1
|
Tan J, Li L, Huang X, Yang C, Liang X, Zhao Y, Xie J, Chen R, Wang D, Xie S. Associations between gastro-oesophageal reflux disease and a range of diseases: an umbrella review of systematic reviews and meta-analyses. BMJ Open 2020; 10:e038450. [PMID: 33380477 PMCID: PMC7780720 DOI: 10.1136/bmjopen-2020-038450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 11/13/2020] [Accepted: 11/19/2020] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Numerous meta-analyses have revealed the association between gastro-oesophageal reflux disease (GORD) and a range of diseases; however, the certainty of the evidence remains unclear. This study aimed to summarise and assess the certainty of evidence derived from meta-analyses. METHODS Embase, PubMed, Web of Science, Cochrane Databases of Systematic Reviews, CNKI and Wangfang databases from their inception to 22 February 2020 were queried for systematic reviews and meta-analyses on the association between GORD and various diseases. The methodological quality of the included studies was assessed using A Measurement Tool to Assess Systematic Reviews 2 (AMSTAR 2), and evidence certainty was evaluated using the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) system. Statistical analysis was conducted using Stata V.15. RESULTS Ten publications with associations between GORD and different types of diseases were included. There was high heterogeneity (I2 >75%) among seven independent meta-analyses. Evidence for publication bias in two independent meta-analyses was also observed. According to the AMSTAR 2 approach, the methodological quality was high for 20% of meta-analyses, moderate for 10%, low for 40% and critically low for 30%. Based on GRADE approach, the certainty of evidence was high for the association between GORD and higher risk of chronic obstructive pulmonary disease (COPD) exacerbation (OR 5.37; 95% CI 2.71 to 10.64) and higher prevalence of oesophageal adenocarcinoma (OR 4.57; 95% CI 3.89 to 5.36), and it was moderate for the association between GORD and higher chronic rhinosinusitis prevalence (OR 2.16; 95% CI 1.37 to 3.48). CONCLUSION The association between GORD and a range of diseases was extensively studied, and our findings revealed a high certainty of evidence of the association between GORD and an increased risk of COPD exacerbation as well as increased prevalence of oesophageal adenocarcinoma. Further investigations using systematic reviews and meta-analyses of high methodological quality that include prospective large cohort studies and adjusted confounders are warranted. PROSPERO REGISTRATION NUMBER CRD42019122264.
Collapse
Affiliation(s)
- JinJing Tan
- Graduate School, Jiang Xi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
- Department of Administration, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Liqun Li
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Xiaoyan Huang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Chengning Yang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Xue Liang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Yina Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Jieru Xie
- Department of Center of Preventive Disease Treatment, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Ran Chen
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Daogang Wang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Sheng Xie
- Department of Administration, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
2
|
Hayashi T, Nakamae T, Higo E, Ikematsu K, Ogata M. Primed neutrophil infiltrations into multiple organs in child physical abuse cases: A preliminary study. Leg Med (Tokyo) 2017; 24:24-31. [PMID: 28081787 DOI: 10.1016/j.legalmed.2016.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/05/2016] [Accepted: 11/06/2016] [Indexed: 11/25/2022]
Abstract
Physical abuse of the elderly induces a massive primed neutrophil infiltration into the lung and liver through chemotaxis by interleukin (IL)-8, similar to cases of traumatic or hemorrhagic shock. Here, we used immunohistochemical analyses to investigate this infiltration in cases of physically abused children. In addition, we examined the expression of neutrophil elastase (NE) as the inflammatory mediator and α1-antitrypsin (AAT) as the elastase inhibitor. The number of neutrophils in the abuse cases was increased significantly in the heart, lung, liver, and kidney, compared with that of control cases. IL-8-positive cells and NE-positive cells in all organs of abuse cases were significantly greater than those in control cases. Large quantities of oxidized AAT, which fails to inactivate NE and results in tissue damage, was detected in the liver of abuse cases. Neutrophil infiltration showed positive correlation with the degree of systemic accumulation of non-fatal injuries caused by repetitive abusive behavior. Although further investigation using more autopsy samples is necessary, results of our preliminary study indicate that massive neutrophil infiltration induced by IL-8 in multiple organs is a new complementary diagnostic indicator of physical abuse in children. Moreover, the demonstration of NE-positive cells and oxidized AAT provides firm evidence of tissue damage.
