1
|
Kim SK, Suebka S, Gin A, Nguyen PD, Tang Y, Su J, Goddard WA. Methotrexate Inhibits the Binding of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Receptor Binding Domain to the Host-Cell Angiotensin-Converting Enzyme-2 (ACE-2) Receptor. ACS Pharmacol Transl Sci 2024; 7:348-362. [PMID: 38357278 PMCID: PMC10863433 DOI: 10.1021/acsptsci.3c00197] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/21/2023] [Accepted: 12/29/2023] [Indexed: 02/16/2024]
Abstract
As the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus mutates, finding effective drugs becomes more challenging. In this study, we use ultrasensitive frequency locked microtoroid optical resonators in combination with in silico screening to search for COVID-19 drugs that can stop the virus from attaching to the human angiotensin-converting enzyme 2 (hACE2) receptor in the lungs. We found 29 promising candidates that could block the binding site and selected four of them that were likely to bind very strongly. We tested three of these candidates using frequency locked optical whispering evanescent resonator (FLOWER), a label-free sensing method based on microtoroid resonators. FLOWER has previously been used for sensing single macromolecules. Here we show, for the first time, that FLOWER can provide accurate binding affinities and sense the inhibition effect of small molecule drug candidates without labels, which can be prohibitive in drug discovery. One of the candidates, methotrexate, showed binding to the spike protein 1.8 million times greater than that to the receptor binding domain (RBD) binding to hACE2, making it difficult for the virus to enter cells. We tested methotrexate against different variants of the SARS-CoV-2 virus and found that it is effective against all four of the tested variants. People taking methotrexate for other conditions have also shown protection against the original SARS-CoV-2 virus. Normally, it is assumed that methotrexate inhibits the replication and release of the virus. However, our findings suggest that it may also block the virus from entering cells. These studies additionally demonstrate the possibility of extracting candidate ligands from large databases, followed by direct receptor-ligand binding experiments on the best candidates using microtoroid resonators, thus creating a workflow that enables the rapid discovery of new drug candidates for a variety of applications.
Collapse
Affiliation(s)
- Soo-Kyung Kim
- Materials
and Process Simulation Center, California
Institute of Technology, Pasadena, California 91125, United States
| | - Sartanee Suebka
- Wyant
College of Optical Sciences, The University
of Arizona, Tucson, Arizona 85721, United States
| | - Adley Gin
- Wyant
College of Optical Sciences, The University
of Arizona, Tucson, Arizona 85721, United States
- Department
of Biomedical Engineering, The University
of Arizona, Tucson, Arizona 85721, United States
| | - Phuong-Diem Nguyen
- Department
of Biomedical Engineering, The University
of Arizona, Tucson, Arizona 85721, United States
| | - Yisha Tang
- Department
of Biomedical Engineering, The University
of Arizona, Tucson, Arizona 85721, United States
| | - Judith Su
- Wyant
College of Optical Sciences, The University
of Arizona, Tucson, Arizona 85721, United States
| | - William A. Goddard
- Materials
and Process Simulation Center, California
Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
2
|
Plouffe B, Karamitri A, Flock T, Gallion JM, Houston S, Daly CA, Bonnefond A, Guillaume JL, Le Gouill C, Froguel P, Lichtarge O, Deupi X, Jockers R, Bouvier M. Structural Elements Directing G Proteins and β-Arrestin Interactions with the Human Melatonin Type 2 Receptor Revealed by Natural Variants. ACS Pharmacol Transl Sci 2022; 5:89-101. [PMID: 35846981 PMCID: PMC9281605 DOI: 10.1021/acsptsci.1c00239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
G protein-coupled receptors (GPCRs) can engage distinct subsets of signaling pathways, but the structural determinants of this functional selectivity remain elusive. The naturally occurring genetic variants of GPCRs, selectively affecting different pathways, offer an opportunity to explore this phenomenon. We previously identified 40 coding variants of the MTNR1B gene encoding the melatonin MT2 receptor (MT2). These mutations differently impact the β-arrestin 2 recruitment, ERK activation, cAMP production, and Gαi1 and Gαz activation. In this study, we combined functional clustering and structural modeling to delineate the molecular features controlling the MT2 functional selectivity. Using non-negative matrix factorization, we analyzed the signaling signatures of the 40 MT2 variants yielding eight clusters defined by unique signaling features and localized in distinct domains of MT2. Using computational homology modeling, we describe how specific mutations can selectively affect the subsets of signaling pathways and offer a proof of principle that natural variants can be used to explore and understand the GPCR functional selectivity.
Collapse
Affiliation(s)
- Bianca Plouffe
- Department
of Biochemistry and Molecular Medicine, Université de Montréal, H3T 1J4 Montréal, Québec, Canada,Institute
for Research in Immunology and Cancer, Université
de Montréal, H3T 1J4 Montréal, Québec, Canada,The Wellcome-Wolfson
Institute for Experimental Medicine, Queen’s
University Belfast, BT9 7BL Belfast, U.K.
| | - Angeliki Karamitri
- Université
de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France
| | - Tilman Flock
- Laboratory
of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland,Department
of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Jonathan M. Gallion
- Program
in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, 77030 Houston, Texas, United States
| | - Shane Houston
- The Wellcome-Wolfson
Institute for Experimental Medicine, Queen’s
University Belfast, BT9 7BL Belfast, U.K.
| | - Carole A. Daly
- The Wellcome-Wolfson
Institute for Experimental Medicine, Queen’s
University Belfast, BT9 7BL Belfast, U.K.
| | - Amélie Bonnefond
- Université
de Lille, INSERM/CNRS UMR 1283/8199—EGID, Institut Pasteur
de Lille, CHU de Lille, 59045 Lille, France
| | - Jean-Luc Guillaume
- Université
de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France
| | - Christian Le Gouill
- Institute
for Research in Immunology and Cancer, Université
de Montréal, H3T 1J4 Montréal, Québec, Canada
| | - Phillipe Froguel
- Université
de Lille, INSERM/CNRS UMR 1283/8199—EGID, Institut Pasteur
de Lille, CHU de Lille, 59045 Lille, France
| | - Olivier Lichtarge
- Program
in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, 77030 Houston, Texas, United States,Department
of Molecular and Human Genetics, Baylor
College of Medicine, 77030 Houston, Texas, United States
| | - Xavier Deupi
- Laboratory
of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland,Condensed
Matter Theory Group, Division of Scientific Computing, Theory, and
Data, Paul Scherrer Institute, 5232 Villigen, Switzerland,. Phone: +41-563103337
| | - Ralf Jockers
- Université
de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France,. Phone: +33-140516434
| | - Michel Bouvier
- Department
of Biochemistry and Molecular Medicine, Université de Montréal, H3T 1J4 Montréal, Québec, Canada,Institute
for Research in Immunology and Cancer, Université
de Montréal, H3T 1J4 Montréal, Québec, Canada,. Phone: 1-514-343-6319
| |
Collapse
|
3
|
Abrol R, Serrano E, Santiago LJ. Development of enhanced conformational sampling methods to probe the activation landscape of GPCRs. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 128:325-359. [PMID: 35034722 PMCID: PMC11476118 DOI: 10.1016/bs.apcsb.2021.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
G protein-coupled receptors (GPCRs) make up the largest superfamily of integral membrane proteins and play critical signal transduction roles in many physiological processes. Developments in molecular biology, biophysical, biochemical, pharmacological, and computational techniques aimed at these important therapeutic targets are beginning to provide unprecedented details on the structural as well as functional basis of their pleiotropic signaling mediated by G proteins, β arrestins, and other transducers. This pleiotropy presents a pharmacological challenge as the same ligand-receptor interaction can cause a therapeutic effect as well as an undesirable on-target side-effect through different downstream pathways. GPCRs don't function as simple binary on-off switches but as finely tuned shape-shifting machines described by conformational ensembles, where unique subsets of conformations may be responsible for specific signaling cascades. X-ray crystallography and more recently cryo-electron microscopy are providing snapshots of some of these functionally-important receptor conformations bound to ligands and/or transducers, which are being utilized by computational methods to describe the dynamic conformational energy landscape of GPCRs. In this chapter, we review the progress in computational conformational sampling methods based on molecular dynamics and discrete sampling approaches that have been successful in complementing biophysical and biochemical studies on these receptors in terms of their activation mechanisms, allosteric effects, actions of biased ligands, and effects of pathological mutations. Some of the sampled simulation time scales are beginning to approach receptor activation time scales. The list of conformational sampling methods and example uses discussed is not exhaustive but includes representative examples that have pushed the limits of classical molecular dynamics and discrete sampling methods to describe the activation energy landscape of GPCRs.
