1
|
Dellar ER, Vendrell I, Amein B, Lester DG, Edmond EC, Yoganathan K, Dharmadasa T, Sogorb-Esteve A, Fischer R, Talbot K, Rohrer JD, Turner MR, Thompson AG. Elevated Cerebrospinal Fluid Ubiquitin Carboxyl-Terminal Hydrolase Isozyme L1 in Asymptomatic C9orf72 Hexanucleotide Repeat Expansion Carriers. Ann Neurol 2024. [PMID: 39548852 DOI: 10.1002/ana.27133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/29/2024] [Accepted: 10/25/2024] [Indexed: 11/18/2024]
Abstract
OBJECTIVE To identify biochemical changes in individuals at higher risk of developing amyotrophic lateral sclerosis (ALS) or frontotemporal dementia (FTD) via C9orf72 hexanucleotide repeat expansion (HRE) heterozygosity. METHODS Cross-sectional observational study of 48 asymptomatic C9orf72 HRE carriers, 39 asymptomatic non-carrier controls, 19 people with sporadic ALS, 10 with C9orf72 ALS, 14 with sporadic FTD, and 10 with C9orf72 FTD. Relative abundance of 30 pre-defined cerebrospinal fluid biomarkers of ALS and FTD were compared in asymptomatic C9orf72 HRE carriers and age-matched non-carrier controls. Differential abundance of these proteins was quantified using data independent acquisition mass spectrometry or electro chemiluminescent assay for neurofilament light chain. Unbiased analysis of the entire cerebrospinal fluid proteome was then carried out. RESULTS Ubiquitin carboxyl-hydrolase isozyme L1 levels were higher in asymptomatic C9orf72 HRE carriers compared with age-matched non-carriers (log2fold change 0.20, FDR-adjusted p-value = 0.034), whereas neurofilament light chain levels did not significantly differ. Ubiquitin carboxyl-hydrolase isozyme L1 levels remained elevated after matching of groups by neurofilament levels (p = 0.011), and after adjusting for age, sex, and neurofilament levels. A significant difference was also observed when restricting analysis to younger participants (<37) matched by neurofilament level (p = 0.007). INTERPRETATION Elevated cerebrospinal fluid ubiquitin carboxyl-hydrolase isozyme L1 levels in C9orf72 HRE carriers can occur in the absence of increased neurofilament levels, potentially reflecting either compensatory or pathogenic mechanisms preceding rapid neuronal loss. This brings forward the window on changes associated with the C9orf72 HRE carrier state, with potential to inform understanding of penetrance and approaches to prevention. ANN NEUROL 2024.
Collapse
Affiliation(s)
- Elizabeth R Dellar
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Iolanda Vendrell
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK
| | - Benazir Amein
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - David G Lester
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Evan C Edmond
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Katie Yoganathan
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Thanuja Dharmadasa
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Aitana Sogorb-Esteve
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute at University College London, London, UK
| | - Roman Fischer
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | |
Collapse
|
2
|
Dai Z, Pang X, Chen N, Fan X, Liu W, Liu J, Chen Z, Fang S, Cai C, Fang J. Network Medicine Approach Unravels Endophenotype Signature in Alzheimer's Disease through Large-Scale Comparative Proteomics Analysis: Vascular Dysfunction as a Prime Example. J Chem Inf Model 2024; 64:7758-7771. [PMID: 39322987 DOI: 10.1021/acs.jcim.4c01344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease burdening public health. We proposed a network-based infrastructure to identify protein signatures for five AD pathological endophenotypes: amyloidosis, tauopathy, vascular dysfunction, lysosomal dysfunction, and neuroinflammation. We analyzed 23 proteomic data sets from AD patients and transgenic mouse models, using network proximity to measure associations between endophenotype modules and differentially expressed proteins (DEPs) in the integrated AD proteome. We focused on the vascular dysfunction signature with 21 DEPs by integrating RNA-seq, single-cell transcriptomics, GWAS, and literature. Experiments on APP/PS1 and MCAO models highlighted three proteins (SEPT5, SNAP25, STXBP1) as novel AD biomarker candidates. This study demonstrates a network medicine framework for deciphering endophenotype signatures in AD.
Collapse
Affiliation(s)
- Zhao Dai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiaocong Pang
- Department of Pharmacy, Peking University First Hospital, Beijing 100034, China
| | - Nan Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiude Fan
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Wei Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jinman Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhuang Chen
- Division of Data Intelligence, Department of Computer Science, Shantou University, Shantou 515063, China
| | - Shuhuan Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Chuipu Cai
- Division of Data Intelligence, Department of Computer Science, Shantou University, Shantou 515063, China
| | - Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| |
Collapse
|
3
|
Liang Z, Zhuang H, Cao X, Ma G, Shen L. Subcellular proteomics insights into Alzheimer's disease development. Proteomics Clin Appl 2024; 18:e2200112. [PMID: 37650321 DOI: 10.1002/prca.202200112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/27/2023] [Accepted: 08/12/2023] [Indexed: 09/01/2023]
Abstract
Alzheimer's disease (AD), one of the most common dementias, is a neurodegenerative disease characterized by cognitive impairment and decreased judgment function. The expected number of AD patient is increasing in the context of the world's advancing medical care and increasing human life expectancy. Since current molecular mechanism studies on AD pathogenesis are incomplete, there is no specific and effective therapeutic agent. Mass spectrometry (MS)-based unbiased proteomics studies provide an effective and comprehensive approach. Many advances have been made in the study of the mechanism, diagnostic markers, and drug targets of AD using proteomics. This paper focus on subcellular level studies, reviews studies using proteomics to study AD-associated mitochondrial dysfunction, synaptic, and myelin damage, the protein composition of amyloid plaques (APs) and neurofibrillary tangles (NFTs), changes in tissue extracellular vehicles (EVs) and exosome proteome, and the protein changes in ribosomes and lysosomes. The methods of sample separation and preparation and proteomic analysis as well as the main findings of these studies are involved. The results of these proteomics studies provide insights into the pathogenesis of AD and provide theoretical resource and direction for future research in AD, helping to identify new biomarkers and drugs targets for AD.
Collapse
Affiliation(s)
- Zhiyuan Liang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P. R. China
| | - Hongbin Zhuang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P. R. China
| | - Xueshan Cao
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P. R. China
- College of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen, P. R. China
| | - Guanwei Ma
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, P. R. China
| | - Liming Shen
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P. R. China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, P. R. China
| |
Collapse
|
4
|
Dellar ER, Vendrell I, Talbot K, Kessler BM, Fischer R, Turner MR, Thompson AG. Data-independent acquisition proteomics of cerebrospinal fluid implicates endoplasmic reticulum and inflammatory mechanisms in amyotrophic lateral sclerosis. J Neurochem 2024; 168:115-127. [PMID: 38087504 PMCID: PMC10952667 DOI: 10.1111/jnc.16030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 01/26/2024]
Abstract
While unbiased proteomics of human cerebrospinal fluid (CSF) has been used successfully to identify biomarkers of amyotrophic lateral sclerosis (ALS), high-abundance proteins mask the presence of lower abundance proteins that may have diagnostic and prognostic value. However, developments in mass spectrometry (MS) proteomic data acquisition methods offer improved protein depth. In this study, MS with library-free data-independent acquisition (DIA) was used to compare the CSF proteome of people with ALS (n = 40), healthy (n = 15) and disease (n = 8) controls. Quantified protein groups were subsequently correlated with clinical variables. Univariate analysis identified 7 proteins, all significantly upregulated in ALS versus healthy controls, and 9 with altered abundance in ALS versus disease controls (FDR < 0.1). Elevated chitotriosidase-1 (CHIT1) was common to both comparisons and was proportional to ALS disability progression rate (Pearson r = 0.41, FDR-adjusted p = 0.035) but not overall survival. Ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCHL1; upregulated in ALS versus healthy controls) was proportional to disability progression rate (Pearson r = 0.53, FDR-adjusted p = 0.003) and survival (Kaplan Meier log-rank p = 0.013) but not independently in multivariate proportional hazards models. Weighted correlation network analysis was used to identify functionally relevant modules of proteins. One module, enriched for inflammatory functions, was associated with age at symptom onset (Pearson r = 0.58, FDR-adjusted p = 0.005) and survival (Hazard Ratio = 1.78, FDR = 0.065), and a second module, enriched for endoplasmic reticulum proteins, was negatively correlated with disability progression rate (r = -0.42, FDR-adjusted p = 0.109). DIA acquisition methodology therefore strengthened the biomarker candidacy of CHIT1 and UCHL1 in ALS, while additionally highlighted inflammatory and endoplasmic reticulum proteins as novel sources of prognostic biomarkers.
Collapse
Affiliation(s)
| | - Iolanda Vendrell
- Centre for Medicines Discovery, Nuffield Department of Medicine, Target Discovery InstituteUniversity of OxfordOxfordUK
- Nuffield Department of Medicine, Chinese Academy of Medical Sciences Oxford InstituteUniversity of OxfordOxfordUK
| | - Kevin Talbot
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Kavli Institute for Nanoscience DiscoveryUniversity of OxfordOxfordUK
| | - Benedikt M. Kessler
- Centre for Medicines Discovery, Nuffield Department of Medicine, Target Discovery InstituteUniversity of OxfordOxfordUK
- Nuffield Department of Medicine, Chinese Academy of Medical Sciences Oxford InstituteUniversity of OxfordOxfordUK
| | - Roman Fischer
- Centre for Medicines Discovery, Nuffield Department of Medicine, Target Discovery InstituteUniversity of OxfordOxfordUK
- Nuffield Department of Medicine, Chinese Academy of Medical Sciences Oxford InstituteUniversity of OxfordOxfordUK
| | - Martin R. Turner
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | | |
Collapse
|
5
|
Askenazi M, Kavanagh T, Pires G, Ueberheide B, Wisniewski T, Drummond E. Compilation of reported protein changes in the brain in Alzheimer's disease. Nat Commun 2023; 14:4466. [PMID: 37491476 PMCID: PMC10368642 DOI: 10.1038/s41467-023-40208-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/14/2023] [Indexed: 07/27/2023] Open
Abstract
Proteomic studies of human Alzheimer's disease brain tissue have potential to identify protein changes that drive disease, and to identify new drug targets. Here, we analyse 38 published Alzheimer's disease proteomic studies, generating a map of protein changes in human brain tissue across thirteen brain regions, three disease stages (preclinical Alzheimer's disease, mild cognitive impairment, advanced Alzheimer's disease), and proteins enriched in amyloid plaques, neurofibrillary tangles, and cerebral amyloid angiopathy. Our dataset is compiled into a searchable database (NeuroPro). We found 848 proteins were consistently altered in 5 or more studies. Comparison of protein changes in early-stage and advanced Alzheimer's disease revealed proteins associated with synapse, vesicle, and lysosomal pathways show change early in disease, but widespread changes in mitochondrial associated protein expression change are only seen in advanced Alzheimer's disease. Protein changes were similar for brain regions considered vulnerable and regions considered resistant. This resource provides insight into Alzheimer's disease brain protein changes and highlights proteins of interest for further study.
Collapse
Affiliation(s)
| | - Tomas Kavanagh
- Brain and Mind Centre and School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Geoffrey Pires
- Center for Cognitive Neurology, Department of Neurology, Grossman School of Medicine, New York University, New York, NY, 10016, USA
| | - Beatrix Ueberheide
- Center for Cognitive Neurology, Department of Neurology, Grossman School of Medicine, New York University, New York, NY, 10016, USA
- Proteomics Laboratory, Division of Advanced Research Technologies, Grossman School of Medicine, New York University, New York, NY, 10016, USA
- Biochemistry and Molecular Pharmacology, Grossman School of Medicine, New York University, New York, NY, 10016, USA
| | - Thomas Wisniewski
- Center for Cognitive Neurology, Department of Neurology, Grossman School of Medicine, New York University, New York, NY, 10016, USA
| | - Eleanor Drummond
- Brain and Mind Centre and School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia.
- Center for Cognitive Neurology, Department of Neurology, Grossman School of Medicine, New York University, New York, NY, 10016, USA.
| |
Collapse
|
6
|
Drummond E, Kavanagh T, Pires G, Marta-Ariza M, Kanshin E, Nayak S, Faustin A, Berdah V, Ueberheide B, Wisniewski T. The amyloid plaque proteome in early onset Alzheimer's disease and Down syndrome. Acta Neuropathol Commun 2022; 10:53. [PMID: 35418158 PMCID: PMC9008934 DOI: 10.1186/s40478-022-01356-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/28/2022] [Indexed: 11/17/2022] Open
Abstract
Amyloid plaques contain many proteins in addition to beta amyloid (Aβ). Previous studies examining plaque-associated proteins have shown these additional proteins are important; they provide insight into the factors that drive amyloid plaque development and are potential biomarkers or therapeutic targets for Alzheimer's disease (AD). The aim of this study was to comprehensively identify proteins that are enriched in amyloid plaques using unbiased proteomics in two subtypes of early onset AD: sporadic early onset AD (EOAD) and Down Syndrome (DS) with AD. We focused our study on early onset AD as the drivers of the more aggressive pathology development in these cases is unknown and it is unclear whether amyloid-plaque enriched proteins differ between subtypes of early onset AD. Amyloid plaques and neighbouring non-plaque tissue were microdissected from human brain sections using laser capture microdissection and label-free LC-MS was used to quantify the proteins present. 48 proteins were consistently enriched in amyloid plaques in EOAD and DS. Many of these proteins were more significantly enriched in amyloid plaques than Aβ. The most enriched proteins in amyloid plaques in both EOAD and DS were: COL25A1, SMOC1, MDK, NTN1, OLFML3 and HTRA1. Endosomal/lysosomal proteins were particularly highly enriched in amyloid plaques. Fluorescent immunohistochemistry was used to validate the enrichment of four proteins in amyloid plaques (moesin, ezrin, ARL8B and SMOC1) and to compare the amount of total Aβ, Aβ40, Aβ42, phosphorylated Aβ, pyroglutamate Aβ species and oligomeric species in EOAD and DS. These studies showed that phosphorylated Aβ, pyroglutamate Aβ species and SMOC1 were significantly higher in DS plaques, while oligomers were significantly higher in EOAD. Overall, we observed that amyloid plaques in EOAD and DS largely contained the same proteins, however the amount of enrichment of some proteins was different in EOAD and DS. Our study highlights the significant enrichment of many proteins in amyloid plaques, many of which may be potential therapeutic targets and/or biomarkers for AD.
Collapse
Affiliation(s)
- Eleanor Drummond
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, 94 Mallett Street, Camperdown, NSW, Australia.
- Centre for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, Science Building, Rm 1017, 435 East 30th Street, New York, NY, 10016, USA.
| | - Tomas Kavanagh
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, 94 Mallett Street, Camperdown, NSW, Australia
| | - Geoffrey Pires
- Centre for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, Science Building, Rm 1017, 435 East 30th Street, New York, NY, 10016, USA
| | - Mitchell Marta-Ariza
- Centre for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, Science Building, Rm 1017, 435 East 30th Street, New York, NY, 10016, USA
| | - Evgeny Kanshin
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY, USA
| | - Shruti Nayak
- Merck & Co., Inc, Computational & Structural Chemistry, Kenilworth, NJ, USA
| | - Arline Faustin
- Centre for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, Science Building, Rm 1017, 435 East 30th Street, New York, NY, 10016, USA
| | - Valentin Berdah
- Centre for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, Science Building, Rm 1017, 435 East 30th Street, New York, NY, 10016, USA
| | - Beatrix Ueberheide
- Centre for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, Science Building, Rm 1017, 435 East 30th Street, New York, NY, 10016, USA
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
| | - Thomas Wisniewski
- Centre for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, Science Building, Rm 1017, 435 East 30th Street, New York, NY, 10016, USA.
