1
|
Sun X, Ma H, Wang X, Bao Z, Tang S, Yi C, Sun B. Broadly neutralizing antibodies to combat influenza virus infection. Antiviral Res 2024; 221:105785. [PMID: 38145757 DOI: 10.1016/j.antiviral.2023.105785] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
The diversified classification and continuous alteration of influenza viruses underscore for antivirals and vaccines that can counter a broad range of influenza subtypes. Hemagglutinin (HA) and neuraminidase (NA) are two principle viral surface targets for broadly neutralizing antibodies. A series of monoclonal antibodies, targeting HA and NA, have been discovered and characterized with a wide range of neutralizing activity against influenza viruses. Clinical studies have demonstrated the safety and efficacy of some HA stem-targeting antibodies against influenza viruses. Broadly neutralizing antibodies (bnAbs) can serve as both prophylactic and therapeutic agents, as well as play a critical role in identifying antigens and epitopes for the development of universal vaccines. In this review, we described and summarized the latest discoveries and advancements of bnAbs against influenza viruses in both pre- and clinical development. Additionally, we assess whether bnAbs can serve as a viable alternative to vaccination against influenza. Finally, we discussed the rationale behind reverse vaccinology, a structure-guided universal vaccine design strategy that efficiently identifies candidate antigens and conserved epitopes that can be targeted by antibodies.
Collapse
Affiliation(s)
- Xiaoyu Sun
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Hanwen Ma
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xuanjia Wang
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhiheng Bao
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Shubing Tang
- Department of Investigational New Drug, Shanghai Reinovax Biologics Co., Ltd, Shanghai, 200135, China
| | - Chunyan Yi
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Bing Sun
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
2
|
Bustos NA, Ribbeck K, Wagner CE. The role of mucosal barriers in disease progression and transmission. Adv Drug Deliv Rev 2023; 200:115008. [PMID: 37442240 DOI: 10.1016/j.addr.2023.115008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 05/22/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Mucus is a biological hydrogel that coats and protects all non-keratinized wet epithelial surfaces. Mucins, the primary structural components of mucus, are critical components of the gel layer that protect against invading pathogens. For communicable diseases, pathogen-mucin interactions contribute to the pathogen's fate and the potential for disease progression in-host, as well as the potential for onward transmission. We begin by reviewing in-host mucus filtering mechanisms, including size filtering and interaction filtering, which regulate the permeability of mucus barriers to all molecules including pathogens. Next, we discuss the role of mucins in communicable diseases at the point of transmission (i.e. how the encapsulation of pathogens in emitted mucosal droplets externally to hosts may modulate pathogen infectivity and viability). Overall, mucosal barriers modulate both host susceptibility as well as the dynamics of population-level disease transmission. The study of mucins and their use in models and experimental systems are therefore crucial for understanding the mechanistic biophysical principles underlying disease transmission and the early stages of host infection.
Collapse
Affiliation(s)
- Nicole A Bustos
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Katharina Ribbeck
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Caroline E Wagner
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
3
|
Kumari R, Sharma SD, Kumar A, Ende Z, Mishina M, Wang Y, Falls Z, Samudrala R, Pohl J, Knight PR, Sambhara S. Antiviral Approaches against Influenza Virus. Clin Microbiol Rev 2023; 36:e0004022. [PMID: 36645300 PMCID: PMC10035319 DOI: 10.1128/cmr.00040-22] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Preventing and controlling influenza virus infection remains a global public health challenge, as it causes seasonal epidemics to unexpected pandemics. These infections are responsible for high morbidity, mortality, and substantial economic impact. Vaccines are the prophylaxis mainstay in the fight against influenza. However, vaccination fails to confer complete protection due to inadequate vaccination coverages, vaccine shortages, and mismatches with circulating strains. Antivirals represent an important prophylactic and therapeutic measure to reduce influenza-associated morbidity and mortality, particularly in high-risk populations. Here, we review current FDA-approved influenza antivirals with their mechanisms of action, and different viral- and host-directed influenza antiviral approaches, including immunomodulatory interventions in clinical development. Furthermore, we also illustrate the potential utility of machine learning in developing next-generation antivirals against influenza.
Collapse
Affiliation(s)
- Rashmi Kumari
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Department of Anesthesiology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Suresh D. Sharma
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Amrita Kumar
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Zachary Ende
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Oak Ridge Institute for Science and Education (ORISE), CDC Fellowship Program, Oak Ridge, Tennessee, USA
| | - Margarita Mishina
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Yuanyuan Wang
- Biotechnology Core Facility Branch, Division of Scientific Resources, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Association of Public Health Laboratories, Silver Spring, Maryland, USA
| | - Zackary Falls
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Ram Samudrala
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Jan Pohl
- Biotechnology Core Facility Branch, Division of Scientific Resources, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Paul R. Knight
- Department of Anesthesiology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Suryaprakash Sambhara
- Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Wang L, Chen M, Sun Q, Yang Y, Rong R. Discovery of the potential neuraminidase inhibitors from Polygonum cuspidatum by ultrafiltration combined with mass spectrometry guided by molecular docking. J Sep Sci 2023; 46:e2200937. [PMID: 36905353 DOI: 10.1002/jssc.202200937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/01/2023] [Accepted: 03/05/2023] [Indexed: 03/12/2023]
Abstract
Neuraminidase is an important target in the treatment of the influenza A virus. Screening natural neuraminidase inhibitors from medicinal plants is crucial for drug research. This study proposed a rapid strategy for identifying neuraminidase inhibitors from different crude extracts (Polygonum cuspidatum, Cortex Fraxini, and Herba Siegesbeckiae) using ultrafiltration combined with mass spectrometry guided by molecular docking. Firstly, the main component library of the three herbs was established, followed by molecular docking between the components and neuraminidase. Only the crude extracts with numbers of potential neuraminidase inhibitors identified by molecular docking were selected for ultrafiltration. This guided approach reduced experimental blindness and improved efficiency. The results of molecular docking indicated that the compounds in Polygonum cuspidatum demonstrated good binding affinity with neuraminidase. Subsequently, ultrafiltration-mass spectrometry was employed to screen for neuraminidase inhibitors in Polygonum cuspidatum. A total of five compounds were fished out, and they were identified as trans-polydatin, cis-polydatin, emodin-1-O-β-D-glucoside, emodin-8-O-β-D-glucoside, and emodin. The enzyme inhibitory assay showed that they all had neuraminidase inhibitory effects. In addition, the key residues of the interaction between neuraminidase and fished compounds were predicted. In all, this study could provide a strategy for the rapid screening of the potential enzyme inhibitors from medicinal herbs.