Collapse
Affiliation(s)
- Ravinder Abrol
- Department of Chemistry and Biochemistry, California State University, Northridge, CA, United States.
| | - Erik Serrano
- Department of Chemistry and Biochemistry, California State University, Northridge, CA, United States
| | - Luis Jaimes Santiago
- Department of Chemistry and Biochemistry, California State University, Northridge, CA, United States
| |
Collapse
|
4
|
Jang J, Kim SK, Guthrie B, Goddard WA. Synergic Effects in the Activation of the Sweet Receptor GPCR Heterodimer for Various Sweeteners Predicted Using Molecular Metadynamics Simulations. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12250-12261. [PMID: 34613740 DOI: 10.1021/acs.jafc.1c03779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The sweet taste is elicited by activation of the TAS1R2/1R3 heterodimer G protein-coupled receptor. This is a therapeutic target for treatment of obesity and metabolic dysfunctions. Sweetener blends provide attractive strategies to lower the sugar level while preserving the attractive taste of food. To understand the synergic effect of various sweetener blend combinations of artificial and natural sweeteners, we carried out our molecular dynamics studies using predicted structures of the TAS1R2/1R3 heterodimer and predicted structures for the sweeteners. We used as a measure of activation the intracellular ionic lock distance between transmembrane helices 3 and 6 of TAS1R3. We find that full synergic combinations [rebaudioside A (Reb-A)/acesulfame K and Reb-A/sucralose] and partial synergic combinations (sucralose/acesulfame K) show significantly more negative changes in the free energy compared to single-ligand cases, while a pair known to be suppressive (saccharin and acesulfame K) shows significantly less changes than for the single-ligand case. This study provides an atomistic understanding of the mechanism for synergy and identifies new combinations of sweeteners to reduce the caloric content for treating diseases.
Collapse
Affiliation(s)
- Jaewan Jang
- Materials and Process Simulation Center (139-74), California Institute of Technology, Pasadena, California 91125, United States
| | - Soo-Kyung Kim
- Materials and Process Simulation Center (139-74), California Institute of Technology, Pasadena, California 91125, United States
| | - Brian Guthrie
- Cargill Global Core Research, Wayzata, Minnesota 55391, United States
| | - William A Goddard
- Materials and Process Simulation Center (139-74), California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
5
|
Mafi A, Kim SK, Chou KC, Güthrie B, Goddard WA. Predicted Structure of Fully Activated Tas1R3/1R3' Homodimer Bound to G Protein and Natural Sugars: Structural Insights into G Protein Activation by a Class C Sweet Taste Homodimer with Natural Sugars. J Am Chem Soc 2021; 143:16824-16838. [PMID: 34585929 DOI: 10.1021/jacs.1c08839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The Tas1R3 G protein-coupled receptor constitutes the main component of sweet taste sensory response in humans via forming a heterodimer with Tas1R2 or a homodimer with Tas1R3. The Tas1R3/1R3' homodimer serves as a low-affinity sweet taste receptor, stimulating gustducin G protein (GGust) signaling in the presence of a high concentration of natural sugars. This provides an additional means to detect the taste of natural sugars, thereby differentiating the flavors between natural sugars and artificial sweeteners. We report here the predicted 3D structure of active state Tas1R3/1R3' homodimer complexed with heterotrimeric GGust and sucrose. We discovered that the GGust makes ionic anchors to intracellular loops 1 and 2 of Tas1R3 while the Gα-α5 helix engages the cytoplasmic region extensively through salt bridge and hydrophobic interactions. We show that in the activation of this complex the Venus flytrap domains of the homodimer undergo a remarkable twist up to ∼100° rotation around the vertical axis to adopt a closed-closed conformation while the intracellular region relaxes to an open-open conformation. We find that binding of sucrose to the homodimer stabilizes a preactivated conformation with a largely open intracellular region that recruits and activates the GGust. Upon activation, the Gα subunit spontaneously opens up the nucleotide-binding site, making nucleotide exchange facile for signaling. This activation of GGust promotes the interdomain twist of the Venus flytrap domains. These structures and transformations could potentially be a basis for the design of new sweeteners with higher activity and less unpleasant flavors.
Collapse
Affiliation(s)
- Amirhossein Mafi
- Materials and Process Simulation Center (139-74), California Institute of Technology, Pasadena, California 91125, United States
| | - Soo-Kyung Kim
- Materials and Process Simulation Center (139-74), California Institute of Technology, Pasadena, California 91125, United States
| | - Keng C Chou
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Brian Güthrie
- Cargill Global Food Research, Wayzata, Minnesota 55391, United States
| | - William A Goddard
- Materials and Process Simulation Center (139-74), California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
6
|
Yang MY, Kim SK, Kim D, Liggett SB, Goddard WA. Structures and Agonist Binding Sites of Bitter Taste Receptor TAS2R5 Complexed with Gi Protein and Validated against Experiment. J Phys Chem Lett 2021; 12:9293-9300. [PMID: 34542294 PMCID: PMC8650975 DOI: 10.1021/acs.jpclett.1c02162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bitter taste receptors (TAS2Rs) function in taste perception, but are also expressed in many extraoral tissues, presenting attractive therapeutic targets. TAS2R5s expressed on human airway smooth muscle cells can induce bronchodilation for treating asthma and other obstructive diseases. But TAS2R5s display low agonist affinity and the lack of a 3D structure has hindered efforts to design more active ligands. We report the structure of the activated TAS2R5 coupled to the Gi protein and bound to each of 19 agonists, using computational approaches. These agonists bind to two polar residues in TM3 that are unique for TAS2R5 among 25 TAS2R subtypes. Our predicted results correlate well with experimental results of agonist-receptor signaling coefficients, providing validation of the predicted structure. These results provide highly specific data on how agonists activate TAS2R5, how modifications of ligand structure alter receptor activation, and a guide to structure-based drug design.
Collapse
Affiliation(s)
- Moon Young Yang
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA, 91125
| | - Soo-Kyung Kim
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA, 91125
| | - Donghwa Kim
- Department of Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, Florida, 33602
| | - Stephen B. Liggett
- Department of Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, Florida, 33602
- Departments of Medicine and Molecular Pharmacology and Physiology, Medical Engineering, and Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, Florida, 33602
| | - William A. Goddard
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA, 91125
| |
Collapse
|
7
|
Predicted structure of fully activated human bitter taste receptor TAS2R4 complexed with G protein and agonists. QRB DISCOVERY 2021. [PMID: 37529671 PMCID: PMC10392674 DOI: 10.1017/qrd.2021.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Abstract
Bitter taste is sensed by bitter taste receptors (TAS2Rs) that belong to the G protein-coupled receptor (GPCR) superfamily. In addition to bitter taste perception, TAS2Rs have been reported recently to be expressed in many extraoral tissues and are now known to be involved in health and disease. Despite important roles of TAS2Rs in biological functions and diseases, no crystal structure is available to help understand the signal transduction mechanism or to help develop selective ligands as new therapeutic targets. We report here the three-dimensional structure of the fully activated TAS2R4 human bitter taste receptor predicted using the GEnSeMBLE complete sampling method. This TAS2R4 structure is coupled to the gustducin G protein and to each of several agonists. We find that the G protein couples to TAS2R4 by forming strong salt bridges to each of the three intracellular loops, orienting the activated Gα5 helix of the Gα subunit to interact extensively with the cytoplasmic region of the activated receptor. We find that the TAS2Rs exhibit unique motifs distinct from typical Class A GPCRs, leading to a distinct activation mechanism and a less stable inactive state. This fully activated bitter taste receptor complex structure provides insight into the signal transduction mechanism and into ligand binding to TAS2Rs.
