1
|
Li L, Han B, Kong Y, Zhang G, Zhang Z. Vitamin D binding protein in psychiatric and neurological disorders: Implications for diagnosis and treatment. Genes Dis 2024; 11:101309. [PMID: 38983447 PMCID: PMC11231549 DOI: 10.1016/j.gendis.2024.101309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/31/2024] [Accepted: 03/07/2024] [Indexed: 07/11/2024] Open
Abstract
Vitamin D binding protein (VDBP) serves as a key transporter protein responsible for binding and delivering vitamin D and its metabolites to target organs. VDBP plays a crucial part in the inflammatory reaction following tissue damage and is engaged in actin degradation. Recent research has shed light on its potential role in various diseases, leading to a growing interest in understanding the implications of VDBP in psychiatric and neurological disorders. The purpose of this review was to provide a summary of the existing understanding regarding the involvement of VDBP in neurological and psychiatric disorders. By examining the intricate interplay between VDBP and these disorders, this review contributes to a deeper understanding of underlying mechanisms and potential therapeutic avenues. Insights gained from the study of VDBP could pave the way for novel strategies in the diagnosis, prognosis, and treatment of psychiatric and neurological disorders.
Collapse
Affiliation(s)
- Ling Li
- Research Institution of Neuropsychiatry, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
- Department of Neurology, Affiliated Zhongda Hospital, Nanjing, Jiangsu 210009, China
| | - Bing Han
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Yan Kong
- Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Gaojia Zhang
- Research Institution of Neuropsychiatry, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Zhijun Zhang
- Research Institution of Neuropsychiatry, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
- Department of Neurology, Affiliated Zhongda Hospital, Nanjing, Jiangsu 210009, China
- Brain Cognition and Brain Disease Institute, Department of Mental Health and Public Health, Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| |
Collapse
|
2
|
Laffoon SB, Doecke JD, Roberts AM, Vance JA, Reeves BD, Pertile KK, Rumble RL, Fowler CJ, Trounson B, Ames D, Martins R, Bush AI, Masters CL, Grieco PA, Dratz EA, Roberts BR. Analysis of plasma proteins using 2D gels and novel fluorescent probes: in search of blood based biomarkers for Alzheimer's disease. Proteome Sci 2022; 20:2. [PMID: 35081972 PMCID: PMC8790928 DOI: 10.1186/s12953-021-00185-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/23/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The Australian Imaging and Biomarker Lifestyle (AIBL) study of aging is designed to aid the discovery of biomarkers. The current study aimed to discover differentially expressed plasma proteins that could yield a blood-based screening tool for Alzheimer's disease. METHODS The concentration of proteins in plasma covers a vast range of 12 orders of magnitude. Therefore, to search for medium to low abundant biomarkers and elucidate mechanisms of AD, we immuno-depleted the most abundant plasma proteins and pre-fractionated the remaining proteins by HPLC, prior to two-dimensional gel electrophoresis. The relative levels of approximately 3400 protein species resolved on the 2D gels were compared using in-gel differential analysis with spectrally resolved fluorescent protein detection dyes (Zdyes™). Here we report on analysis of pooled plasma samples from an initial screen of a sex-matched cohort of 72 probable AD patients and 72 healthy controls from the baseline time point of AIBL. RESULTS We report significant changes in variants of apolipoprotein E, haptoglobin, α1 anti-trypsin, inter-α trypsin inhibitor, histidine-rich glycoprotein, and a protein of unknown identity. α1 anti-trypsin and α1 anti-chymotrypsin demonstrated plasma concentrations that were dependent on APOE ε4 allele dose. Our analysis also identified an association with the level of Vitamin D binding protein fragments and complement factor I with sex. We then conducted a preliminary validation study, on unique individual samples compared to the discovery cohort, using a targeted LC-MS/MS assay on a subset of discovered biomarkers. We found that targets that displayed a high degree of isoform specific changes in the 2D gels were not changed in the targeted MS assay which reports on the total level of the biomarker. CONCLUSIONS This demonstrates that further development of mass spectrometry assays is needed to capture the isoform complexity that exists in theses biological samples. However, this study indicates that a peripheral protein signature has potential to aid in the characterization of AD.
Collapse
Affiliation(s)
- Scott B. Laffoon
- Florey Institute of Neuroscience and Mental Health and The University of Melbourne Dementia Research Centre, Parkville, VIC 3010 Australia
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59715 USA
- Cooperative Research Centre for Mental Health, Carlton South, VIC Australia
| | - James D. Doecke
- Australian e-Health Research Centre, CSIRO and Cooperative Research Centre of Mental Health, Royal Brisbane and Women’s Hospital, Brisbane, QLD 4029 Australia
| | - Anne M. Roberts
- Department of Biochemistry, Emory School of Medicine, 4001 Rollins Research Building, Atlanta, GA 30322 USA
- Department of Neurology, Emory School of Medicine, 4001 Rollins Research Building, Atlanta, GA 30322 USA
| | | | - Benjamin D. Reeves
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59715 USA
| | - Kelly K. Pertile
- Florey Institute of Neuroscience and Mental Health and The University of Melbourne Dementia Research Centre, Parkville, VIC 3010 Australia
| | - Rebecca L. Rumble
- Florey Institute of Neuroscience and Mental Health and The University of Melbourne Dementia Research Centre, Parkville, VIC 3010 Australia
| | - Chris J. Fowler
- Florey Institute of Neuroscience and Mental Health and The University of Melbourne Dementia Research Centre, Parkville, VIC 3010 Australia
| | - Brett Trounson
- Florey Institute of Neuroscience and Mental Health and The University of Melbourne Dementia Research Centre, Parkville, VIC 3010 Australia
| | - David Ames
- Florey Institute of Neuroscience and Mental Health and The University of Melbourne Dementia Research Centre, Parkville, VIC 3010 Australia
| | - Ralph Martins
- Cooperative Research Centre for Mental Health, Carlton South, VIC Australia
- School of Medical Sciences, Edith Cowan University, Joondalup, WA Australia
- Department of Biomedical Sciences, Macquarie University, North Ryde, NSW Australia
| | - Ashley I. Bush
- Florey Institute of Neuroscience and Mental Health and The University of Melbourne Dementia Research Centre, Parkville, VIC 3010 Australia
- Cooperative Research Centre for Mental Health, Carlton South, VIC Australia
| | - Colin L. Masters
- Florey Institute of Neuroscience and Mental Health and The University of Melbourne Dementia Research Centre, Parkville, VIC 3010 Australia
- Cooperative Research Centre for Mental Health, Carlton South, VIC Australia
| | - Paul A. Grieco
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59715 USA
| | - Edward A. Dratz
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59715 USA
| | - Blaine R. Roberts
- Department of Biochemistry, Emory School of Medicine, 4001 Rollins Research Building, Atlanta, GA 30322 USA
- Department of Neurology, Emory School of Medicine, 4001 Rollins Research Building, Atlanta, GA 30322 USA
| |
Collapse
|
3
|
Rahman MM, Lendel C. Extracellular protein components of amyloid plaques and their roles in Alzheimer's disease pathology. Mol Neurodegener 2021; 16:59. [PMID: 34454574 PMCID: PMC8400902 DOI: 10.1186/s13024-021-00465-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 06/11/2021] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is pathologically defined by the presence of fibrillar amyloid β (Aβ) peptide in extracellular senile plaques and tau filaments in intracellular neurofibrillary tangles. Extensive research has focused on understanding the assembly mechanisms and neurotoxic effects of Aβ during the last decades but still we only have a brief understanding of the disease associated biological processes. This review highlights the many other constituents that, beside Aβ, are accumulated in the plaques, with the focus on extracellular proteins. All living organisms rely on a delicate network of protein functionality. Deposition of significant amounts of certain proteins in insoluble inclusions will unquestionably lead to disturbances in the network, which may contribute to AD and copathology. This paper provide a comprehensive overview of extracellular proteins that have been shown to interact with Aβ and a discussion of their potential roles in AD pathology. Methods that can expand the knowledge about how the proteins are incorporated in plaques are described. Top-down methods to analyze post-mortem tissue and bottom-up approaches with the potential to provide molecular insights on the organization of plaque-like particles are compared. Finally, a network analysis of Aβ-interacting partners with enriched functional and structural key words is presented.