Collapse
Affiliation(s)
- Takahito Hayashi
- Department of Legal Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan.
| | - Takuma Nakamae
- Department of Legal Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Eri Higo
- Department of Legal Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Kazuya Ikematsu
- Division of Forensic Pathology and Science, Unit of Social Medicine, Course of Medical and Dental Sciences, Graduate School of Biomedical Sciences, Nagasaki University School of Medicine, Nagasaki City, Nagasaki 852-8523, Japan
| | - Mamoru Ogata
- Department of Legal Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan.
| |
Collapse
|
3
|
Azithromycin use in patients with cystic fibrosis. Eur J Clin Microbiol Infect Dis 2015; 34:1071-9. [DOI: 10.1007/s10096-015-2347-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 02/01/2015] [Indexed: 12/14/2022]
|
4
|
Tran HB, Ahern J, Hodge G, Holt P, Dean MM, Reynolds PN, Hodge S. Oxidative stress decreases functional airway mannose binding lectin in COPD. PLoS One 2014; 9:e98571. [PMID: 24901869 PMCID: PMC4047017 DOI: 10.1371/journal.pone.0098571] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 05/05/2014] [Indexed: 01/22/2023] Open
Abstract
We have previously established that a defect in the ability of alveolar macrophages (AM) to phagocytose apoptotic cells (efferocytosis) and pathogens is a potential therapeutic target in COPD. We further showed that levels of mannose binding lectin (MBL; required for effective macrophage phagocytic function) were reduced in the airways but not circulation of COPD patients. We hypothesized that increased oxidative stress in the airway could be a cause for such disturbances. We therefore studied the effects of oxidation on the structure of the MBL molecule and its functional interactions with macrophages. Oligomeric structure of plasma derived MBL (pdMBL) before and after oxidation (oxMBL) with 2,2′-azobis(2-methylpropionamidine)dihydrochroride (AAPH) was investigated by blue native PAGE. Macrophage function in the presence of pd/oxMBL was assessed by measuring efferocytosis, phagocytosis of non-typeable Haemophilus influenzae (NTHi) and expression of macrophage scavenger receptors. Oxidation disrupted higher order MBL oligomers. This was associated with changed macrophage function evident by a significantly reduced capacity to phagocytose apoptotic cells and NTHi in the presence of oxMBL vs pdMBL (eg, NTHi by 55.9 and 27.0% respectively). Interestingly, oxidation of MBL significantly reduced macrophage phagocytic ability to below control levels. Flow cytometry and immunofluorescence revealed a significant increase in expression of macrophage scavenger receptor (SRA1) in the presence of pdMBL that was abrogated in the presence of oxMBL. We show the pulmonary macrophage dysfunction in COPD may at least partially result from an oxidative stress-induced effect on MBL, and identify a further potential therapeutic strategy for this debilitating disease.