- Departments of Pathology and Psychiatry, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
7
|
Gal J, Katsumata Y, Zhu H, Srinivasan S, Chen J, Johnson LA, Wang WX, Golden LR, Wilcock DM, Jicha GA, Cykowski MD, Nelson PT. Apolipoprotein E Proteinopathy Is a Major Dementia-Associated Pathologic Biomarker in Individuals with or without the APOE Epsilon 4 Allele. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:564-578. [PMID: 34954207 PMCID: PMC8895423 DOI: 10.1016/j.ajpath.2021.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/27/2021] [Accepted: 11/24/2021] [Indexed: 12/14/2022]
Abstract
The amygdala is vulnerable to multiple or "mixed" mis-aggregated proteins associated with neurodegenerative conditions that can manifest clinically with amnestic dementia; the amygdala region is often affected even at earliest disease stages. With the original intent of identifying novel dementia-associated proteins, the detergent-insoluble proteome was characterized from the amygdalae of 40 participants from the University of Kentucky Alzheimer's Disease Center autopsy cohort. These individuals encompassed a spectrum of clinical conditions (cognitively normal to severe amnestic dementia). Polypeptides from the detergent-insoluble fraction were interrogated using liquid chromatography-electrospray ionization-tandem mass spectrometry. As anticipated, portions of peptides previously associated with neurologic diseases were enriched from subjects with dementia. Among all detected peptides, Apolipoprotein E (ApoE) stood out: even more than the expected Tau, APP/Aβ, and α-Synuclein peptides, ApoE peptides were strongly enriched in dementia cases, including from individuals lacking the APOE ε4 genotype. The amount of ApoE protein detected in detergent-insoluble fractions was robustly associated with levels of complement proteins C3 and C4. Immunohistochemical staining of APOE ε3/ε3 subjects' amygdalae confirmed ApoE co-localization with C4 in amyloid plaques. Thus, analyses of human amygdala proteomics indicate that rather than being only an "upstream" genetic risk factor, ApoE is an aberrantly aggregated protein in its own right, and show that the ApoE protein may play active disease-driving mechanistic roles in persons lacking the APOE ε4 allele.
Collapse
Affiliation(s)
- Jozsef Gal
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, Kentucky,Department of Neuroscience, University of Kentucky, Lexington, Kentucky
| | - Yuriko Katsumata
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky,Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky
| | - Haining Zhu
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky,Research & Development, Lexington VA Medical Center, Lexington, Kentucky
| | - Sukanya Srinivasan
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky
| | - Jing Chen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky
| | - Lance Allen Johnson
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky,Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky
| | - Wang-Xia Wang
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky,Department of Pathology, University of Kentucky, Lexington, Kentucky
| | | | - Donna M. Wilcock
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky,Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky,Department of Physiology, University of Kentucky, Lexington, Kentucky
| | - Gregory A. Jicha
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky,Department of Neurology, University of Kentucky, Lexington, Kentucky
| | | | - Peter Tobias Nelson
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky; Department of Pathology, University of Kentucky, Lexington, Kentucky.
| |
Collapse
|
8
|
Hasan B, Khan A, Lenz C, Asif AR, Ahmed N. Characterization of functional protein complexes from Alzheimer's disease and healthy brain by mass spectrometry-based proteome analysis. Sci Rep 2021; 11:13891. [PMID: 34230543 PMCID: PMC8260596 DOI: 10.1038/s41598-021-93356-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 06/08/2021] [Indexed: 11/09/2022] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder with impaired protein activities. Proteins in the form of complexes have a ubiquitous role in diverse range of cellular functions. The key challenge is to identify novel disease associated protein complexes and their potential role in the progression of AD pathology. Protein complexes were obtained from AD brain prefrontal cortex and age matched controls by Blue Native-Polyacrylamide Gel Electrophoresis. A proteomic analysis was performed using second dimension SDS-PAGE followed by nano LC-MS/MS. Differentially expressed proteins were mapped to existing biological networks by Ingenuity Pathway Analysis (IPA). A total of 13 protein complexes with their interacting proteins were resolved on SDS-PAGE. We identified 34 protein spots and found significant abundance difference between the two experimental samples. IPA analysis revealed degeneration of neurons and cell death as a major consequence of protein dysregulation. Furthermore, focused network analysis suggested an integrated regulation of the identified proteins through APP and MAPT dependent mechanisms. The interacting differentially expressed proteins in AD were found to be part of concomitant signaling cascades terminating in neuronal cell death. The identified protein networks and pathways warrant further research to study their actual contribution to AD pathology.
Collapse
Affiliation(s)
- Beena Hasan
- Neurochemistry Research Laboratory, Department of Biochemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Ayesha Khan
- Neurochemistry Research Laboratory, Department of Biochemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Christof Lenz
- Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen, 37075, Germany
- Max Planck Institute for Biophysical Chemistry, Bioanalytical Mass Spectrometry Group, Göttingen, 37077, Germany
| | - Abdul R Asif
- Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen, 37075, Germany
| | - Nikhat Ahmed
- Neurochemistry Research Laboratory, Department of Biochemistry, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
9
|
Li X, Tsolis KC, Koper MJ, Ronisz A, Ospitalieri S, von Arnim CAF, Vandenberghe R, Tousseyn T, Scheuerle A, Economou A, Carpentier S, Otto M, Thal DR. Sequence of proteome profiles in preclinical and symptomatic Alzheimer's disease. Alzheimers Dement 2021; 17:946-958. [PMID: 33871169 DOI: 10.1002/alz.12345] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 03/03/2021] [Accepted: 03/11/2021] [Indexed: 12/15/2022]
Abstract
Proteome profile changes in Alzheimer's disease (AD) brains have been reported. However, it is unclear whether they represent a continuous process, or whether there is a sequential involvement of distinct proteins. To address this question, we used mass spectrometry. We analyzed soluble, dispersible, sodium dodecyl sulfate, and formic acid fractions of neocortex homogenates (mainly Brodmann area 17-19) from 18 pathologically diagnosed preclinical AD, 17 symptomatic AD, and 18 cases without signs of neurodegeneration. By doing so, we identified four groups of AD-related proteins being changed in levels in preclinical and symptomatic AD cases: early-responding, late-responding, gradually-changing, and fraction-shifting proteins. Gene ontology analysis of these proteins and all known AD-risk/causative genes identified vesicle endocytosis and the secretory pathway-related processes as an early-involved AD component. In conclusion, our findings suggest that subtle changes involving the secretory pathway and endocytosis precede severe proteome changes in symptomatic AD as part of the preclinical phase of AD. The respective early-responding proteins may also contribute to synaptic vesicle cycle alterations in symptomatic AD.
Collapse
Affiliation(s)
- Xiaohang Li
- Laboratory for Neuropathology, Department of Imaging and Pathology, KU Leuven (University of Leuven), Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - Konstantinos C Tsolis
- Laboratory of Molecular Bacteriology, Rega Institute, Department of Microbiology and Immunology, KU Leuven (University of Leuven), Leuven, Belgium
| | - Marta J Koper
- Laboratory for Neuropathology, Department of Imaging and Pathology, KU Leuven (University of Leuven), Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium.,Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, KU Leuven (University of Leuven), Leuven, Belgium.,Center for Brain and Disease Research, VIB, Leuven, Belgium
| | - Alicja Ronisz
- Laboratory for Neuropathology, Department of Imaging and Pathology, KU Leuven (University of Leuven), Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - Simona Ospitalieri
- Laboratory for Neuropathology, Department of Imaging and Pathology, KU Leuven (University of Leuven), Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - Christine A F von Arnim
- Department of Neurology, University of Ulm, Ulm, Germany.,Department of Geriatrics, University Medical Center Göttingen, Göttingen, Germany
| | - Rik Vandenberghe
- Department of Neurology, UZ Leuven (University Hospitals Leuven), Leuven, Belgium.,Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven (University of Leuven), Leuven, Belgium
| | - Thomas Tousseyn
- Department of Pathology, UZ Leuven (University Hospitals Leuven), Leuven, Belgium
| | | | - Anastassios Economou
- Laboratory of Molecular Bacteriology, Rega Institute, Department of Microbiology and Immunology, KU Leuven (University of Leuven), Leuven, Belgium
| | - Sebastien Carpentier
- BIOMED facility for SYstems BIOlogy based MAss spectrometry, KU Leuven (University of Leuven), Leuven, Belgium
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Dietmar Rudolf Thal
- Laboratory for Neuropathology, Department of Imaging and Pathology, KU Leuven (University of Leuven), Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium.,Department of Pathology, UZ Leuven (University Hospitals Leuven), Leuven, Belgium
| |
Collapse
|
10
|
Fontana A, Consentino MC, Motta M, Costanza G, Lo Bianco M, Marino S, Falsaperla R, Praticò AD. Syntaxin Binding Protein 1 Related Epilepsies. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0041-1727259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractSyntaxin binding protein 1 (STXBP1), commonly known as MUNC18–1, is a member of SEC1 family membrane trafficking proteins; their function consists in controlling the soluble N-ethylmaleimide-sensitive factor attachment protein receptors complex assembly, making them essentials regulators of vesicle fusion. The precise function and molecular mechanism through which Munc18–1 contributes to neurotransmitter releasing is not entirely understood, but several evidences suggest its probable role in exocytosis. In 2008, heterozygous de novo mutations in neuronal protein Munc18–1 were first referred as a cause of Ohtahara syndrome development. Currently, a wide examination of the published data proved that 3.1% of patients with severe epilepsy carry a pathogenic de novo mutation including STXBP1 and approximately 10.2% of early onset epileptic encephalopathy is due to an aberrant STXBP1 form codified by the mutated gene. STXBP1 mutations can be associated to a wide clinical heterogeneity. All affected individuals show developmental delay and approximately the 95% of cases have seizures and early onset epileptic encephalopathy, characterized by infantile spasms as the main consistent feature. Burst suppression pattern and hypsarrhythmia are the most frequent EEG anomalies. Other neuronal disorders include Rett syndrome and behavioral and movement disorders. Mild dysmorphic features have been detected in a small number of cases. No genotype–phenotype correlation has been reported. Management of STXBP1 encephalopathy requires a multidisciplinary approach, including epilepsy control and neurological rehabilitation. About 25% of patients are refractory to standard therapy. A single or combined antiepileptic drugs may be required. Several studies described vigabatrin, valproic acid, levetiracetam, topiramate, clobazam, and oxcarbazepine as effective in seizure control. Lamotrigine, zonisamide, and phenobarbital are also commonly used. To date, it remains unclear which therapy is the most effective. Severe morbidity and high mortality are inevitable consequences in some of these patients.
Collapse
Affiliation(s)
- Alessandra Fontana
- Pediatrics Postgraduate Residency Program, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| | - Maria Chiara Consentino
- Pediatrics Postgraduate Residency Program, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| | - Milena Motta
- Pediatrics Postgraduate Residency Program, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| | - Giuseppe Costanza
- Pediatrics Postgraduate Residency Program, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| | - Manuela Lo Bianco
- Pediatrics Postgraduate Residency Program, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| | - Simona Marino
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| | - Raffaele Falsaperla
- Unit of Pediatrics and Pediatric Emergency, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
- Unit of Neonatal Intensive Care and Neonatology, University Hospital “Policlinico Rodolico-San Marco,” Catania, Italy
| | - Andrea D. Praticò
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| |
Collapse
|
11
|
Jain AP, Sathe G. Proteomics Landscape of Alzheimer's Disease. Proteomes 2021; 9:proteomes9010013. [PMID: 33801961 PMCID: PMC8005944 DOI: 10.3390/proteomes9010013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/02/2021] [Accepted: 03/08/2021] [Indexed: 01/22/2023] Open
Abstract
Alzheimer’s disease (AD) is the most prevalent form of dementia, and the numbers of AD patients are expected to increase as human life expectancy improves. Deposition of β-amyloid protein (Aβ) in the extracellular matrix and intracellular neurofibrillary tangles are molecular hallmarks of the disease. Since the precise pathophysiology of AD has not been elucidated yet, effective treatment is not available. Thus, understanding the disease pathology, as well as identification and development of valid biomarkers, is imperative for early diagnosis as well as for monitoring disease progression and therapeutic responses. Keeping this goal in mind several studies using quantitative proteomics platform have been carried out on both clinical specimens including the brain, cerebrospinal fluid (CSF), plasma and on animal models of AD. In this review, we summarize the mass spectrometry (MS)-based proteomics studies on AD and discuss the discovery as well as validation stages in brief to identify candidate biomarkers.
Collapse
Affiliation(s)
- Ankit P. Jain
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India;
| | - Gajanan Sathe
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India;
- Manipal Academy of Higher Education (MAHE), Manipal 576104, India
- Correspondence:
| |
Collapse
|
12
|
Tang F, Xiao D, Chen L, Gao H, Li X. Role of Munc18-1 in the biological functions and pathogenesis of neurological disorders (Review). Mol Med Rep 2021; 23:198. [PMID: 33495808 PMCID: PMC7821349 DOI: 10.3892/mmr.2021.11837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/30/2020] [Indexed: 11/06/2022] Open
Abstract
The release of neurotransmitters following the fusion of synaptic vesicles and the presynaptic membrane is an important process in the transmission of neuronal information. Syntaxin-binding protein 1 (Munc18-1) is a synaptic fusion protein binding protein, which mainly regulates synaptic vesicle fusion and neurotransmitter release by interacting with soluble N-ethylmaleimide sensitive factor attachment protein receptor. In addition to affecting neurotransmitter transmission, Munc18-1 is also involved in regulating neurosynaptic plasticity, neurodevelopment and neuroendocrine cell release functions (including thyroxine and insulin release). A number of previous studies have demonstrated that Munc18-1 has diverse and vital biological functions, and that its abnormal expression serves an important role in the pathogenesis of a variety of neurological diseases, including epileptic encephalopathy, schizophrenia, autism, Parkinsons disease, Alzheimers disease, multiple sclerosis, Duchennes muscular dystrophy and neuronal ceroid lipofuscinosis. The present review summarizes the function of Munc18-1 and its possible relationship to the pathogenesis of various neurological diseases.
Collapse
Affiliation(s)
- Fajuan Tang
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Dongqiong Xiao
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Lin Chen
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hu Gao
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xihong Li
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
13
|
Koopman MB, Rüdiger SGD. Alzheimer Cells on Their Way to Derailment Show Selective Changes in Protein Quality Control Network. Front Mol Biosci 2020; 7:214. [PMID: 33330614 PMCID: PMC7715003 DOI: 10.3389/fmolb.2020.00214] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/04/2020] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's Disease is driven by protein aggregation and is characterized by accumulation of Tau protein into neurofibrillary tangles. In healthy neurons the cellular protein quality control is successfully in charge of protein folding, which raises the question to which extent this control is disturbed in disease. Here, we describe that brain cells in Alzheimer's Disease show very specific derailment of the protein quality control network. We performed a meta-analysis on the Alzheimer's Disease Proteome database, which provides a quantitative assessment of disease-related proteome changes in six brain regions in comparison to age-matched controls. We noted that levels of all paralogs of the conserved Hsp90 chaperone family are reduced, while most other chaperones - or their regulatory co-chaperones - do not change in disease. The notable exception is a select group consisting of the stress inducible HSP70, its nucleotide exchange factor BAG3 - which links the Hsp70 system to autophagy - and neuronal small heat shock proteins, which are upregulated in disease. They are all members of a cascade controlled in the stress response, channeling proteins towards a pathway of chaperone assisted selective autophagy. Together, our analysis reveals that in an Alzheimer's brain, with exception of Hsp90, the players of the protein quality control are still present in full strength, even in brain regions most severely affected in disease. The specific upregulation of small heat shock proteins and HSP70:BAG3, ubiquitous in all brain areas analyzed, may represent a last, unsuccessful attempt to advert cell death.