Collapse
Affiliation(s)
- Liqing Wang
- Department of Instrument Analysis, College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, PR China
| | - Menghan Chen
- Department of Instrument Analysis, College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, PR China
| | - Qihui Sun
- Department of Instrument Analysis, College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, PR China
| | - Yong Yang
- Antivirus Collaborative Innovation Center, Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, PR China.,Collaborative Innovation Center for Antiviral Traditional Chinese Medicine in Shandong Province, Jinan, Shandong, PR China.,Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, PR China.,Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic research, Shandong University of Traditional Chinese Medicine, Jinan, PR China
| | - Rong Rong
- Department of Instrument Analysis, College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, PR China.,Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, PR China.,Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic research, Shandong University of Traditional Chinese Medicine, Jinan, PR China
| |
Collapse
|
5
|
Kaveh K, Tazarghi A, Hosseini P, Fotouhi F, Ajorloo M, Rabiei Roodsari M, Razavi Nikoo H. Molecular characterization of the neuraminidase gene of influenza B virus in Northern Iran. Virusdisease 2023; 34:21-28. [PMID: 37009253 PMCID: PMC10050514 DOI: 10.1007/s13337-022-00806-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/28/2022] [Indexed: 02/19/2023] Open
Abstract
Neuraminidase inhibitors are the only FDA-approved class of antiviral agents against influenza B viruses. Resistance to these drugs has been reported from different parts of the world; however, there seems to be not enough information about this issue in Iran. We aimed to study the genetic evolution of these viruses as well as the presence of possible mutations concerning drug resistance in northern Iran. RNA was extracted from naso- and oropharyngeal swabs and amplified by one-step RT-PCR for detection and sequencing of the neuraminidase gene. All the data were edited and assembled utilizing BioEdit DNASequence Alignment Editor Software, and the phylogenetic tree was constructed via MEGA software version 10. Finally, resistance-associated mutations and B-cell epitopes substitutions were assessed by comparing our sequences with the counterparts in the reference strains. Comparing our sequences with reference strains revealed that the analyzed isolates of influenza B pertained to the B-Yamagata lineage, had a few B-cell epitopes alterations, and contained no particular mutations concerning resistance against neuraminidase inhibitors, such as oseltamivir. Our findings suggest that all the strains circulating in northern Iran and hopefully other parts of the country can be considered sensitive to this class of drugs. Although it is promising, we strongly recommend additional investigations to evaluate the impact of such drug-resistant mutations in other regions, which in turn will assist the public health agencies in taking immediate and effective therapeutic measures into account when needed.
Collapse
Affiliation(s)
- Kimia Kaveh
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Abbas Tazarghi
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Parastoo Hosseini
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Fotouhi
- Influenza Research Lab, Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Mehdi Ajorloo
- Blood Transfusion Research Center, High Institute of Research and Education in Transfusion Medicine, Tehran, Iran
| | - Mehdi Rabiei Roodsari
- Department of Microbiology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hadi Razavi Nikoo
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
- Infectious Disease Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
6
|
Akram F, Waheed HM, Shah FI, Haq IU, Nasir N, Akhtar MT, Farooq Gohar U. Burgeoning therapeutic strategies to curb the contemporary surging viral infections. Microb Pathog 2023; 179:106088. [PMID: 37004965 DOI: 10.1016/j.micpath.2023.106088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023]
Abstract
Significant efforts and initiatives were already made in the health care systems, however in the last few years; our world is facing emergences of viral infections which potentially leading to considerable challenges in terms of higher morbidity, mortality, increased and considerable financial loads on the affected populations. Over ten major epidemics or pandemics have been recorded in the twenty-first century, the ongoing coronavirus pandemic being one of them. Viruses being distinct obligate pathogens largely dependent on living beings are considered as one of the prominent causes of death globally. Although effective vaccines and antivirals have led to the eradication of imperative viral pathogens, the emergences of new viral infections as well as novel drug-resistant strains have necessitated the implementation of ingenious and efficient therapeutic approaches to treat viral outbreaks in the future. Nature being a constant source of tremendous therapeutical resources has inspired us to develop multi-target antiviral drugs, overcoming the challenges and limitations faced by pharmaceutical industry. Recent breakthroughs in the understanding of the cellular and molecular mechanisms of viral reproduction have laid the groundwork for potential treatment approaches including antiviral gene therapy relying on the application of precisely engineered nucleic acids for disabling pathogen replication. The development of RNA interference and advancements in genome manipulating tools have proven to be especially significant in this regard. In this review, we discussed mode of actions and pathophysiological events associated with the viral infections; followed by distributions, and advancement made towards the detection strategies for timely diagnosis. In the later section, current approaches to cope up the viral pathogens and their key limitations have also been elaborated. Lastly, we also explored some novel and potential targets to treat such infections, where attentions were made on next generation gene editing technologies.
Collapse
|
7
|
Structural and inhibitor sensitivity analysis of influenza B-like viral neuraminidases derived from Asiatic toad and spiny eel. Proc Natl Acad Sci U S A 2022; 119:e2210724119. [PMID: 36191180 PMCID: PMC9586306 DOI: 10.1073/pnas.2210724119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Influenza virus neuraminidase (NA) is an important target for antiviral development because it plays a crucial role in releasing newly assembled viruses. Two unique influenza-like virus genomes were recently reported in the Wuhan Asiatic toad and Wuhan spiny eel. Their NA genes appear to be highly divergent from all known influenza NAs, raising key questions as to whether the Asiatic toad influenza-like virus NA (tNA) and spiny eel NA (eNA) have canonical NA activities and structures and whether they show sensitivity to NA inhibitors (NAIs). Here, we found that both tNA and eNA have neuraminidase activities. A detailed structural analysis revealed that tNA and eNA present similar overall structures to currently known NAs, with a conserved calcium binding site. Inhibition assays indicated that tNA is resistant to NAIs, while eNA is still sensitive to NAIs. E119 is conserved in canonical NAs. The P119E substitution in tNA can restore sensitivity to NAIs, and, in contrast, the E119P substitution in eNA decreased its sensitivity to NAIs. The structures of NA-inhibitor complexes further provide a detailed insight into NA-inhibitor interactions at the atomic level. Moreover, tNA and eNA have unique N-glycosylation sites compared with canonical NAs. Collectively, the structural features, NA activities, and sensitivities to NAIs suggest that fish- and amphibian-derived influenza-like viruses may circulate in these vertebrates. More attention should be paid to these influenza-like viruses because their NA molecules may play roles in the emergence of NAI resistance.