Collapse
Affiliation(s)
- Hai B. Tran
- Lung Research, Hanson Institute and Department Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia
- * E-mail:
| | - Jessica Ahern
- Lung Research, Hanson Institute and Department Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Greg Hodge
- Lung Research, Hanson Institute and Department Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia
- Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Phillip Holt
- Lung Research, Hanson Institute and Department Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Melinda M. Dean
- Research and Development, Australian Red Cross Blood Service, Brisbane, Queensland, Australia
| | - Paul N. Reynolds
- Lung Research, Hanson Institute and Department Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia
- Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Sandra Hodge
- Lung Research, Hanson Institute and Department Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia
- Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
5
|
Hao Y, Kuang Z, Xu Y, Walling BE, Lau GW. Pyocyanin-induced mucin production is associated with redox modification of FOXA2. Respir Res 2013; 14:82. [PMID: 23915402 PMCID: PMC3765780 DOI: 10.1186/1465-9921-14-82] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 07/23/2013] [Indexed: 11/10/2022] Open
Abstract
Background The redox-active pyocyanin (PCN) is a toxic, secondary metabolite secreted by the respiratory pathogen Pseudomonas aeruginosa (PA). Previously, we have shown that mouse lungs chronically exposed to PCN develop goblet cell hyperplasia and metaplasia (GCHM) and mucus hypersecretion, fibrosis and emphysema. These pathological features are commonly found in the airways of several chronic lung diseases, including cystic fibrosis (CF), as well as in mouse airways deficient in the forkhead box A2 (FOXA2), a transcriptional repressor of goblet GCHM and mucus biosynthesis. Furthermore, PCN inhibits FOXA2 by activating the pro-GCHM signaling pathways Stat6 and EGFR. However, it is not known whether PCN-generated reactive oxygen (ROS) and nitrogen (RNS) species posttranslationally modify and inactivate FOXA2. Methods We examined the posttranslational modifications of FOXA2 by PCN using specific antibodies against oxidation, nitrosylation, acetylation and ubiquitination. Electrophoretic mobility shift assay (EMSA) was used to examine the ability of modified FOXA2 to bind the promoter of MUC5B mucin gene. In addition, we used quantitative real time PCR, ELISA, immunofluorescence and mouse lung infection to assess whether the loss of FOXA2 function caused GCHM and mucin overexpression. Finally, we examined the restoration of FOXA2 function by the antioxidant glutathione (GSH). Results We found that PCN-generated ROS/RNS caused nitrosylation, acetylation, ubiquitination and degradation of FOXA2. Modified FOXA2 had reduced ability to bind the promoter of the MUC5B gene. The antioxidant GSH alleviated the modification of FOXA2 by PCN, and inhibited the overexpression of MUC5AC and MUC5B mucins. Conclusion These results suggest that PCN-mediated posttranslational modifications of FOXA2 are positively correlated with GCHM and overexpression of airway mucins. Furthermore, antioxidant treatment restores the function of FOXA2 to attenuate GCHM and mucus hypersecretion.
Collapse
Affiliation(s)
- Yonghua Hao
- Department of Pathobiology, University of Illinois at Urbana-Champaign 2001, Lincoln Avenue, Urbana, IL, 61802, United States of America.
| | | | | | | | | |
Collapse
|
6
|
Bozinovski S, Anthony D, Anderson GP, Irving LB, Levy BD, Vlahos R. Treating neutrophilic inflammation in COPD by targeting ALX/FPR2 resolution pathways. Pharmacol Ther 2013; 140:280-9. [PMID: 23880288 DOI: 10.1016/j.pharmthera.2013.07.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 07/09/2013] [Indexed: 12/19/2022]
Abstract
Neutrophilic inflammation persists in COPD despite best current therapies and it is particularly resistant to inhaled glucocorticosteroids. Persistent neutrophil activation not only contributes to matrix breakdown, but can maintain inflammation through the release of endogenous damage associated molecule patterns (DAMPs). Inhibiting excessive neutrophilic inflammation is challenging as many pathogen recognition receptors can initiate migration and the targeting of downstream signaling molecules may compromise essential host defense mechanisms. Here, we discuss new strategies to combat this inflammation in COPD by focusing on the anti-inflammatory role of ALX/FPR2 receptors. ALX/FPR2 is a promiscuous G-protein coupled receptor (GPCR) responding to lipid and peptide agonists that can either switch on acute inflammation or promote resolution of inflammation. We highlight this receptor as an emerging target in the pathogenesis of COPD because known ALX/FPR2 endogenous agonists are enriched in COPD. Serum Amyloid A (SAA) has recently been discovered to be abundantly expressed in COPD and is a potent ALX/FPR2 agonist that unlike almost all other inflammatory chemoattractants, is induced by glucocorticosteroids. SAA not only initiates lung inflammation via ALX/FPR2 but can allosterically modify this receptor so that it no longer transduces pro-resolving signals from endogenous lipoxins that would otherwise promote tissue healing. We propose that there is an imbalance in endogenous and microbial ALX/FPR2 receptor agonists in the inflamed COPD lung environment that oppose protective anti-inflammatory and pro-resolution pathways. These insights open the possibility of targeting ALX/FPR2 receptors using synthetic agonists to resolve persistent neutrophilic inflammation without compromising essential host defense mechanisms.