Collapse
Affiliation(s)
- Margreet B. Koopman
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
- Science for Life, Utrecht University, Utrecht, Netherlands
| | - Stefan G. D. Rüdiger
- Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
- Science for Life, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
14
|
Brandt R, Trushina NI, Bakota L. Much More Than a Cytoskeletal Protein: Physiological and Pathological Functions of the Non-microtubule Binding Region of Tau. Front Neurol 2020; 11:590059. [PMID: 33193056 PMCID: PMC7604284 DOI: 10.3389/fneur.2020.590059] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/16/2020] [Indexed: 12/21/2022] Open
Abstract
Tau protein (MAPT) is classified as a microtubule-associated protein (MAP) and is believed to regulate the axonal microtubule arrangement. It belongs to the tau/MAP2/MAP4 family of MAPs that have a similar microtubule binding region at their carboxy-terminal half. In tauopathies, such as Alzheimer's disease, tau is distributed more in the somatodendritic compartment, where it aggregates into filamentous structures, the formation of which correlates with cognitive impairments in patients. While microtubules are the dominant interaction partners of tau under physiological conditions, tau has many additional interaction partners that can contribute to its physiological and pathological role. In particular, the amino-terminal non-microtubule binding domain (N-terminal projection region, NTR) of tau interacts with many partners that are involved in membrane organization. The NTR contains intrinsically disordered regions (IDRs) that show a strong evolutionary increase in the disorder and may have been the basis for the development of new, tau-specific interactions. In this review we discuss the functional organization of the tau protein and the special features of the tau non-microtubule binding region also in the connection with the results of Tau KO models. We consider possible physiological and pathological functions of tau's non-microtubule interactions, which could indicate that interactions mediated by tau's NTR and regulated by far-reaching functional interactions of the PRR and the extreme C-terminus of tau contribute to the pathological processes.
Collapse
Affiliation(s)
- Roland Brandt
- Department of Neurobiology, University of Osnabrück, Osnabrück, Germany.,Center for Cellular Nanoanalytics, University of Osnabrück, Osnabrück, Germany.,Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany
| | | | - Lidia Bakota
- Department of Neurobiology, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
15
|
Sethi MK, Downs M, Zaia J. Serial in-solution digestion protocol for mass spectrometry-based glycomics and proteomics analysis. Mol Omics 2020; 16:364-376. [PMID: 32309832 DOI: 10.1039/d0mo00019a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Advancement in mass spectrometry has revolutionized the field of proteomics. However, there remains a gap in the analysis of protein post-translational modifications (PTMs), particularly for glycosylation. Glycosylation, the most common form of PTM, is involved in most biological processes; thus, analysis of glycans along with proteins is crucial to answering important biologically relevant questions. Of particular interest is the brain extracellular matrix (ECM), which has been called the "final Frontier" in neuroscience, which consists of highly glycosylated proteins. Among these, proteoglycans (PGs) contain large glycan structures called glycosaminoglycans (GAGs) that form crucial ECM components, including perineuronal nets (PNNs), shown to be altered in neuropsychiatric diseases. Thus, there is a growing need for high-throughput methods that combine GAG (glycomics) and PGs (proteomics) analysis to unravel the complete biological picture. The protocol presented here integrates glycomics and proteomics to analyze multiple classes of biomolecules. We use a filter-aided sample preparation (FASP) type serial in-solution digestion of GAG classes, including hyaluronan (HA), chondroitin sulfate (CS), and heparan sulfate (HS), followed by peptides. The GAGs and peptides are then cleaned and analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). This protocol is an efficient and economical way of processing tissue or cell lysates to isolate various GAG classes and peptides from the same sample. The method is more efficient (single-pot) than available parallel (multi-pot) release methods, and removal of GAGs facilitates the identification of the proteins with higher peptide-coverage than using conventional-proteomics. Overall, we demonstrate a high-throughput & efficient protocol for mass spectrometry-based glycomic and proteomic analysis (data are available via ProteomeXchange with identifier PXD017513).
Collapse
Affiliation(s)
- Manveen K Sethi
- Boston University School of Medicine, Boston University, Department of Biochemistry, Boston, 02118, USA.
| | | | | |
Collapse
|
16
|
Matuszczak E, Tylicka M, Komarowska MD, Debek W, Hermanowicz A. Ubiquitin carboxy-terminal hydrolase L1 - physiology and pathology. Cell Biochem Funct 2020; 38:533-540. [PMID: 32207552 DOI: 10.1002/cbf.3527] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/20/2020] [Accepted: 03/11/2020] [Indexed: 12/12/2022]
Abstract
Ubiquitin C-terminal hydrolase 1 (UCHL1) is an enzyme unique for its multiple activity - both ligase and hydrolase. UCHL1 was first identified as an abundant protein found in the brain and testes, however its expression is not limited to the neuronal compartment. UCHL1 is also highly expressed in carcinomas of various tissue origins, including those from brain, lung, breast, kidney, colon, prostate, pancreas and mesenchymal tissues. Loss-of-function studies and an inhibitor for UCHL1 confirmed the importance of UCHL1 for cancer therapy. So far biological significance of UCHL1 was described in the following processes: spermatogenesis, oncogenesis, angiogenesis, cell proliferation and differentiation in skeletal muscle, inflammation, tissue injury, neuronal injury and neurodegeneration.
Collapse
Affiliation(s)
- Ewa Matuszczak
- Pediatric Surgery Department, Medical University of Bialystok, Bialystok, Poland
| | - Marzena Tylicka
- Biophysics Department, Medical University of Bialystok, Bialystok, Poland
| | | | - Wojciech Debek
- Pediatric Surgery Department, Medical University of Bialystok, Bialystok, Poland
| | - Adam Hermanowicz
- Pediatric Surgery Department, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
17
|
Arginine π-stacking drives binding to fibrils of the Alzheimer protein Tau. Nat Commun 2020; 11:571. [PMID: 31996674 PMCID: PMC6989696 DOI: 10.1038/s41467-019-13745-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 11/15/2019] [Indexed: 01/26/2023] Open
Abstract
Aggregation of the Tau protein into fibrils defines progression of neurodegenerative diseases, including Alzheimer’s Disease. The molecular basis for potentially toxic reactions of Tau aggregates is poorly understood. Here we show that π-stacking by Arginine side-chains drives protein binding to Tau fibrils. We mapped an aggregation-dependent interaction pattern of Tau. Fibrils recruit specifically aberrant interactors characterised by intrinsically disordered regions of atypical sequence features. Arginine residues are key to initiate these aberrant interactions. Crucial for scavenging is the guanidinium group of its side chain, not its charge, indicating a key role of π-stacking chemistry for driving aberrant fibril interactions. Remarkably, despite the non-hydrophobic interaction mode, the molecular chaperone Hsp90 can modulate aberrant fibril binding. Together, our data present a molecular mode of action for derailment of protein-protein interaction by neurotoxic fibrils. Tau fibril formation is a hallmark of Alzheimer’s disease. Here the authors reveal an aggregation-dependent protein interaction pattern of Tau and further show that π-stacking of the arginine side-chains drives aberrant protein binding to Tau fibrils.
Collapse
|
18
|
|
19
|
Li KW, Ganz AB, Smit AB. Proteomics of neurodegenerative diseases: analysis of human post-mortem brain. J Neurochem 2019; 151:435-445. [PMID: 30289976 PMCID: PMC6899881 DOI: 10.1111/jnc.14603] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/15/2018] [Accepted: 10/01/2018] [Indexed: 12/12/2022]
Abstract
Dementias are prevalent brain disorders in the aged population. Dementias pose major socio-medical burden, but currently there is no cure available. Novel proteomics approaches hold promise to identify alterations of the brain proteome that could provide clues on disease etiology, and identify candidate proteins to develop further as a biomarker. In this review, we focus on recent proteomics findings from brains affected with Alzheimer's Disease, Parkinson Disease Dementia, Frontotemporal Dementia, and Amyotrophic Lateral Sclerosis. These studies confirmed known cellular changes, and in addition identified novel proteins that may underlie distinct aspects of the diseases. This article is part of the special issue "Proteomics".
Collapse
Affiliation(s)
- K. W. Li
- Department of Molecular and Cellular NeurobiologyCenter for Neurogenomics and Cognitive ResearchAmsterdam NeuroscienceVrije UniversiteitAmsterdamThe Netherlands
| | - Andrea B. Ganz
- Department of Molecular and Cellular NeurobiologyCenter for Neurogenomics and Cognitive ResearchAmsterdam NeuroscienceVrije UniversiteitAmsterdamThe Netherlands
| | - August B. Smit
- Department of Molecular and Cellular NeurobiologyCenter for Neurogenomics and Cognitive ResearchAmsterdam NeuroscienceVrije UniversiteitAmsterdamThe Netherlands
| |
Collapse
|
20
|
Hoffman JL, Faccidomo S, Kim M, Taylor SM, Agoglia AE, May AM, Smith EN, Wong LC, Hodge CW. Alcohol drinking exacerbates neural and behavioral pathology in the 3xTg-AD mouse model of Alzheimer's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 148:169-230. [PMID: 31733664 PMCID: PMC6939615 DOI: 10.1016/bs.irn.2019.10.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that represents the most common cause of dementia in the United States. Although the link between alcohol use and AD has been studied, preclinical research has potential to elucidate neurobiological mechanisms that underlie this interaction. This study was designed to test the hypothesis that nondependent alcohol drinking exacerbates the onset and magnitude of AD-like neural and behavioral pathology. We first evaluated the impact of voluntary 24-h, two-bottle choice home-cage alcohol drinking on the prefrontal cortex and amygdala neuroproteome in C57BL/6J mice and found a striking association between alcohol drinking and AD-like pathology. Bioinformatics identified the AD-associated proteins MAPT (Tau), amyloid beta precursor protein (APP), and presenilin-1 (PSEN-1) as the main modulators of alcohol-sensitive protein networks that included AD-related proteins that regulate energy metabolism (ATP5D, HK1, AK1, PGAM1, CKB), cytoskeletal development (BASP1, CAP1, DPYSL2 [CRMP2], ALDOA, TUBA1A, CFL2, ACTG1), cellular/oxidative stress (HSPA5, HSPA8, ENO1, ENO2), and DNA regulation (PURA, YWHAZ). To address the impact of alcohol drinking on AD, studies were conducted using 3xTg-AD mice that express human MAPT, APP, and PSEN-1 transgenes and develop AD-like brain and behavioral pathology. 3xTg-AD and wild-type mice consumed alcohol or saccharin for 4 months. Behavioral tests were administered during a 1-month alcohol-free period. Alcohol intake induced AD-like behavioral pathologies in 3xTg-AD mice including impaired spatial memory in the Morris Water Maze, diminished sensorimotor gating as measured by prepulse inhibition, and exacerbated conditioned fear. Multiplex immunoassay conducted on brain lysates showed that alcohol drinking upregulated primary markers of AD pathology in 3xTg-AD mice: Aβ 42/40 ratio in the lateral entorhinal and prefrontal cortex and total Tau expression in the lateral entorhinal cortex, medial prefrontal cortex, and amygdala at 1-month post alcohol exposure. Immunocytochemistry showed that alcohol use upregulated expression of pTau (Ser199/Ser202) in the hippocampus, which is consistent with late-stage AD. According to the NIA-AA Research Framework, these results suggest that alcohol use is associated with Alzheimer's pathology. Results also showed that alcohol use was associated with a general reduction in Akt/mTOR signaling via several phosphoproteins (IR, IRS1, IGF1R, PTEN, ERK, mTOR, p70S6K, RPS6) in multiple brain regions including hippocampus and entorhinal cortex. Dysregulation of Akt/mTOR phosphoproteins suggests alcohol may target this pathway in AD progression. These results suggest that nondependent alcohol drinking increases the onset and magnitude of AD-like neural and behavioral pathology in 3xTg-AD mice.
Collapse
Affiliation(s)
- Jessica L Hoffman
- Department of Psychiatry, Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Sara Faccidomo
- Department of Psychiatry, Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Michelle Kim
- Department of Psychiatry, Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Seth M Taylor
- Department of Psychiatry, Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Abigail E Agoglia
- Department of Psychiatry, Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ashley M May
- Department of Psychiatry, Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Evan N Smith
- Department of Psychiatry, Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - L C Wong
- Department of Psychiatry, Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Clyde W Hodge
- Department of Psychiatry, Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| |
Collapse
|
21
|
Network Analysis of a Membrane-Enriched Brain Proteome across Stages of Alzheimer's Disease. Proteomes 2019; 7:proteomes7030030. [PMID: 31461916 PMCID: PMC6789842 DOI: 10.3390/proteomes7030030] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/20/2019] [Accepted: 08/22/2019] [Indexed: 12/12/2022] Open
Abstract
Previous systems-based proteomic approaches have characterized alterations in protein co-expression networks of unfractionated asymptomatic (AsymAD) and symptomatic Alzheimer’s disease (AD) brains. However, it remains unclear how sample fractionation and sub-proteomic analysis influences the organization of these protein networks and their relationship to clinicopathological traits of disease. In this proof-of-concept study, we performed a systems-based sub-proteomic analysis of membrane-enriched post-mortem brain samples from pathology-free control, AsymAD, and AD brains (n = 6 per group). Label-free mass spectrometry based on peptide ion intensity was used to quantify the 18 membrane-enriched fractions. Differential expression and weighted protein co-expression network analysis (WPCNA) were then used to identify and characterize modules of co-expressed proteins most significantly altered between the groups. We identified a total of 27 modules of co-expressed membrane-associated proteins. In contrast to the unfractionated proteome, these networks did not map strongly to cell-type specific markers. Instead, these modules were principally organized by their associations with a wide variety of membrane-bound compartments and organelles. Of these, the mitochondrion was associated with the greatest number of modules, followed by modules linked to the cell surface compartment. In addition, we resolved networks with strong associations to the endoplasmic reticulum, Golgi apparatus, and other membrane-bound organelles. A total of 14 of the 27 modules demonstrated significant correlations with clinical and pathological AD phenotypes. These results revealed that the proteins within individual compartments feature a heterogeneous array of AD-associated expression patterns, particularly during the preclinical stages of disease. In conclusion, this systems-based analysis of the membrane-associated AsymAD brain proteome yielded a unique network organization highly linked to cellular compartmentalization. Further study of this membrane-associated proteome may reveal novel insight into the complex pathways governing the earliest stages of disease.
