenology.2020.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/24/2019] [Accepted: 05/04/2020] [Indexed: 11/22/2022]
Abstract
Among prematurity complications, the most important disorder is structural immaturity and inadequate production of pulmonary surfactant. Betamethasone is the drug of choice to artificially improve pulmonary capacity, thus we aimed to verify the effect of prenatal maternal treatment on lung development of premature puppies. Pregnant bitches were allocated in Term Group (n = 7), Preterm-Treated Group (interrupted pregnancies with maternal administration of betamethasone; n = 7), Preterm-Control Group (untreated interrupted pregnancies; n = 7), Extremely-Preterm Group (interrupted pregnancies at 55d; n = 6). Puppies were subjected to chest radiographic at birth, morphometric description of pulmonary structures and immunohistochemical analysis of surfactant protein B, proliferating cell nuclear antigen and cytokeratin were performed. In Preterm-Treated Group it was possible to more clearly identify cardiac silhouette and lung parenchyma by X-Ray. Saccular formation was higher in Preterm Groups, while Term Group had higher subsaccular development. Lung septation was higher in Treated and Term Groups. Term Group had higher number of cells marked for SP-B, whereas higher proliferation was observed in Extreme-Preterm and Preterm-Control Groups. Preterm Treated and Term Groups had higher tissue differentiation. In conclusion, antenatal maternal corticotherapy in dogs acted by increasing lung morphology and development of areas of gas exchange, regulate metabolism of pulmonary fluids rather than stimulate surfactant production.
Collapse
|
44
|
Normal size of the fetal adrenal gland on prenatal magnetic resonance imaging. Pediatr Radiol 2020; 50:840-847. [PMID: 32060593 DOI: 10.1007/s00247-020-04629-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/08/2020] [Accepted: 01/21/2020] [Indexed: 10/25/2022]
Abstract
BACKGROUND The adrenal gland plays a vital role in fetal growth. Many disease states such as congenital adrenal hyperplasia, hemorrhage and tumors can lead to morphological changes in the gland. Ultrasound measurements of normal adrenal sizes in the fetus reported in the literature have shown a trend of increasing size with gestational age. There is no literature available on standard fetal adrenal sizes or detailed appearance by fetal MRI. OBJECTIVE The purpose of this study was to provide MR data on the size and signal characteristics of the fetal adrenal gland throughout the second and third trimesters. MATERIALS AND METHODS In this retrospective review, we selected 185 prenatal MRIs obtained from Jan. 1, 2014, to May 31, 2017, with normal abdominal findings for inclusion. The adrenal glands were identified in coronal, sagittal or axial T2-W planes and coronal T1-W plane when available. We measured the length and thickness of the medial and lateral limbs of the right and left adrenal glands and recorded signal intensity on T1-W and T2-W sequences, gender and gestational age in each case. RESULTS The gestational age (GA) ranged 18-37 weeks. Visibility of the adrenal glands on T2-W images was high (90.3-97.2%) up to 30 weeks of GA but declined afterward (47.5-62.2% at 31-37 weeks). Visibility on T1-W images increased with GA, ranging from 21.4% visibility at 18-22 weeks and increasing to 40% at 35-37 weeks. Mean lengths of the adrenal gland limbs steadily increased from 8.2 mm at 18-22 weeks to 11.0 mm at 35-37 weeks. In the second trimester, adrenal glands were low in signal intensity on T2-W images and were surrounded by hyperintense perirenal fatty tissue. In the third trimester, the glands became less distinct, with increasing signal and obliteration of perirenal tissue. The glands were moderately hyperintense on T1-W images throughout pregnancy, with increasing visibility as pregnancy progressed. CONCLUSION Normal sizes and signal intensities for adrenal glands are reported. Visibility of adrenal glands on T2-W images was 90.3-97.2% up to 30 weeks but declined thereafter. Visibility on T1-W images increased in the third trimester. Adrenal gland sizes increased with gestational age.