Collapse
|
8
|
Rodríguez-Rodríguez I, Kalafut J, Czerwonka A, Rivero-Müller A. A novel bioassay for quantification of surface Cannabinoid receptor 1 expression. Sci Rep 2020; 10:18191. [PMID: 33097803 PMCID: PMC7584592 DOI: 10.1038/s41598-020-75331-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 10/14/2020] [Indexed: 12/04/2022] Open
Abstract
The cannabinoid receptor type 1 (CB1) plays critical roles in multiple physiological processes such as pain perception, brain development and body temperature regulation. Mutations on this gene (CNR1), results in altered functionality and/or biosynthesis such as reduced membrane expression, changes in mRNA stability or changes in downstream signaling that act as triggers for diseases such as obesity, Parkinson’s, Huntington’s, among others; thus, it is considered as a potential pharmacological target. To date, multiple quantification methods have been employed to determine how these mutations affect receptor expression and localization; however, they present serious disadvantages that may arise quantifying errors. Here, we describe a sensitive bioassay to quantify receptor surface expression; in this bioassay the Gaussia Luciferase (GLuc) was fused to the extracellular portion of the CB1. The GLuc activity was assessed by coelenterazine addition to the medium followed by immediate readout. Based on GLuc activity assay, we show that the GLuc signals corelate with CB1 localization, besides, we showed the assay’s functionality and reliability by comparing its results with those generated by previously reported mutations on the CNR1 gene and by using flow cytometry to determine the cell surface receptor expression. Detection of membrane-bound CB1, and potentially other GPCRs, is able to quickly screen for receptor levels and help to understand the effect of clinically relevant mutations or polymorphisms.
Collapse
Affiliation(s)
| | - Joanna Kalafut
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Arkadiusz Czerwonka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland.,Department of Virology and Immunology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland.
| |
Collapse
|
9
|
Beckner RL, Zoubak L, Hines KG, Gawrisch K, Yeliseev AA. Probing thermostability of detergent-solubilized CB 2 receptor by parallel G protein-activation and ligand-binding assays. J Biol Chem 2020; 295:181-190. [PMID: 31776188 PMCID: PMC6952600 DOI: 10.1074/jbc.ra119.010696] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/22/2019] [Indexed: 11/06/2022] Open
Abstract
G protein-coupled receptors (GPCRs) comprise a large class of integral membrane proteins involved in the regulation of a broad spectrum of physiological processes and are a major target for pharmaceutical drug development. Structural studies can help advance the rational design of novel specific pharmaceuticals that target GPCRs, but such studies require expression of significant quantities of these proteins in pure, homogenous, and sufficiently stable form. An essential precursor for these structural studies is an assessment of protein stability under experimental conditions. Here we report that solubilization of a GPCR, type II cannabinoid receptor CB2, in a Façade detergent enables radioligand thermostability assessments of this receptor with low background from nonspecific interactions with lipophilic cannabinoid ligand. Furthermore, this detergent is compatible with a [35S]GTPγS radionucleotide exchange assay measuring guanine exchange factor activity that can be applied after heat treatment to further assess receptor thermostability. We demonstrate that both assays can be utilized to determine differences in CB2 thermostability caused by mutations, detergent composition, and the presence of stabilizing ligands. We report that a constitutively active CB2 variant has higher thermostability than the WT receptor, a result that differs from a previous thermostability assessment of the analogous CB1 mutation. We conclude that both ligand-binding and activity-based assays under optimized detergent conditions can support selection of thermostable variants of experimentally demanding GPCRs.
Collapse
Affiliation(s)
- Ryan L Beckner
- NIAAA, National Institutes of Health, Bethesda, Maryland 208521
| | | | - Kirk G Hines
- NIAAA, National Institutes of Health, Bethesda, Maryland 208521
| | - Klaus Gawrisch
- NIAAA, National Institutes of Health, Bethesda, Maryland 208521
| | | |
Collapse
|
10
|
Understanding G Protein Selectivity of Muscarinic Acetylcholine Receptors Using Computational Methods. Int J Mol Sci 2019; 20:ijms20215290. [PMID: 31653051 PMCID: PMC6862617 DOI: 10.3390/ijms20215290] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/17/2019] [Accepted: 10/24/2019] [Indexed: 11/18/2022] Open
Abstract
The neurotransmitter molecule acetylcholine is capable of activating five muscarinic acetylcholine receptors, M1 through M5, which belong to the superfamily of G-protein-coupled receptors (GPCRs). These five receptors share high sequence and structure homology; however, the M1, M3, and M5 receptor subtypes signal preferentially through the Gαq/11 subset of G proteins, whereas the M2 and M4 receptor subtypes signal through the Gαi/o subset of G proteins, resulting in very different intracellular signaling cascades and physiological effects. The structural basis for this innate ability of the M1/M3/M5 set of receptors and the highly homologous M2/M4 set of receptors to couple to different G proteins is poorly understood. In this study, we used molecular dynamics (MD) simulations coupled with thermodynamic analyses of M1 and M2 receptors coupled to both Gαi and Gαq to understand the structural basis of the M1 receptor’s preference for the Gαq protein and the M2 receptor’s preference for the Gαi protein. The MD studies showed that the M1 and M2 receptors can couple to both Gα proteins such that the M1 receptor engages with the two Gα proteins in slightly different orientations and the M2 receptor engages with the two Gα proteins in the same orientation. Thermodynamic studies of the free energy of binding of the receptors to the Gα proteins showed that the M1 and M2 receptors bind more strongly to their cognate Gα proteins compared to their non-cognate ones, which is in line with previous experimental studies on the M3 receptor. A detailed analysis of receptor–G protein interactions showed some cognate-complex-specific interactions for the M2:Gαi complex; however, G protein selectivity determinants are spread over a large overlapping subset of residues. Conserved interaction between transmembrane helices 5 and 6 far away from the G-protein-binding receptor interface was found only in the two cognate complexes and not in the non-cognate complexes. An analysis of residues implicated previously in G protein selectivity, in light of the cognate and non-cognate structures, shaded a more nuanced role of those residues in affecting G protein selectivity. The simulation of both cognate and non-cognate receptor–G protein complexes fills a structural gap due to difficulties in determining non-cognate complex structures and provides an enhanced framework to probe the mechanisms of G protein selectivity exhibited by most GPCRs.
Collapse
|
11
|
Jeong P, Kim SK, Li Q, Oh SJ, Son S, Chen G, Tan H, Kim S, Park JH, Park KD, Kim YO, Yoon MH, Kim YC, Goddard WA. Discovery of Novel Biased Opioid Receptor Ligands through Structure-Based Pharmacophore Virtual Screening and Experiment. ChemMedChem 2019; 14:1783-1794. [PMID: 31359587 DOI: 10.1002/cmdc.201900418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Indexed: 11/08/2022]
Abstract
Gi -protein-biased agonists with minimal β-arrestin recruitment represent opportunities to overcome the serious adverse effects of human mu opioid receptor (μ-OR) agonists and developing alternative and safe treatments for pain. In order to discover novel non-morphinan opioid receptor agonists, we applied hierarchical virtual screening of our in-house database against a pharmacophore based on modeling the active conformations of opioid receptors. We discovered an initial hit compound, a novel μ-OR agonist with a pyrazoloisoquinoline scaffold. We applied computational R-group screening to this compound and synthesized 14 derivatives predicted to be the best. Of these, a new Gi -protein-biased compound, 1-{5-(3-chlorophenyl)-7,8-dimethoxy-3-[4-(methylsulfonyl)benzyl]-3H-pyrazolo[3,4-c]isoquinolin-1-yl}-N,N-dimethylmethanamine, showed an EC50 value of 179 nm against the μ-OR. This resulted in significant pain relief for mice in the phase II period of formalin response tests. This study provides a new strategy to identify diverse sets of promising compounds that might prove useful for the development of drugs that target other G-protein-coupled receptors.