Collapse
Affiliation(s)
- Steven Bozinovski
- Department of Pharmacology and Therapeutics, The University of Melbourne, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
7
|
Colombo G, Clerici M, Giustarini D, Rossi R, Milzani A, Dalle-Donne I. Redox albuminomics: oxidized albumin in human diseases. Antioxid Redox Signal 2012; 17:1515-27. [PMID: 22587567 DOI: 10.1089/ars.2012.4702] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE Albumin is the major contributor to colloid oncotic pressure and also serves as an important carrier protein of many endogenous and exogenous molecules throughout the body. In blood and extravascular fluids, albumin is susceptible to different oxidative modifications, especially thiol oxidation and carbonylation. Because of its metal-binding properties and the redox properties of its Cys34 thiol, albumin displays an important antioxidant activity. As albumin is the predominant protein in most body fluids, its Cys34 represents the largest fraction of free thiols within body fluids. RECENT ADVANCES Evidence that albumin oxidation takes place in vivo has been reported only recently. Different redox proteomic, mass spectrometric, and chromatographic techniques have shown albumin redox modifications in various human pathophysiological conditions. As a whole, most data here presented demonstrate that massive albumin oxidation occurs in vivo in different biological fluids and, to some extent, that this process is correlated to organ dysfunction. CRITICAL ISSUES Recent reports suggest that the albumin redox state may serve as a global biomarker for the redox state in the body in various human diseases. However, further study is required to elucidate the exact relationship between albumin oxidation and pathology. In addition, it is unknown if some albumin oxidized forms may also have diagnostic uses. FUTURE DIRECTIONS Application of specific redox proteomics techniques for the characterization of oxidized albumin forms in screening studies is required. A further challenge will be to analyze how these oxidative albumin modifications are related to real impact to the body.
Collapse
|
8
|
Karaaslan C, Hirakawa H, Yasumatsu R, Chang LYL, Pierce RA, Crapo JD, Cataltepe S. Elastase inhibitory activity of airway α1-antitrypsin is protected by treatment with a catalytic antioxidant in a baboon model of severe bronchopulmonary dysplasia. Pediatr Res 2011; 70:363-7. [PMID: 21705962 PMCID: PMC3166355 DOI: 10.1203/pdr.0b013e31822a357e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Recent studies in animal models of bronchopulmonary dysplasia (BPD) suggest that antioxidant treatments may be beneficial for the disease. However, the mechanisms by which these drugs improve the course of BPD are not completely known. Alpha1-antitrypsin (α1-AT) is one of the major serine protease inhibitors in human plasma that has antielastase and antiapoptotic activities. Both activities of α1-AT are dependent on its reactive site loop (RSL), which is highly susceptible to oxidative inactivation. In this study, we investigated the elastase inhibitory activity of α1-AT in two different baboon models of BPD, the "new BPD" and the "severe BPD" models, and determined the effect of treatment with a catalytic antioxidant, Mn(III) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin (MnTE-2-PyP), on the elastase inhibitory activity of α1-AT in the severe BPD model. Our results demonstrate the presence of sufficient elastase inhibitory activity of the airway α1-AT in the new but not in the severe BPD model. Treatment of severe BPD group baboons with the catalytic antioxidant MnTE-2-PyP resulted in augmentation of the elastase inhibitory activity of α1-AT. These findings suggest that prevention of the oxidative inactivation of α1-AT may be one of the mechanisms by which antioxidant therapy improves the pulmonary outcomes in animal models of severe BPD.