Collapse
|
22
|
Yagensky O, Kohansal-Nodehi M, Gunaseelan S, Rabe T, Zafar S, Zerr I, Härtig W, Urlaub H, Chua JJ. Increased expression of heme-binding protein 1 early in Alzheimer's disease is linked to neurotoxicity. eLife 2019; 8:47498. [PMID: 31453805 PMCID: PMC6739868 DOI: 10.7554/elife.47498] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/25/2019] [Indexed: 12/15/2022] Open
Abstract
Alzheimer’s disease is the most prevalent neurodegenerative disorder leading to progressive cognitive decline. Despite decades of research, understanding AD progression at the molecular level, especially at its early stages, remains elusive. Here, we identified several presymptomatic AD markers by investigating brain proteome changes over the course of neurodegeneration in a transgenic mouse model of AD (3×Tg-AD). We show that one of these markers, heme-binding protein 1 (Hebp1), is elevated in the brains of both 3×Tg-AD mice and patients affected by rapidly-progressing forms of AD. Hebp1, predominantly expressed in neurons, interacts with the mitochondrial contact site complex (MICOS) and exhibits a perimitochondrial localization. Strikingly, wildtype, but not Hebp1-deficient, neurons showed elevated cytotoxicity in response to heme-induced apoptosis. Increased survivability in Hebp1-deficient neurons is conferred by blocking the activation of the mitochondrial-associated caspase signaling pathway. Taken together, our data highlight a role of Hebp1 in progressive neuronal loss during AD progression.
Collapse
Affiliation(s)
- Oleksandr Yagensky
- Research Group Protein Trafficking in Synaptic Development and Function, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | - Saravanan Gunaseelan
- Interactomics and Intracellular Trafficking Laboratory, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Tamara Rabe
- Department of Genes and Behavior, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Saima Zafar
- Biomedical Engineering and Sciences Department, School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Islamabad, Pakistan.,Clinical Dementia Center, Department of Neurology, German Center for Neurodegenerative Diseases, University Medical Center Göttingen, Göttingen, Germany
| | - Inga Zerr
- Clinical Dementia Center, Department of Neurology, German Center for Neurodegenerative Diseases, University Medical Center Göttingen, Göttingen, Germany
| | - Wolfgang Härtig
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Henning Urlaub
- Research Group Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Bioanalytics Group, Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - John Je Chua
- Research Group Protein Trafficking in Synaptic Development and Function, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Interactomics and Intracellular Trafficking Laboratory, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,LSI Neurobiology Programme, National University of Singapore, Singapore, Singapore.,Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore
| |
Collapse
|
23
|
Zolochevska O, Bjorklund N, Woltjer R, Wiktorowicz JE, Taglialatela G. Postsynaptic Proteome of Non-Demented Individuals with Alzheimer's Disease Neuropathology. J Alzheimers Dis 2019; 65:659-682. [PMID: 30103319 PMCID: PMC6130411 DOI: 10.3233/jad-180179] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Some individuals, here referred to as Non-Demented with Alzheimer’s Neuropathology (NDAN), retain their cognitive function despite the presence of amyloid plaques and tau tangles typical of symptomatic Alzheimer’s disease (AD). In NDAN, unlike AD, toxic amyloid-β oligomers do not localize to the postsynaptic densities (PSDs). Synaptic resistance to amyloid-β in NDAN may thus enable these individuals to remain cognitively intact despite the AD-like pathology. The mechanism(s) responsible for this resistance remains unresolved and understanding such protective biological processes could reveal novel targets for the development of effective treatments for AD. The present study uses a proteomic approach to compare the hippocampal postsynaptic densities of NDAN, AD, and healthy age-matched persons to identify protein signatures characteristic for these groups. Subcellular fractionation followed by 2D gel electrophoresis and mass spectrometry were used to analyze the PSDs. We describe fifteen proteins which comprise the unique proteomic signature of NDAN PSDs, thus setting them apart from control subjects and AD patients.
Collapse
Affiliation(s)
- Olga Zolochevska
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Nicole Bjorklund
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Randall Woltjer
- Department of Pathology, Oregon Health and Science University, Portland, OR, USA
| | - John E Wiktorowicz
- Department of Biochemistry and Molecular Biology, Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Giulio Taglialatela
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
24
|
Drummond E, Goñi F, Liu S, Prelli F, Scholtzova H, Wisniewski T. Potential Novel Approaches to Understand the Pathogenesis and Treat Alzheimer's Disease. J Alzheimers Dis 2019; 64:S299-S312. [PMID: 29562516 DOI: 10.3233/jad-179909] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There is growing genetic and proteomic data highlighting the complexity of Alzheimer's disease (AD) pathogenesis. Greater use of unbiased "omics" approaches is being increasingly recognized as essential for the future development of effective AD research, that need to better reflect the multiple distinct pathway abnormalities that can drive AD pathology. The track record of success in AD clinical trials thus far has been very poor. In part, this high failure rate has been related to the premature translation of highly successful results in animal models that mirror only limited aspects of AD pathology to humans. We highlight our recent efforts to increase use of human tissue to gain a better understanding of the AD pathogenesis subtype variety and to develop several distinct therapeutic approaches tailored to address this diversity. These therapeutic approaches include the blocking of the Aβ/apoE interaction, stimulation of innate immunity, and the simultaneous blocking of Aβ/tau oligomer toxicity. We believe that future successful therapeutic approaches will need to be combined to better reflect the complexity of the abnormal pathways triggered in AD pathogenesis.
Collapse
Affiliation(s)
- Eleanor Drummond
- Department of Neurology, Center for Cognitive Neurology, NYU School of Medicine, New York, NY, USA
| | - Fernando Goñi
- Department of Neurology, Center for Cognitive Neurology, NYU School of Medicine, New York, NY, USA
| | - Shan Liu
- Department of Neurology, Center for Cognitive Neurology, NYU School of Medicine, New York, NY, USA
| | - Frances Prelli
- Department of Neurology, Center for Cognitive Neurology, NYU School of Medicine, New York, NY, USA
| | - Henrieta Scholtzova
- Department of Neurology, Center for Cognitive Neurology, NYU School of Medicine, New York, NY, USA
| | - Thomas Wisniewski
- Departments of Neurology, Pathology and Psychiatry, Center for Cognitive Neurology, NYU School of Medicine, New York, NY, USA
| |
Collapse
|
25
|
Xu J, Patassini S, Rustogi N, Riba-Garcia I, Hale BD, Phillips AM, Waldvogel H, Haines R, Bradbury P, Stevens A, Faull RLM, Dowsey AW, Cooper GJS, Unwin RD. Regional protein expression in human Alzheimer's brain correlates with disease severity. Commun Biol 2019; 2:43. [PMID: 30729181 PMCID: PMC6361956 DOI: 10.1038/s42003-018-0254-9] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 12/03/2018] [Indexed: 01/18/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that currently affects 36 million people worldwide with no effective treatment available. Development of AD follows a distinctive pattern in the brain and is poorly modelled in animals. Therefore, it is vital to widen the spatial scope of the study of AD and prioritise the study of human brains. Here we show that functionally distinct human brain regions display varying and region-specific changes in protein expression. These changes provide insights into the progression of disease, novel AD-related pathways, the presence of a gradient of protein expression change from less to more affected regions and a possibly protective protein expression profile in the cerebellum. This spatial proteomics analysis provides a framework which can underpin current research and open new avenues to enhance molecular understanding of AD pathophysiology, provide new targets for intervention and broaden the conceptual frameworks for future AD research.
Collapse
Affiliation(s)
- Jingshu Xu
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Sciences Centre, Core Technology Facility (3rd Floor), 46 Grafton Street, Manchester, M13 9NT UK
- School of Biological Sciences, and Maurice Wilkins Centre for Molecular Biodiscovery, Faculty of Science, University of Auckland, Private Bag 92019, Auckland, 1142 New Zealand
| | - Stefano Patassini
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Sciences Centre, Core Technology Facility (3rd Floor), 46 Grafton Street, Manchester, M13 9NT UK
- School of Biological Sciences, and Maurice Wilkins Centre for Molecular Biodiscovery, Faculty of Science, University of Auckland, Private Bag 92019, Auckland, 1142 New Zealand
| | - Nitin Rustogi
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Sciences Centre, Core Technology Facility (3rd Floor), 46 Grafton Street, Manchester, M13 9NT UK
| | - Isabel Riba-Garcia
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Sciences Centre, Core Technology Facility (3rd Floor), 46 Grafton Street, Manchester, M13 9NT UK
| | - Benjamin D. Hale
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Sciences Centre, Core Technology Facility (3rd Floor), 46 Grafton Street, Manchester, M13 9NT UK
| | - Alexander M Phillips
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, L69 3GJ UK
| | - Henry Waldvogel
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 1142 New Zealand
| | - Robert Haines
- Research IT, The University of Manchester, Manchester, M13 9PL UK
| | - Phil Bradbury
- Research IT, The University of Manchester, Manchester, M13 9PL UK
| | - Adam Stevens
- Division of Developmental Biology & Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, M13 9PL UK
| | - Richard L. M. Faull
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 1142 New Zealand
| | - Andrew W. Dowsey
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Sciences Centre, Core Technology Facility (3rd Floor), 46 Grafton Street, Manchester, M13 9NT UK
- Department of Population Health Sciences and Bristol Veterinary School, Faculty of Health Sciences, University of Bristol, Bristol, BS8 2BN UK
| | - Garth J. S. Cooper
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Sciences Centre, Core Technology Facility (3rd Floor), 46 Grafton Street, Manchester, M13 9NT UK
- School of Biological Sciences, and Maurice Wilkins Centre for Molecular Biodiscovery, Faculty of Science, University of Auckland, Private Bag 92019, Auckland, 1142 New Zealand
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 1142 New Zealand
| | - Richard D. Unwin
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Sciences Centre, Core Technology Facility (3rd Floor), 46 Grafton Street, Manchester, M13 9NT UK
| |
Collapse
|
26
|
Abreha MH, Dammer EB, Ping L, Zhang T, Duong DM, Gearing M, Lah JJ, Levey AI, Seyfried NT. Quantitative Analysis of the Brain Ubiquitylome in Alzheimer's Disease. Proteomics 2018; 18:e1800108. [PMID: 30230243 PMCID: PMC6283072 DOI: 10.1002/pmic.201800108] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 08/16/2018] [Indexed: 12/15/2022]
Abstract
Several neurodegenerative diseases including Alzheimer's Disease (AD) are characterized by ubiquitin-positive pathological protein aggregates. Here, an immunoaffinity approach is utilized to enrich ubiquitylated isopeptides after trypsin digestion from five AD and five age-matched control postmortem brain tissues. Label-free MS-based proteomic analysis identifies 4291 unique ubiquitylation sites mapping to 1682 unique proteins. Differential enrichment analysis shows that over 800 ubiquitylation sites are significantly altered between AD and control cases. Of these, ≈80% are increased in AD, including seven poly ubiquitin linkages, which is consistent with proteolytic stress and high burden of ubiquitylated pathological aggregates in AD. The microtubule associated protein Tau, the core component of neurofibrillary tangles, has the highest number of increased sites of ubiquitylation per any protein in AD. Tau poly ubiquitylation from AD brain homogenates is confirmed by reciprocal co-immunoprecipitation and by affinity capture using tandem ubiquitin binding entities. Co-modified peptides, with both ubiquitylation and phosphorylation sites, are also enriched in AD. Notably, many of the co-modified peptides mapped to Tau within KXGS motifs in the microtubule binding region suggesting that crosstalk between phosphorylation and ubiquitylation occurs on Tau in AD. Overall, these findings highlight the utility of MS to map ubiquitylated substrates in human brain and provides insight into mechanisms underlying pathological protein posttranslational modification in AD.
Collapse
Affiliation(s)
- Measho H. Abreha
- Center for Neurodegenerative Diseases, Emory University
School of Medicine, Atlanta, GA, 30322
| | - Eric B. Dammer
- Department of Biochemistry, Emory University School of
Medicine, Atlanta, GA, 30322
- Center for Neurodegenerative Diseases, Emory University
School of Medicine, Atlanta, GA, 30322
| | - Lingyan Ping
- Department of Biochemistry, Emory University School of
Medicine, Atlanta, GA, 30322
- Center for Neurodegenerative Diseases, Emory University
School of Medicine, Atlanta, GA, 30322
| | - Tian Zhang
- Department of Biochemistry, Emory University School of
Medicine, Atlanta, GA, 30322
- Center for Neurodegenerative Diseases, Emory University
School of Medicine, Atlanta, GA, 30322
| | - Duc M. Duong
- Department of Biochemistry, Emory University School of
Medicine, Atlanta, GA, 30322
- Center for Neurodegenerative Diseases, Emory University
School of Medicine, Atlanta, GA, 30322
| | - Marla Gearing
- Department of Pathology and Laboratory Medicine, Emory
University School of Medicine, Atlanta, GA, 30322
- Center for Neurodegenerative Diseases, Emory University
School of Medicine, Atlanta, GA, 30322
| | - James J. Lah
- Department of Neurology, Emory University School of
Medicine, Atlanta, GA, 30322
- Center for Neurodegenerative Diseases, Emory University
School of Medicine, Atlanta, GA, 30322
| | - Allan I. Levey
- Department of Neurology, Emory University School of
Medicine, Atlanta, GA, 30322
- Center for Neurodegenerative Diseases, Emory University
School of Medicine, Atlanta, GA, 30322
| | - Nicholas T. Seyfried
- Department of Biochemistry, Emory University School of
Medicine, Atlanta, GA, 30322
- Department of Neurology, Emory University School of
Medicine, Atlanta, GA, 30322
- Center for Neurodegenerative Diseases, Emory University
School of Medicine, Atlanta, GA, 30322
| |
Collapse
|
27
|
Guiberson NGL, Pineda A, Abramov D, Kharel P, Carnazza KE, Wragg RT, Dittman JS, Burré J. Mechanism-based rescue of Munc18-1 dysfunction in varied encephalopathies by chemical chaperones. Nat Commun 2018; 9:3986. [PMID: 30266908 PMCID: PMC6162227 DOI: 10.1038/s41467-018-06507-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 09/07/2018] [Indexed: 12/01/2022] Open
Abstract
Heterozygous de novo mutations in the neuronal protein Munc18-1 are linked to epilepsies, intellectual disability, movement disorders, and neurodegeneration. These devastating diseases have a poor prognosis and no known cure, due to lack of understanding of the underlying disease mechanism. To determine how mutations in Munc18-1 cause disease, we use newly generated S. cerevisiae strains, C. elegans models, and conditional Munc18-1 knockout mouse neurons expressing wild-type or mutant Munc18-1, as well as in vitro studies. We find that at least five disease-linked missense mutations of Munc18-1 result in destabilization and aggregation of the mutant protein. Aggregates of mutant Munc18-1 incorporate wild-type Munc18-1, depleting functional Munc18-1 levels beyond hemizygous levels. We demonstrate that the three chemical chaperones 4-phenylbutyrate, sorbitol, and trehalose reverse the deficits caused by mutations in Munc18-1 in vitro and in vivo in multiple models, offering a novel strategy for the treatment of varied encephalopathies. Munc18-1 is an evolutionary conserved gene whose mutations are linked to various neurological diseases in human. In order to better understand the exact nature of the mutations, the authors here utilize several model systems to show mutant Munc18-1 can aggregate and deplete functional pool of Wt protein, and that chemical chaperones can reverse the cellular deficits.