Collapse
Affiliation(s)
- Pyeonghwa Jeong
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, 61005, South Korea
| | - Soo-Kyung Kim
- Materials and Process Simulation Center (MC-139-74), California Institute of Technology, Pasadena, California, 91125, USA
| | - Quanjie Li
- Materials and Process Simulation Center (MC-139-74), California Institute of Technology, Pasadena, California, 91125, USA.,College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China.,Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, 100050, P. R. China
| | - Su-Jin Oh
- School of Life Sciences, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, 61005, South Korea
| | - Seonil Son
- School of Life Sciences, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, 61005, South Korea
| | - Guangju Chen
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Hongwei Tan
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Siwon Kim
- Convergence Research Center for Diagnosis, Treatment, and Care system of Dementia, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea.,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, South Korea
| | - Jong-Hyun Park
- Convergence Research Center for Diagnosis, Treatment, and Care system of Dementia, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea
| | - Ki Duk Park
- Convergence Research Center for Diagnosis, Treatment, and Care system of Dementia, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea.,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, South Korea.,KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, 02447, South Korea
| | - Yeo Ok Kim
- Department of Anesthesiology and Pain Medicine, Medical School, Chonnam National University, Gwangju, 501-757, South Korea
| | - Myung Ha Yoon
- Department of Anesthesiology and Pain Medicine, Medical School, Chonnam National University, Gwangju, 501-757, South Korea
| | - Yong-Chul Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, 61005, South Korea.,School of Life Sciences, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, 61005, South Korea
| | - William A Goddard
- Materials and Process Simulation Center (MC-139-74), California Institute of Technology, Pasadena, California, 91125, USA
| |
Collapse
|
12
|
Díaz Ó, Dalton JAR, Giraldo J. Revealing the Mechanism of Agonist-Mediated Cannabinoid Receptor 1 (CB1) Activation and Phospholipid-Mediated Allosteric Modulation. J Med Chem 2019; 62:5638-5654. [DOI: 10.1021/acs.jmedchem.9b00612] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Óscar Díaz
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, 08193 Bellaterra, Spain
| | - James A. R. Dalton
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, 08193 Bellaterra, Spain
| | - Jesús Giraldo
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, 08193 Bellaterra, Spain
| |
Collapse
|
13
|
Wickert M, Hildick KL, Baillie GL, Jelinek R, Aparisi Rey A, Monory K, Schneider M, Ross RA, Henley JM, Lutz B. The F238L Point Mutation in the Cannabinoid Type 1 Receptor Enhances Basal Endocytosis via Lipid Rafts. Front Mol Neurosci 2018; 11:230. [PMID: 30026687 PMCID: PMC6041392 DOI: 10.3389/fnmol.2018.00230] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/12/2018] [Indexed: 11/22/2022] Open
Abstract
Defining functional domains and amino acid residues in G protein coupled receptors (GPCRs) represent an important way to improve rational drug design for this major class of drug targets. The cannabinoid type 1 (CB1) receptor is one of the most abundant GPCRs in the central nervous system and is involved in many physiological and pathophysiological processes. Interestingly, cannabinoid type 1 receptor with a phenylalanine 238 to leucine mutation (CB1F238L) has been already linked to a number of both in vitro and in vivo alterations. While CB1F238L causes significantly reduced presynaptic neurotransmitter release at the cellular level, behaviorally this mutation induces increased risk taking, social play behavior and reward sensitivity in rats. However, the molecular mechanisms underlying these changes are not fully understood. In this study, we tested whether the F238L mutation affects trafficking and axonal/presynaptic polarization of the CB1 receptor in vitro. Steady state or ligand modulated surface expression and lipid raft association was analyzed in human embryonic kidney 293 (HEK293) cells stably expressing either wild-type cannabinoid type 1 receptor (CB1wt) or CB1F238L receptor. Axonal/presynaptic polarization of the CB1F238L receptor was assessed in transfected primary hippocampal neurons. We show that in vitro the CB1F238L receptor displays increased association with lipid rafts, which coincides with increased lipid raft mediated constitutive endocytosis, leading to a reduction in steady state surface expression of the CB1F238L receptor. Furthermore, the CB1F238L receptor showed increased axonal polarization in primary hippocampal neurons. These data demonstrate that endocytosis of the CB1 receptor is an important mediator of axonal/presynaptic polarization and that phenylalanine 238 plays a key role in CB1 receptor trafficking and axonal polarization.
Collapse
Affiliation(s)
- Melanie Wickert
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Keri L Hildick
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Gemma L Baillie
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Ruth Jelinek
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Alejandro Aparisi Rey
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Krisztina Monory
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Miriam Schneider
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of Psychology, University of Heidelberg, Heidelberg, Germany
| | - Ruth A Ross
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jeremy M Henley
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.,German Resilience Center (DRZ), University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
14
|
Shankar V, Goddard WA, Kim SK, Abrol R, Liu F. The 3D Structure of Human DP Prostaglandin G-Protein-Coupled Receptor Bound to Cyclopentanoindole Antagonist, Predicted Using the DuplexBiHelix Modification of the GEnSeMBLE Method. J Chem Theory Comput 2018; 14:1624-1642. [PMID: 29268008 DOI: 10.1021/acs.jctc.7b00842] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Prostaglandins play a critical physiological role in both cardiovascular and immune systems, acting through their interactions with 9 prostanoid G protein-coupled receptors (GPCRs). These receptors are important therapeutic targets for a variety of diseases including arthritis, allergies, type 2 diabetes, and cancer. The DP prostaglandin receptor is of interest because it has unique structural and physiological properties. Most notably, DP does not have the 3-6 ionic lock common to Class A GPCRs. However, the lack of X-ray structures for any of the 9 prostaglandin GPCRs hampers the application of structure-based drug design methods to develop more selective and active medications to specific receptors. We predict here 3D structures for the DP prostaglandin GPCR, based on the GEnSeMBLE complete sampling with hierarchical scoring (CS-HS) methodology. This involves evaluating the energy of 13 trillion packings to finally select the best 20 that are stable enough to be relevant for binding to antagonists, agonists, and modulators. To validate the predicted structures, we predict the binding site for the Merck cyclopentanoindole (CPI) selective antagonist docked to DP. We find that the CPI binds vertically in the 1-2-7 binding pocket, interacting favorably with residues R3107.40 and K762.54 with additional interactions with S3137.43, S3167.46, S191.35, etc. This binding site differs significantly from that of antagonists to known Class A GPCRs where the ligand binds in the 3-4-5-6 region. We find that the predicted binding site leads to reasonable agreement with experimental Structure-Activity Relationship (SAR). We suggest additional mutation experiments including K762.54, E1293.49, L1233.43, M2706.40, F2746.44 to further validate the structure, function, and activation mechanism of receptors in the prostaglandin family. Our structures and binding sites are largely consistent and improve upon the predictions by Li et al. ( J. Am. Chem. Soc. 2007 , 129 ( 35 ), 10720 ) that used our earlier MembStruk prediction methodology.