Collapse
Affiliation(s)
- Cagatay Karaaslan
- Division of Newborn Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Mallol J, Aguirre V, Espinosa V. Increased oxidative stress in children with post infectious Bronchiolitis Obliterans. Allergol Immunopathol (Madr) 2011; 39:253-8. [PMID: 21208718 DOI: 10.1016/j.aller.2010.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 09/01/2010] [Indexed: 12/25/2022]
Abstract
BACKGROUND There is increasing evidence that oxidative stress is involved in the development and severity of bronchiolitis obliterans occurring in post-transplant patients. In developing countries, the most common form of bronchiolitis obliterans occurs after severe lung infection, mainly caused by adenovirus. However, the oxidative status in the lungs of children with post infectious bronchiolitis obliterans is unknown. METHODS The aim of this study was to measure the oxidant (8-isoprostane and protein carbonyls) and antioxidant (catalase and glutathione peroxidase) activity in the bronchoalveolar lavage fluid of 21 children with post-infectious bronchiolitis obliterans, and to correlate oxidant/antioxidant level with lung function. Lung function was assessed by spirometry and plethysmography, one week prior to fiberbronchoscopy. RESULTS There was a markedly increased oxidative stress (lipid and protein oxidation) in the bronchoalveolar lavage fluid, and a notorious impairment of lung function demonstrating moderate-severe distal airway narrowing. There was not a significant correlation between the level of oxidants or antioxidants and lung function. There was a consistent antioxidants/oxidants pattern characterised by markedly increased 8-isoprostane and carbonyls, increased GPx and normal catalase activity. CONCLUSION The present study shows for the first time that children with post-infectious bronchiolitis obliterans have a markedly increased oxidative stress in their lungs.
Collapse
|
10
|
Bozinovski S, Vlahos R, Zhang Y, Lah LC, Seow HJ, Mansell A, Anderson GP. Carbonylation Caused by Cigarette Smoke Extract Is Associated with Defective Macrophage Immunity. Am J Respir Cell Mol Biol 2011; 45:229-36. [DOI: 10.1165/rcmb.2010-0272oc] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
11
|
Abstract
Diagnostic and Therapeutic Significance of the Oxidative Stress Parameters in ChildrenPharmacotherapy of pediatric diseases represents a major challenge considering that the majority of medicines in everyday practice have not been pediatrically evaluated. The efficacy of therapy depends to a large extent on the knowledge of pathophysiological processes in the children organism at different ages. Therefore, research in that direction is of the utmost importance. An imbalance in the production of free oxygen/nitrogen species and parameters of antioxidative protection is a significant factor in many diseases (e.g. heart failure, pulmonary hypertension, asthma, neonatal sepsis, cancer etc.) in children of different age groups. Reactive oxygen/nitrogen species serve as cell signaling molecules for normal biologic processes. An increase in their generation can cause damages which can disrupt normal physiological cellular processes and eventually cause cell death. This review outlines the previous assessments of oxidative stress parameters in children of different ages for some diseases. Also, the potential diagnostic and therapeutic possibilities for the oxydative stress parameters in children have been considered.
Collapse
|
12
|
Stagos D, Umstead TM, Phelps DS, Skaltsounis L, Haroutounian S, Floros J, Kouretas D. Inhibition of ozone-induced SP-A oxidation by plant polyphenols. Free Radic Res 2009; 41:357-66. [PMID: 17364965 DOI: 10.1080/10715760601064714] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Surfactant protein-A (SP-A) is the best studied and most abundant of the protein components of lung surfactant and plays an important role in host defense of the lung. It has been shown that ozone-induced oxidation of SP-A protein changes its functional and biochemical properties. In the present study, eight plant polyphenols (three flavonoids, three hydroxycinnamic acids, and two hydroxybenzoic acids) known as strong antioxidants, were tested for their ability to inhibit ozone-induced SP-A oxidation as a mechanism for chemoprevention against lung damage. SP-A isolated from alveolar proteinosis patients was exposed to ozone (1 ppm) for 4 h. The flavonoids protected SP-A from oxidation in a dose dependent manner. ( - )-Epicatechin was the most potent flavonoid and exhibited inhibition of ozone-induced formation of carbonyls by 35% at a concentration as low as 5 microM. Hydroxybenzoic acids inhibited SP-A oxidation in a dose-dependent manner although they were less potent than flavonoids. On the other hand, hydroxycinnamic acids exhibited a different inhibitory pattern. Inhibition was observed only at medium concentrations. The results indicate that inhibition of SP-A oxidation by plant polyphenols may be a mechanism accounting for the protective activity of natural antioxidants against the effects of ozone exposure on lungs.