Collapse
|
45
|
Sutherland AE, Yawno T, Castillo-Melendez M, Allison BJ, Malhotra A, Polglase GR, Cooper LJ, Jenkin G, Miller SL. Does Antenatal Betamethasone Alter White Matter Brain Development in Growth Restricted Fetal Sheep? Front Cell Neurosci 2020; 14:100. [PMID: 32425758 PMCID: PMC7203345 DOI: 10.3389/fncel.2020.00100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/01/2020] [Indexed: 11/13/2022] Open
Abstract
Fetal growth restriction (FGR) is a common complication of pregnancy often associated with neurological impairments. Currently, there is no treatment for FGR, hence it is likely these babies will be delivered prematurely, thus being exposed to antenatal glucocorticoids. While there is no doubt that antenatal glucocorticoids reduce neonatal mortality and morbidities, their effects on the fetal brain, particularly in FGR babies, are less well recognized. We investigated the effects of both short- and long-term exposure to antenatal betamethasone treatment in both FGR and appropriately grown fetal sheep brains. Surgery was performed on pregnant Border-Leicester Merino crossbred ewes at 105-110 days gestation (term ~150 days) to induce FGR by single umbilical artery ligation (SUAL) or sham surgery. Ewes were then treated with a clinical dose of betamethasone (11.4 mg intramuscularly) or saline at 113 and 114 days gestation. Animals were euthanized at 115 days (48 h following the initial betamethasone administration) or 125 days (10 days following the initial dose of betamethasone) and fetal brains collected for analysis. FGR fetuses were significantly smaller than controls (115 days: 1.68 ± 0.11 kg vs. 1.99 ± 0.11 kg, 125 days: 2.70 ± 0.15 kg vs. 3.31 ± 0.20 kg, P < 0.001) and betamethasone treatment reduced body weight in both control (115 days: 1.64 ± 0.10 kg, 125 days: 2.53 ± 0.10 kg) and FGR fetuses (115 days: 1.41 ± 0.10 kg, 125 days: 2.16 ± 0.17 kg, P < 0.001). Brain: body weight ratios were significantly increased with FGR (P < 0.001) and betamethasone treatment (P = 0.002). Within the fetal brain, FGR reduced CNPase-positive myelin staining in the subcortical white matter (SCWM; P = 0.01) and corpus callosum (CC; P = 0.01), increased GFAP staining in the SCWM (P = 0.02) and reduced the number of Olig2 cells in the periventricular white matter (PVWM; P = 0.04). Betamethasone treatment significantly increased CNPase staining in the external capsule (EC; P = 0.02), reduced GFAP staining in the CC (P = 0.03) and increased Olig2 staining in the SCWM (P = 0.04). Here we show that FGR has progressive adverse effects on the fetal brain, particularly within the white matter. Betamethasone exacerbated growth restriction in the FGR offspring, but betamethasone did not worsen white matter brain injury.
Collapse
Affiliation(s)
- Amy E Sutherland
- Department of Obstetrics and Gynaecology, The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia
| | - Tamara Yawno
- Department of Obstetrics and Gynaecology, The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia
| | - Margie Castillo-Melendez
- Department of Obstetrics and Gynaecology, The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia
| | - Beth J Allison
- Department of Obstetrics and Gynaecology, The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia
| | - Atul Malhotra
- Department of Obstetrics and Gynaecology, The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia.,Department of Paediatrics, Monash University, Clayton, VIC, Australia
| | - Graeme R Polglase
- Department of Obstetrics and Gynaecology, The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia
| | - Leo J Cooper
- Department of Obstetrics and Gynaecology, The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia
| | - Graham Jenkin
- Department of Obstetrics and Gynaecology, The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia
| | - Suzanne L Miller
- Department of Obstetrics and Gynaecology, The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia
| |
Collapse
|
46
|
Zazara DE, Wegmann M, Giannou AD, Hierweger AM, Alawi M, Thiele K, Huber S, Pincus M, Muntau AC, Solano ME, Arck PC. A prenatally disrupted airway epithelium orchestrates the fetal origin of asthma in mice. J Allergy Clin Immunol 2020; 145:1641-1654. [PMID: 32305348 DOI: 10.1016/j.jaci.2020.01.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/27/2019] [Accepted: 01/29/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Prenatal challenges such as maternal stress perception increase the risk and severity of asthma during childhood. However, insights into the trajectories and targets underlying the pathogenesis of prenatally triggered asthma are largely unknown. The developing lung and immune system may constitute such targets. OBJECTIVE Here we have aimed to identify the differential sex-specific effects of prenatal challenges on lung function, immune response, and asthma severity in mice. METHODS We generated bone marrow chimeric (BMC) mice harboring either prenatally stress-exposed lungs or a prenatally stress-exposed immune (hematopoietic) system and induced allergic asthma via ovalbumin. Next-generation sequencing (RNA sequencing) of lungs and assessment of airway epithelial barrier function in ovalbumin-sensitized control and prenatally stressed offspring was also performed. RESULTS Profoundly enhanced airway hyperresponsiveness, inflammation, and fibrosis were exclusively present in female BMC mice with prenatally stress-exposed lungs. These effects were significantly perpetuated if both the lungs and the immune system had been exposed to prenatal stress. A prenatally stress-exposed immune system alone did not suffice to increase the severity of these asthma features. RNA sequencing analysis of lungs from prenatally stressed, non-BMC, ovalbumin-sensitized females unveiled a deregulated expression of genes involved in asthma pathogenesis, tissue remodeling, and tight junction formation. It was also possible to independently confirm a tight junction disruption. In line with this, we identified an altered perinatal and/or postnatal expression of genes involved in lung development along with an impaired alveolarization in female prenatally stressed mice. CONCLUSION Here we have shown that the fetal origin of asthma is orchestrated by a disrupted airway epithelium and further perpetuated by a predisposed immune system.