Collapse
Affiliation(s)
- Vishnu Shankar
- Materials and Process Simulation Center (139-74) , California Institute of Technology , 1200 E. California Blvd. , Pasadena , California 91125 , United States
| | - William A Goddard
- Materials and Process Simulation Center (139-74) , California Institute of Technology , 1200 E. California Blvd. , Pasadena , California 91125 , United States
| | - Soo-Kyung Kim
- Materials and Process Simulation Center (139-74) , California Institute of Technology , 1200 E. California Blvd. , Pasadena , California 91125 , United States
| | - Ravinder Abrol
- Materials and Process Simulation Center (139-74) , California Institute of Technology , 1200 E. California Blvd. , Pasadena , California 91125 , United States
| | - Fan Liu
- Materials and Process Simulation Center (139-74) , California Institute of Technology , 1200 E. California Blvd. , Pasadena , California 91125 , United States
| |
Collapse
|
15
|
Dong SS, Goddard WA, Abrol R. Conformational and Thermodynamic Landscape of GPCR Activation from Theory and Computation. Biophys J 2017; 110:2618-2629. [PMID: 27332120 DOI: 10.1016/j.bpj.2016.04.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/12/2016] [Accepted: 04/13/2016] [Indexed: 01/09/2023] Open
Abstract
We present a hybrid computational methodology to predict multiple energetically accessible conformations for G protein-coupled receptors (GPCRs) that might play a role in binding to ligands and different signaling partners. To our knowledge, this method, termed ActiveGEnSeMBLE, enables the first quantitative energy profile for GPCR activation that is consistent with the qualitative profile deduced from experiments. ActiveGEnSeMBLE starts with a systematic coarse grid sampling of helix tilts/rotations (∼13 trillion transmembrane-domain conformations) and selects the conformational landscape based on energy. This profile identifies multiple potential active-state energy wells, with the TM3-TM6 intracellular distance as an approximate activation coordinate. These energy wells are then sampled locally using a finer grid to find locally minimized conformation in each energy well. We validate this strategy using the inactive and active experimental structures of β2 adrenergic receptor (hβ2AR) and M2 muscarinic acetylcholine receptor. Structures of membrane-embedded hβ2AR along its activation coordinate are subjected to molecular-dynamics simulations for relaxation and interaction energy analysis to generate a quantitative energy landscape for hβ2AR activation. This landscape reveals several metastable states along this coordinate, indicating that for hβ2AR, the agonist alone is not enough to stabilize the active state and that the G protein is necessary, consistent with experimental observations. The method's application to somatostatin receptor SSTR5 (no experimental structure available) shows that to predict an active conformation it is better to start from an inactive structure template based on a close homolog than to start from an active template based on a distant homolog. The energy landscape for hSSTR5 activation is consistent with hβ2AR in the role of the G protein. These results demonstrate the utility of the ActiveGEnSeMBLE method for predicting multiple conformations along the pathways for activating GPCRs and the corresponding energy landscapes, thereby providing detailed structural insights into the initial molecular events of GPCR function that are not easily accessible by experiments.
Collapse
Affiliation(s)
- Sijia S Dong
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California
| | - William A Goddard
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California.
| | - Ravinder Abrol
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California; Department of Biomedical Sciences and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California.
| |
Collapse
|
16
|
Bondar A, Lazar J. The G protein G i1 exhibits basal coupling but not preassembly with G protein-coupled receptors. J Biol Chem 2017; 292:9690-9698. [PMID: 28438833 DOI: 10.1074/jbc.m116.768127] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 04/21/2017] [Indexed: 11/06/2022] Open
Abstract
The Gi/o protein family transduces signals from a diverse group of G protein-coupled receptors (GPCRs). The observed specificity of Gi/o-GPCR coupling and the high rate of Gi/o signal transduction have been hypothesized to be enabled by the existence of stable associates between Gi/o proteins and their cognate GPCRs in the inactive state (Gi/o-GPCR preassembly). To test this hypothesis, we applied the recently developed technique of two-photon polarization microscopy (2PPM) to Gαi1 subunits labeled with fluorescent proteins and four GPCRs: the α2A-adrenergic receptor, GABAB, cannabinoid receptor type 1 (CB1R), and dopamine receptor type 2. Our experiments with non-dissociating mutants of fluorescently labeled Gαi1 subunits (exhibiting impaired dissociation from activated GPCRs) showed that 2PPM is capable of detecting GPCR-G protein interactions. 2PPM experiments with non-mutated fluorescently labeled Gαi1 subunits and α2A-adrenergic receptor, GABAB, or dopamine receptor type 2 receptors did not reveal any interaction between the Gi1 protein and the non-stimulated GPCRs. In contrast, non-stimulated CB1R exhibited an interaction with the Gi1 protein. Further experiments revealed that this interaction is caused solely by CB1R basal activity; no preassembly between CB1R and the Gi1 protein could be observed. Our results demonstrate that four diverse GPCRs do not preassemble with non-active Gi1 However, we also show that basal GPCR activity allows interactions between non-stimulated GPCRs and Gi1 (basal coupling). These findings suggest that Gi1 interacts only with active GPCRs and that the well known high speed of GPCR signal transduction does not require preassembly between G proteins and GPCRs.
Collapse
Affiliation(s)
- Alexey Bondar
- From the Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, 37333 Nove Hrady,
| | - Josef Lazar
- From the Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, 37333 Nove Hrady.,the Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 16610 Prague, and.,the Faculty of Science, University of South Bohemia, 37005 Ceske Budejovice, Czech Republic
| |
Collapse
|
17
|
Activation mechanism of the G protein-coupled sweet receptor heterodimer with sweeteners and allosteric agonists. Proc Natl Acad Sci U S A 2017; 114:2568-2573. [PMID: 28228527 DOI: 10.1073/pnas.1700001114] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The sweet taste in humans is mediated by the TAS1R2/TAS1R3 G protein-coupled receptor (GPCR), which belongs to the class C family that also includes the metabotropic glutamate and γ-aminobutyric acid receptors. We report here the predicted 3D structure of the full-length TAS1R2/TAS1R3 heterodimer, including the Venus Flytrap Domains (VFDs) [in the closed-open (co) active conformation], the cysteine-rich domains (CRDs), and the transmembrane domains (TMDs) at the TM56/TM56 interface. We observe that binding of agonists to VFD2 of TAS1R2 leads to major conformational changes to form a TM6/TM6 interface between TMDs of TAS1R2 and TAS1R3, which is consistent with the activation process observed biophysically on the metabotropic glutamate receptor 2 homodimer. We find that the initial effect of the agonist is to pull the bottom part of VFD3/TAS1R3 toward the bottom part of VFD2/TAS1R2 by ∼6 Å and that these changes get transmitted from VFD2 of TAS1R2 (where agonists bind) through the VFD3 and the CRD3 to the TMD3 of TAS1R3 (which couples to the G protein). These structural transformations provide a detailed atomistic mechanism for the activation process in GPCR, providing insights and structural details that can now be validated through mutation experiments.
Collapse
|
18
|
Identifying multiple active conformations in the G protein-coupled receptor activation landscape using computational methods. Methods Cell Biol 2017; 142:173-186. [DOI: 10.1016/bs.mcb.2017.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Guerrieri E, Bermudez M, Wolber G, Berzetei-Gurske IP, Schmidhammer H, Spetea M. Structural determinants of diphenethylamines for interaction with the κ opioid receptor: Synthesis, pharmacology and molecular modeling studies. Bioorg Med Chem Lett 2016; 26:4769-4774. [PMID: 27567368 DOI: 10.1016/j.bmcl.2016.08.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/10/2016] [Accepted: 08/11/2016] [Indexed: 10/21/2022]
Abstract
The κ opioid (KOP) receptor crystal structure in an inactive state offers nowadays a valuable platform for inquiry into receptor function. We describe the synthesis, pharmacological evaluation and docking calculations of KOP receptor ligands from the class of diphenethylamines using an active-like structure of the KOP receptor attained by molecular dynamics simulations. The structure-activity relationships derived from computational studies was in accordance with pharmacological activities of targeted diphenethylamines at the KOP receptor established by competition binding and G protein activation in vitro assays. Our analysis identified that agonist binding results in breaking of the Arg156-Thr273 hydrogen bond, which stabilizes the inactive receptor conformation, and a crucial hydrogen bond with His291 is formed. Compounds with a phenolic 4-hydroxy group do not form the hydrogen bond with His291, an important residue for KOP affinity and agonist activity. The size of the N-substituent hosted by the hydrophobic pocket formed by Val108, Ile316 and Tyr320 considerably influences binding and selectivity, with the n-alkyl size limit being five carbon atoms, while bulky substituents turn KOP agonists in antagonists. Thus, combination of experimental and molecular modeling strategies provides an initial framework for understanding the structural features of diphenethylamines that are essential to promote binding affinity and selectivity for the KOP receptor, and may be involved in transduction of the ligand binding event into molecular changes, ultimately leading to receptor activation.