Collapse
Affiliation(s)
- Dimitrios Stagos
- Department of Biochemistry, University of Thessaly, Larissa, Greece
| | | | | | | | | | | | | |
Collapse
|
13
|
Nagai K, Betsuyaku T, Konno S, Ito Y, Nasuhara Y, Hizawa N, Kondo T, Nishimura M. Diversity of protein carbonylation in allergic airway inflammation. Free Radic Res 2009; 42:921-9. [PMID: 19031315 DOI: 10.1080/10715760802555585] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Oxidative stress is involved in asthma. This study assessed the carbonylation of sputum proteins in 23 uncontrolled adult asthmatic patients and 23 healthy controls. Carbonylated proteins (68 kDa and 53 kDa) were elevated in asthmatics when compared to controls and the 68-kDa carbonylated protein was significantly correlated with sputum eosinophilia. The kinetics of protein carbonylation in bronchoalveolar lavage fluid (BALF) were then examined in a mouse ovalbumin-induced allergic inflammation model. It was found that the carbonylation of various BALF proteins did not uniformly occur after challenge. The appearance of the 53-kDa carbonylated protein was limited within 24 h, while carbonylation of 68-kDa protein peaked at 48 h and was associated with BALF eosinophilia. Thus, it was demonstrated that the 68-kDa and 53-kDa proteins, corresponding to albumin and alpha1-antitrypsin, respectively, were specifically carbonylated in allergic inflammation in humans and in mice and that eosinophils may play a role in mediating carbonylation of albumin.
Collapse
Affiliation(s)
- Katsura Nagai
- First Department of Medicine, Hokkaido University School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Umstead TM, Freeman WM, Chinchilli VM, Phelps DS. Age-related changes in the expression and oxidation of bronchoalveolar lavage proteins in the rat. Am J Physiol Lung Cell Mol Physiol 2009; 296:L14-29. [DOI: 10.1152/ajplung.90366.2008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The incidence and severity of many lung diseases change with age. Some diseases, such as pneumonia, occur with increased frequency in children and the elderly. Proteins obtained by bronchoalveolar lavage (BAL) serve as the first line of defense against inhaled toxins and pathogens. Age-related changes in BAL protein expression and oxidative modification were examined in juvenile (1 mo), young adult (2 mo), and aged (18 mo) F344 rats using two-dimensional difference gel electrophoresis (2D-DIGE), matrix-assisted laser desorption ionization-time of flight/time of flight (MALDI-ToF/ToF) tandem mass spectrometry, and carbonyl immunoblotting. Using 2D-DIGE, we detected 563 protein spots, and MALDI-ToF/ToF identified 204 spots comprising 31 proteins; 21 changed significantly (17 increases) between juvenile and young adult or aged rats, but for 12 of these proteins, levels had a biphasic pattern, and levels in aged rats were less than in young adults. Relative carbonylation was determined by comparison of immunostaining with total protein staining on each oxidized protein blot. We found that aged rats had significantly increased oxidation in 13 proteins compared with juvenile rats. Many of the proteins altered in expression or oxidation level had functions in host defense, redox regulation, and protein metabolism. We speculate that low levels of expression of host defense proteins in juvenile rats and decreases in levels of these proteins between young adult and aged rats may predispose these groups to pneumonia. In addition, we have shown age-related increases in protein oxidation that may compromise host defense function in aged rats.