Collapse
Affiliation(s)
- Dimitra E Zazara
- Department of Obstetrics and Prenatal Medicine, Laboratory for Experimental Feto-Maternal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Wegmann
- Division of Asthma Exacerbation & Regulation, Priority Area Asthma and Allergy, Leibniz Lung Center Borstel, Airway Research Center North, Member of the German Center for Lung Research, Borstel, Germany
| | - Anastasios D Giannou
- I. Medizinische Klinik und Poliklinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Alexandra Maximiliane Hierweger
- Department of Obstetrics and Prenatal Medicine, Laboratory for Experimental Feto-Maternal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute for Immunology, Center for Diagnostics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malik Alawi
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kristin Thiele
- Department of Obstetrics and Prenatal Medicine, Laboratory for Experimental Feto-Maternal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Samuel Huber
- I. Medizinische Klinik und Poliklinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Maike Pincus
- Pediatrics and Pediatric Pneumology Practice, Berlin, Germany
| | - Ania C Muntau
- University Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maria Emilia Solano
- Department of Obstetrics and Prenatal Medicine, Laboratory for Experimental Feto-Maternal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Petra C Arck
- Department of Obstetrics and Prenatal Medicine, Laboratory for Experimental Feto-Maternal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
47
|
Wastnedge E, Vogel J, Been JV, Bannerman-Gyamfi C, Schuit E, Roberts D, Reynolds RM, Stock S. An evaluation of the benefits and harms of antenatal corticosteroid treatment for women at risk of imminent preterm birth or prior to elective Caesarean-section: Study protocol for an individual participant data meta-analysis. Wellcome Open Res 2020; 5:38. [PMID: 32529039 PMCID: PMC7268149 DOI: 10.12688/wellcomeopenres.15661.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2020] [Indexed: 12/19/2022] Open
Abstract
Background: Antenatal corticosteroid treatment (ACT) has been widely accepted as a safe, beneficial treatment which improves outcomes following preterm birth. It has been shown to reduce respiratory distress syndrome and neonatal mortality and is commonly used in threatened or planned preterm delivery, as well as prior to elective Caesarean-section at term. There are some concerns however, that in some cases, ACT is used in patients where clinical benefit has not been established, or may potentially increase harm. Many women who receive ACT do not deliver preterm and the long-term consequences of ACT treatment are unclear. This study aims to evaluate the benefits and harms of ACT using latest trial evidence to allow refinement of current practice. Methods: This study will compare ACT with placebo or non-treatment. Inclusion criteria are: Randomised Controlled Trials (RCT) comparing ACT vs. no ACT (with or without placebo) in all settings. Exclusion criteria are: non-randomised or quasi-randomised studies and studies comparing single vs. multiple courses of ACT. Main outcomes are to evaluate, for women at risk of preterm birth or undergoing planned Caesarean- section, the benefits and harms of ACT, on maternal, fetal, newborn, and long-term offspring health outcomes. The individual participant data (IPD) of identified RCTs will be collected and consecutively synthesised using meta-analysis with both a one-stage model where all IPD is analysed together and a two-stage model where treatment effect estimates are calculated for each trial individually first and thereafter pooled in a meta-analysis. Sub-group analysis will be performed to identify heterogeneous effects of ACT across predefined risk groups. Discussion: Co-opt is the Consortium for the Study of Pregnancy Treatments and aims to complete a robust evaluation of the benefits and harms of ACT. This IPD meta-analysis will contribute to this by allowing detailed interrogation of existing trial datasets. PROSPERO registration: CRD42020167312 (03/02/2020).