Collapse
|
8
|
Motahhar M, Keyvanfar H, Shoushtari A, Fallah Mehrabadi MH, Nikbakht Brujeni G. The arrival of highly pathogenic avian influenza viruses H5N8 in Iran through two windows, 2016. Virus Genes 2022; 58:527-539. [PMID: 36098944 DOI: 10.1007/s11262-022-01930-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/23/2022] [Indexed: 11/25/2022]
Abstract
The highly pathogenic avian influenza (HPAI) H5N1 virus has received considerable attention during the past 2 decades due to its zoonotic and mutative features. This Virus is of special importance due to to the possibility of causing infection in human populations. According to it's geographical location, Iran hosts a large number of aquatic migratory birds every year, and since these birds can be considered as the host of the H5 HPAI, the country is significantly at risk of this virus. the In this study, the molecular characteristics of hemagglutinin (HA) and neuraminidase (NA) genes of the H5N8 strain were identified in Malard county of Tehran province and Meighan wetland of Arak city, Markazi province were investigated. Based on the analysis of the amino acid sequence of the HA genes, the cleavage site of the gene includes the PLREKRRKR/GLF polybasic amino acid motif, which is a characteristic of highly pathogenic influenza viruses. The HA gene of two viruses had T156A, S123P, S133A mutations associated with the increased mammalian sialic acid-binding, and the NA gene of two viruses had H253Y mutations associated with the resistance to antiviral drugs. Phylogenetic analysis of the HA genes indicated the classification of these viruses in the 2.3.4.4 b subclade. Although the A/Goose/Iran/180/2016 virus was also an H5N8 2.3.4.4 b virus, its cluster was separated from the A/Chicken/Iran/162/2016 virus. This means that the entry of these viruses in to the country happened through more than one window. Furthermore, it seems that the introduction of these H5N8 HPAI strains in Iran probably occurred through the West Asia-East African flyway by wild migratory aquatic birds.
Collapse
Affiliation(s)
- Minoo Motahhar
- Department of Pathobiology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hadi Keyvanfar
- Department of Pathobiology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Abdolhamid Shoushtari
- Department of Avian Diseases Research and Diagnostics, Agricultural Research, Education and Extension Organization (AREEO), Razi Vaccine and Serum Research Institute, Karaj, Iran
| | - Mohammad Hossein Fallah Mehrabadi
- Department of Avian Diseases Research and Diagnostics, Agricultural Research, Education and Extension Organization (AREEO), Razi Vaccine and Serum Research Institute, Karaj, Iran
| | - Gholamreza Nikbakht Brujeni
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
9
|
Chen M, Sun L, Ma Q, Yang J, Kang Q, Yang Y, Rong R. An affinity interaction guided two-dimensional separation system for the screening of neuraminidase inhibitors from Reynoutria japonica Houtt. roots. J Chromatogr A 2022; 1678:463338. [PMID: 35901666 DOI: 10.1016/j.chroma.2022.463338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/25/2022] [Accepted: 07/11/2022] [Indexed: 10/17/2022]
Abstract
Discovering bioactive compounds from medicinal herbs is crucial for drug discovery. Ultrafiltration is often used in the screening of bioactive compounds from natural herbs because of its simple and rapid operations. However, the ultrafiltration results are often disturbed by the undissolved compounds and the non-target compounds, which reduces the accuracy of the results. Herein, an affinity interaction guided two-dimensional (2D) separation system was developed. Discovery of the potential neuraminidase (NA) inhibitors from the dried roots of Reynoutria japonica Houtt. (RRJ) was used as an example. Only the small molecules showing affinity interaction with NA could be screened by the affinity interaction guided 2D separation system. Firstly, the NA and crude extract were incubated to form a sample solution (containing NA-inhibitor complexes, NA, and three types of small molecules with different polarities) by affinity interaction. Then the sample solution was separated and detected by the 2D separation system. This aimed to reduce the interference of the undissolved compounds and non-target compounds, and pick out the NA-inhibitor complexes (NA-Is). The collected NA-Is were denatured to release small molecular inhibitors (Is) for LC-MS/MS analysis. Compared with the ultrafiltration, more obvious peak area differences were observed in the results, and four potential NA inhibitors were successfully identified. In all, we provided a simple strategy with better performance in the screening of natural bioactive compounds.
Collapse
Affiliation(s)
- Menghan Chen
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Linlin Sun
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Qingyun Ma
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Jia Yang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Qianli Kang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Yong Yang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China; Collaborative Innovation Center for Antiviral Traditional Chinese Medicine in Shandong Province, Jinan, 250355, PR China.
| | - Rong Rong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China; Collaborative Innovation Center for Antiviral Traditional Chinese Medicine in Shandong Province, Jinan, 250355, PR China.
| |
Collapse
|
10
|
Ge J, Lin X, Guo J, Liu L, Li Z, Lan Y, Liu L, Guo J, Lu J, Huang W, Xin L, Wang D, Qin K, Xu C, Zhou J. The Antibody Response Against Neuraminidase in Human Influenza A (H3N2) Virus Infections During 2018/2019 Flu Season: Focusing on the Epitopes of 329- N-Glycosylation and E344 in N2. Front Microbiol 2022; 13:845088. [PMID: 35387078 PMCID: PMC8978628 DOI: 10.3389/fmicb.2022.845088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
Seasonal influenza A (H3N2) virus has been a concern since its first introduction in humans in 1968. Accumulating antigenic changes in viral hemagglutinin (HA), particularly recent cocirculations of multiple HA genetic clades, allow H3N2 virus evade into humans annually. From 2010, the binding of neuraminidase (NA) to sialic acid made the traditional assay for HA inhibition antibodies (Abs) unsuitable for antigenicity characterization. Here, we investigated the serum anti-NA response in a cohort with a seroconversion of microneutralizing (MN) Abs targeting the circulating strain, A/Singapore/INFIMH-16-0019/2016 (H3N2, 3C.2a1)-like, a virus during 2018/2019 flu seasons. We discovered that MN Ab titers show no difference between children and adults. Nevertheless, higher titers of Abs with NA activity inhibition (NI) activity of 129 and seroconversion rate of 68.42% are presented in children aged 7-17 years (n = 19) and 73.47 and 41.17% in adults aged 21-59 years (n = 17), respectively. The MN Abs generated in children display direct correlations with HA- and NA-binding Abs or NI Abs. The NI activity exhibited cross-reactivity to N2 of H3N2 viruses of 2007 and 2013, commonly with 329-N-glycosylation and E344 in N2, a characteristic of earlier 3C.2a H3N2 virus in 2014. The percentage of such viruses pronouncedly decreased and was even replaced by those dominant H3N2 viruses with E344K and 329 non-glycosylation, which have a significantly low activity to the tested antisera. Our findings suggest that NI assay is a testable assay applied in H3N2 infection in children, and the antigenic drift of current N2 should be considered for vaccine selection.