Collapse
Affiliation(s)
- Elena Guerrieri
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Marcel Bermudez
- Institute of Pharmacy, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Gerhard Wolber
- Institute of Pharmacy, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Ilona P Berzetei-Gurske
- Biosciences Division, SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025, United States
| | - Helmut Schmidhammer
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Mariana Spetea
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria.
| |
Collapse
|
20
|
Structure-Based Sequence Alignment of the Transmembrane Domains of All Human GPCRs: Phylogenetic, Structural and Functional Implications. PLoS Comput Biol 2016; 12:e1004805. [PMID: 27028541 PMCID: PMC4814114 DOI: 10.1371/journal.pcbi.1004805] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 02/11/2016] [Indexed: 11/23/2022] Open
Abstract
The understanding of G-protein coupled receptors (GPCRs) is undergoing a revolution due to increased information about their signaling and the experimental determination of structures for more than 25 receptors. The availability of at least one receptor structure for each of the GPCR classes, well separated in sequence space, enables an integrated superfamily-wide analysis to identify signatures involving the role of conserved residues, conserved contacts, and downstream signaling in the context of receptor structures. In this study, we align the transmembrane (TM) domains of all experimental GPCR structures to maximize the conserved inter-helical contacts. The resulting superfamily-wide GpcR Sequence-Structure (GRoSS) alignment of the TM domains for all human GPCR sequences is sufficient to generate a phylogenetic tree that correctly distinguishes all different GPCR classes, suggesting that the class-level differences in the GPCR superfamily are encoded at least partly in the TM domains. The inter-helical contacts conserved across all GPCR classes describe the evolutionarily conserved GPCR structural fold. The corresponding structural alignment of the inactive and active conformations, available for a few GPCRs, identifies activation hot-spot residues in the TM domains that get rewired upon activation. Many GPCR mutations, known to alter receptor signaling and cause disease, are located at these conserved contact and activation hot-spot residue positions. The GRoSS alignment places the chemosensory receptor subfamilies for bitter taste (TAS2R) and pheromones (Vomeronasal, VN1R) in the rhodopsin family, known to contain the chemosensory olfactory receptor subfamily. The GRoSS alignment also enables the quantification of the structural variability in the TM regions of experimental structures, useful for homology modeling and structure prediction of receptors. Furthermore, this alignment identifies structurally and functionally important residues in all human GPCRs. These residues can be used to make testable hypotheses about the structural basis of receptor function and about the molecular basis of disease-associated single nucleotide polymorphisms. G-protein coupled receptors (GPCRs) are a large superfamily of integral membrane proteins that share a characteristic 7 transmembrane helix fold. They detect various molecules outside of the cell and signal their presence to the inside of the cell. At least half of the 800 human GPCRs are potential drug targets, so understanding their structure and function is critical. Experimental structures are now available for at least one receptor from each GPCR class. The structure of the 7 helix fold is highly conserved even for receptors with very low sequence similarity. We analyze the available experimental structures and compare the common inter-helical contacts. Our analysis leads to a unified sequence-structure alignment of the GPCR superfamily that can then be used as the starting point for structure prediction of all other GPCRs. A key result of our analysis is a list of conserved contact residues and activation “hot-spots” residues that are critical for GPCR folding and function. We propose that mutations and natural variants of amino acids at these locations in the GPCRs can dramatically influence their activation state and alter intracellular signaling. This provides hypotheses for the molecular mechanisms underlying disease causing mutants for any GPCR.
Collapse
|
21
|
Scott C, Ahn KH, Graf ST, Goddard WA, Kendall DA, Abrol R. Computational Prediction and Biochemical Analyses of New Inverse Agonists for the CB1 Receptor. J Chem Inf Model 2016; 56:201-12. [PMID: 26633590 PMCID: PMC4863456 DOI: 10.1021/acs.jcim.5b00581] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Indexed: 11/28/2022]
Abstract
Human cannabinoid type 1 (CB1) G-protein coupled receptor is a potential therapeutic target for obesity. The previously predicted and experimentally validated ensemble of ligand-free conformations of CB1 [Scott, C. E. et al. Protein Sci. 2013 , 22 , 101 - 113 ; Ahn, K. H. et al. Proteins 2013 , 81 , 1304 - 1317] are used here to predict the binding sites for known CB1-selective inverse agonists including rimonabant and its seven known derivatives. This binding pocket, which differs significantly from previously published models, is used to identify 16 novel compounds expected to be CB1 inverse agonists by exploiting potential new interactions. We show experimentally that two of these compounds exhibit inverse agonist properties including inhibition of basal and agonist-induced G-protein coupling activity, as well as an enhanced level of CB1 cell surface localization. This demonstrates the utility of using the predicted binding sites for an ensemble of CB1 receptor structures for designing new CB1 inverse agonists.
Collapse
Affiliation(s)
- Caitlin
E. Scott
- Materials
and Process Simulation Center, Division of Chemistry and Chemical
Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Kwang H. Ahn
- Department
of Pharmaceutical Sciences, University of
Connecticut, Storrs, Connecticut 06269, United States
| | - Steven T. Graf
- Department
of Pharmaceutical Sciences, University of
Connecticut, Storrs, Connecticut 06269, United States
| | - William A. Goddard
- Materials
and Process Simulation Center, Division of Chemistry and Chemical
Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Debra A. Kendall
- Department
of Pharmaceutical Sciences, University of
Connecticut, Storrs, Connecticut 06269, United States
| | - Ravinder Abrol
- Materials
and Process Simulation Center, Division of Chemistry and Chemical
Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
22
|
Randáková A, Dolejší E, Rudajev V, Zimčík P, Doležal V, El-Fakahany EE, Jakubík J. Classical and atypical agonists activate M1 muscarinic acetylcholine receptors through common mechanisms. Pharmacol Res 2015; 97:27-39. [DOI: 10.1016/j.phrs.2015.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/03/2015] [Accepted: 04/03/2015] [Indexed: 01/24/2023]
|
23
|
Picone RP, Kendall DA. Minireview: From the bench, toward the clinic: therapeutic opportunities for cannabinoid receptor modulation. Mol Endocrinol 2015; 29:801-13. [PMID: 25866875 DOI: 10.1210/me.2015-1062] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The effects of cannabinoids have been known for centuries and over the past several decades two G protein-coupled receptors, CB1 and CB2, that are responsible for their activity have been identified. Endogenous lipid-derived cannabinergic agents have been found, biosynthetic and catabolic machinery has been characterized, and synthetic agents have been designed to modulate these receptors. Selective agents including agonists, antagonists, inverse agonists, and novel allosteric modulators targeting either CB1 or CB2 have been developed to inhibit or augment their basal tone. As a result, the role these receptors play in human physiology and their potential therapeutic applications in disease states are being elucidated. The CB1 receptor, although ubiquitous, is densely expressed in the brain, and CB2 is largely found on cells of immune origin. This minireview highlights the role of CB1 in excitotoxic assaults in the brain and its potential to limit addiction liability. In addition, it will examine the relationship between receptor activity and stimulation of insulin release from pancreatic β-cells, insulin resistance, and feeding behavior leading toward obesity. The roles of CB2 in the neuropathology of amyotrophic lateral sclerosis and in the central manifestations of chronic HIV infection potentially converge at inflammatory cell activation, thereby providing an opportunity for intervention. Last, CB2 modulation is discussed in the context of an experimental model of postmenopausal osteoporosis. Achieving exquisite receptor selectivity and elucidating the mechanisms underlying receptor inhibition and activation will be essential for the development of the next generation of cannabinergic-based therapeutic agents.