Collapse
Affiliation(s)
- Noah Guy Lewis Guiberson
- Brain and Mind Research Institute & Appel Institute for Alzheimer's Disease Research, Weill Cornell Medicine, New York, NY, 10021, USA
| | - André Pineda
- Brain and Mind Research Institute & Appel Institute for Alzheimer's Disease Research, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Debra Abramov
- Brain and Mind Research Institute & Appel Institute for Alzheimer's Disease Research, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Parinati Kharel
- Brain and Mind Research Institute & Appel Institute for Alzheimer's Disease Research, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Kathryn E Carnazza
- Brain and Mind Research Institute & Appel Institute for Alzheimer's Disease Research, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Rachel T Wragg
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Jeremy S Dittman
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Jacqueline Burré
- Brain and Mind Research Institute & Appel Institute for Alzheimer's Disease Research, Weill Cornell Medicine, New York, NY, 10021, USA.
| |
Collapse
|
28
|
Uddin MS, Stachowiak A, Mamun AA, Tzvetkov NT, Takeda S, Atanasov AG, Bergantin LB, Abdel-Daim MM, Stankiewicz AM. Autophagy and Alzheimer's Disease: From Molecular Mechanisms to Therapeutic Implications. Front Aging Neurosci 2018; 10:04. [PMID: 29441009 PMCID: PMC5797541 DOI: 10.3389/fnagi.2018.00004] [Citation(s) in RCA: 276] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/08/2018] [Indexed: 01/07/2023] Open
Abstract
Alzheimer’s disease (AD) is the most common cause of progressive dementia in the elderly. It is characterized by a progressive and irreversible loss of cognitive abilities and formation of senile plaques, composed mainly of amyloid β (Aβ), and neurofibrillary tangles (NFTs), composed of tau protein, in the hippocampus and cortex of afflicted humans. In brains of AD patients the metabolism of Aβ is dysregulated, which leads to the accumulation and aggregation of Aβ. Metabolism of Aβ and tau proteins is crucially influenced by autophagy. Autophagy is a lysosome-dependent, homeostatic process, in which organelles and proteins are degraded and recycled into energy. Thus, dysfunction of autophagy is suggested to lead to the accretion of noxious proteins in the AD brain. In the present review, we describe the process of autophagy and its importance in AD. Additionally, we discuss mechanisms and genes linking autophagy and AD, i.e., the mTOR pathway, neuroinflammation, endocannabinoid system, ATG7, BCL2, BECN1, CDK5, CLU, CTSD, FOXO1, GFAP, ITPR1, MAPT, PSEN1, SNCA, UBQLN1, and UCHL1. We also present pharmacological agents acting via modulation of autophagy that may show promise in AD therapy. This review updates our knowledge on autophagy mechanisms proposing novel therapeutic targets for the treatment of AD.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| | - Anna Stachowiak
- Department of Experimental Embryology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Magdalenka, Poland
| | | | - Nikolay T Tzvetkov
- Department of Molecular Biology and Biochemical Pharmacology, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Shinya Takeda
- Department of Clinical Psychology, Tottori University Graduate School of Medical Sciences, Tottori, Japan
| | - Atanas G Atanasov
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Magdalenka, Poland.,Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Leandro B Bergantin
- Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil
| | - Mohamed M Abdel-Daim
- Department of Pharmacology, Suez Canal University, Ismailia, Egypt.,Department of Ophthalmology and Micro-technology, Yokohama City University, Yokohama, Japan
| | - Adrian M Stankiewicz
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Magdalenka, Poland
| |
Collapse
|
29
|
Gal J, Chen J, Katsumata Y, Fardo DW, Wang WX, Artiushin S, Price D, Anderson S, Patel E, Zhu H, Nelson PT. Detergent Insoluble Proteins and Inclusion Body-Like Structures Immunoreactive for PRKDC/DNA-PK/DNA-PKcs, FTL, NNT, and AIFM1 in the Amygdala of Cognitively Impaired Elderly Persons. J Neuropathol Exp Neurol 2018; 77:21-39. [PMID: 29186589 DOI: 10.1093/jnen/nlx097] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 10/15/2017] [Indexed: 12/21/2022] Open
Abstract
Misfolded protein in the amygdala is a neuropathologic feature of Alzheimer disease and many other neurodegenerative disorders. We examined extracts from human amygdala (snap-frozen at autopsy) to investigate whether novel and as yet uncharacterized misfolded proteins would be detectable. Polypeptides from the detergent-insoluble, urea-soluble protein fractions of amygdala were interrogated using liquid chromatography-electrospray ionization-tandem mass spectrometry. Among the detergent-insoluble proteins identified in amygdala of demented subjects but not controls were Tau, TDP-43, Aβ, α-synuclein, and ApoE. Additional detergent-insoluble proteins from demented subjects in the high-molecular weight portion of SDS gels included NNT, TNIK, PRKDC (DNA-PK, or DNA-PKcs), ferritin light chain (FTL), AIFM1, SYT11, STX1B, EAA1, COL25A1, M4K4, CLH1, SQSTM, SYNJ1, C3, and C4. In follow-up immunohistochemical experiments, NNT, TNIK, PRKDC, AIFM1, and FTL were observed in inclusion body-like structures in cognitively impaired subjects' amygdalae. Double-label immunofluorescence revealed that FTL and phospho-PRKDC immunoreactivity colocalized partially with TDP-43 and/or Tau inclusion bodies. Western blots showed high-molecular weight "smears", particularly for NNT and PRKDC. A preliminary genetic association study indicated that rare NNT, TNIK, and PRKDC gene variants had nominally significant association with Alzheimer-type dementia risk. In summary, novel detergent-insoluble proteins, with evidence of proteinaceous deposits, were found in amygdalae of elderly, cognitively impaired subjects.
Collapse
Affiliation(s)
- Jozsef Gal
- Department of Molecular and Cellular Biochemistry; Department of Biostatistics; Sanders-Brown Center on Aging; Department of Pathology, University of Kentucky, Lexington, Kentucky; and Research and Development, Lexington VA Medical Center, Lexington, Kentucky
| | - Jing Chen
- Department of Molecular and Cellular Biochemistry; Department of Biostatistics; Sanders-Brown Center on Aging; Department of Pathology, University of Kentucky, Lexington, Kentucky; and Research and Development, Lexington VA Medical Center, Lexington, Kentucky
| | - Yuriko Katsumata
- Department of Molecular and Cellular Biochemistry; Department of Biostatistics; Sanders-Brown Center on Aging; Department of Pathology, University of Kentucky, Lexington, Kentucky; and Research and Development, Lexington VA Medical Center, Lexington, Kentucky
| | - David W Fardo
- Department of Molecular and Cellular Biochemistry; Department of Biostatistics; Sanders-Brown Center on Aging; Department of Pathology, University of Kentucky, Lexington, Kentucky; and Research and Development, Lexington VA Medical Center, Lexington, Kentucky
| | - Wang-Xia Wang
- Department of Molecular and Cellular Biochemistry; Department of Biostatistics; Sanders-Brown Center on Aging; Department of Pathology, University of Kentucky, Lexington, Kentucky; and Research and Development, Lexington VA Medical Center, Lexington, Kentucky
| | - Sergey Artiushin
- Department of Molecular and Cellular Biochemistry; Department of Biostatistics; Sanders-Brown Center on Aging; Department of Pathology, University of Kentucky, Lexington, Kentucky; and Research and Development, Lexington VA Medical Center, Lexington, Kentucky
| | - Douglas Price
- Department of Molecular and Cellular Biochemistry; Department of Biostatistics; Sanders-Brown Center on Aging; Department of Pathology, University of Kentucky, Lexington, Kentucky; and Research and Development, Lexington VA Medical Center, Lexington, Kentucky
| | - Sonya Anderson
- Department of Molecular and Cellular Biochemistry; Department of Biostatistics; Sanders-Brown Center on Aging; Department of Pathology, University of Kentucky, Lexington, Kentucky; and Research and Development, Lexington VA Medical Center, Lexington, Kentucky
| | - Ela Patel
- Department of Molecular and Cellular Biochemistry; Department of Biostatistics; Sanders-Brown Center on Aging; Department of Pathology, University of Kentucky, Lexington, Kentucky; and Research and Development, Lexington VA Medical Center, Lexington, Kentucky
| | - Haining Zhu
- Department of Molecular and Cellular Biochemistry; Department of Biostatistics; Sanders-Brown Center on Aging; Department of Pathology, University of Kentucky, Lexington, Kentucky; and Research and Development, Lexington VA Medical Center, Lexington, Kentucky
| | - Peter T Nelson
- Department of Molecular and Cellular Biochemistry; Department of Biostatistics; Sanders-Brown Center on Aging; Department of Pathology, University of Kentucky, Lexington, Kentucky; and Research and Development, Lexington VA Medical Center, Lexington, Kentucky
| |
Collapse
|
30
|
Cherry JD, Zeineddin A, Dammer EB, Webster JA, Duong D, Seyfried NT, Levey AI, Alvarez VE, Huber BR, Stein TD, Kiernan PT, McKee AC, Lah JJ, Hales CM. Characterization of Detergent Insoluble Proteome in Chronic Traumatic Encephalopathy. J Neuropathol Exp Neurol 2018; 77:40-49. [PMID: 29145658 DOI: 10.1093/jnen/nlx100] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Indexed: 12/14/2022] Open
Abstract
Quantitative proteomics of postmortem human brain can identify dysfunctional proteins that contribute to neurodegenerative disorders like Alzheimer disease (AD) and frontotemporal dementia. Similar studies in chronic traumatic encephalopathy (CTE) are limited, therefore we hypothesized that proteomic sequencing of CTE frontal cortex brain homogenates from varying CTE pathologic stages may provide important new insights into this disorder. Quantitative proteomics of control, CTE and AD brains was performed to characterize differentially expressed proteins, and we identified over 4000 proteins in CTE brains, including significant enrichment of the microtubule associated protein tau. We also found enrichment and pathologic aggregation of RNA processing factors as seen previously in AD, supporting the previously recognized overlap between AD and CTE. In addition to these similarities, we identified CTE-specific enrichment of proteins which increase with increasing severity of CTE pathology. NADPH dehydrogenase quinone 1 (NQO1) was one of the proteins which showed significant enrichment in CTE and also correlated with increasing CTE stage. NQO1 demonstrated neuropathologic correlation with hyperphosphorylated tau in glial cells, mainly astrocytes. These results demonstrate that quantitative proteomic analysis of CTE postmortem human brain can identify disease relevant findings and novel cellular pathways involved in CTE pathogenesis.
Collapse
Affiliation(s)
- Jonathan D Cherry
- Boston University Alzheimer's Disease and CTE Center; Department of Neurology, Boston University School of Medicine, Boston, Massachusetts; Center for Neurodegenerative Disease, Emory University School of Medicine; Department of Biochemistry, Emory University School of Medicine; Department of Neurology, Emory University School of Medicine, Atlanta, Georgia; Department of Anatomy and Neurobiology; Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts; VA Boston Healthcare System, Boston, Massachusetts; and Department of Veterans Affairs Medical Center, Bedford, Massachusetts
| | - Ahmad Zeineddin
- Boston University Alzheimer's Disease and CTE Center; Department of Neurology, Boston University School of Medicine, Boston, Massachusetts; Center for Neurodegenerative Disease, Emory University School of Medicine; Department of Biochemistry, Emory University School of Medicine; Department of Neurology, Emory University School of Medicine, Atlanta, Georgia; Department of Anatomy and Neurobiology; Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts; VA Boston Healthcare System, Boston, Massachusetts; and Department of Veterans Affairs Medical Center, Bedford, Massachusetts
| | - Eric B Dammer
- Boston University Alzheimer's Disease and CTE Center; Department of Neurology, Boston University School of Medicine, Boston, Massachusetts; Center for Neurodegenerative Disease, Emory University School of Medicine; Department of Biochemistry, Emory University School of Medicine; Department of Neurology, Emory University School of Medicine, Atlanta, Georgia; Department of Anatomy and Neurobiology; Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts; VA Boston Healthcare System, Boston, Massachusetts; and Department of Veterans Affairs Medical Center, Bedford, Massachusetts
| | - James A Webster
- Boston University Alzheimer's Disease and CTE Center; Department of Neurology, Boston University School of Medicine, Boston, Massachusetts; Center for Neurodegenerative Disease, Emory University School of Medicine; Department of Biochemistry, Emory University School of Medicine; Department of Neurology, Emory University School of Medicine, Atlanta, Georgia; Department of Anatomy and Neurobiology; Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts; VA Boston Healthcare System, Boston, Massachusetts; and Department of Veterans Affairs Medical Center, Bedford, Massachusetts
| | - Duc Duong
- Boston University Alzheimer's Disease and CTE Center; Department of Neurology, Boston University School of Medicine, Boston, Massachusetts; Center for Neurodegenerative Disease, Emory University School of Medicine; Department of Biochemistry, Emory University School of Medicine; Department of Neurology, Emory University School of Medicine, Atlanta, Georgia; Department of Anatomy and Neurobiology; Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts; VA Boston Healthcare System, Boston, Massachusetts; and Department of Veterans Affairs Medical Center, Bedford, Massachusetts
| | - Nicholas T Seyfried
- Boston University Alzheimer's Disease and CTE Center; Department of Neurology, Boston University School of Medicine, Boston, Massachusetts; Center for Neurodegenerative Disease, Emory University School of Medicine; Department of Biochemistry, Emory University School of Medicine; Department of Neurology, Emory University School of Medicine, Atlanta, Georgia; Department of Anatomy and Neurobiology; Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts; VA Boston Healthcare System, Boston, Massachusetts; and Department of Veterans Affairs Medical Center, Bedford, Massachusetts
| | - Allan I Levey
- Boston University Alzheimer's Disease and CTE Center; Department of Neurology, Boston University School of Medicine, Boston, Massachusetts; Center for Neurodegenerative Disease, Emory University School of Medicine; Department of Biochemistry, Emory University School of Medicine; Department of Neurology, Emory University School of Medicine, Atlanta, Georgia; Department of Anatomy and Neurobiology; Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts; VA Boston Healthcare System, Boston, Massachusetts; and Department of Veterans Affairs Medical Center, Bedford, Massachusetts
| | - Victor E Alvarez
- Boston University Alzheimer's Disease and CTE Center; Department of Neurology, Boston University School of Medicine, Boston, Massachusetts; Center for Neurodegenerative Disease, Emory University School of Medicine; Department of Biochemistry, Emory University School of Medicine; Department of Neurology, Emory University School of Medicine, Atlanta, Georgia; Department of Anatomy and Neurobiology; Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts; VA Boston Healthcare System, Boston, Massachusetts; and Department of Veterans Affairs Medical Center, Bedford, Massachusetts
| | - Bertrand R Huber
- Boston University Alzheimer's Disease and CTE Center; Department of Neurology, Boston University School of Medicine, Boston, Massachusetts; Center for Neurodegenerative Disease, Emory University School of Medicine; Department of Biochemistry, Emory University School of Medicine; Department of Neurology, Emory University School of Medicine, Atlanta, Georgia; Department of Anatomy and Neurobiology; Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts; VA Boston Healthcare System, Boston, Massachusetts; and Department of Veterans Affairs Medical Center, Bedford, Massachusetts
| | - Thor D Stein
- Boston University Alzheimer's Disease and CTE Center; Department of Neurology, Boston University School of Medicine, Boston, Massachusetts; Center for Neurodegenerative Disease, Emory University School of Medicine; Department of Biochemistry, Emory University School of Medicine; Department of Neurology, Emory University School of Medicine, Atlanta, Georgia; Department of Anatomy and Neurobiology; Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts; VA Boston Healthcare System, Boston, Massachusetts; and Department of Veterans Affairs Medical Center, Bedford, Massachusetts
| | - Patrick T Kiernan
- Boston University Alzheimer's Disease and CTE Center; Department of Neurology, Boston University School of Medicine, Boston, Massachusetts; Center for Neurodegenerative Disease, Emory University School of Medicine; Department of Biochemistry, Emory University School of Medicine; Department of Neurology, Emory University School of Medicine, Atlanta, Georgia; Department of Anatomy and Neurobiology; Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts; VA Boston Healthcare System, Boston, Massachusetts; and Department of Veterans Affairs Medical Center, Bedford, Massachusetts
| | - Ann C McKee
- Boston University Alzheimer's Disease and CTE Center; Department of Neurology, Boston University School of Medicine, Boston, Massachusetts; Center for Neurodegenerative Disease, Emory University School of Medicine; Department of Biochemistry, Emory University School of Medicine; Department of Neurology, Emory University School of Medicine, Atlanta, Georgia; Department of Anatomy and Neurobiology; Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts; VA Boston Healthcare System, Boston, Massachusetts; and Department of Veterans Affairs Medical Center, Bedford, Massachusetts
| | - James J Lah
- Boston University Alzheimer's Disease and CTE Center; Department of Neurology, Boston University School of Medicine, Boston, Massachusetts; Center for Neurodegenerative Disease, Emory University School of Medicine; Department of Biochemistry, Emory University School of Medicine; Department of Neurology, Emory University School of Medicine, Atlanta, Georgia; Department of Anatomy and Neurobiology; Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts; VA Boston Healthcare System, Boston, Massachusetts; and Department of Veterans Affairs Medical Center, Bedford, Massachusetts
| | - Chadwick M Hales
- Boston University Alzheimer's Disease and CTE Center; Department of Neurology, Boston University School of Medicine, Boston, Massachusetts; Center for Neurodegenerative Disease, Emory University School of Medicine; Department of Biochemistry, Emory University School of Medicine; Department of Neurology, Emory University School of Medicine, Atlanta, Georgia; Department of Anatomy and Neurobiology; Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts; VA Boston Healthcare System, Boston, Massachusetts; and Department of Veterans Affairs Medical Center, Bedford, Massachusetts
| |
Collapse
|
31
|
Recent progress in mass spectrometry proteomics for biomedical research. SCIENCE CHINA-LIFE SCIENCES 2017; 60:1093-1113. [DOI: 10.1007/s11427-017-9175-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 09/15/2017] [Indexed: 12/30/2022]
|
32
|
Hales CM, Dammer EB, Deng Q, Duong DM, Gearing M, Troncoso JC, Thambisetty M, Lah JJ, Shulman JM, Levey AI, Seyfried NT. Changes in the detergent-insoluble brain proteome linked to amyloid and tau in Alzheimer's Disease progression. Proteomics 2017; 16:3042-3053. [PMID: 27718298 DOI: 10.1002/pmic.201600057] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/22/2016] [Accepted: 10/06/2016] [Indexed: 01/04/2023]
Abstract
Despite a key role of amyloid-beta (Aβ) in Alzheimer's disease (AD), mechanisms that link Aβ plaques to tau neurofibrillary tangles and cognitive decline still remain poorly understood. The purpose of this study was to quantify proteins in the sarkosyl-insoluble brain proteome correlated with Aβ and tau insolubility in the asymptomatic phase of AD (AsymAD) and through mild cognitive impairment (MCI) and symptomatic AD. Employing label-free mass spectrometry-based proteomics, we quantified 2711 sarkosyl-insoluble proteins across the prefrontal cortex from 35 individual cases representing control, AsymAD, MCI and AD. Significant enrichment of Aβ and tau in AD was observed, which correlated with neuropathological measurements of plaque and tau tangle density, respectively. Pairwise correlation coefficients were also determined for all quantified proteins to Aβ and tau, across the 35 cases. Notably, six of the ten most correlated proteins to Aβ were U1 small nuclear ribonucleoproteins (U1 snRNPs). Three of these U1 snRNPs (U1A, SmD and U1-70K) also correlated with tau consistent with their association with tangle pathology in AD. Thus, proteins that cross-correlate with both Aβ and tau, including specific U1 snRNPs, may have potential mechanistic roles in linking Aβ plaques to tau tangle pathology during AD progression.