Collapse
Affiliation(s)
- Jing Ge
- Key Laboratory for Medical Virology, National Health, and Family Planning Commission, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Xiaojing Lin
- Key Laboratory for Medical Virology, National Health, and Family Planning Commission, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Jinlei Guo
- The Disease Control and Prevention of Qinhuai District, Nanjing, China
| | - Ling Liu
- Qinhuai District Center for Disease Control and Prevention, Nanjing, China
| | - Zi Li
- Key Laboratory for Medical Virology, National Health, and Family Planning Commission, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Yu Lan
- Key Laboratory for Medical Virology, National Health, and Family Planning Commission, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Liqi Liu
- Key Laboratory for Medical Virology, National Health, and Family Planning Commission, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Junfeng Guo
- Key Laboratory for Medical Virology, National Health, and Family Planning Commission, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Jian Lu
- Key Laboratory for Medical Virology, National Health, and Family Planning Commission, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Weijuan Huang
- Key Laboratory for Medical Virology, National Health, and Family Planning Commission, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Li Xin
- Key Laboratory for Medical Virology, National Health, and Family Planning Commission, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Dayan Wang
- Key Laboratory for Medical Virology, National Health, and Family Planning Commission, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Kun Qin
- Key Laboratory for Medical Virology, National Health, and Family Planning Commission, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Cuiling Xu
- Key Laboratory for Medical Virology, National Health, and Family Planning Commission, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Jianfang Zhou
- Key Laboratory for Medical Virology, National Health, and Family Planning Commission, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, China
| |
Collapse
|
11
|
Ellis D, Lederhofer J, Acton OJ, Tsybovsky Y, Kephart S, Yap C, Gillespie RA, Creanga A, Olshefsky A, Stephens T, Pettie D, Murphy M, Sydeman C, Ahlrichs M, Chan S, Borst AJ, Park YJ, Lee KK, Graham BS, Veesler D, King NP, Kanekiyo M. Structure-based design of stabilized recombinant influenza neuraminidase tetramers. Nat Commun 2022; 13:1825. [PMID: 35383176 PMCID: PMC8983682 DOI: 10.1038/s41467-022-29416-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 03/14/2022] [Indexed: 11/21/2022] Open
Abstract
Influenza virus neuraminidase (NA) is a major antiviral drug target and has recently reemerged as a key target of antibody-mediated protective immunity. Here we show that recombinant NAs across non-bat subtypes adopt various tetrameric conformations, including an "open" state that may help explain poorly understood variations in NA stability across viral strains and subtypes. We use homology-directed protein design to uncover the structural principles underlying these distinct tetrameric conformations and stabilize multiple recombinant NAs in the "closed" state, yielding two near-atomic resolution structures of NA by cryo-EM. In addition to enhancing thermal stability, conformational stabilization improves affinity to protective antibodies elicited by viral infection, including antibodies targeting a quaternary epitope and the broadly conserved catalytic site. Stabilized NAs can also be integrated into viruses without affecting fitness. Our findings provide a deeper understanding of NA structure, stability, and antigenicity, and establish design strategies for reinforcing the conformational integrity of recombinant NA proteins.
Collapse
Affiliation(s)
- Daniel Ellis
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA, 98195, USA
- Icosavax Inc., Seattle, WA, 98102, USA
| | - Julia Lederhofer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Oliver J Acton
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, 21702, USA
| | - Sally Kephart
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Christina Yap
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Rebecca A Gillespie
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Adrian Creanga
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Audrey Olshefsky
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Tyler Stephens
- Electron Microscopy Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, 21702, USA
| | - Deleah Pettie
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Michael Murphy
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Claire Sydeman
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Maggie Ahlrichs
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Sidney Chan
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Andrew J Borst
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | - Kelly K Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | - Neil P King
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA.
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA.
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
12
|
Kaler L, Iverson E, Bader S, Song D, Scull MA, Duncan GA. Influenza A virus diffusion through mucus gel networks. Commun Biol 2022; 5:249. [PMID: 35318436 PMCID: PMC8941132 DOI: 10.1038/s42003-022-03204-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 03/01/2022] [Indexed: 12/21/2022] Open
Abstract
Mucus in the lung plays an essential role as a barrier to infection by viral pathogens such as influenza A virus (IAV). Previous work determined mucin-associated sialic acid acts as a decoy receptor for IAV hemagglutinin (HA) binding and the sialic-acid cleaving enzyme, neuraminidase (NA), facilitates virus passage through mucus. However, it has yet to be fully addressed how the physical structure of the mucus gel influences its barrier function and its ability to trap viruses via glycan mediated interactions to prevent infection. To address this, IAV and nanoparticle diffusion in human airway mucus and mucin-based hydrogels is quantified using fluorescence video microscopy. We find the mobility of IAV in mucus is significantly influenced by the mesh structure of the gel and in contrast to prior reports, these effects likely influence virus passage through mucus gels to a greater extent than HA and NA activity. In addition, an analytical approach is developed to estimate the binding affinity of IAV to the mucus meshwork, yielding dissociation constants in the mM range, indicative of weak IAV-mucus binding. Our results provide important insights on how the adhesive and physical barrier properties of mucus influence the dissemination of IAV within the lung microenvironment. Influenza A virus movement in mucus is found to be affected by the mesh structure of the gel network and further analysis reveals weak IAV-mucus binding.