Collapse
Affiliation(s)
- M Mahafuzur Rahman
- Department of Chemistry, KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden.
| | - Christofer Lendel
- Department of Chemistry, KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden.
| |
Collapse
|
4
|
Soares Martins T, Marçalo R, Ferreira M, Vaz M, Silva RM, Martins Rosa I, Vogelgsang J, Wiltfang J, da Cruz e Silva OAB, Henriques AG. Exosomal Aβ-Binding Proteins Identified by "In Silico" Analysis Represent Putative Blood-Derived Biomarker Candidates for Alzheimer´s Disease. Int J Mol Sci 2021; 22:ijms22083933. [PMID: 33920336 PMCID: PMC8070602 DOI: 10.3390/ijms22083933] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/07/2021] [Indexed: 12/17/2022] Open
Abstract
The potential of exosomes as biomarker resources for diagnostics and even for therapeutics has intensified research in the field, including in the context of Alzheimer´s disease (AD). The search for disease biomarkers in peripheral biofluids is advancing mainly due to the easy access it offers. In the study presented here, emphasis was given to the bioinformatic identification of putative exosomal candidates for AD. The exosomal proteomes of cerebrospinal fluid (CSF), serum and plasma, were obtained from three databases (ExoCarta, EVpedia and Vesiclepedia), and complemented with additional exosomal proteins already associated with AD but not found in the databases. The final biofluids’ proteomes were submitted to gene ontology (GO) enrichment analysis and the exosomal Aβ-binding proteins that can constitute putative candidates were identified. Among these candidates, gelsolin, a protein known to be involved in inhibiting Abeta fibril formation, was identified, and it was tested in human samples. The levels of this Aβ-binding protein, with anti-amyloidogenic properties, were assessed in serum-derived exosomes isolated from controls and individuals with dementia, including AD cases, and revealed altered expression patterns. Identification of potential peripheral biomarker candidates for AD may be useful, not only for early disease diagnosis but also in drug trials and to monitor disease progression, allowing for a timely therapeutic intervention, which will positively impact the patient’s quality of life.
Collapse
Affiliation(s)
- Tânia Soares Martins
- Neurosciences and Signalling Group, Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro (UA), 3810-193 Aveiro, Portugal; (T.S.M.); (R.M.); (M.F.); (M.V.); (I.M.R.); (J.W.); (O.C.S.)
| | - Rui Marçalo
- Neurosciences and Signalling Group, Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro (UA), 3810-193 Aveiro, Portugal; (T.S.M.); (R.M.); (M.F.); (M.V.); (I.M.R.); (J.W.); (O.C.S.)
| | - Maria Ferreira
- Neurosciences and Signalling Group, Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro (UA), 3810-193 Aveiro, Portugal; (T.S.M.); (R.M.); (M.F.); (M.V.); (I.M.R.); (J.W.); (O.C.S.)
| | - Margarida Vaz
- Neurosciences and Signalling Group, Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro (UA), 3810-193 Aveiro, Portugal; (T.S.M.); (R.M.); (M.F.); (M.V.); (I.M.R.); (J.W.); (O.C.S.)
| | - Raquel M. Silva
- Center for Interdisciplinary Research in Health (CIIS), Faculdade de Medicina Dentária, Universidade Católica Portuguesa, Estrada da Circunvalação, 3504-505 Viseu, Portugal;
| | - Ilka Martins Rosa
- Neurosciences and Signalling Group, Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro (UA), 3810-193 Aveiro, Portugal; (T.S.M.); (R.M.); (M.F.); (M.V.); (I.M.R.); (J.W.); (O.C.S.)
| | - Jonathan Vogelgsang
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen (UMG), Georg-August University, Von-Siebold-Str. 5, 37075 Goettingen, Germany;
- Translational Neuroscience Laboratory, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA
| | - Jens Wiltfang
- Neurosciences and Signalling Group, Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro (UA), 3810-193 Aveiro, Portugal; (T.S.M.); (R.M.); (M.F.); (M.V.); (I.M.R.); (J.W.); (O.C.S.)
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen (UMG), Georg-August University, Von-Siebold-Str. 5, 37075 Goettingen, Germany;
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075 Goettingen, Germany
| | - Odete A. B. da Cruz e Silva
- Neurosciences and Signalling Group, Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro (UA), 3810-193 Aveiro, Portugal; (T.S.M.); (R.M.); (M.F.); (M.V.); (I.M.R.); (J.W.); (O.C.S.)
| | - Ana Gabriela Henriques
- Neurosciences and Signalling Group, Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro (UA), 3810-193 Aveiro, Portugal; (T.S.M.); (R.M.); (M.F.); (M.V.); (I.M.R.); (J.W.); (O.C.S.)
- Correspondence:
| |
Collapse
|
5
|
Khan MJ, Desaire H, Lopez OL, Kamboh MI, Robinson RA. Why Inclusion Matters for Alzheimer's Disease Biomarker Discovery in Plasma. J Alzheimers Dis 2021; 79:1327-1344. [PMID: 33427747 PMCID: PMC9126484 DOI: 10.3233/jad-201318] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND African American/Black adults have a disproportionate incidence of Alzheimer's disease (AD) and are underrepresented in biomarker discovery efforts. OBJECTIVE This study aimed to identify potential diagnostic biomarkers for AD using a combination of proteomics and machine learning approaches in a cohort that included African American/Black adults. METHODS We conducted a discovery-based plasma proteomics study on plasma samples (N = 113) obtained from clinically diagnosed AD and cognitively normal adults that were self-reported African American/Black or non-Hispanic White. Sets of differentially-expressed proteins were then classified using a support vector machine (SVM) to identify biomarker candidates. RESULTS In total, 740 proteins were identified of which, 25 differentially-expressed proteins in AD came from comparisons within a single racial and ethnic background group. Six proteins were differentially-expressed in AD regardless of racial and ethnic background. Supervised classification by SVM yielded an area under the curve (AUC) of 0.91 and accuracy of 86%for differentiating AD in samples from non-Hispanic White adults when trained with differentially-expressed proteins unique to that group. However, the same model yielded an AUC of 0.49 and accuracy of 47%for differentiating AD in samples from African American/Black adults. Other covariates such as age, APOE4 status, sex, and years of education were found to improve the model mostly in the samples from non-Hispanic White adults for classifying AD. CONCLUSION These results demonstrate the importance of study designs in AD biomarker discovery, which must include diverse racial and ethnic groups such as African American/Black adults to develop effective biomarkers.
Collapse
Affiliation(s)
- Mostafa J. Khan
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Heather Desaire
- Department of Chemistry, University of Kansas, Lawrence, KS, USA
| | - Oscar L. Lopez
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - M. Ilyas Kamboh
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Renã A.S. Robinson
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
6
|
Diniz Pereira J, Gomes Fraga V, Morais Santos AL, Carvalho MDG, Caramelli P, Braga Gomes K. Alzheimer's disease and type 2 diabetes mellitus: A systematic review of proteomic studies. J Neurochem 2020; 156:753-776. [PMID: 32909269 DOI: 10.1111/jnc.15166] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/15/2020] [Accepted: 08/25/2020] [Indexed: 12/16/2022]
Abstract
Similar to dementia, the risk for developing type 2 diabetes mellitus (T2DM) increases with age, and T2DM also increases the risk for dementia, particularly Alzheimer's disease (AD). Although T2DM is primarily a peripheral disorder and AD is a central nervous system disease, both share some common features as they are chronic and complex diseases, and both show involvement of oxidative stress and inflammation in their progression. These characteristics suggest that T2DM may be associated with AD, which gave rise to a new term, type 3 diabetes (T3DM). In this study, we searched for matching peripheral proteomic biomarkers of AD and T2DM based in a systematic review of the available literature. We identified 17 common biomarkers that were differentially expressed in both patients with AD or T2DM when compared with healthy controls. These biomarkers could provide a useful workflow for screening T2DM patients at risk to develop AD.