Collapse
Affiliation(s)
- Chadwick M Hales
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.,Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Eric B Dammer
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA.,Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Qiudong Deng
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA.,Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Duc M Duong
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA.,Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Marla Gearing
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA.,Department of Experimental Pathology, Emory University School of Medicine, Atlanta, GA, USA
| | - Juan C Troncoso
- Departments of Pathology and Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Madhav Thambisetty
- National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - James J Lah
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.,Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Joshua M Shulman
- Departments of Neurology, Neuroscience, and Molecular & Human Genetics and Program in Developmental Biology, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Baylor College of Medicine, Houston, TX, USA
| | - Allan I Levey
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.,Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Nicholas T Seyfried
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.,Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA.,Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
33
|
Ubiquitin C-terminal hydrolase L1 (UCH-L1): structure, distribution and roles in brain function and dysfunction. Biochem J 2017; 473:2453-62. [PMID: 27515257 PMCID: PMC4980807 DOI: 10.1042/bcj20160082] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 04/29/2016] [Indexed: 12/13/2022]
Abstract
Ubiquitin C-terminal hydrolase L1 (UCH-L1) is an extremely abundant protein in the brain where, remarkably, it is estimated to make up 1–5% of total neuronal protein. Although it comprises only 223 amino acids it has one of the most complicated 3D knotted structures yet discovered. Beyond its expression in neurons UCH-L1 has only very limited expression in other healthy tissues but it is highly expressed in several forms of cancer. Although UCH-L1 is classed as a deubiquitinating enzyme (DUB) the direct functions of UCH-L1 remain enigmatic and a wide array of alternative functions has been proposed. UCH-L1 is not essential for neuronal development but it is absolutely required for the maintenance of axonal integrity and UCH-L1 dysfunction is implicated in neurodegenerative disease. Here we review the properties of UCH-L1, and how understanding its complex structure can provide new insights into its roles in neuronal function and pathology.
Collapse
|
34
|
Scifo E, Calza G, Fuhrmann M, Soliymani R, Baumann M, Lalowski M. Recent advances in applying mass spectrometry and systems biology to determine brain dynamics. Expert Rev Proteomics 2017; 14:545-559. [PMID: 28539064 DOI: 10.1080/14789450.2017.1335200] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
INTRODUCTION Neurological disorders encompass various pathologies which disrupt normal brain physiology and function. Poor understanding of their underlying molecular mechanisms and their societal burden argues for the necessity of novel prevention strategies, early diagnostic techniques and alternative treatment options to reduce the scale of their expected increase. Areas covered: This review scrutinizes mass spectrometry based approaches used to investigate brain dynamics in various conditions, including neurodegenerative and neuropsychiatric disorders. Different proteomics workflows for isolation/enrichment of specific cell populations or brain regions, sample processing; mass spectrometry technologies, for differential proteome quantitation, analysis of post-translational modifications and imaging approaches in the brain are critically deliberated. Future directions, including analysis of cellular sub-compartments, targeted MS platforms (selected/parallel reaction monitoring) and use of mass cytometry are also discussed. Expert commentary: Here, we summarize and evaluate current mass spectrometry based approaches for determining brain dynamics in health and diseases states, with a focus on neurological disorders. Furthermore, we provide insight on current trends and new MS technologies with potential to improve this analysis.
Collapse
Affiliation(s)
- Enzo Scifo
- a Department of Psychiatry, and of Pharmacology and Toxicology , University of Toronto, Campbell Family Mental Health Research Institute of CAMH , Toronto , Canada
| | - Giulio Calza
- b Medicum, Meilahti Clinical Proteomics Core Facility, Biochemistry/Developmental Biology, Faculty of Medicine , FI-00014 University of Helsinki , Helsinki , Finland
| | - Martin Fuhrmann
- c Neuroimmunology and Imaging Group , German Center for Neurodegenerative Diseases (DZNE) , Bonn , Germany
| | - Rabah Soliymani
- b Medicum, Meilahti Clinical Proteomics Core Facility, Biochemistry/Developmental Biology, Faculty of Medicine , FI-00014 University of Helsinki , Helsinki , Finland
| | - Marc Baumann
- b Medicum, Meilahti Clinical Proteomics Core Facility, Biochemistry/Developmental Biology, Faculty of Medicine , FI-00014 University of Helsinki , Helsinki , Finland
| | - Maciej Lalowski
- b Medicum, Meilahti Clinical Proteomics Core Facility, Biochemistry/Developmental Biology, Faculty of Medicine , FI-00014 University of Helsinki , Helsinki , Finland
| |
Collapse
|
35
|
Proteomic differences in amyloid plaques in rapidly progressive and sporadic Alzheimer's disease. Acta Neuropathol 2017; 133:933-954. [PMID: 28258398 DOI: 10.1007/s00401-017-1691-0] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/22/2017] [Accepted: 02/26/2017] [Indexed: 12/16/2022]
Abstract
Rapidly progressive Alzheimer's disease (rpAD) is a particularly aggressive form of Alzheimer's disease, with a median survival time of 7-10 months after diagnosis. Why these patients have such a rapid progression of Alzheimer's disease is currently unknown. To further understand pathological differences between rpAD and typical sporadic Alzheimer's disease (sAD) we used localized proteomics to analyze the protein differences in amyloid plaques in rpAD and sAD. Label-free quantitative LC-MS/MS was performed on amyloid plaques microdissected from rpAD and sAD patients (n = 22 for each patient group) and protein expression differences were quantified. On average, 913 ± 30 (mean ± SEM) proteins were quantified in plaques from each patient and 279 of these proteins were consistently found in plaques from every patient. We found significant differences in protein composition between rpAD and sAD plaques. We found that rpAD plaques contained significantly higher levels of neuronal proteins (p = 0.0017) and significantly lower levels of astrocytic proteins (p = 1.08 × 10-6). Unexpectedly, cumulative protein differences in rpAD plaques did not suggest accelerated typical sAD. Plaques from patients with rpAD were particularly abundant in synaptic proteins, especially those involved in synaptic vesicle release, highlighting the potential importance of synaptic dysfunction in the accelerated development of plaque pathology in rpAD. Combined, our data provide new direct evidence that amyloid plaques do not all have the same protein composition and that the proteomic differences in plaques could provide important insight into the factors that contribute to plaque development. The cumulative protein differences in rpAD plaques suggest rpAD may be a novel subtype of Alzheimer's disease.
Collapse
|
36
|
Do Carmo S, Crynen G, Paradis T, Reed J, Iulita MF, Ducatenzeiler A, Crawford F, Cuello AC. Hippocampal Proteomic Analysis Reveals Distinct Pathway Deregulation Profiles at Early and Late Stages in a Rat Model of Alzheimer's-Like Amyloid Pathology. Mol Neurobiol 2017; 55:3451-3476. [PMID: 28502044 DOI: 10.1007/s12035-017-0580-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/26/2017] [Indexed: 01/01/2023]
Abstract
The cerebral accumulation and cytotoxicity of amyloid beta (Aβ) is central to Alzheimer's pathogenesis. However, little is known about how the amyloid pathology affects the global expression of brain proteins at different disease stages. In order to identify genotype and time-dependent significant changes in protein expression, we employed quantitative proteomics analysis of hippocampal tissue from the McGill-R-Thy1-APP rat model of Alzheimer-like amyloid pathology. McGill transgenic rats were compared to wild-type rats at early and late pathology stages, i.e., when intraneuronal Aβ amyloid burden is conspicuous and when extracellular amyloid plaques are abundant with more pronounced cognitive deficits. After correction for multiple testing, the expression levels of 64 proteins were found to be considerably different in transgenic versus wild-type rats at the pre-plaque stage (3 months), and 86 proteins in the post-plaque group (12 months), with only 9 differentially regulated proteins common to the 2 time-points. This minimal overlap supports the hypothesis that different molecular pathways are affected in the hippocampus at early and late stages of the amyloid pathology throughout its continuum. At early stages, disturbances in pathways related to cellular responses to stress, protein homeostasis, and neuronal structure are predominant, while disturbances in metabolic energy generation dominate at later stages. These results shed new light on the molecular pathways affected by the early accumulation of Aβ and how the evolving amyloid pathology impacts other complex metabolic pathways.
Collapse
Affiliation(s)
- Sonia Do Carmo
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | | | - Tiffany Paradis
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Jon Reed
- Roskamp Institute, Sarasota, FL, USA
| | - M Florencia Iulita
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Adriana Ducatenzeiler
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | | | - A Claudio Cuello
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada. .,Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada. .,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
| |
Collapse
|
37
|
Di Domenico F, Barone E, Perluigi M, Butterfield DA. The Triangle of Death in Alzheimer's Disease Brain: The Aberrant Cross-Talk Among Energy Metabolism, Mammalian Target of Rapamycin Signaling, and Protein Homeostasis Revealed by Redox Proteomics. Antioxid Redox Signal 2017; 26:364-387. [PMID: 27626216 DOI: 10.1089/ars.2016.6759] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder and represents one of the most disabling conditions. AD shares many features in common with systemic insulin resistance diseases, suggesting that it can be considered as a metabolic disease, characterized by reduced insulin-stimulated growth and survival signaling, increased oxidative stress (OS), proinflammatory cytokine activation, mitochondrial dysfunction, impaired energy metabolism, and altered protein homeostasis. Recent Advances: Reduced glucose utilization and energy metabolism in AD have been associated with the buildup of amyloid-β peptide and hyperphosphorylated tau, increased OS, and the accumulation of unfolded/misfolded proteins. Mammalian target of rapamycin (mTOR), which is aberrantly activated in AD since early stages, plays a key role during AD neurodegeneration by, on one side, inhibiting insulin signaling as a negative feedback mechanism and, on the other side, regulating protein homeostasis (synthesis/clearance). CRITICAL ISSUES It is likely that the concomitant and mutual alterations of energy metabolism-mTOR signaling-protein homeostasis might represent a self-sustaining triangle of harmful events that trigger the degeneration and death of neurons and the development and progression of AD. Intriguingly, the altered cross-talk between the components of such a triangle of death, beyond altering the redox homeostasis of the neuron, is further exacerbated by increased levels of OS that target and impair key components of the pathways involved. Redox proteomic studies in human samples and animal models of AD-like dementia led to identification of oxidatively modified components of the pathways composing the triangle of death, therefore revealing the crucial role of OS in fueling this aberrant vicious cycle. FUTURE DIRECTIONS The identification of compounds able to restore the function of the pathways targeted by oxidative damage might represent a valuable therapeutic approach to slow or delay AD. Antioxid. Redox Signal. 26, 364-387.
Collapse
Affiliation(s)
- Fabio Di Domenico
- 1 Department of Biochemical Sciences, Sapienza University of Rome , Rome, Italy
| | - Eugenio Barone
- 1 Department of Biochemical Sciences, Sapienza University of Rome , Rome, Italy .,2 Facultad de Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile , Santiago, Chile
| | - Marzia Perluigi
- 1 Department of Biochemical Sciences, Sapienza University of Rome , Rome, Italy
| | - D Allan Butterfield
- 3 Department of Chemistry, Sanders-Brown Center of Aging, University of Kentucky , Lexington, Kentucky
| |
Collapse
|
38
|
Sethi MK, Zaia J. Extracellular matrix proteomics in schizophrenia and Alzheimer's disease. Anal Bioanal Chem 2017; 409:379-394. [PMID: 27601046 PMCID: PMC5203946 DOI: 10.1007/s00216-016-9900-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/16/2016] [Accepted: 08/23/2016] [Indexed: 12/17/2022]
Abstract
Brain extracellular matrix (ECM) is a highly organized system that consists of collagens, noncollagenous proteins, glycoproteins, hyaluronan, and proteoglycans. Recognized physiological roles of ECM include developmental regulation, tissue homeostasis, cell migration, cell proliferation, cell differentiation, neuronal plasticity, and neurite outgrowth. Aberrant ECM structure is associated with brain neurodegenerative conditions. This review focuses on two neurodegenerative conditions, schizophrenia and Alzheimer's disease, and summarizes recent findings of altered ECM components, including proteoglycans, glycosaminoglycans, proteins, and glycoproteins, and proteins and genes related to other brain components. The scope includes immunohistochemical, genomics, transcriptomics, proteomics, and glycomics studies, and a critical assessment of current state of proteomic studies for neurodegenerative disorders. The intent is to summarize the ECM molecular alterations associated with neurodegenerative pathophysiology. Graphical Abstract Brain extracellular matrix showing HSPGs, CSPGs, HA, collagens, and other glycoproteins.