Collapse
Affiliation(s)
| | - Joshua Vogel
- Maternal and Child Health Program, Burnet Institute, Melbourne, Australia
| | - Jasper V. Been
- Division of Neonatology, Department of Paediatrics, Division of Obstetrics and Gynaecology and Department of Publisc Health, Erasmus MC, Rotterdam, The Netherlands
| | | | - Ewoud Schuit
- Julian Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Rebecca M. Reynolds
- Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Sarah Stock
- Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK
| | - Co_Opt collaboration
- Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK
- Maternal and Child Health Program, Burnet Institute, Melbourne, Australia
- Division of Neonatology, Department of Paediatrics, Division of Obstetrics and Gynaecology and Department of Publisc Health, Erasmus MC, Rotterdam, The Netherlands
- Department of Obstetrics and Gynaecology, Columbia University, New York, USA
- Julian Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
- Liverpool Women's Hospital NHS Foundation Trust, Liverpool, UK
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
48
|
Jellyman JK, Fletcher AJW, Fowden AL, Giussani DA. Glucocorticoid Maturation of Fetal Cardiovascular Function. Trends Mol Med 2020; 26:170-184. [PMID: 31718939 DOI: 10.1016/j.molmed.2019.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/17/2019] [Accepted: 09/30/2019] [Indexed: 12/27/2022]
Abstract
The last decade has seen rapid advances in the understanding of the central role of glucocorticoids in preparing the fetus for life after birth. However, relative to other organ systems, maturation by glucocorticoids of the fetal cardiovascular system has been ignored. Here, we review the effects of glucocorticoids on fetal basal cardiovascular function and on the fetal cardiovascular defense responses to acute stress. This is important because glucocorticoid-driven maturational changes in fetal cardiovascular function under basal and stressful conditions are central to the successful transition from intra- to extrauterine life. The cost-benefit balance for the cardiovascular health of the preterm baby of antenatal glucocorticoid therapy administered to pregnant women threatened with preterm birth is also discussed.
Collapse
Affiliation(s)
- Juanita K Jellyman
- Department of Biological Sciences, California State Polytechnic University, Pomona, CA, USA.
| | | | - Abigail L Fowden
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, UK; Cambridge Cardiovascular Strategic Research Initiative, Cambridge, UK; Cambridge Strategic Research Initiative in Reproduction, Cambridge, UK
| | - Dino A Giussani
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, UK; Cambridge Cardiovascular Strategic Research Initiative, Cambridge, UK; Cambridge Strategic Research Initiative in Reproduction, Cambridge, UK.
| |
Collapse
|
49
|
McDonald FB, Dempsey EM, O'Halloran KD. The impact of preterm adversity on cardiorespiratory function. Exp Physiol 2019; 105:17-43. [PMID: 31626357 DOI: 10.1113/ep087490] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/15/2019] [Indexed: 12/16/2022]
Abstract
NEW FINDINGS What is the topic of this review? We review the influence of prematurity on the cardiorespiratory system and examine the common sequel of alterations in oxygen tension, and immune activation in preterm infants. What advances does it highlight? The review highlights neonatal animal models of intermittent hypoxia, hyperoxia and infection that contribute to our understanding of the effect of stress on neurodevelopment and cardiorespiratory homeostasis. We also focus on some of the important physiological pathways that have a modulatory role on the cardiorespiratory system in early life. ABSTRACT Preterm birth is one of the leading causes of neonatal mortality. Babies that survive early-life stress associated with immaturity have significant prevailing short- and long-term morbidities. Oxygen dysregulation in the first few days and weeks after birth is a primary concern as the cardiorespiratory system slowly adjusts to extrauterine life. Infants exposed to rapid alterations in oxygen tension, including exposures to hypoxia and hyperoxia, have altered redox balance and active immune signalling, leading to altered stress responses that impinge on neurodevelopment and cardiorespiratory homeostasis. In this review, we explore the clinical challenges posed by preterm birth, followed by an examination of the literature on animal models of oxygen dysregulation and immune activation in the context of early-life stress.
Collapse
Affiliation(s)
- Fiona B McDonald
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland.,Irish Centre for Fetal and Neonatal Translational Research (INFANT) Research Centre, University College Cork, Cork, Ireland
| | - Eugene M Dempsey
- Irish Centre for Fetal and Neonatal Translational Research (INFANT) Research Centre, University College Cork, Cork, Ireland.,Department of Paediatrics & Child Health, School of Medicine, College of Medicine & Health, Cork University Hospital, Wilton, Cork, Ireland
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland.,Irish Centre for Fetal and Neonatal Translational Research (INFANT) Research Centre, University College Cork, Cork, Ireland
| |
Collapse
|
50
|
Abstract
Numerous advances in neonatal care have improved outcomes in preterm infants. Antenatal steroids, through their ability to promote lung maturation and function, have led to significant improvements in death, intraventricular hemorrhage, necrotizing enterocolitis, and respiratory distress syndrome. For years, exogenous surfactant administration has been used in conjunction with antenatal steroids to further improve outcomes for preterm infants. However, as continuous positive airway pressure has been shown to be effective in treating respiratory distress syndrome, it has become less clear how exogenous surfactant should be used. Novel approaches combining these therapies may lead to further improvement in clinical outcome.
Collapse
Affiliation(s)
- Roger F Soll
- Department of Pediatrics, Neonatal-Perinatal Medicine, Larner College of Medicine, University of Vermont, 89 Beaumont Avenue, Burlington, VT 05405, USA.
| | - Whittney Barkhuff
- Department of Pediatrics, Neonatal-Perinatal Medicine, Larner College of Medicine, University of Vermont, 89 Beaumont Avenue, Burlington, VT 05405, USA
| |
Collapse
|