Collapse
Affiliation(s)
- Jessica Diniz Pereira
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vanessa Gomes Fraga
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Anna Luiza Morais Santos
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Maria das Graças Carvalho
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Paulo Caramelli
- Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Karina Braga Gomes
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
7
|
Yao F, Zhang K, Zhang Y, Guo Y, Li A, Xiao S, Liu Q, Shen L, Ni J. Identification of Blood Biomarkers for Alzheimer's Disease Through Computational Prediction and Experimental Validation. Front Neurol 2019; 9:1158. [PMID: 30671019 PMCID: PMC6331438 DOI: 10.3389/fneur.2018.01158] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/14/2018] [Indexed: 12/15/2022] Open
Abstract
Background: Alzheimer's disease (AD) is the major cause of dementia in population aged over 65 years, accounting up to 70% dementia cases. However, validated peripheral biomarkers for AD diagnosis are not available up to present. In this study, we adopted a new strategy of combination of computational prediction and experimental validation to identify blood protein biomarkers for AD. Methods: First, we collected tissue-based gene expression data of AD patients and healthy controls from GEO database. Second, we analyzed these data and identified differentially expressed genes for AD. Third, we applied a blood-secretory protein prediction program on these genes and predicted AD-related proteins in blood. Finally, we collected blood samples of AD patients and healthy controls to validate the potential AD biomarkers by using ELISA experiments and Western blot analyses. Results: A total of 2754 genes were identified to express differentially in brain tissues of AD, among which 296 genes were predicted to encode AD-related blood-secretory proteins. After careful analysis and literature survey on these predicted blood-secretory proteins, ten proteins were considered as potential AD biomarkers, five of which were experimentally verified with significant change in blood samples of AD vs. controls by ELISA, including GSN, BDNF, TIMP1, VLDLR, and APLP2. ROC analyses showed that VLDLR and TIMP1 had excellent performance in distinguishing AD patients from controls (area under the curve, AUC = 0.932 and 0.903, respectively). Further validation of VLDLR and TIMP1 by Western blot analyses has confirmed the results obtained in ELISA experiments. Conclusion: VLDLR and TIMP1 had better discriminative abilities between ADs and controls, and might serve as potential blood biomarkers for AD. To our knowledge, this is the first time to identify blood protein biomarkers for AD through combination of computational prediction and experimental validation. In addition, VLDLR was first reported here as potential blood protein biomarker for AD. Thus, our findings might provide important information for AD diagnosis and therapies.
Collapse
Affiliation(s)
- Fang Yao
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Kaoyuan Zhang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Yan Zhang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Yi Guo
- Department of Neurology, Shenzhen People's Hospital, Shenzhen, China
| | - Aidong Li
- Department of Rehabilitation, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Shifeng Xiao
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Liming Shen
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Jiazuan Ni
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
8
|
Peripheral Biomarkers for Early Detection of Alzheimer's and Parkinson's Diseases. Mol Neurobiol 2018; 56:2256-2277. [PMID: 30008073 DOI: 10.1007/s12035-018-1151-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 05/24/2018] [Indexed: 01/18/2023]
Abstract
Neurological disorders are found to be influencing the peripheral tissues outside CNS. Recent developments in biomarkers for CNS have emerged with various diagnostic and therapeutic shortcomings. The role of central biomarkers including CSF-based and molecular imaging-based probes are still unclear for early diagnosis of major neurological diseases. Current trends show that early detection of neurodegenerative diseases with non-invasive methods is a major focus of researchers, and the development of biomarkers aiming peripheral tissues is in demand. Alzheimer's and Parkinson's diseases are known for the progressive loss in neural structures or functions, including the neural death. Various dysfunctions of metabolic and biochemical pathways are associated with early occurrence of neuro-disorders in peripheral tissues including skin, blood cells, and eyes. This article reviews the peripheral biomarkers explored for early detection of Alzheimer's and Parkinson's diseases including blood cells, skin fibroblast, proteomics, saliva, olfactory, stomach and colon, heart and peripheral nervous system, and others. Graphical Abstract.
Collapse
|
9
|
Huang CC, Isidoro C. Raman Spectrometric Detection Methods for Early and Non-Invasive Diagnosis of Alzheimer's Disease. J Alzheimers Dis 2018; 57:1145-1156. [PMID: 28304304 DOI: 10.3233/jad-161238] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The continuous increasing rate of patients suffering of Alzheimer's disease (AD) worldwide requires the adoption of novel techniques for non-invasive early diagnosis and monitoring of the disease. Here we review the various Raman spectroscopic techniques, including Fourier Transform-Raman spectroscopy, surface-enhanced Raman scattering spectroscopy, coherent anti-Stokes Raman scattering spectroscopy, and confocal Raman microspectroscopy, that could be used for the diagnosis of AD. These techniques have shown the potential to detect AD biomarkers, such as the amyloid-β peptide and the tau protein, or the neurotransmitters involved in the disease (e.g., Glutamate and γ-Aminobutyric acid), or the typical structural alterations in specific brain areas. The possibility to detect the specific biomarkers in liquid biopsies and to obtain high resolution 3D microscope images of the affected area make the Raman spectroscopy a valuable ally in the early diagnosis and monitoring of AD.
Collapse
Affiliation(s)
- Chia-Chi Huang
- Department of Applied Chemistry, National Chiayi University, Chiayi City, Taiwan
| | - Ciro Isidoro
- Department of Health Sciences, Laboratory of Molecular Pathology and Nanobioimaging, Università del Piemonte Orientale, Novara, Italy
| |
Collapse
|
10
|
Shen L, Liao L, Chen C, Guo Y, Song D, Wang Y, Chen Y, Zhang K, Ying M, Li S, Liu Q, Ni J. Proteomics Analysis of Blood Serums from Alzheimer's Disease Patients Using iTRAQ Labeling Technology. J Alzheimers Dis 2018; 56:361-378. [PMID: 27911324 DOI: 10.3233/jad-160913] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer' disease (AD) is the most common form of dementia affecting up to 6% of the population over the age of 65. In order to discover differentially expressed proteins that might serve as potential biomarkers, the serums from AD patients and healthy controls were compared and analyzed using the proteomics approach of isobaric tagging for relative and absolute quantitation (iTRAQ). For the first time, AD biomarkers in serums are investigated in the Han Chinese population using iTRAQ labeled proteomics strategy. Twenty-two differentially expressed proteins were identified and out of which nine proteins were further validated with more sample test. Another three proteins that have been reported in the literature to be potentially associated with AD were also investigated for alteration in expression level. Functions of those proteins were mainly related to the following processes: amyloid-β (Aβ) metabolism, cholesterol transport, complement and coagulation cascades, immune response, inflammation, hemostasis, hyaluronan metabolism, and oxidative stress. These results support current views on the molecular mechanism of AD. For the first time, differential expression of zinc-alpha-2-glycoprotein (AZGP1), fibulin-1 (FBLN1), platelet basic protein (PPBP), thrombospondin-1 (THBS1), S100 calcium-binding protein A8 (S100A8), and S100 calcium-binding protein A9 (S100A9) were detected in the serums of AD patients compared with healthy controls. These proteins might play a role in AD pathophysiology and serve as potential biomarkers for AD diagnosis. Specifically, our results strengthened the crucial role of Aβ metabolism and blood coagulation in AD pathogenesis and proteins related to these two processes may be used as peripheral blood biomarkers for AD.
Collapse
Affiliation(s)
- Liming Shen
- College of Life Science and Oceanography, Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen University, Shenzhen, P.R. China
| | - Liping Liao
- College of Life Science and Oceanography, Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen University, Shenzhen, P.R. China
| | - Cheng Chen
- College of Life Science and Oceanography, Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen University, Shenzhen, P.R. China
| | - Yi Guo
- Department of Neurology, Shenzhen People's Hospital, P.R. China
| | - Dalin Song
- Department of Geriatrics, Qingdao Municipal Hospital, Qingdao, P.R. China
| | - Yong Wang
- College of Life Science and Oceanography, Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen University, Shenzhen, P.R. China
| | - Youjiao Chen
- College of Life Science and Oceanography, Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen University, Shenzhen, P.R. China
| | - Kaoyuan Zhang
- College of Life Science and Oceanography, Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen University, Shenzhen, P.R. China
| | - Ming Ying
- College of Life Science and Oceanography, Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen University, Shenzhen, P.R. China
| | - Shuiming Li
- College of Life Science and Oceanography, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, P.R. China
| | - Qiong Liu
- College of Life Science and Oceanography, Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen University, Shenzhen, P.R. China
| | - Jiazuan Ni
- College of Life Science and Oceanography, Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen University, Shenzhen, P.R. China
| |
Collapse
|
11
|
Kim S, Park JW, Wark AW, Jhung SH, Lee HJ. Tandem Femto- and Nanomolar Analysis of Two Protein Biomarkers in Plasma on a Single Mixed Antibody Monolayer Surface Using Surface Plasmon Resonance. Anal Chem 2017; 89:12562-12568. [DOI: 10.1021/acs.analchem.7b03837] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Suhee Kim
- Department of Chemistry
and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Buk-gu, Daegu-city 41566, Republic of Korea
| | - Jeong Won Park
- Bio-Medical
IT Convergence Research Division, SW Contents Research Laboratory, Electronics and Telecommunications Research Institute, 218 Gajeongno, Yuseong-gu, Daejeon 34129, Republic of Korea
| | - Alastair W. Wark
- Centre
for Molecular Nanometrology, WestCHEM, Department of Pure and Applied
Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow G1 1RD, United Kingdom
| | - Sung Hwa Jhung
- Department of Chemistry
and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Buk-gu, Daegu-city 41566, Republic of Korea
| | - Hye Jin Lee
- Department of Chemistry
and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Buk-gu, Daegu-city 41566, Republic of Korea
| |
Collapse
|
12
|
Jammeh E, Zhao P, Carroll C, Pearson S, Ifeachor E. Identification of blood biomarkers for use in point of care diagnosis tool for Alzheimer's disease. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2016:2415-2418. [PMID: 28268812 DOI: 10.1109/embc.2016.7591217] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Early diagnosis of Alzheimer's Disease (AD) is widely regarded as necessary to allow treatment to be started before irreversible damage to the brain occur and for patients to benefit from new therapies as they become available. Low-cost point-of-care (PoC) diagnostic tools that can be used to routinely diagnose AD in its early stage would facilitate this, but such tools require reliable and accurate biomarkers. However, traditional biomarkers for AD use invasive cerebrospinal fluid (CSF) analysis and/or expensive neuroimaging techniques together with neuropsychological assessments. Blood-based PoC diagnostics tools may provide a more cost and time efficient way to assess AD to complement CSF and neuroimaging techniques. However, evidence to date suggests that only a panel of biomarkers would provide the diagnostic accuracy needed in clinical practice and that the number of biomarkers in such panels can be large. In addition, the biomarkers in a panel vary from study to study. These issues make it difficult to realise a PoC device for diagnosis of AD. An objective of this paper is to find an optimum number of blood biomarkers (in terms of number of biomarkers and sensitivity/specificity) that can be used in a handheld PoC device for AD diagnosis. We used the Alzheimer's disease Neuroimaging Initiative (ADNI) database to identify a small number of blood biomarkers for AD. We identified a 6-biomarker panel (which includes A1Micro, A2Macro, AAT, ApoE, complement C3 and PPP), which when used with age as covariate, was able to discriminate between AD patients and normal subjects with a sensitivity of 85.4% and specificity of 78.6%.