Collapse
Affiliation(s)
- Robert P Picone
- Clinical Development (R.P.P.), Medical and Regulatory Affairs, Novo Nordisk Inc, Plainsboro, New Jersey 08536; and Department of Pharmaceutical Sciences (D.A.K.), University of Connecticut, Storrs, Connecticut 06269-3092
| | - Debra A Kendall
- Clinical Development (R.P.P.), Medical and Regulatory Affairs, Novo Nordisk Inc, Plainsboro, New Jersey 08536; and Department of Pharmaceutical Sciences (D.A.K.), University of Connecticut, Storrs, Connecticut 06269-3092
| |
Collapse
|
24
|
Dong SS, Abrol R, Goddard WA. The predicted ensemble of low-energy conformations of human somatostatin receptor subtype 5 and the binding of antagonists. ChemMedChem 2015; 10:650-61. [PMID: 25772628 DOI: 10.1002/cmdc.201500023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Indexed: 12/17/2022]
Abstract
Human somatostatin receptor subtype 5 (hSSTR5) regulates cell proliferation and hormone secretion. However, the identification of effective therapeutic small-molecule ligands is impeded because experimental structures are not available for any SSTR subtypes. Here, we predict the ensemble of low-energy 3D structures of hSSTR5 using a modified GPCR Ensemble of Structures in Membrane BiLayer Environment (GEnSeMBLE) complete sampling computational method. We find that this conformational ensemble displays most interhelical interactions conserved in class A G protein-coupled receptors (GPCRs) plus seven additional interactions (e.g., Y2.43-D3.49, T3.38-S4.53, K5.64-Y3.51) likely conserved among SSTRs. We then predicted the binding sites for a series of five known antagonists, leading to predicted binding energies consistent with experimental results reported in the literature. Molecular dynamics (MD) simulation of 50 ns in explicit water and lipid retained the predicted ligand-bound structure and formed new interaction patterns (e.g. R3.50-T6.34) consistent with the inactive μ-opioid receptor X-ray structure. We suggest more than six mutations for experimental validation of our prediction. The final predicted receptor conformations and antagonist binding sites provide valuable insights for designing new small-molecule drugs targeting SSTRs.
Collapse
Affiliation(s)
- Sijia S Dong
- Materials & Process Simulation Center (MC 139-74), California Institute of Technology, Pasadena, CA 91125 (USA)
| | | | | |
Collapse
|
25
|
Li Q, Kim SK, Goddard WA, Chen G, Tan H. Predicted structures for kappa opioid G-protein coupled receptor bound to selective agonists. J Chem Inf Model 2015; 55:614-27. [PMID: 25642595 DOI: 10.1021/ci500523z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human kappa opioid receptor (κ-OR), a G protein-coupled receptor (GPCR), has been identified as a drug target for treatment of such human disorders as pain perception, neuroendocrine physiology, affective behavior, and cognition. In order to find more selective and active agonists, one would like to do structure based drug design. Indeed, there is an X-ray structure for an antagonist bound to κ-OR, but structures for activated GPCRs are quite different from those for the inactive GPCRs. Here we predict the ensemble of 24 low-energy structures of human kappa opioid receptor (κ-OR), obtained by application of the GEnSeMBLE (GPCR Ensemble of Structures in Membrane Bilayer Environment) complete sampling method, which evaluates 13 trillion combinations of tilt and rotation angles for κ-OR to select the best 24. To validate these structures, we used the DarwinDock complete sampling method to predict the binding sites for five known agonists (ethylketocyclazocine, bremazocine, pentazocine, nalorphine, and morphine) bound to all 24 κ-OR conformations. We find that some agonists bind selectively to receptor conformations that lack the salt bridge between transmembrane domains 3 and 6 as expected for active conformations. These 3D structures for κ-OR provide a structural basis for understanding ligand binding and activation of κ-OR, which should be useful for guiding subtype specific drug design.
Collapse
Affiliation(s)
- Quanjie Li
- †Materials and Process Simulation Center (MC-139-74), California Institute of Technology, Pasadena, California 91125, United States.,‡College of Chemistry, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Soo-Kyung Kim
- †Materials and Process Simulation Center (MC-139-74), California Institute of Technology, Pasadena, California 91125, United States
| | - William A Goddard
- †Materials and Process Simulation Center (MC-139-74), California Institute of Technology, Pasadena, California 91125, United States
| | - Guangju Chen
- ‡College of Chemistry, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Hongwei Tan
- ‡College of Chemistry, Beijing Normal University, Beijing, 100875, People's Republic of China
| |
Collapse
|
26
|
Gyombolai P, Tóth AD, Tímár D, Turu G, Hunyady L. Mutations in the 'DRY' motif of the CB1 cannabinoid receptor result in biased receptor variants. J Mol Endocrinol 2015; 54:75-89. [PMID: 25510402 DOI: 10.1530/jme-14-0219] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The role of the highly conserved 'DRY' motif in the signaling of the CB1 cannabinoid receptor (CB1R) was investigated by inducing single-, double-, and triple-alanine mutations into this site of the receptor. We found that the CB1R-R3.50A mutant displays a partial decrease in its ability to activate heterotrimeric Go proteins (∼80% of WT CB1R (CB1R-WT)). Moreover, this mutant showed an enhanced basal β-arrestin2 (β-arr2) recruitment. More strikingly, the double-mutant CB1R-D3.49A/R3.50A was biased toward β-arrs, as it gained a robustly increased β-arr1 and β-arr2 recruitment ability compared with the WT receptor, while its G-protein activation was decreased. In contrast, the double-mutant CB1R-R3.50A/Y3.51A proved to be G-protein-biased, as it was practically unable to recruit β-arrs in response to agonist stimulus, while still activating G-proteins, although at a reduced level (∼70% of CB1R-WT). Agonist-induced ERK1/2 activation of the CB1R mutants showed a good correlation with their β-arr recruitment ability but not with their G-protein activation or inhibition of cAMP accumulation. Our results suggest that G-protein activation and β-arr binding of the CB1R are mediated by distinct receptor conformations, and the conserved 'DRY' motif plays different roles in the stabilization of these conformations, thus mediating both G-protein- and β-arr-mediated functions of CB1R.