Collapse
|
15
|
Jacquot J, Tabary O, Le Rouzic P, Clement A. Airway epithelial cell inflammatory signalling in cystic fibrosis. Int J Biochem Cell Biol 2008; 40:1703-15. [DOI: 10.1016/j.biocel.2008.02.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 02/01/2008] [Accepted: 02/07/2008] [Indexed: 01/14/2023]
|
16
|
Starosta V, Kitz R, Hartl D, Marcos V, Reinhardt D, Griese M. Bronchoalveolar Pepsin, Bile Acids, Oxidation, and Inflammation in Children With Gastroesophageal Reflux Disease. Chest 2007; 132:1557-64. [DOI: 10.1378/chest.07-0316] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
17
|
Karowicz-Bilinska A, Kedziora-Kornatowska K, Bartosz G. Indices of oxidative stress in pregnancy with fetal growth restriction. Free Radic Res 2007; 41:870-3. [PMID: 17654043 DOI: 10.1080/10715760701291647] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Intrauterine fetal growth restriction (IUGR), the main cause of premature delivery and fetal mortality, has been suggested to involve oxidative stress. We found elevated values of indices of oxidative stress in the blood serum of pregnant women with IUGR: increased levels of malondialdehyde and 4-hydroxyalkenals, decreased activity of alpha-1-antitrypsin and decreased total antioxidant capacity of the serum, with respect to healthy pregnancy. Twenty day treatment with 3 g of l-arginine and 75 mg of acetylsalicylic acid daily resulted in a decrease of the level of lipid peroxidation products and augmentation of alpha-1-antitrypsin activity. This study confirms the occurrence of oxidative stress in IUGR and demonstrates the beneficial effect of arginine/acetylsalicylic acid therapy in reducing oxidative stress in IUGR.
Collapse
|
18
|
Bargagli E, Penza F, Vagaggini C, Magi B, Perari MG, Rottoli P. Analysis of carbonylated proteins in bronchoalveolar lavage of patients with diffuse lung diseases. Lung 2007; 185:139-44. [PMID: 17497072 DOI: 10.1007/s00408-007-9001-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2007] [Indexed: 10/23/2022]
Abstract
Diffuse lung diseases (DLD) are a heterogeneous group of diseases with different etiopathogenesis, clinical course, and prognosis. It has been demonstrated that oxidative stress can contribute to the pathogenesis of these diseases. In the present study we measured carbonylated protein concentrations in the BAL of patients with sarcoidosis, pulmonary fibrosis associated with systemic sclerosis, idiopathic pulmonary fibrosis, and for the first time in patients with chronic eosinophilic pneumonia and extrinsic allergic alveolitis. Our aim was to further investigate oxidation products in diffuse lung diseases. Oxidatively modified protein concentrations were increased in the BAL of patients than in that of controls (0.22 nmol/mg protein vs 0.05 nmol/mg protein; p < 0.001) and in each group of disease versus controls, suggesting that proteins that have become dysfunctional by oxidation could play a role in the pathogenesis of diffuse lung diseases. Further studies in a greater number of patients are needed to understand the contribution of oxidatively modified proteins to the pathogenesis of DLD and, in particular, to the development of extrinsic allergic alveolitis where the highest levels of carbonylated proteins were found.
Collapse
Affiliation(s)
- Elena Bargagli
- Respiratory Diseases Section, Department of Clinical Medicine and Immunological Sciences, Siena University, 53100 Siena, Italy.
| | | | | | | | | | | |
Collapse
|
19
|
Magi B, Bargagli E, Bini L, Rottoli P. Proteome analysis of bronchoalveolar lavage in lung diseases. Proteomics 2006; 6:6354-69. [PMID: 17133372 DOI: 10.1002/pmic.200600303] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The proteomic approach is complementary to genomics and enables protein composition to be investigated under various clinical conditions. Its application to the study of bronchoalveolar lavage (BAL) is extremely promising. BAL proteomic studies were initially based on two-dimensional electrophoretic separation of complex protein samples and subsequent identification of proteins by different methods. With the techniques available today it is possible to attain many different research objectives. BAL proteomics can contribute to the identification of proteins in alveolar spaces with possible insights into pathogenesis and clinical application for diagnosis, prognosis and therapy. Many proteins with different functions have already been identified in BAL. Some could be biomarkers that need to be individually confirmed by correlation with clinical parameters and validation by other methods on larger cohorts of patients. The standardization of BAL sample preparation and processing for proteomic studies is an important goal that would promote and facilitate clinical applications. Here, we review the principal literature on BAL proteomic analysis applied to the study of lung diseases.
Collapse
Affiliation(s)
- Barbara Magi
- Department of Molecular Biology, University of Siena, Siena, Italy.
| | | | | | | |
Collapse
|