Collapse
|
13
|
Low-Frequency Pulsed Electromagnetic Field Is Able to Modulate miRNAs in an Experimental Cell Model of Alzheimer's Disease. JOURNAL OF HEALTHCARE ENGINEERING 2017; 2017:2530270. [PMID: 29065581 PMCID: PMC5434238 DOI: 10.1155/2017/2530270] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 03/02/2017] [Accepted: 04/03/2017] [Indexed: 01/01/2023]
Abstract
The aim of the present study was to investigate on the effects of a low-frequency pulsed electromagnetic field (LF-PEMF) in an experimental cell model of Alzheimer's disease (AD) to assess new therapies that counteract neurodegeneration. In recent scientific literature, it is documented that the deep brain stimulation via electromagnetic fields (EMFs) modulates the neurophysiological activity of the pathological circuits and produces clinical benefits in AD patients. EMFs are applied for tissue regeneration because of their ability to stimulate cell proliferation and immune functions via the HSP70 protein family. However, the effects of EMFs are still controversial and further investigations are required. Our results demonstrate the ability of our LF-PEMF to modulate gene expression in cell functions that are dysregulated in AD (i.e., BACE1) and that these effects can be modulated with different treatment conditions. Of relevance, we will focus on miRNAs regulating the pathways involved in brain degenerative disorders.
Collapse
|
14
|
Pirmoradian M, Aarsland D, Zubarev RA. Isoelectric point region pI≈7.4 as a treasure island of abnormal proteoforms in blood. Discoveries (Craiova) 2016; 4:e67. [PMID: 32309586 PMCID: PMC7159840 DOI: 10.15190/d.2016.14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Theoretical distribution of isoelectric points (pI values) of human blood proteins exhibits multi-modality with a deep minimum in the range between pI 7.30 and 7.50. Considering that the pH of human blood is 7.4±0.1, normal forms of human proteins tend to eschew this specific pI region, thus avoiding charge neutrality that can result in enhanced precipitation. However, abnormal protein isoforms (proteoforms), which are the hallmarks and potential biomarkers of certain diseases, are likely to be found everywhere in the pI distribution, including this “forbidden” region. Therefore, we hypothesized that damaging proteoforms characteristic for neurodegenerative diseases are best detected around pI≈7.4. Blood serum samples from 14 Alzheimer's disease patients were isolated by capillary isoelectric focusing and analyzed by liquid chromatography hyphenated with tandem mass spectrometry. Consistent with the pI≈7.4 hypothesis, the 8 patients with fast memory decline had a significantly (p<0.003) higher concentration of proteoforms in the pI=7.4±0.1 region than the 6 patients with a slow memory decline. Moreover, protein compositions differed more from each other than for any other investigated pI region, providing absolute separation of the fast and slow decliner samples. The discovery of the “treasure island” of abnormal proteoforms in form of the pI≈7.4 region promises to boost biomarker development for a range of diseases.
Collapse
Affiliation(s)
- Mohammad Pirmoradian
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,Biomotif AB, Stockholm, Sweden
| | - Dag Aarsland
- Alzheimer's Disease Research Centre, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Roman A Zubarev
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
15
|
Khan AT, Dobson RJB, Sattlecker M, Kiddle SJ. Alzheimer's disease: are blood and brain markers related? A systematic review. Ann Clin Transl Neurol 2016; 3:455-62. [PMID: 27547773 PMCID: PMC4891999 DOI: 10.1002/acn3.313] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/29/2016] [Accepted: 04/07/2016] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE Peripheral protein biomarkers of Alzheimer's disease (AD) may help identify novel treatment avenues by allowing early diagnosis, recruitment to clinical trials, and treatment initiation. The purpose of this review was to determine which proteins have been found to be differentially expressed in the AD brain and whether these proteins are also found within the blood of AD patients. METHODS A two-stage approach was conducted. The first stage involved conducting a systematic search to identify discovery-based brain proteomic studies of AD. The second stage involved comparing whether proteins found to be differentially expressed in AD brain were also differentially expressed in the blood. RESULTS Across 11 discovery based brain proteomic studies 371 proteins were at different levels in the AD brain. Nine proteins were frequently found, defined as appearing in at least three separate studies. Of these proteins heat-shock cognate 71 kDa, ubiquitin carboxyl-terminal hydrolase isozyme L1, and 2',3'-cyclic nucleotide 3' phosphodiesterase alone were found to share a consistent direction of change, being consistently upregulated in studies they appeared in. Eighteen proteins seen as being differentially expressed within the AD brain were present in blood proteomic studies of AD. Only complement C4a was seen multiple times within both the blood and brain proteomic studies. INTERPRETATION We report a number of proteins appearing in both the blood and brain of AD patients. Of these proteins, C4a may be a good candidate for further follow-up in large-scale replication efforts.
Collapse
Affiliation(s)
- Ali T. Khan
- GKT School of Medical EducationKing's College LondonLondonUnited Kingdom
| | - Richard J. B. Dobson
- MRC Social, Genetic and Developmental Psychiatry CentreInstitute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUnited Kingdom
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for DementiaLondonUnited Kingdom
| | - Martina Sattlecker
- MRC Social, Genetic and Developmental Psychiatry CentreInstitute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUnited Kingdom
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for DementiaLondonUnited Kingdom
| | - Steven J. Kiddle
- MRC Social, Genetic and Developmental Psychiatry CentreInstitute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUnited Kingdom
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for DementiaLondonUnited Kingdom
| |
Collapse
|
16
|
Sengupta MB, Chakrabarti A, Saha S, Mukhopadhyay D. Clinical proteomics of enervated neurons. Clin Proteomics 2016; 13:10. [PMID: 27152104 PMCID: PMC4857373 DOI: 10.1186/s12014-016-9112-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 04/18/2016] [Indexed: 11/16/2022] Open
Abstract
The dynamic field of neurosciences entails ever increasing search for molecular mechanisms of disease states, especially in the domain of neurodegenerative disorders. The previous century heralded the techniques in proteomics when indexing of the human proteomes relating to various disease conditions became important. Early stage research in certain diseases or pathological conditions requires a more holistic approach of first discovering the proteins of interest for the condition. Despite its limitations, proteomics is one of the most powerful techniques available to us today to dissect the molecular scenario in a particular disease situation. In this review we will discuss about the current clinical research in neurodegenerative disorders that employ proteomics techniques. We will specifically focus on our understanding of Alzheimer’s disease, traumatic spinal cord injury and neuromyelitis optica. Discussions will include ongoing worldwide research in these areas, research in India and specifically our laboratory in these domains of neurodegenerative conditions.