Collapse
Affiliation(s)
- Pál Gyombolai
- Department of PhysiologyFaculty of Medicine, Semmelweis University, PO Box 259, H-1444 Budapest, HungaryMTA-SE Laboratory of Molecular PhysiologyHungarian Academy of Sciences and Semmelweis University, Budapest, Hungary Department of PhysiologyFaculty of Medicine, Semmelweis University, PO Box 259, H-1444 Budapest, HungaryMTA-SE Laboratory of Molecular PhysiologyHungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - András D Tóth
- Department of PhysiologyFaculty of Medicine, Semmelweis University, PO Box 259, H-1444 Budapest, HungaryMTA-SE Laboratory of Molecular PhysiologyHungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Dániel Tímár
- Department of PhysiologyFaculty of Medicine, Semmelweis University, PO Box 259, H-1444 Budapest, HungaryMTA-SE Laboratory of Molecular PhysiologyHungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Gábor Turu
- Department of PhysiologyFaculty of Medicine, Semmelweis University, PO Box 259, H-1444 Budapest, HungaryMTA-SE Laboratory of Molecular PhysiologyHungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - László Hunyady
- Department of PhysiologyFaculty of Medicine, Semmelweis University, PO Box 259, H-1444 Budapest, HungaryMTA-SE Laboratory of Molecular PhysiologyHungarian Academy of Sciences and Semmelweis University, Budapest, Hungary Department of PhysiologyFaculty of Medicine, Semmelweis University, PO Box 259, H-1444 Budapest, HungaryMTA-SE Laboratory of Molecular PhysiologyHungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| |
Collapse
|
27
|
Domains for activation and inactivation in G protein-coupled receptors – A mutational analysis of constitutive activity of the adenosine A2B receptor. Biochem Pharmacol 2014; 92:348-57. [DOI: 10.1016/j.bcp.2014.08.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/20/2014] [Accepted: 08/21/2014] [Indexed: 11/18/2022]
|
28
|
Ligand- and mutation-induced conformational selection in the CCR5 chemokine G protein-coupled receptor. Proc Natl Acad Sci U S A 2014; 111:13040-5. [PMID: 25157173 DOI: 10.1073/pnas.1413216111] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We predicted the structural basis for pleiotropic signaling of the C-C chemokine type 5 (CCR5) G protein-coupled receptor (GPCR) by predicting the binding of several ligands to the lower-energy conformations of the CCR5 receptor and 11 mutants. For each case, we predicted the ∼ 20 most stable conformations for the receptor along with the binding sites for four anti-HIV ligands. We found that none of the ligands bind to the lowest-energy apo-receptor conformation. The three ligands with a similar pharmacophore (Maraviroc, PF-232798, and Aplaviroc) bind to a specific higher-energy receptor conformation whereas TAK-779 (with a different pharmacophore) binds to a different high-energy conformation. This result is in agreement with the very different binding-site profiles for these ligands obtained by us and others. The predicted Maraviroc binding site agrees with the recent structure of CCR5 receptor cocrystallized with Maraviroc. We performed 11 site-directed mutagenesis experiments to validate the predicted binding sites. Here, we independently predicted the lowest 10 mutant protein conformations for each of the 11 mutants and then docked the ligands to these lowest conformations. We found the predicted binding energies to be in excellent agreement with our mutagenesis experiments. These results show that, for GPCRs, each ligand can stabilize a different protein conformation, complicating the use of cocrystallized structures for ligand screening. Moreover, these results show that a single-point mutation in a GPCR can dramatically alter the available low-energy conformations, which in turn alters the binding site, potentially altering downstream signaling events. These studies validate the conformational selection paradigm for the pleiotropic function and structural plasticity of GPCRs.
Collapse
|
29
|
SuperBiHelix method for predicting the pleiotropic ensemble of G-protein-coupled receptor conformations. Proc Natl Acad Sci U S A 2013; 111:E72-8. [PMID: 24344284 DOI: 10.1073/pnas.1321233111] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
There is overwhelming evidence that G-protein-coupled receptors (GPCRs) exhibit several distinct low-energy conformations, each of which might favor binding to different ligands and/or lead to different downstream functions. Understanding the function of such proteins requires knowledge of the ensemble of low-energy configurations that might play a role in this pleiotropic functionality. We earlier reported the BiHelix method for efficiently sampling the (12)(7) = 35 million conformations resulting from 30° rotations about the axis (η) of all seven transmembrane helices (TMHs), showing that the experimental structure is reliably selected as the best conformation from this ensemble. However, various GPCRs differ sufficiently in the tilts of the TMHs that this method need not predict the optimum conformation starting from any other template. In this paper, we introduce the SuperBiHelix method in which the tilt angles (θ, ϕ) are optimized simultaneously with rotations (η) efficiently enough that it is practical and sufficient to sample (5 × 3 × 5)(7) = 13 trillion configurations. This method can correctly identify the optimum structure of a GPCR starting with the template from a different GPCR. We have validated this method by predicting known crystal structure conformations starting from the template of a different protein structure. We find that the SuperBiHelix conformational ensemble includes the higher energy conformations associated with the active protein in addition to those associated with the more stable inactive protein. This methodology was then applied to design and experimentally confirm structures of three mutants of the CB1 cannabinoid receptor associated with different functions.
Collapse
|
30
|
Shim JY, Ahn KH, Kendall DA. Molecular basis of cannabinoid CB1 receptor coupling to the G protein heterotrimer Gαiβγ: identification of key CB1 contacts with the C-terminal helix α5 of Gαi. J Biol Chem 2013; 288:32449-32465. [PMID: 24092756 DOI: 10.1074/jbc.m113.489153] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cannabinoid (CB1) receptor is a member of the rhodopsin-like G protein-coupled receptor superfamily. The human CB1 receptor, which is among the most expressed receptors in the brain, has been implicated in several disease states, including drug addiction, anxiety, depression, obesity, and chronic pain. Different classes of CB1 agonists evoke signaling pathways through the activation of specific subtypes of G proteins. The molecular basis of CB1 receptor coupling to its cognate G protein is unknown. As a first step toward understanding CB1 receptor-mediated G protein signaling, we have constructed a ternary complex structural model of the CB1 receptor and Gi heterotrimer (CB1-Gi), guided by the x-ray structure of β2-adrenergic receptor (β2AR) in complex with Gs (β2AR-Gs), through 824-ns duration molecular dynamics simulations in a fully hydrated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine bilayer environment. We identified a group of residues at the juxtamembrane regions of the intracellular loops 2 and 3 (IC2 and IC3) of the CB1 receptor, including Ile-218(3.54), Tyr-224(IC2), Asp-338(6.30), Arg-340(6.32), Leu-341(6.33), and Thr-344(6.36), as potential key contacts with the extreme C-terminal helix α5 of Gαi. Ala mutations of these residues at the receptor-Gi interface resulted in little G protein coupling activity, consistent with the present model of the CB1-Gi complex, which suggests tight interactions between CB1 and the extreme C-terminal helix α5 of Gαi. The model also suggests that unique conformational changes in the extreme C-terminal helix α5 of Gα play a crucial role in the receptor-mediated G protein activation.
Collapse
Affiliation(s)
- Joong-Youn Shim
- From the J. L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina 27707.
| | - Kwang H Ahn
- the Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269
| | - Debra A Kendall
- the Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269
| |
Collapse
|
31
|
Ahn KH, Scott CE, Abrol R, Goddard WA, Kendall DA. Computationally-predicted CB1 cannabinoid receptor mutants show distinct patterns of salt-bridges that correlate with their level of constitutive activity reflected in G protein coupling levels, thermal stability, and ligand binding. Proteins 2013; 81:1304-17. [PMID: 23408552 DOI: 10.1002/prot.24264] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 12/21/2013] [Accepted: 01/21/2013] [Indexed: 11/09/2022]
Abstract
The cannabinoid receptor 1 (CB1), a member of the class A G-protein-coupled receptor (GPCR) family, possesses an observable level of constitutive activity. Its activation mechanism, however, has yet to be elucidated. Previously we discovered dramatic changes in CB1 activity due to single mutations; T3.46A, which made the receptor inactive, and T3.46I and L3.43A, which made it essentially fully constitutively active. Our subsequent prediction of the structures of these mutant receptors indicated that these changes in activity are explained in terms of the pattern of salt-bridges in the receptor region involving transmembrane domains 2, 3, 5, and 6. Here we identified key salt-bridges, R2.37 + D6.30 and D2.63 + K3.28, critical for CB1 inactive and active states, respectively, and generated new mutant receptors that we predicted would change CB1 activity by either precluding or promoting these interactions. We find that breaking the R2.37 + D6.30 salt-bridge resulted in substantial increase in G-protein coupling activity and reduced thermal stability relative to the wild-type reflecting the changes in constitutive activity from inactive to active. In contrast, breaking the D2.63 + K3.28 salt-bridge produced the opposite profile suggesting this interaction is critical for the receptor activation. Thus, we demonstrate an excellent correlation with the predicted pattern of key salt-bridges and experimental levels of activity and conformational flexibility. These results are also consistent with the extended ternary complex model with respect to shifts in agonist and inverse agonist affinity and provide a powerful framework for understanding the molecular basis for the multiple stages of CB1 activation and that of other GPCRs in general.
Collapse
Affiliation(s)
- Kwang H Ahn
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269-3092, USA
| | | | | | | | | |
Collapse
|