Collapse
Affiliation(s)
- Logan Kaler
- Biophysics Program, University of Maryland, College Park, MD, USA
| | - Ethan Iverson
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Shahed Bader
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Daniel Song
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Margaret A Scull
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Gregg A Duncan
- Biophysics Program, University of Maryland, College Park, MD, USA. .,Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
| |
Collapse
|
13
|
Strategies for fighting pandemic virus infections: Integration of virology and drug delivery. J Control Release 2022; 343:361-378. [PMID: 35122872 PMCID: PMC8810279 DOI: 10.1016/j.jconrel.2022.01.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023]
Abstract
Respiratory viruses have sometimes resulted in worldwide pandemics, with the influenza virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) being major participants. Long-term efforts have made it possible to control the influenza virus, but seasonal influenza continues to take many lives each year, and a pandemic influenza virus sometimes emerges. Although vaccines for coronavirus disease 2019 (COVID-19) have been developed, we are not yet able to coexist with the SARS-CoV-2. To overcome such viruses, it is necessary to obtain knowledge about international surveillance systems, virology, ecology and to determine that immune responses are effective. The information must then be transferred to drugs. Delivery systems would be expected to contribute to the rational development of drugs. In this review, virologist and drug delivery system (DDS) researchers discuss drug delivery strategies, especially the use of lipid-based nanocarriers, for fighting to respiratory virus infections.
Collapse
|
14
|
Abstract
The continuous emergence and reemergence of diverse subtypes of influenza A viruses, which are known as "HxNy" and are mediated through the reassortment of viral genomes, account for seasonal epidemics, occasional pandemics, and zoonotic outbreaks. We summarize and discuss the characteristics of historic human pandemic HxNy viruses and diverse subtypes of HxNy among wild birds, mammals, and live poultry markets. In addition, we summarize the key molecular features of emerging infectious HxNy influenza viruses from the perspectives of the receptor binding of Hx, the inhibitor-binding specificities and drug-resistance features of Ny, and the matching of the gene segments. Our work enhances our understanding of the potential threats of novel reassortant influenza viruses to public health and provides recommendations for effective prevention, control, and research of this pathogen.
Collapse
Affiliation(s)
- William J Liu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China
| | - Yan Wu
- Department of Pathogen Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Weifeng Shi
- Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Dayan Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China
| | - Yi Shi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - George F Gao
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences (CAS), Beijing 100101, China
| |
Collapse
|
15
|
Yu W, Ping Cheng L, Pang W, Ling Guo L. Design, Synthesis and Biological Evaluation of Novel 1, 3, 4-Oxadiazole Derivatives as Potent Neuraminidase Inhibitors. Bioorg Med Chem 2022; 57:116647. [DOI: 10.1016/j.bmc.2022.116647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/16/2022] [Accepted: 01/26/2022] [Indexed: 11/02/2022]
|
16
|
Bifunctional Inhibitors of Influenza Virus Neuraminidase: Molecular Design of a Sulfonamide Linker. Int J Mol Sci 2021; 22:ijms222313112. [PMID: 34884917 PMCID: PMC8657994 DOI: 10.3390/ijms222313112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022] Open
Abstract
The growing resistance of the influenza virus to widely used competitive neuraminidase inhibitors occupying the active site of the enzyme requires the development of bifunctional compounds that can simultaneously interact with other regulatory sites on the protein surface. When developing such an inhibitor and combining structural fragments that could be located in the sialic acid cavity of the active site and the adjacent 430-cavity, it is necessary to select a suitable linker not only for connecting the fragments, but also to ensure effective interactions with the unique arginine triad Arg118-Arg292-Arg371 of neuraminidase. Using molecular modeling, we have demonstrated the usefulness of the sulfonamide group in the linker design and the potential advantage of this functional group over other isosteric analogues.
Collapse
|
17
|
Sapachova M, Kovalenko G, Sushko M, Bezymennyi M, Muzyka D, Usachenko N, Mezhenskyi A, Abramov A, Essen S, Lewis NS, Bortz E. Phylogenetic Analysis of H5N8 Highly Pathogenic Avian Influenza Viruses in Ukraine, 2016–2017. Vector Borne Zoonotic Dis 2021; 21:979-988. [DOI: 10.1089/vbz.2021.0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Maryna Sapachova
- State Scientific and Research Institute of Laboratory Diagnostics and Veterinary and Sanitary Expertise (SSRILDVSE), Kyiv, Ukraine
| | - Ganna Kovalenko
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- Department of Biological Sciences, University of Alaska Anchorage (UAA), Anchorage, Alaska, USA
| | - Mykola Sushko
- State Scientific and Research Institute of Laboratory Diagnostics and Veterinary and Sanitary Expertise (SSRILDVSE), Kyiv, Ukraine
| | | | - Denys Muzyka
- National Scientific Center Institute for Experimental Clinical and Veterinary Medicine (NSC IECVM), Kharkiv, Ukraine
| | - Natalia Usachenko
- State Scientific and Research Institute of Laboratory Diagnostics and Veterinary and Sanitary Expertise (SSRILDVSE), Kyiv, Ukraine
| | - Andrii Mezhenskyi
- State Scientific and Research Institute of Laboratory Diagnostics and Veterinary and Sanitary Expertise (SSRILDVSE), Kyiv, Ukraine
| | - Artur Abramov
- State Scientific Control Institute of Biotechnology and Strains of Microorganisms (SSCIBSM), Kyiv, Ukraine
| | - Stephen Essen
- OIE/FAO International Reference Laboratory, Animal and Plant Health Agency (APHA), Weybridge, United Kingdom
| | - Nicola S. Lewis
- OIE/FAO International Reference Laboratory, Animal and Plant Health Agency (APHA), Weybridge, United Kingdom
- Royal Veterinary College, University of London, London, United Kingdom
| | - Eric Bortz
- Department of Biological Sciences, University of Alaska Anchorage (UAA), Anchorage, Alaska, USA
- Institute for Veterinary Medicine (IVM), Kyiv, Ukraine
| |
Collapse
|
18
|
Gamblin SJ, Vachieri SG, Xiong X, Zhang J, Martin SR, Skehel JJ. Hemagglutinin Structure and Activities. Cold Spring Harb Perspect Med 2021; 11:a038638. [PMID: 32513673 PMCID: PMC8485738 DOI: 10.1101/cshperspect.a038638] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Hemagglutinins (HAs) are the receptor-binding and membrane fusion glycoproteins of influenza viruses. They recognize sialic acid-containing, cell-surface glycoconjugates as receptors but have limited affinity for them, and, as a consequence, virus attachment to cells requires their interaction with several virus HAs. Receptor-bound virus is transferred into endosomes where membrane fusion by HAs is activated at pH between 5 and 6.5, depending on the strain of virus. Fusion activity requires extensive rearrangements in HA conformation that include extrusion of a buried "fusion peptide" to connect with the endosomal membrane, form a bridge to the virus membrane, and eventually bring both membranes close together. In this review, we give an overview of the structures of the 16 genetically and antigenically distinct subtypes of influenza A HA in relation to these two functions in virus replication and in relation to recognition of HA by antibodies that neutralize infection.