Collapse
Affiliation(s)
- Mohor Biplab Sengupta
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, West Bengal 700064 India
| | - Arunabha Chakrabarti
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, West Bengal 700064 India
| | - Suparna Saha
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, West Bengal 700064 India
| | - Debashis Mukhopadhyay
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, West Bengal 700064 India
| |
Collapse
|
17
|
Baird AL, Westwood S, Lovestone S. Blood-Based Proteomic Biomarkers of Alzheimer's Disease Pathology. Front Neurol 2015; 6:236. [PMID: 26635716 PMCID: PMC4644785 DOI: 10.3389/fneur.2015.00236] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 10/26/2015] [Indexed: 12/31/2022] Open
Abstract
The complexity of Alzheimer’s disease (AD) and its long prodromal phase poses challenges for early diagnosis and yet allows for the possibility of the development of disease modifying treatments for secondary prevention. It is, therefore, of importance to develop biomarkers, in particular, in the preclinical or early phases that reflect the pathological characteristics of the disease and, moreover, could be of utility in triaging subjects for preventative therapeutic clinical trials. Much research has sought biomarkers for diagnostic purposes by comparing affected people to unaffected controls. However, given that AD pathology precedes disease onset, a pathology endophenotype design for biomarker discovery creates the opportunity for detection of much earlier markers of disease. Blood-based biomarkers potentially provide a minimally invasive option for this purpose and research in the field has adopted various “omics” approaches in order to achieve this. This review will, therefore, examine the current literature regarding blood-based proteomic biomarkers of AD and its associated pathology.
Collapse
Affiliation(s)
- Alison L Baird
- Department of Psychiatry, University of Oxford , Oxford , UK
| | - Sarah Westwood
- Department of Psychiatry, University of Oxford , Oxford , UK
| | - Simon Lovestone
- Department of Psychiatry, University of Oxford , Oxford , UK
| |
Collapse
|
18
|
Pirmoradian M, Astorga-Wells J, Zubarev RA. Multijunction Capillary Isoelectric Focusing Device Combined with Online Membrane-Assisted Buffer Exchanger Enables Isoelectric Point Fractionation of Intact Human Plasma Proteins for Biomarker Discovery. Anal Chem 2015; 87:11840-6. [PMID: 26531800 DOI: 10.1021/acs.analchem.5b03344] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Prefractionation of proteins is often employed to improve analysis specificity in proteomics. Prefractionation based on the isoelectric point (pI) is particularly attractive because pI is a well-defined parameter and it is orthogonal to hydrophobicity on which reversed-phase chromatography is based. However, direct capillary electrophoresis of blood proteins is challenging due to its high content of salts and charged small molecules. Here, we couple an online desalinator device to our multijunction capillary isoelectric focusing (MJ-CIEF) instrument and perform direct isoelectric separation of human blood plasma. In a proof-of-principle experiment, pooled samples of patients with progressive mild cognitive impairment and corresponding healthy controls were investigated. Injection of 3 μL of plasma containing over 100 μg of proteins into the desalinator was followed by pI fractionation with MJ-CIEF in less than 1 h. Shotgun proteomics of 12 collected fractions from each of the 5 replicates of pooled samples resulted in the identification and accurate quantification (median CV between the replicates is <4%) of nearly 365 protein groups from 4030 unique peptides (with <1% FDR for both peptides and proteins). The obtained results include several proteins previously reported as AD markers. The isoelectric point of each quantified protein was calculated using a set of 7 synthetic peptides spiked into the samples. Several proteins with a significant pI shift between their isoforms in the patient and control samples were identified. The presented method is straightforward, robust, and scalable; therefore, it can be used in both biological and clinical applications.
Collapse
Affiliation(s)
- Mohammad Pirmoradian
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Scheeles väg 2, SE-17177 Stockholm, Sweden.,Biomotif AB , SE-18212 Stockholm, Sweden
| | - Juan Astorga-Wells
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Scheeles väg 2, SE-17177 Stockholm, Sweden.,Biomotif AB , SE-18212 Stockholm, Sweden
| | - Roman A Zubarev
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Scheeles väg 2, SE-17177 Stockholm, Sweden
| |
Collapse
|
19
|
Shah DJ, Rohlfing F, Anand S, Johnson WE, Alvarez MTB, Cobell J, King J, Young SA, Kauwe JS, Graves SW. Discovery and Subsequent Confirmation of Novel Serum Biomarkers Diagnosing Alzheimer’s Disease. J Alzheimers Dis 2015; 49:317-27. [DOI: 10.3233/jad-150498] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Dipti Jigar Shah
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | | | - Swati Anand
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - W. Evan Johnson
- Division of Computational Biomedicine, Boston University School of Medicine, Boston University, Boston, MA, USA
| | | | - Jesse Cobell
- Department of Biology, Brigham Young University, Provo, UT, USA
| | - Jackson King
- Department of Biology, Brigham Young University, Provo, UT, USA
| | - Sydney A. Young
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - John S.K. Kauwe
- Department of Biology, Brigham Young University, Provo, UT, USA
| | - Steven W. Graves
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| |
Collapse
|
20
|
Vibrational spectroscopic analysis of peripheral blood plasma of patients with Alzheimer’s disease. Anal Bioanal Chem 2015; 407:7747-56. [DOI: 10.1007/s00216-015-8940-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/17/2015] [Accepted: 07/24/2015] [Indexed: 12/25/2022]
|
21
|
da Costa G, Ribeiro-Silva C, Ribeiro R, Gilberto S, Gomes RA, Ferreira A, Mateus É, Barroso E, Coelho AV, Freire AP, Cordeiro C. Transthyretin Amyloidosis: Chaperone Concentration Changes and Increased Proteolysis in the Pathway to Disease. PLoS One 2015; 10:e0125392. [PMID: 26147092 PMCID: PMC4492746 DOI: 10.1371/journal.pone.0125392] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 03/24/2015] [Indexed: 11/18/2022] Open
Abstract
Transthyretin amyloidosis is a conformational pathology characterized by the extracellular formation of amyloid deposits and the progressive impairment of the peripheral nervous system. Point mutations in this tetrameric plasma protein decrease its stability and are linked to disease onset and progression. Since non-mutated transthyretin also forms amyloid in systemic senile amyloidosis and some mutation bearers are asymptomatic throughout their lives, non-genetic factors must also be involved in transthyretin amyloidosis. We discovered, using a differential proteomics approach, that extracellular chaperones such as fibrinogen, clusterin, haptoglobin, alpha-1-anti-trypsin and 2-macroglobulin are overrepresented in transthyretin amyloidosis. Our data shows that a complex network of extracellular chaperones are over represented in human plasma and we speculate that they act synergistically to cope with amyloid prone proteins. Proteostasis may thus be as important as point mutations in transthyretin amyloidosis.
Collapse
Affiliation(s)
- Gonçalo da Costa
- Centro de Química e Bioquímica, FCUL, Campo Grande, Lisboa, Portugal
| | | | - Raquel Ribeiro
- Centro de Química e Bioquímica, FCUL, Campo Grande, Lisboa, Portugal
| | - Samuel Gilberto
- Centro de Química e Bioquímica, FCUL, Campo Grande, Lisboa, Portugal
| | - Ricardo A Gomes
- Instituto de Tecnologia Química e Biológica, Av. da República Estação Agronómica Nacional, Oeiras, Portugal
| | - António Ferreira
- Centro de Química e Bioquímica, FCUL, Campo Grande, Lisboa, Portugal
| | - Élia Mateus
- Unidade de Transplantação, Hospital Curry Cabral, Lisboa, Portugal
| | - Eduardo Barroso
- Unidade de Transplantação, Hospital Curry Cabral, Lisboa, Portugal
| | - Ana V Coelho
- Instituto de Tecnologia Química e Biológica, Av. da República Estação Agronómica Nacional, Oeiras, Portugal
| | - Ana Ponces Freire
- Centro de Química e Bioquímica, FCUL, Campo Grande, Lisboa, Portugal
| | - Carlos Cordeiro
- Centro de Química e Bioquímica, FCUL, Campo Grande, Lisboa, Portugal
| |
Collapse
|
22
|
Kim S, Lee HJ. Direct Detection of α-1 Antitrypsin in Serum Samples using Surface Plasmon Resonance with a New Aptamer-Antibody Sandwich Assay. Anal Chem 2015; 87:7235-40. [PMID: 26070325 DOI: 10.1021/acs.analchem.5b01192] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The challenges associated with performing surface plasmon resonance (SPR) based measurements in serum and other biofluids have continued to limit the applicability of this valuable sensing technology for sensitive bioaffinity measurements of proteins in clinically relevant samples. In this paper, a new sandwich assay is introduced for the quantitative SPR analysis of α-1 antitrypsin (AAT), which is a recognized biomarker for Alzheimer's disease. Detection was performed via the specific adsorption of AAT onto a gold chip surface modified with a DNA aptamer. The measurement dynamic range and also sensitivity in serum were improved with the subsequent surface binding of antiAAT. A methodology was established to measure the target protein in serum, albumin and immunoglobulin G (IgG) solutions with the results correlated with measurements in buffer only. A comparison between SPR and enzyme-linked immunosorbent assay (ELISA) measurements was also made. The detection of AAT in serum at clinically relevant concentrations was demonstrated with target concentrations as low as 10 fM readily achievable.