Collapse
Affiliation(s)
- Manveen K Sethi
- Center for Biomedical Mass Spectrometry, Department of Biochemistry, Cell Biology & Genomics, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Joseph Zaia
- Center for Biomedical Mass Spectrometry, Department of Biochemistry, Cell Biology & Genomics, Boston University School of Medicine, Boston, MA, 02118, USA.
| |
Collapse
|
39
|
Liang X, Martyniuk CJ, Zha J, Wang Z. Brain quantitative proteomic responses reveal new insight of benzotriazole neurotoxicity in female Chinese rare minnow (Gobiocypris rarus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 181:67-75. [PMID: 27816759 DOI: 10.1016/j.aquatox.2016.10.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 10/27/2016] [Accepted: 10/30/2016] [Indexed: 06/06/2023]
Abstract
Benzotriazole (BT) is a high-production volume chemical which has been ubiquitously detected in aquatic environments. Although adverse effects from acute and chronic exposure to BT have been reported, the neurotoxic effect of BT and the mechanisms of toxicity are not well documented. In this study, adult female Chinese rare minnow (Gobiocypris rarus) were exposed to 0.05, 0.5, and 5mg/L BT for 28days. The brain proteome showed that BT exposure mainly involved in metabolic process, signal transduction, stress response, cytoskeleton, and transport. Pathway analysis revealed that cellular processes affected by BT included cellular respiration, G-protein signal cascades, Ca2+-dependent signaling, cell cycle and apoptosis. Moreover, data on relative mRNA levels demonstrated that genes related to these toxic pathways were also significantly affected by BT. Furthermore, proteins affected by BT such as CKBB, GS, HPCA, VDAC1, and FLOT1A are associated with neurological disorders. Therefore, our finding suggested that BT induced molecular responses in the brain and could provide new insight into BT neurotoxicity in Chinese rare minnow.
Collapse
Affiliation(s)
- Xuefang Liang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Environment and Resources, Inner Mongolia University, Hohhot 010021, China
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA
| | - Jinmiao Zha
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Zijian Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
40
|
Chai YJ, Sierecki E, Tomatis VM, Gormal RS, Giles N, Morrow IC, Xia D, Götz J, Parton RG, Collins BM, Gambin Y, Meunier FA. Munc18-1 is a molecular chaperone for α-synuclein, controlling its self-replicating aggregation. J Cell Biol 2016; 214:705-18. [PMID: 27597756 PMCID: PMC5021092 DOI: 10.1083/jcb.201512016] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 08/03/2016] [Indexed: 01/06/2023] Open
Abstract
Munc18-1 heterozygous mutations are associated with developmental diseases, including early infantile epileptic encephalopathy (EIEE). Chai et al. report that Munc18-1 acts as a chaperone for α-synuclein and controls its aggregative propensity. Munc18-1 EIEE-associated mutations promote the aggregation of endogenous α-synuclein in neurons, leading to a neurodegenerative phenotype. Munc18-1 is a key component of the exocytic machinery that controls neurotransmitter release. Munc18-1 heterozygous mutations cause developmental defects and epileptic phenotypes, including infantile epileptic encephalopathy (EIEE), suggestive of a gain of pathological function. Here, we used single-molecule analysis, gene-edited cells, and neurons to demonstrate that Munc18-1 EIEE-causing mutants form large polymers that coaggregate wild-type Munc18-1 in vitro and in cells. Surprisingly, Munc18-1 EIEE mutants also form Lewy body–like structures that contain α-synuclein (α-Syn). We reveal that Munc18-1 binds α-Syn, and its EIEE mutants coaggregate α-Syn. Likewise, removal of endogenous Munc18-1 increases the aggregative propensity of α-SynWT and that of the Parkinson’s disease–causing α-SynA30P mutant, an effect rescued by Munc18-1WT expression, indicative of chaperone activity. Coexpression of the α-SynA30P mutant with Munc18-1 reduced the number of α-SynA30P aggregates. Munc18-1 mutations and haploinsufficiency may therefore trigger a pathogenic gain of function through both the corruption of native Munc18-1 and a perturbed chaperone activity for α-Syn leading to aggregation-induced neurodegeneration.
Collapse
Affiliation(s)
- Ye Jin Chai
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Emma Sierecki
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia Single Molecule Sciences Centre, European Molecular Biology Laboratory Australia, The University of New South Wales, Sydney 2052, Australia
| | - Vanesa M Tomatis
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Rachel S Gormal
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Nichole Giles
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia Single Molecule Sciences Centre, European Molecular Biology Laboratory Australia, The University of New South Wales, Sydney 2052, Australia
| | - Isabel C Morrow
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Di Xia
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Robert G Parton
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Brett M Collins
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Yann Gambin
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia Single Molecule Sciences Centre, European Molecular Biology Laboratory Australia, The University of New South Wales, Sydney 2052, Australia
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
41
|
Choo HJ, Cutler A, Rother F, Bader M, Pavlath GK. Karyopherin Alpha 1 Regulates Satellite Cell Proliferation and Survival by Modulating Nuclear Import. Stem Cells 2016; 34:2784-2797. [PMID: 27434733 DOI: 10.1002/stem.2467] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 07/07/2016] [Accepted: 07/08/2016] [Indexed: 12/14/2022]
Abstract
Satellite cells are stem cells with an essential role in skeletal muscle repair. Precise regulation of gene expression is critical for proper satellite cell quiescence, proliferation, differentiation and self-renewal. Nuclear proteins required for gene expression are dependent on the nucleocytoplasmic transport machinery to access to nucleus, however little is known about regulation of nuclear transport in satellite cells. The best characterized nuclear import pathway is classical nuclear import which depends on a classical nuclear localization signal (cNLS) in a cargo protein and the heterodimeric import receptors, karyopherin alpha (KPNA) and beta (KPNB). Multiple KPNA1 paralogs exist and can differ in importing specific cNLS proteins required for cell differentiation and function. We show that transcripts for six Kpna paralogs underwent distinct changes in mouse satellite cells during muscle regeneration accompanied by changes in cNLS proteins in nuclei. Depletion of KPNA1, the most dramatically altered KPNA, caused satellite cells in uninjured muscle to prematurely activate, proliferate and undergo apoptosis leading to satellite cell exhaustion with age. Increased proliferation of satellite cells led to enhanced muscle regeneration at early stages of regeneration. In addition, we observed impaired nuclear localization of two key KPNA1 cargo proteins: p27, a cyclin-dependent kinase inhibitor associated with cell cycle control and lymphoid enhancer factor 1, a critical cotranscription factor for β-catenin. These results indicate that regulated nuclear import of proteins by KPNA1 is critical for satellite cell proliferation and survival and establish classical nuclear import as a novel regulatory mechanism for controlling satellite cell fate. Stem Cells 2016;34:2784-2797.
Collapse
Affiliation(s)
| | - Alicia Cutler
- Department of Pharmacology.,Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, Georgia, USA
| | - Franziska Rother
- Max-Delbrück-Center for Molecular Medicine, Berlin-Buch, Germany.,Institute of Biology, University of Lübeck, Germany
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine, Berlin-Buch, Germany
| | | |
Collapse
|
42
|
Henderson BW, Gentry EG, Rush T, Troncoso JC, Thambisetty M, Montine TJ, Herskowitz JH. Rho-associated protein kinase 1 (ROCK1) is increased in Alzheimer's disease and ROCK1 depletion reduces amyloid-β levels in brain. J Neurochem 2016; 138:525-31. [PMID: 27246255 DOI: 10.1111/jnc.13688] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/16/2016] [Accepted: 05/30/2016] [Indexed: 12/01/2022]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia and mitigating amyloid-β (Aβ) levels may serve as a rational therapeutic avenue to slow AD progression. Pharmacologic inhibition of the Rho-associated protein kinases (ROCK1 and ROCK2) is proposed to curb Aβ levels, and mechanisms that underlie ROCK2's effects on Aβ production are defined. How ROCK1 affects Aβ generation remains a critical barrier. Here, we report that ROCK1 protein levels were elevated in mild cognitive impairment due to AD (MCI) and AD brains compared to controls. Aβ42 oligomers marginally increased ROCK1 and ROCK2 protein levels in neurons but strongly induced phosphorylation of Lim kinase 1 (LIMK1), suggesting that Aβ42 activates ROCKs. RNAi depletion of ROCK1 or ROCK2 suppressed endogenous Aβ40 production in neurons, and Aβ40 levels were reduced in brains of ROCK1 heterozygous knock-out mice compared to wild-type littermate controls. ROCK1 knockdown decreased amyloid precursor protein (APP), and treatment with bafilomycin accumulated APP levels in neurons depleted of ROCK1. These observations suggest that reduction of ROCK1 diminishes Aβ levels by enhancing APP protein degradation. Collectively, these findings support the hypothesis that both ROCK1 and ROCK2 are therapeutic targets to combat Aβ production in AD. Mitigating amyloid-β (Aβ) levels is a rational strategy for Alzheimer's disease (AD) treatment, however, therapeutic targets with clinically available drugs are lacking. We hypothesize that Aβ accumulation in mild cognitive impairment because of AD (MCI) and AD activates the RhoA/ROCK pathway which in turn fuels production of Aβ. Escalation of this cycle over the course of many years may contribute to the buildup of amyloid pathology in MCI and/or AD.
Collapse
Affiliation(s)
- Benjamin W Henderson
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Erik G Gentry
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Travis Rush
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Juan C Troncoso
- Departments of Pathology and Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Madhav Thambisetty
- Unit of Clinical and Translational Neuroscience, Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, Maryland, USA
| | - Thomas J Montine
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Jeremy H Herskowitz
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
43
|
Khan AT, Dobson RJB, Sattlecker M, Kiddle SJ. Alzheimer's disease: are blood and brain markers related? A systematic review. Ann Clin Transl Neurol 2016; 3:455-62. [PMID: 27547773 PMCID: PMC4891999 DOI: 10.1002/acn3.313] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/29/2016] [Accepted: 04/07/2016] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE Peripheral protein biomarkers of Alzheimer's disease (AD) may help identify novel treatment avenues by allowing early diagnosis, recruitment to clinical trials, and treatment initiation. The purpose of this review was to determine which proteins have been found to be differentially expressed in the AD brain and whether these proteins are also found within the blood of AD patients. METHODS A two-stage approach was conducted. The first stage involved conducting a systematic search to identify discovery-based brain proteomic studies of AD. The second stage involved comparing whether proteins found to be differentially expressed in AD brain were also differentially expressed in the blood. RESULTS Across 11 discovery based brain proteomic studies 371 proteins were at different levels in the AD brain. Nine proteins were frequently found, defined as appearing in at least three separate studies. Of these proteins heat-shock cognate 71 kDa, ubiquitin carboxyl-terminal hydrolase isozyme L1, and 2',3'-cyclic nucleotide 3' phosphodiesterase alone were found to share a consistent direction of change, being consistently upregulated in studies they appeared in. Eighteen proteins seen as being differentially expressed within the AD brain were present in blood proteomic studies of AD. Only complement C4a was seen multiple times within both the blood and brain proteomic studies. INTERPRETATION We report a number of proteins appearing in both the blood and brain of AD patients. Of these proteins, C4a may be a good candidate for further follow-up in large-scale replication efforts.
Collapse
Affiliation(s)
- Ali T. Khan
- GKT School of Medical EducationKing's College LondonLondonUnited Kingdom
| | - Richard J. B. Dobson
- MRC Social, Genetic and Developmental Psychiatry CentreInstitute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUnited Kingdom
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for DementiaLondonUnited Kingdom
| | - Martina Sattlecker
- MRC Social, Genetic and Developmental Psychiatry CentreInstitute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUnited Kingdom
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for DementiaLondonUnited Kingdom
| | - Steven J. Kiddle
- MRC Social, Genetic and Developmental Psychiatry CentreInstitute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUnited Kingdom
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for DementiaLondonUnited Kingdom
| |
Collapse
|
44
|
Khoonsari PE, Häggmark A, Lönnberg M, Mikus M, Kilander L, Lannfelt L, Bergquist J, Ingelsson M, Nilsson P, Kultima K, Shevchenko G. Analysis of the Cerebrospinal Fluid Proteome in Alzheimer's Disease. PLoS One 2016; 11:e0150672. [PMID: 26950848 PMCID: PMC4780771 DOI: 10.1371/journal.pone.0150672] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 02/16/2016] [Indexed: 12/24/2022] Open
Abstract
Alzheimer’s disease is a neurodegenerative disorder accounting for more than 50% of cases of dementia. Diagnosis of Alzheimer’s disease relies on cognitive tests and analysis of amyloid beta, protein tau, and hyperphosphorylated tau in cerebrospinal fluid. Although these markers provide relatively high sensitivity and specificity for early disease detection, they are not suitable for monitor of disease progression. In the present study, we used label-free shotgun mass spectrometry to analyse the cerebrospinal fluid proteome of Alzheimer’s disease patients and non-demented controls to identify potential biomarkers for Alzheimer’s disease. We processed the data using five programs (DecyderMS, Maxquant, OpenMS, PEAKS, and Sieve) and compared their results by means of reproducibility and peptide identification, including three different normalization methods. After depletion of high abundant proteins we found that Alzheimer’s disease patients had lower fraction of low-abundance proteins in cerebrospinal fluid compared to healthy controls (p<0.05). Consequently, global normalization was found to be less accurate compared to using spiked-in chicken ovalbumin for normalization. In addition, we determined that Sieve and OpenMS resulted in the highest reproducibility and PEAKS was the programs with the highest identification performance. Finally, we successfully verified significantly lower levels (p<0.05) of eight proteins (A2GL, APOM, C1QB, C1QC, C1S, FBLN3, PTPRZ, and SEZ6) in Alzheimer’s disease compared to controls using an antibody-based detection method. These proteins are involved in different biological roles spanning from cell adhesion and migration, to regulation of the synapse and the immune system.