Collapse
Affiliation(s)
- Steven J Gamblin
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Sébastien G Vachieri
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Xiaoli Xiong
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Jie Zhang
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Stephen R Martin
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - John J Skehel
- Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| |
Collapse
|
19
|
Campbell AC, Tanner JJ, Krause KL. Optimisation of Neuraminidase Expression for Use in Drug Discovery by Using HEK293-6E Cells. Viruses 2021; 13:v13101893. [PMID: 34696326 PMCID: PMC8538103 DOI: 10.3390/v13101893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/11/2021] [Accepted: 09/14/2021] [Indexed: 12/02/2022] Open
Abstract
Influenza virus is a highly contagious virus that causes significant human mortality and morbidity annually. The most effective drugs for treating influenza are the neuraminidase inhibitors, but resistance to these inhibitors has emerged, and additional drug discovery research on neuraminidase and other targets is needed. Traditional methods of neuraminidase production from embryonated eggs are cumbersome, while insect cell derived protein is less reflective of neuraminidase produced during human infection. Herein we describe a method for producing neuraminidase from a human cell line, HEK293-6E, and demonstrate the method by producing the neuraminidase from the 1918 H1N1 pandemic influenza strain. This method produced high levels of soluble neuraminidase expression (>3000 EU/mL), was enhanced by including a secretion signal from a viral chemokine binding protein, and does not require co-expression of additional proteins. The neuraminidase produced was of sufficient quantity and purity to support high resolution crystal structure determination. The structure solved using this protein conformed to the previously reported structure. Notably the glycosylation at three asparagine residues was superior in quality to that from insect cell derived neuraminidase. This method of production of neuraminidase should prove useful in further studies, such as the characterisation of inhibitor binding.
Collapse
Affiliation(s)
- Ashley C. Campbell
- Department of Biochemistry, University of Otago, 710 Cumberland St., Dunedin 9016, New Zealand;
| | - John J. Tanner
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA;
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA
| | - Kurt L. Krause
- Department of Biochemistry, University of Otago, 710 Cumberland St., Dunedin 9016, New Zealand;
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1010, New Zealand
- Correspondence:
| |
Collapse
|
20
|
Kono Y, Tamura M, Cueno ME, Tonogi M, Imai K. S-PRG Filler Eluate Induces Oxidative Stress in Oral Microorganism: Suppression of Growth and Pathogenicity, and Possible Clinical Application. Antibiotics (Basel) 2021; 10:antibiotics10070816. [PMID: 34356737 PMCID: PMC8300820 DOI: 10.3390/antibiotics10070816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 11/20/2022] Open
Abstract
Controlling the oral microbial flora is putatively thought to prevent not only oral diseases, but also systemic diseases caused by oral diseases. This study establishes the antibacterial effect of the novel bioactive substance “S-PRG filler” on oral bacteria. We examined the state of oxidative stress caused by the six types of ions released in eluate from the S-PRG filler in oral bacterial cells. Moreover, we investigated the effects of these ions on the growth and pathogenicity of Gram-positive and Gram-negative bacteria. We found that the released ions affected SOD amount and hydrogen peroxide in bacterial cells insinuating oxidative stress occurrence. In bacterial culture, growth inhibition was observed depending on the ion concentration in the medium. Additionally, released ions suppressed Streptococcus mutans adhesion to hydroxyapatite, S. oralis neuraminidase activity, and Porphyromonas gingivalis hemagglutination and gingipain activity in a concentration-dependent manner. From these results, it was suggested that the ions released from the S-PRG filler may suppress the growth and pathogenicity of the oral bacterial flora. This bioactive material is potentially useful to prevent the onset of diseases inside and outside of the oral cavity, which in turn may have possible applications for oral care and QOL improvement.
Collapse
Affiliation(s)
- Yu Kono
- Department of Oral and Maxillofacial Surgery I, Nihon University School of Dentistry, Tokyo 101-8310, Japan; (Y.K.); (M.T.)
| | - Muneaki Tamura
- Department of Microbiology, Nihon University School of Dentistry, Tokyo 101-8310, Japan; (M.E.C.); (K.I.)
- Correspondence: ; Tel.: +81-3219-8125
| | - Marni E. Cueno
- Department of Microbiology, Nihon University School of Dentistry, Tokyo 101-8310, Japan; (M.E.C.); (K.I.)
| | - Morio Tonogi
- Department of Oral and Maxillofacial Surgery I, Nihon University School of Dentistry, Tokyo 101-8310, Japan; (Y.K.); (M.T.)
| | - Kenichi Imai
- Department of Microbiology, Nihon University School of Dentistry, Tokyo 101-8310, Japan; (M.E.C.); (K.I.)
| |
Collapse
|
21
|
Medaglia C, Zwygart ACA, Silva PJ, Constant S, Huang S, Stellacci F, Tapparel C. Interferon Lambda Delays the Emergence of Influenza Virus Resistance to Oseltamivir. Microorganisms 2021; 9:1196. [PMID: 34205874 PMCID: PMC8227012 DOI: 10.3390/microorganisms9061196] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/28/2021] [Accepted: 05/28/2021] [Indexed: 12/26/2022] Open
Abstract
Influenza viruses are a leading cause of morbidity and mortality worldwide. These air-borne pathogens are able to cross the species barrier, leading to regular seasonal epidemics and sporadic pandemics. Influenza viruses also possess a high genetic variability, which allows for the acquisition of resistance mutations to antivirals. Combination therapies with two or more drugs targeting different mechanisms of viral replication have been considered an advantageous option to not only enhance the effectiveness of the individual treatments, but also reduce the likelihood of resistance emergence. Using an in vitro infection model, we assessed the barrier to viral resistance of a combination therapy with the neuraminidase inhibitor oseltamivir and human interferon lambda against the pandemic H1N1 A/Netherlands/602/2009 (H1N1pdm09) virus. We serially passaged the virus in a cell line derived from human bronchial epithelial cells in the presence or absence of increasing concentrations of oseltamivir alone or oseltamivir plus interferon lambda. While the treatment with oseltamivir alone quickly induced the emergence of antiviral resistance through a single mutation in the neuraminidase gene, the co-administration of interferon lambda delayed the emergence of drug-resistant influenza virus variants. Our results suggest a possible clinical application of interferon lambda in combination with oseltamivir to treat influenza.