Collapse
Affiliation(s)
- Suhee Kim
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Buk-gu, Daegu-city, 702-701, Republic of Korea
| | - Hye Jin Lee
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Buk-gu, Daegu-city, 702-701, Republic of Korea
| |
Collapse
|
23
|
Sattlecker M, Kiddle SJ, Newhouse S, Proitsi P, Nelson S, Williams S, Johnston C, Killick R, Simmons A, Westman E, Hodges A, Soininen H, Kłoszewska I, Mecocci P, Tsolaki M, Vellas B, Lovestone S, Dobson RJB. Alzheimer's disease biomarker discovery using SOMAscan multiplexed protein technology. Alzheimers Dement 2014; 10:724-34. [PMID: 24768341 DOI: 10.1016/j.jalz.2013.09.016] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 09/06/2013] [Accepted: 09/24/2013] [Indexed: 12/26/2022]
Abstract
Blood proteins and their complexes have become the focus of a great deal of interest in the context of their potential as biomarkers of Alzheimer's disease (AD). We used a SOMAscan assay for quantifying 1001 proteins in blood samples from 331 AD, 211 controls, and 149 mild cognitive impaired (MCI) subjects. The strongest associations of protein levels with AD outcomes were prostate-specific antigen complexed to α1-antichymotrypsin (AD diagnosis), pancreatic prohormone (AD diagnosis, left entorhinal cortex atrophy, and left hippocampus atrophy), clusterin (rate of cognitive decline), and fetuin B (left entorhinal atrophy). Multivariate analysis found that a subset of 13 proteins predicted AD with an accuracy of area under the curve of 0.70. Our replication of previous findings provides further evidence that levels of these proteins in plasma are truly associated with AD. The newly identified proteins could be potential biomarkers and are worthy of further investigation.
Collapse
Affiliation(s)
- Martina Sattlecker
- King's College London, Institute of Psychiatry, London, UK; NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation Trust, London, UK
| | - Steven J Kiddle
- King's College London, Institute of Psychiatry, London, UK; NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation Trust, London, UK
| | - Stephen Newhouse
- King's College London, Institute of Psychiatry, London, UK; NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation Trust, London, UK
| | - Petroula Proitsi
- King's College London, Institute of Psychiatry, London, UK; NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation Trust, London, UK
| | | | | | - Caroline Johnston
- King's College London, Institute of Psychiatry, London, UK; NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation Trust, London, UK
| | - Richard Killick
- King's College London, Institute of Psychiatry, London, UK; NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation Trust, London, UK
| | - Andrew Simmons
- King's College London, Institute of Psychiatry, London, UK; NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation Trust, London, UK
| | - Eric Westman
- King's College London, Institute of Psychiatry, London, UK; NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation Trust, London, UK
| | - Angela Hodges
- King's College London, Institute of Psychiatry, London, UK; NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation Trust, London, UK
| | - Hilkka Soininen
- Department of Neurology, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | | | - Patrizia Mecocci
- Institute of Gerontology and Geriatrics, University of Perugia, Perugia, Italy
| | - Magda Tsolaki
- 3rd Department of Neurology, Aristotle University, Thessaloniki, Greece
| | - Bruno Vellas
- INSERM U 558, University of Toulouse, Toulouse, France
| | - Simon Lovestone
- King's College London, Institute of Psychiatry, London, UK; NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation Trust, London, UK
| | - Richard J B Dobson
- King's College London, Institute of Psychiatry, London, UK; NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation Trust, London, UK.
| |
Collapse
|
24
|
Abstract
Less-invasive biomarkers for early Alzheimer disease (AD) are urgently needed. The present study aimed to establish a panel of plasma proteins that accurately distinguishes early AD from physiological aging and to compare the findings with previous reports. Fifty-eight healthy controls (CON) and 109 patients with AD dementia were randomly split into a training (40%) and a test (60%) sample. Significant proteins to differentiate between the CON and AD dementia groups were identified in a comprehensive panel of 107 plasma analytes in the training sample; the accuracy in differentiating these 2 groups was explored in the test sample. A set of 5 plasma proteins was identified, which differentiated between the CON group and the AD dementia group with a sensitivity of 89.36% and a specificity of 79.17%. A biological pathway analysis showed that 4 of 5 proteins belonged to a common network with amyloid precursor protein and tau. Apolipoprotein E was the only protein that was both significant in the present report and in a previous proteomic study. The study provides a piece of evidence in support of the feasibility of a blood-based biomarker approach in AD diagnostics; however, further research is required because of issues with replicability.
Collapse
|
25
|
Song F, Poljak A, Kochan NA, Raftery M, Brodaty H, Smythe GA, Sachdev PS. Plasma protein profiling of Mild Cognitive Impairment and Alzheimer's disease using iTRAQ quantitative proteomics. Proteome Sci 2014; 12:5. [PMID: 24433274 PMCID: PMC3898732 DOI: 10.1186/1477-5956-12-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 01/10/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND With the promise of disease modifying treatments, there is a need for more specific diagnosis and prognosis of Alzheimer's disease (AD) and mild cognitive impairment (MCI). Plasma biomarkers are likely to be utilised to increase diagnostic accuracy and specificity of AD and cognitive decline. METHODS Isobaric tags (iTRAQ) and proteomic methods were used to identify potential plasma biomarkers of MCI and AD. Relative protein expression level changes were quantified in plasma of 411 cognitively normal subjects, 19 AD patients and 261 MCI patients. Plasma was pooled into 4 groups including normal control, AD, amnestic single and multiple domain MCI (aMCI), and nonamnestic single and multiple domain MCI (nMCI). Western-blotting was used to validate iTRAQ data. Integrated function and protein interactions were explored using WEB based bioinformatics tools (DAVID v6.7 and STRING v9.0). RESULTS In at least two iTRAQ replicate experiments, 30 proteins were significantly dysregulated in MCI and AD plasma, relative to controls. These proteins included ApoA1, ApoB100, complement C3, C4b-binding protein, afamin, vitamin D-binding protein precursor, isoform 1 of Gelsolin actin regulator, Ig mμ chain C region (IGHM), histidine-rich glycoprotein and fibrinogen β and γ chains. Western-blotting confirmed that afamin was decreased and IGHM was increased in MCI and AD groups. Bioinformatics results indicated that these dysregulated proteins represented a diversity of biological processes, including acute inflammatory response, cholesterol transport and blood coagulation. CONCLUSION These findings demonstrate that expression level changes in multiple proteins are observed in MCI and AD plasma. Some of these, such as afamin and IGHM, may be candidate biomarkers for AD and the predementia condition of MCI.
Collapse
Affiliation(s)
| | - Anne Poljak
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, Australia.
| | | | | | | | | | | |
Collapse
|
26
|
Baker MA, Aitken RJ. Proteomic insights into spermatozoa: critiques, comments and concerns. Expert Rev Proteomics 2014; 6:691-705. [DOI: 10.1586/epr.09.76] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
27
|
Rembach A, Ryan TM, Roberts BR, Doecke JD, Wilson WJ, Watt AD, Barnham KJ, Masters CL. Progress towards a consensus on biomarkers for Alzheimer’s disease: a review of peripheral analytes. Biomark Med 2013; 7:641-62. [DOI: 10.2217/bmm.13.59] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common cause of dementia in the elderly population and attempts to develop therapies have been unsuccessful because there is no means to target an effective therapeutic window. CNS biomarkers are insightful but impractical for high-throughput population-based screening. Therefore, a peripheral, blood-based biomarker for AD would significantly improve early diagnosis, potentially enable presymptomatic detection and facilitate effective targeting of disease-modifying treatments. The various constituents of blood, including plasma, platelets and cellular fractions, are now being systematically explored as a pool of putative peripheral biomarkers for AD. In this review we cover some less known peripheral biomarkers and highlight the latest developments for their clinical application.