Collapse
Affiliation(s)
- Payam Emami Khoonsari
- Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden
| | - Anna Häggmark
- Affinity Proteomics, Science for Life Laboratory, School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Maria Lönnberg
- Analytical Chemistry, Department of Chemistry-BMC, Uppsala University, Uppsala, Sweden
| | - Maria Mikus
- Affinity Proteomics, Science for Life Laboratory, School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Lena Kilander
- Department of Public Health/Geriatrics, Uppsala University, Uppsala, Sweden
| | - Lars Lannfelt
- Department of Public Health/Geriatrics, Uppsala University, Uppsala, Sweden
| | - Jonas Bergquist
- Analytical Chemistry, Department of Chemistry-BMC, Uppsala University, Uppsala, Sweden
| | - Martin Ingelsson
- Department of Public Health/Geriatrics, Uppsala University, Uppsala, Sweden
| | - Peter Nilsson
- Affinity Proteomics, Science for Life Laboratory, School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Kim Kultima
- Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala, Sweden
- * E-mail:
| | - Ganna Shevchenko
- Analytical Chemistry, Department of Chemistry-BMC, Uppsala University, Uppsala, Sweden
| |
Collapse
|
45
|
Moya-Alvarado G, Gershoni-Emek N, Perlson E, Bronfman FC. Neurodegeneration and Alzheimer's disease (AD). What Can Proteomics Tell Us About the Alzheimer's Brain? Mol Cell Proteomics 2015; 15:409-25. [PMID: 26657538 DOI: 10.1074/mcp.r115.053330] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Indexed: 11/06/2022] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's diseases (AD), are becoming more prevalent as the population ages. However, the mechanisms that lead to synapse destabilization and neuron death remain elusive. The advent of proteomics has allowed for high-throughput screening methods to search for biomarkers that could lead to early diagnosis and treatment and to identify alterations in the cellular proteome that could provide insight into disease etiology and possible treatment avenues. In this review, we have concentrated mainly on the findings that are related to how and whether proteomics studies have contributed to two aspects of AD research, the development of biomarkers for clinical diagnostics, and the recognition of proteins that can help elucidate the pathways leading to AD brain pathology. As a result of these studies, several candidate cerebrospinal fluid biomarkers are now available for further validation in different AD cohorts. Studies in AD brain and AD transgenic models support the notion that oxidative damage results in the alterations of metabolic enzymes and that mitochondrial dysfunction is central to AD neuropathology.
Collapse
Affiliation(s)
- Guillermo Moya-Alvarado
- From the ‡Millennium Nucleus of Regenerative Biology (MINREB) and CARE Center, Department of Physiology,Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Noga Gershoni-Emek
- §Sagol School of Neuroscience and Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Israel
| | - Eran Perlson
- §Sagol School of Neuroscience and Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Israel
| | - Francisca C Bronfman
- From the ‡Millennium Nucleus of Regenerative Biology (MINREB) and CARE Center, Department of Physiology,Pontificia Universidad Católica de Chile, Santiago, Chile.;
| |
Collapse
|
46
|
Ramos-Miguel A, Hercher C, Beasley CL, Barr AM, Bayer TA, Falkai P, Leurgans SE, Schneider JA, Bennett DA, Honer WG. Loss of Munc18-1 long splice variant in GABAergic terminals is associated with cognitive decline and increased risk of dementia in a community sample. Mol Neurodegener 2015; 10:65. [PMID: 26628003 PMCID: PMC4667524 DOI: 10.1186/s13024-015-0061-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 11/24/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Presynaptic terminals contribute to cognitive reserve, balancing the effects of age-related pathologies on cognitive function in the elderly. The presynaptic protein Munc18-1, alternatively spliced into long (M18L) or short (M18S) isoforms, is a critical modulator of neurotransmission. While subtle alterations in Munc18-1 have been shown to cause severe neuropsychiatric disorders with cognitive impairment, little information is known regarding the specific roles of Munc18-1 splice variants. We first investigated functional and anatomical features evidencing the divergent roles of M18L and M18S, and then evaluated their contribution to the full range of age-related cognitive impairment in the dorsolateral prefrontal cortex of a large sample of participants from a community-based aging study, including subjects with no-(NCI, n = 90), or mild-(MCI, n = 86) cognitive impairment, or with clinical dementia (n = 132). Finally, we used APP23 mutant mice to study the association between M18L/S and the time-dependent accumulation of common Alzheimer's disease pathology. RESULTS Using isoform-specific antibodies, M18L was localized to the synaptosomal fraction, with a distribution matching lipid raft microdomains. M18S was found widely across cytosolic and synaptosomal compartments. Immunocytochemical studies identified M18L in perisomatic, GABAergic terminals, while M18S was broadly distributed in GABAergic and glutamatergic terminals. Using regression models taking into account multiple age-related pathologies, age, education and sex, global cognitive function was associated with the level of M18L (p = 0.006) but not M18S (p = 0.88). Mean M18L in dementia cases was 51 % lower than in NCI cases (p < 0.001), and each unit of M18L was associated with a lower likelihood of dementia (odds ratio = 0.68, 95 % confidence interval = 0.50-0.90, p = 0.008). In contrast, M18S balanced across clinical and pathologically diagnosed groups. M18L loss may not be caused by age-related amyloid pathology, since APP23 mice (12- and 22-months of age) had unchanged cortical levels of M18L/S compared with wild-type animals. CONCLUSIONS M18L was localized to presynaptic inhibitory terminals, and was associated with cognitive function and protection from dementia in an elderly, community-based cohort. Lower M18L in inhibitory presynaptic terminals may be an early, independent contributor to cognitive decline.
Collapse
Affiliation(s)
- Alfredo Ramos-Miguel
- Child and Family Research Institute, 938 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada. .,Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 2A1, Canada.
| | - Christa Hercher
- Child and Family Research Institute, 938 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada. .,Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 2A1, Canada.
| | - Clare L Beasley
- Child and Family Research Institute, 938 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada. .,Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 2A1, Canada.
| | - Alasdair M Barr
- Child and Family Research Institute, 938 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada. .,Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, 2176 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| | - Thomas A Bayer
- Department of Psychiatry, University Medicine Goettingen, von-Siebold-Strasse 5, D-37075, Goettingen, Germany.
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Nussbaumstrasse 7, D-80336, Munich, Germany.
| | - Sue E Leurgans
- Rush Alzheimer's Disease Center, Rush University Medical Center, 600S. Paulina Street, IL, 60612, Chicago, USA.
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, 600S. Paulina Street, IL, 60612, Chicago, USA.
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, 600S. Paulina Street, IL, 60612, Chicago, USA.
| | - William G Honer
- Child and Family Research Institute, 938 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada. .,Department of Psychiatry, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 2A1, Canada.
| |
Collapse
|
47
|
Proteomic analysis of neurons microdissected from formalin-fixed, paraffin-embedded Alzheimer's disease brain tissue. Sci Rep 2015; 5:15456. [PMID: 26487484 PMCID: PMC4614382 DOI: 10.1038/srep15456] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 09/25/2015] [Indexed: 12/22/2022] Open
Abstract
The vast majority of human tissue specimens are formalin-fixed, paraffin embedded (FFPE) archival samples, making this type of tissue a potential gold mine for medical research. It is now accepted that proteomics can be done using FFPE tissue and can generate similar results as snap-frozen tissue. However, the current methodology requires a large amount of starting protein, limiting the questions that can be answered in these types of proteomics studies and making cell-type specific proteomics studies difficult. Cell-type specific proteomics has the potential to greatly enhance understanding of cell functioning in both normal and disease states. Therefore, here we describe a new method that allows localized proteomics on individual cell populations isolated from FFPE tissue sections using laser capture microdissection. To demonstrate this technique we microdissected neurons from archived tissue blocks of the temporal cortex from patients with Alzheimer’s disease. Using this method we identified over 400 proteins in microdissected neurons; on average 78% that were neuronal and 50% that were associated with Alzheimer’s disease. Therefore, this technique is able to provide accurate and meaningful data and has great potential for any future study that wishes to perform localized proteomics using very small amounts of archived FFPE tissue.
Collapse
|
48
|
Corsetti V, Florenzano F, Atlante A, Bobba A, Ciotti MT, Natale F, Della Valle F, Borreca A, Manca A, Meli G, Ferraina C, Feligioni M, D'Aguanno S, Bussani R, Ammassari-Teule M, Nicolin V, Calissano P, Amadoro G. NH2-truncated human tau induces deregulated mitophagy in neurons by aberrant recruitment of Parkin and UCHL-1: implications in Alzheimer's disease. Hum Mol Genet 2015; 24:3058-81. [PMID: 25687137 DOI: 10.1093/hmg/ddv059] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 02/10/2015] [Indexed: 01/26/2023] Open
Abstract
Disarrangement in functions and quality control of mitochondria at synapses are early events in Alzheimer's disease (AD) pathobiology. We reported that a 20-22 kDa NH2-tau fragment mapping between 26 and 230 amino acids of the longest human tau isoform (aka NH2htau): (i) is detectable in cellular and animal AD models, as well in synaptic mitochondria and cerebrospinal fluids (CSF) from human AD subjects; (ii) is neurotoxic in primary hippocampal neurons; (iii) compromises the mitochondrial biology both directly, by inhibiting the ANT-1-dependent ADP/ATP exchange, and indirectly, by impairing their selective autophagic clearance (mitophagy). Here, we show that the extensive Parkin-dependent turnover of mitochondria occurring in NH2htau-expressing post-mitotic neurons plays a pro-death role and that UCHL-1, the cytosolic Ubiquitin-C-terminal hydrolase L1 which directs the physiological remodeling of synapses by controlling ubiquitin homeostasis, critically contributes to mitochondrial and synaptic failure in this in vitro AD model. Pharmacological or genetic suppression of improper mitophagy, either by inhibition of mitochondrial targeting to autophagosomes or by shRNA-mediated silencing of Parkin or UCHL-1 gene expression, restores synaptic and mitochondrial content providing partial but significant protection against the NH2htau-induced neuronal death. Moreover, in mitochondria from human AD synapses, the endogenous NH2htau is stably associated with Parkin and with UCHL-1. Taken together, our studies show a causative link between the excessive mitochondrial turnover and the NH2htau-induced in vitro neuronal death, suggesting that pathogenetic tau truncation may contribute to synaptic deterioration in AD by aberrant recruitment of Parkin and UCHL-1 to mitochondria making them more prone to detrimental autophagic clearance.
Collapse
Affiliation(s)
- V Corsetti
- Institute of Translational Pharmacology (IFT) - National Research Council (CNR), Via Fosso del Cavaliere 100-00133, Rome, Italy
| | - F Florenzano
- European Brain Research Institute (EBRI), Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - A Atlante
- Institute of Biomembranes and Bioenergetics (IBBE)-CNR, Via Amendola 165/A, 70126 Bari, Italy
| | - A Bobba
- Institute of Biomembranes and Bioenergetics (IBBE)-CNR, Via Amendola 165/A, 70126 Bari, Italy
| | - M T Ciotti
- Institute of Cellular Biology and Neuroscience (IBCN)-CNR, IRCSS Santa Lucia Foundation Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - F Natale
- Institute of Cellular Biology and Neuroscience (IBCN)-CNR, IRCSS Santa Lucia Foundation Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - F Della Valle
- Institute of Cellular Biology and Neuroscience (IBCN)-CNR, IRCSS Santa Lucia Foundation Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - A Borreca
- Institute of Cellular Biology and Neuroscience (IBCN)-CNR, IRCSS Santa Lucia Foundation Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - A Manca
- European Brain Research Institute (EBRI), Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - G Meli
- European Brain Research Institute (EBRI), Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - C Ferraina
- European Brain Research Institute (EBRI), Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - M Feligioni
- European Brain Research Institute (EBRI), Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - S D'Aguanno
- Institute of Cellular Biology and Neuroscience (IBCN)-CNR, IRCSS Santa Lucia Foundation Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - R Bussani
- UCO Pathological Anatomy and Histopathology Unit, Cattinara Hospital Strada di Fiume 447, 34149 Trieste, Italy and
| | - M Ammassari-Teule
- Institute of Cellular Biology and Neuroscience (IBCN)-CNR, IRCSS Santa Lucia Foundation Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - V Nicolin
- Department of Medical, Surgical and Health Science, University of Trieste, Strada di Fiume 449, 34149 Trieste, Italy
| | - P Calissano
- European Brain Research Institute (EBRI), Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - G Amadoro
- Institute of Translational Pharmacology (IFT) - National Research Council (CNR), Via Fosso del Cavaliere 100-00133, Rome, Italy European Brain Research Institute (EBRI), Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| |
Collapse
|
49
|
Shevchenko G, Konzer A, Musunuri S, Bergquist J. Neuroproteomics tools in clinical practice. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:705-17. [PMID: 25680928 DOI: 10.1016/j.bbapap.2015.01.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/30/2015] [Indexed: 12/13/2022]
Abstract
Neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS) are characterized by neuronal impairment that leads to disease-specific changes in the neuronal proteins. The early diagnosis of these disorders is difficult, thus, the need for identifying, developing and using valid clinically applicable biomarkers that meet the criteria of precision, specificity and repeatability is very vital. The application of rapidly emerging technology such as mass spectrometry (MS) in proteomics has opened new avenues to accelerate biomarker discovery, both for diagnostic as well as for prognostic purposes. This review summarizes the most recent advances in the mass spectrometry-based neuroproteomics and analyses the current and future directions in the biomarker discovery for the neurodegenerative diseases. This article is part of a Special Issue entitled: Neuroproteomics: Applications in Neuroscience and Neurology.
Collapse
Affiliation(s)
- Ganna Shevchenko
- Analytical Chemistry, Department of Chemistry-BMC and SciLife Lab, Uppsala University, 75124 Uppsala, Sweden
| | - Anne Konzer
- Analytical Chemistry, Department of Chemistry-BMC and SciLife Lab, Uppsala University, 75124 Uppsala, Sweden
| | - Sravani Musunuri
- Analytical Chemistry, Department of Chemistry-BMC and SciLife Lab, Uppsala University, 75124 Uppsala, Sweden
| | - Jonas Bergquist
- Analytical Chemistry, Department of Chemistry-BMC and SciLife Lab, Uppsala University, 75124 Uppsala, Sweden.
| |
Collapse
|
50
|
Brinkmalm A, Portelius E, Öhrfelt A, Brinkmalm G, Andreasson U, Gobom J, Blennow K, Zetterberg H. Explorative and targeted neuroproteomics in Alzheimer's disease. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:769-78. [PMID: 25619854 DOI: 10.1016/j.bbapap.2015.01.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 12/23/2014] [Accepted: 01/16/2015] [Indexed: 01/08/2023]
Abstract
Alzheimer's disease (AD) is a progressive brain amyloidosis that injures brain regions involved in memory consolidation and other higher brain functions. Neuropathologically, the disease is characterized by accumulation of a 42 amino acid peptide called amyloid β (Aβ42) in extracellular senile plaques, intraneuronal inclusions of hyperphosphorylated tau protein in neurofibrillary tangles, and neuronal and axonal degeneration and loss. Biomarker assays capturing these pathologies have been developed for use on cerebrospinal fluid samples but there are additional molecular pathways that most likely contribute to the neurodegeneration and full clinical expression of AD. One way of learning more about AD pathogenesis is to identify novel biomarkers for these pathways and examine them in longitudinal studies of patients in different stages of the disease. Here, we discuss targeted proteomic approaches to study AD and AD-related pathologies in closer detail and explorative approaches to discover novel pathways that may contribute to the disease. This article is part of a Special Issue entitled: Neuroproteomics: Applications in neuroscience and neurology.
Collapse
Affiliation(s)
- Ann Brinkmalm
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, S-431 80 Mölndal, Sweden.
| | - Erik Portelius
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, S-431 80 Mölndal, Sweden
| | - Annika Öhrfelt
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, S-431 80 Mölndal, Sweden
| | - Gunnar Brinkmalm
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, S-431 80 Mölndal, Sweden
| | - Ulf Andreasson
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, S-431 80 Mölndal, Sweden
| | - Johan Gobom
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, S-431 80 Mölndal, Sweden
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, S-431 80 Mölndal, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, S-431 80 Mölndal, Sweden; UCL Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom.
| |
Collapse
|