Collapse
Affiliation(s)
- Chiara Medaglia
- Department of Microbiology and Molecular Medicine, University of Geneva, 1206 Geneva, Switzerland; (C.M.); (A.C.-A.Z.)
| | | | - Paulo Jacob Silva
- Insitute of Materials, Ecole polytechnique fédérale de Lausanne, 1015 Lausanne, Switzerland; (P.J.S.); (F.S.)
| | | | - Song Huang
- Epithelix Sas, 1228 Geneva, Switzerland; (S.C.); (S.H.)
| | - Francesco Stellacci
- Insitute of Materials, Ecole polytechnique fédérale de Lausanne, 1015 Lausanne, Switzerland; (P.J.S.); (F.S.)
| | - Caroline Tapparel
- Department of Microbiology and Molecular Medicine, University of Geneva, 1206 Geneva, Switzerland; (C.M.); (A.C.-A.Z.)
| |
Collapse
|
22
|
Analysis of the Evolution of Pandemic Influenza A(H1N1) Virus Neuraminidase Reveals Entanglement of Different Phenotypic Characteristics. mBio 2021; 12:mBio.00287-21. [PMID: 33975931 PMCID: PMC8262965 DOI: 10.1128/mbio.00287-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The influenza A virus (IAV) neuraminidase (NA) is essential for virion release from cells and decoy receptors and an important target of antiviral drugs and antibodies. Adaptation to a new host sialome and escape from the host immune system are forces driving the selection of mutations in the NA gene. Phylogenetic analysis shows that until 2015, 16 amino acid substitutions in NA became fixed in the virus population after introduction in the human population of the pandemic IAV H1N1 (H1N1pdm09) in 2009. The accumulative effect of these substitutions, in the order in which they appeared, was analyzed using recombinant proteins and viruses in combination with different functional assays. The results indicate that NA activity did not evolve to a single optimum but rather fluctuated within a certain bandwidth. Furthermore, antigenic and enzymatic properties of NA were intertwined, with several residues affecting multiple properties. For example, the substitution K432E in the second sialic acid binding site, next to the catalytic site, was shown to affect catalytic activity, substrate specificity, and the pH optimum for maximum activity. This substitution also altered antigenicity of NA, which may explain its selection. We propose that the entanglement of NA phenotypes may be an important determining factor in the evolution of NA.IMPORTANCE Since its emergence in 2009, the pandemic H1N1 influenza A virus (IAV) has caused significant disease and mortality in humans. IAVs contain two envelope glycoproteins, the receptor-binding hemagglutinin (HA) and the receptor-destroying neuraminidase (NA). NA is essential for virion release from cells and decoy receptors, is an important target of antiviral drugs, and is increasingly being recognized as an important vaccine antigen. Not much is known, however, about the evolution of this protein upon the emergence of the novel pandemic H1N1 virus, with respect to its enzymatic activity and antigenicity. By reconstructing the evolutionary path of NA, we show that antigenic and enzymatic properties of NA are intertwined, with several residues affecting multiple properties. Understanding the entanglement of NA phenotypes will lead to better comprehension of IAV evolution and may help the development of NA-based vaccines.
Collapse
|
23
|
Huh K, Kang M, Shin DH, Hong J, Jung J. Oseltamivir and the Risk of Neuropsychiatric Events: A National, Population-based Study. Clin Infect Dis 2021; 71:e409-e414. [PMID: 31996920 DOI: 10.1093/cid/ciaa055] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/15/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Reports of serious neuropsychiatric events (NPEs), specifically suicide/suicide attempts, following the use of oseltamivir have led to public concerns. Our aim in this study was to determine whether an association exists between oseltamivir use and NPEs. METHOD This study was a population-based, retrospective, cohort study on a random sample of 50% of individuals in the Korean National Health Insurance Service (KNIS) database aged ≥8 years who were diagnosed with influenza between 2009 and 2017. The primary exposure was oseltamivir prescription at the time of influenza diagnosis, whereas the primary outcome was a diagnosis of an NPE within 30 days after the influenza diagnosis. Information on oseltamivir prescription, diagnoses of NPEs, demographic characteristics, comorbidities, drugs prescribed within the year before influenza diagnosis, and healthcare utilization were extracted from the KNIS database. RESULTS Of 3 352 015 individuals included in the analysis, 1 266 780 (37.8%) were prescribed oseltamivir. The incidence of NPEs was 0.86% and 1.16% in patients who were and were not prescribed oseltamivir, respectively (hazard ratio [HR], 0.74; 95% confidence interval [CI], .73 to .75; P < .001). Oseltamivir use was not associated with a difference in the overall risk of NPEs in the adjusted model (HR, 0.98; 95% CI, .96 to 1.01; P = .16), but the incidence of moderate-to-severe NPEs was significantly lower in those prescribed oseltamivir (HR, 0.92; 95% CI, .88-.96; P < .001). CONCLUSION Treating influenza with oseltamivir does not increase the risk of NPEs. Thus, public concern regarding its use is unwarranted.
Collapse
Affiliation(s)
- Kyungmin Huh
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Minsun Kang
- Artificial Intelligence and Big-Data Convergence Center, Gil Medical Center, Gachon University College of Medicine and Science, Incheon, Korea
| | - Dong Hoon Shin
- Department of Neurology, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - Jinwook Hong
- Artificial Intelligence and Big-Data Convergence Center, Gil Medical Center, Gachon University College of Medicine and Science, Incheon, Korea
| | - Jaehun Jung
- Artificial Intelligence and Big-Data Convergence Center, Gil Medical Center, Gachon University College of Medicine and Science, Incheon, Korea.,Department of Preventive Medicine, Gachon University College of Medicine, Incheon, Korea
| |
Collapse
|
24
|
Grahl MVC, Alcará AM, Perin APA, Moro CF, Pinto ÉSM, Feltes BC, Ghilardi IM, Rodrigues FVF, Dorn M, da Costa JC, Norberto de Souza O, Ligabue-Braun R. Evaluation of drug repositioning by molecular docking of pharmaceutical resources available in the Brazilian healthcare system against SARS-CoV-2. INFORMATICS IN MEDICINE UNLOCKED 2021; 23:100539. [PMID: 33623816 PMCID: PMC7893290 DOI: 10.1016/j.imu.2021.100539] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 02/03/2021] [Accepted: 02/11/2021] [Indexed: 12/21/2022] Open
Abstract
In 2020 SARS-CoV-2 reached pandemic status, reaching Brazil in mid-February. As of now, no specific drugs for treating the disease are available. In this work, the possibility of interaction between SARS-CoV-2 viral proteins (open and closed spike protein, isolate spike protein RBD, NSP 10, NSP 16, main protease, and RdRp polymerase) and multiple molecules is addressed through the repositioning of drugs available for the treatment of other diseases that are approved by the FDA and covered by SUS, the Brazilian Public Health System. Three different docking software were used, followed by a unification of the results by independent evaluation. Afterwards, the chemical interactions of the compounds with the targets were inspected via molecular dynamics and analyzed. The results point to a potential effectiveness of Penciclovir, Ribavirin, and Zanamivir, from a set of 48 potential candidates. They may also be multi-target drugs, showing high affinity with more than one viral protein. Further in vitro and in vivo validation is required to assess the suitability of repositioning the proposed drugs for COVID-19.