Collapse
Affiliation(s)
- Alan Rembach
- The Mental Health Research Institute, The University of Melbourne, Kenneth Myer Building, 30 Royal Parade, Parkville, Victoria, 3010, Australia.
| | - Tim M Ryan
- The Mental Health Research Institute, The University of Melbourne, Kenneth Myer Building, 30 Royal Parade, Parkville, Victoria, 3010, Australia
| | - Blaine R Roberts
- The Mental Health Research Institute, The University of Melbourne, Kenneth Myer Building, 30 Royal Parade, Parkville, Victoria, 3010, Australia
| | - James D Doecke
- The Australian e-Health Research Centre, Herston, Queensland, 4029, Australia
- CSIRO Preventative Health National Research Flagship, North Ryde, New South Wales, 2113, Australia
| | - William J Wilson
- CSIRO Preventative Health National Research Flagship, North Ryde, New South Wales, 2113, Australia
| | - Andrew D Watt
- The Mental Health Research Institute, The University of Melbourne, Kenneth Myer Building, 30 Royal Parade, Parkville, Victoria, 3010, Australia
| | - Kevin J Barnham
- The Mental Health Research Institute, The University of Melbourne, Kenneth Myer Building, 30 Royal Parade, Parkville, Victoria, 3010, Australia
| | - Colin L Masters
- The Mental Health Research Institute, The University of Melbourne, Kenneth Myer Building, 30 Royal Parade, Parkville, Victoria, 3010, Australia
| |
Collapse
|
28
|
Kumar P, Dezso Z, MacKenzie C, Oestreicher J, Agoulnik S, Byrne M, Bernier F, Yanagimachi M, Aoshima K, Oda Y. Circulating miRNA biomarkers for Alzheimer's disease. PLoS One 2013; 8:e69807. [PMID: 23922807 PMCID: PMC3726785 DOI: 10.1371/journal.pone.0069807] [Citation(s) in RCA: 272] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 06/12/2013] [Indexed: 12/13/2022] Open
Abstract
A minimally invasive diagnostic assay for early detection of Alzheimer's disease (AD) is required to select optimal patient groups in clinical trials, monitor disease progression and response to treatment, and to better plan patient clinical care. Blood is an attractive source for biomarkers due to minimal discomfort to the patient, encouraging greater compliance in clinical trials and frequent testing. MiRNAs belong to the class of non-coding regulatory RNA molecules of ∼22 nt length and are now recognized to regulate ∼60% of all known genes through post-transcriptional gene silencing (RNAi). They have potential as useful biomarkers for clinical use because of their stability and ease of detection in many tissues, especially blood. Circulating profiles of miRNAs have been shown to discriminate different tumor types, indicate staging and progression of the disease and to be useful as prognostic markers. Recently their role in neurodegenerative diseases, both as diagnostic biomarkers as well as explaining basic disease etiology has come into focus. Here we report the discovery and validation of a unique circulating 7-miRNA signature (hsa-let-7d-5p, hsa-let-7g-5p, hsa-miR-15b-5p, hsa-miR-142-3p, hsa-miR-191-5p, hsa-miR-301a-3p and hsa-miR-545-3p) in plasma, which could distinguish AD patients from normal controls (NC) with >95% accuracy (AUC of 0.953). There was a >2 fold difference for all signature miRNAs between the AD and NC samples, with p-values<0.05. Pathway analysis, taking into account enriched target mRNAs for these signature miRNAs was also carried out, suggesting that the disturbance of multiple enzymatic pathways including lipid metabolism could play a role in AD etiology.
Collapse
Affiliation(s)
- Pavan Kumar
- Eisai Inc, Biomarkers and Personalized Medicine Core Function Unit, Eisai Product Creation Systems, Andover, Massachusetts, United States of America.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Lista S, Faltraco F, Prvulovic D, Hampel H. Blood and plasma-based proteomic biomarker research in Alzheimer's disease. Prog Neurobiol 2013; 101-102:1-17. [DOI: 10.1016/j.pneurobio.2012.06.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Revised: 03/28/2012] [Accepted: 06/18/2012] [Indexed: 12/14/2022]
|
30
|
Bhamra MS, Ashton NJ. Finding a pathological diagnosis for Alzheimer's disease: Are inflammatory molecules the answer? Electrophoresis 2012; 33:3598-607. [DOI: 10.1002/elps.201200161] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 06/15/2012] [Accepted: 07/02/2012] [Indexed: 12/19/2022]
|
31
|
Zabel M, Schrag M, Mueller C, Zhou W, Crofton A, Petersen F, Dickson A, Kirsch WM. Assessing candidate serum biomarkers for Alzheimer's disease: a longitudinal study. J Alzheimers Dis 2012; 30:311-21. [PMID: 22426016 DOI: 10.3233/jad-2012-112012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Because of the growing impact of late onset cognitive loss, considerable effort has been directed toward the development of improved diagnostic techniques for Alzheimer's disease (AD) that may pave the way for earlier (and more effective) therapeutic efforts. Serum-based biomarkers are the least expensive and invasive modality for screening and routine monitoring. We systematically reviewed the literature to assemble a list of serum biomarkers relevant to AD. In parallel, we conducted a proteomic LC-MS/MS analysis of serum collected from neurologically normal subjects and subjects with mild cognitive impairment (MCI) and early AD (n = 6 in all). Complement C3 and alpha-2-macroglobulin were identified from both the literature review and our proteomic screen for further validation. For these two candidates, ELISA was performed on serum collected from a small independent cohort of subjects for longitudinal analysis. Serum was serially collected from neurologically normal subjects (n = 5) and subjects with MCI who were subsequently followed for a period of two years (n = 5) and regrouped into stable MCI and progressive MCI or AD (n = 6). The ability of each marker to predict which subjects with MCI would progress to dementia and which would remain cognitively stable was assessed. Patients with probable cerebral amyloid angiopathy were also identified (n = 3). This preliminary analysis tested the most-promising serum protein biomarkers for AD and we concluded that none are yet ready for use in the clinical diagnosis and management of dementia. However, a more thorough assessment in longitudinal studies with higher statistical power is warranted.
Collapse
Affiliation(s)
- Matthew Zabel
- Neurosurgery Center for Research, Loma Linda University, Loma Linda, CA 92354, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Lista S, Faltraco F, Hampel H. Biological and methodical challenges of blood-based proteomics in the field of neurological research. Prog Neurobiol 2012; 101-102:18-34. [PMID: 22743551 DOI: 10.1016/j.pneurobio.2012.06.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 03/28/2012] [Accepted: 06/18/2012] [Indexed: 12/17/2022]
Abstract
Biomarker discovery is an application of major importance in today's proteomic research. There is an urgent need for suitable biomarkers to improve diagnostic tools and treatment in various neurological diseases, such as neurodegenerative disorders. Recent years have witnessed an enormous interest in proteomics, which is currently seen as an invaluable tool to shed more light on complex interacting signalling pathways and molecular networks involved in several neuropathological conditions. However, while first results of proteomic research studies have sparked much public attention, the momentum of further proteomic biomarker research in neurological disorders may suffer by its very complex methodology which is sensitive to various sources of artefacts. A major source of variability is proteome perturbation caused by sample handling/preservation (preanalytical phase) and processing/measurement (analytical phase). The aim of the present review is to summarize the current literature focusing on the crucial role played by preanalytical and analytical factors that affect the quality of samples and the reliability of the data produced in blood-based proteomic biomarker research in neurology, which may apply to Alzheimer's disease (AD) as well as other neurological disorders. Procedures for sample preparation and protocols for the analysis of serum and plasma samples will be delineated. Finally, the potential usefulness of bioinformatics--allowing for the assembly, store, and processing of data--as well as its contribution to the execution of proteomic studies will be critically discussed.
Collapse
Affiliation(s)
- Simone Lista
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe-University of Frankfurt, Frankfurt am Main, Germany.
| | | | | |
Collapse
|
33
|
Harries LW, Bradley-Smith RM, Llewellyn DJ, Pilling LC, Fellows A, Henley W, Hernandez D, Guralnik JM, Bandinelli S, Singleton A, Ferrucci L, Melzer D. Leukocyte CCR2 expression is associated with mini-mental state examination score in older adults. Rejuvenation Res 2012; 15:395-404. [PMID: 22607625 DOI: 10.1089/rej.2011.1302] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION Circulating inflammatory markers may play an important role in cognitive impairment at older ages. Mice deficient for the chemokine (C-C motif) receptor 2 (CCR2) develop an accelerated Alzheimer-like pathology. CCR2 is also important in neurogenesis. To identify human gene transcripts most closely associated with Mini-Mental State Examination (MMSE) scores, we undertook a genome-wide and inflammation specific transcriptome screen in circulating leukocytes from a population-based sample. METHODS We measured in vivo transcript levels by microarray analysis in 691 subjects (mean age 72.6 years) in the InCHIANTI study (Invecchiare in Chianti, aging in the Chianti area). We assessed expression associations with MMSE performance at RNA collection and prior 9-year change in MMSE score in linear regression models. RESULTS In genome-wide analysis, raised CCR2 expression was cross-sectionally the most strongly associated transcript with lower MMSE score (beta=-0.16, p=5.1×10(-6), false discovery rate (FDR; q=0.077). Amongst inflammatory transcripts, only CCR2 expression was associated with both MMSE score and accelerated decline in score over the preceding 9 years (beta=-0.16, p=5.1×10(-6), q=0.003; and beta=-0.13, p=5.5×10(-5), q=0.03, respectively). CCR2 expression was also positively associated with apolipoprotein E (ApoE) e4 Alzheimer disease risk haplotype. CONCLUSIONS We show for the first time that CCR2 expression is associated with lower MMSE scores in an older human population. Laboratory models of Ccr2-mediated β-amyloid removal and regulation of neurogenesis affecting cognitive function may be applicable in humans. CCR2-mediated pathways may provide a possible focus for intervention to potentiate protective reactions to Alzheimer pathology in older people, including for people with an adverse ApoE haplotype.
Collapse
Affiliation(s)
- Lorna W Harries
- Institute of Biomedical and Clinical Sciences, Peninsula College of Medicine and Dentistry, University of Exeter, Exeter, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Yang MH, Yang YH, Lu CY, Jong SB, Chen LJ, Lin YF, Wu SJ, Chu PY, Chung TW, Tyan YC. Activity-dependent neuroprotector homeobox protein: A candidate protein identified in serum as diagnostic biomarker for Alzheimer's disease. J Proteomics 2012; 75:3617-29. [PMID: 22554909 DOI: 10.1016/j.jprot.2012.04.017] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 04/09/2012] [Accepted: 04/11/2012] [Indexed: 12/26/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia of late life. To enhance our understanding of AD proteome, the serum proteins were analyzed using two-dimensional gel electrophoresis (2DE) combined with nano-high performance liquid chromatography electrospray ionization tandem mass spectrometry (nano-HPLC-ESI-MS/MS) followed by peptide fragmentation patterning. In this study, six protein spots with differential expression were identified. Five up-regulated proteins were identified as actin, apolipoprotein A-IV (Apo A-IV), inter-alpha-trypsin inhibitor heavy chain H4 (ITIH4), alpha-1-antitrypsin (AAT), and antithrombin-III (AT-III); one protein, activity-dependent neuroprotector homeobox protein (ADNP) was down-regulated in AD patients. These proteins with differential expression in the serum may serve as potential indicators of AD. Our results suggested that ADNP may play an important role in slowing the progression of clinical symptoms of AD.
Collapse
Affiliation(s)
- Ming-Hui Yang
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Yunlin, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ijsselstijn L, Dekker LJM, Stingl C, van der Weiden MM, Hofman A, Kros JM, Koudstaal PJ, Sillevis Smitt PAE, Ikram MA, Breteler MMB, Luider TM. Serum levels of pregnancy zone protein are elevated in presymptomatic Alzheimer's disease. J Proteome Res 2011; 10:4902-10. [PMID: 21879768 DOI: 10.1021/pr200270z] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have sought for disease-related proteins that could predict the onset of Alzheimer's disease (AD) in a study population derived from the Rotterdam Scan Study, a population-based prospective cohort study designed to investigate the etiology and natural history of age-related brain changes in the elderly. The serum proteome of 43 persons who developed AD, after an average of 4.2 years (±2.6 years SD) after blood sampling, and 43 gender- and age-matched controls who remained dementia-free during follow-up was investigated by liquid chromatography mass spectrometry. We identified 61 differentially expressed peptides between presymptomatic AD and controls, 9 of which were derived from pregnancy zone protein (PZP). Quantitative measurements using a multiple reaction monitoring assay showed a significant increase in concentration of PZP in presymptomatic AD (34.3 ± 20.6 mg/L) compared with controls (23.6 ± 13.6 mg/L) (p = 0.006). The difference in PZP was significant in women. Immunohistochemical validation of the findings on brain tissue sections showed strong PZP expression in senile plaques and in microglial and glial cells in AD with only low expression in some scattered glial cells in controls.
Collapse
Affiliation(s)
- Linda Ijsselstijn
- Department of Neurology, Erasmus Medical Center , Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
|
37
|
Song F, Poljak A, Smythe GA, Sachdev P. Plasma biomarkers for mild cognitive impairment and Alzheimer's disease. ACTA ACUST UNITED AC 2009; 61:69-80. [PMID: 19464319 DOI: 10.1016/j.brainresrev.2009.05.003] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 05/04/2009] [Accepted: 05/08/2009] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW With the move toward development of disease modifying treatments, there is a need for more specific diagnosis of early Alzheimer's disease (AD) and mild cognitive impairment (MCI), plasma biomarkers are likely to play an important role in this. We review the current state of knowledge on plasma biomarkers for MCI and AD, including unbiased proteomics and very recent longitudinal studies. RECENT FINDINGS With the use of proteomics methodologies, some proteins have been identified as potential biomarkers in plasma and serum of AD patients, including alpha-1-antitrypsin, complement factor H, alpha-2-macroglobulin, apolipoprotein J, apolipoprotein A-I. The findings of cross-sectional studies of plasma amyloid beta (A beta) levels are conflicting, but some recent longitudinal studies have shown that low plasma A beta 1-42 or A beta 1-40 levels, or A beta 1-42/A beta 1-40 ratio may be markers of cognitive decline. Other potential biomarkers for MCI and AD reflecting a variety of pathophysiological processes have been assessed, including isoprostanes and homocysteine (oxidative stress), total cholesterol and ApoE4 allele (lipoprotein metabolism), and cytokines and acute phase proteins (inflammation). A panel of 18 signal proteins was reported as markers of MCI and AD. SUMMARY A variety of potential plasma biomarkers for AD and MCI have been identified, however the findings need replication in longitudinal studies. This area of research promises to yield interesting results in the near future.
Collapse
Affiliation(s)
- Fei Song
- Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, Australia
| | | | | | | |
Collapse
|
38
|
Jellinger KA, Janetzky B, Attems J, Kienzl E. Biomarkers for early diagnosis of Alzheimer disease: 'ALZheimer ASsociated gene'--a new blood biomarker? J Cell Mol Med 2008; 12:1094-117. [PMID: 18363842 PMCID: PMC3865653 DOI: 10.1111/j.1582-4934.2008.00313.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Accepted: 02/12/2008] [Indexed: 12/11/2022] Open
Abstract
Simple, non-invasive tests for an early detection of degenerative dementia by use of biomarkers are urgently required. However, up to the present, no validated extracerebral diagnostic markers (plasma/serum, platelets, urine, connective tissue) for the early diagnosis of Alzheimer disease (AD) are available. In disease stages with evident cognitive disturbances, the clinical diagnosis of probable AD is made with around 90% accuracy using modern clinical, neuropsychological and imaging methods. Diagnostic sensitivity and specificity even in early disease stages are improved by CSF markers, in particular combined tau and amyloid beta peptides (Abeta) and plasma markers (eg, Abeta-42/Abeta-40 ratio). Recently, a novel gene/protein--ALZAS (Alzheimer Associated Protein)--with a 79 amino acid sequence, containing the amyloid beta-42 fragment (Abeta-42), the amyloid precursor protein (APP) transmembrane signal and a 12 amino acid C-terminal, not present in any other known APP alleles, has been discovered on chromosome 21 within the APP region. Reverse transcriptase-PCR revealed the expression of the transcript of this protein in the cortex and hippocampal regions as well as in lymphocytes of human AD patients. The expression of ALZAS is mirrored by a specific autoimmune response in AD patients, directed against the ct-12 end of the ALZAS-peptide but not against the Abeta-sequence. ELISA studies of plasma detected highest titers of ALZAS in patients with mild cognitive impairment (presymptomatic AD), but only moderately increased titers in autopsy-confirmed AD, whereas low or undetectable ct-12 titers were found in cognitively intact age-matched subjects and young controls. The antigen, ALZAS protein, was detected in plasma in later clinical stages of AD. It is suggested that ALZAS represents an indicator in a dynamic equilibrium between both peripheral and brain degenerative changes in AD and may become a useful "non-invasive" diagnostic marker via a simple blood test.
Collapse
|