Collapse
Affiliation(s)
- Matheus V C Grahl
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
- Graduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Allan M Alcará
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
- Graduate Program in Medicine, Pediatrics and Child Health, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Ana Paula A Perin
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Federal University of Rio Grande do Sul, RS, Brazil
| | - Carlo F Moro
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
- Graduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Éderson S M Pinto
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Federal University of Rio Grande do Sul, RS, Brazil
- Laboratory of Structural Bioinformatics and Computational Biology, Institute of Informatics, Federal University of Rio Grande do Sul, RS, Brazil
| | - Bruno C Feltes
- Laboratory of Structural Bioinformatics and Computational Biology, Institute of Informatics, Federal University of Rio Grande do Sul, RS, Brazil
- Laboratory of Immunobiology and Immunogenetics, Institute of Biosciences, Federal University of Rio Grande do Sul, RS, Brazil
| | - Isadora M Ghilardi
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
- Graduate Program in Medicine, Pediatrics and Child Health, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Felipe V F Rodrigues
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
- Graduate Program in Medicine, Pediatrics and Child Health, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Marcio Dorn
- Laboratory of Structural Bioinformatics and Computational Biology, Institute of Informatics, Federal University of Rio Grande do Sul, RS, Brazil
| | - Jaderson C da Costa
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
- Graduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
- Graduate Program in Medicine, Pediatrics and Child Health, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Osmar Norberto de Souza
- School of Technology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Rodrigo Ligabue-Braun
- Department of Pharmacosciences and Graduate Program in Biosciences (PPGBio), Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
25
|
Lin W, Cui H, Teng Q, Li L, Shi Y, Li X, Yang J, Liu Q, Deng J, Li Z. Evolution and pathogenicity of H6 avian influenza viruses isolated from Southern China during 2011 to 2017 in mice and chickens. Sci Rep 2020; 10:20583. [PMID: 33239647 PMCID: PMC7689535 DOI: 10.1038/s41598-020-76541-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 10/08/2020] [Indexed: 12/02/2022] Open
Abstract
H6 subtype avian influenza viruses spread widely in birds and pose potential threats to poultry and mammals, even to human beings. In this study, the evolution and pathogenicity of H6 AIVs isolated in live poultry markets from 2011 to 2017 were investigated. These H6 isolates were reassortant with other subtypes of influenza virus with increasing genomic diversity. However, no predominant genotype was found during this period. All of the H6N2 and most of the H6N6 isolates replicated efficiently in lungs of inoculated mice without prior adaptation. All of the H6N2 and two H6N6 isolates replicated efficiently in nasal turbinates of inoculated mice, which suggested the H6N2 viruses were more adaptive to the upper respiratory tract of mice than the H6N6 viruses. One of H6N2 virus caused systemic infection in one out of three inoculated mice, which indicated that H6 avian influenza virus, especially the H6N2 viruses posed a potential threat to mammals. Five H6 strains selected from different genotypes caused no clinical signs to inoculated chickens, and their replication were limited in chickens since the viruses have been detected only from a few tissues or swabs at low titers. Our study strongly suggests that the H6 avian influenza virus isolated from live poultry markets pose potential threat to mammals.
Collapse
Affiliation(s)
- Weishan Lin
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Hongrui Cui
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Qiaoyang Teng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Luzhao Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Ying Shi
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Xuesong Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Jianmei Yang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Qinfang Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Junliang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.
| | - Zejun Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China.
| |
Collapse
|
26
|
Tunstall T, Portelli S, Phelan J, Clark TG, Ascher DB, Furnham N. Combining structure and genomics to understand antimicrobial resistance. Comput Struct Biotechnol J 2020; 18:3377-3394. [PMID: 33294134 PMCID: PMC7683289 DOI: 10.1016/j.csbj.2020.10.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/15/2020] [Accepted: 10/17/2020] [Indexed: 02/07/2023] Open
Abstract
Antimicrobials against bacterial, viral and parasitic pathogens have transformed human and animal health. Nevertheless, their widespread use (and misuse) has led to the emergence of antimicrobial resistance (AMR) which poses a potentially catastrophic threat to public health and animal husbandry. There are several routes, both intrinsic and acquired, by which AMR can develop. One major route is through non-synonymous single nucleotide polymorphisms (nsSNPs) in coding regions. Large scale genomic studies using high-throughput sequencing data have provided powerful new ways to rapidly detect and respond to such genetic mutations linked to AMR. However, these studies are limited in their mechanistic insight. Computational tools can rapidly and inexpensively evaluate the effect of mutations on protein function and evolution. Subsequent insights can then inform experimental studies, and direct existing or new computational methods. Here we review a range of sequence and structure-based computational tools, focussing on tools successfully used to investigate mutational effect on drug targets in clinically important pathogens, particularly Mycobacterium tuberculosis. Combining genomic results with the biophysical effects of mutations can help reveal the molecular basis and consequences of resistance development. Furthermore, we summarise how the application of such a mechanistic understanding of drug resistance can be applied to limit the impact of AMR.
Collapse
Affiliation(s)
- Tanushree Tunstall
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Stephanie Portelli
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Australia
- Structural Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Australia
| | - Jody Phelan
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Taane G. Clark
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - David B. Ascher
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Australia
- Structural Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Australia
| | - Nicholas Furnham
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| |
Collapse
|
27
|
Márquez-Domínguez L, Reyes-Leyva J, Herrera-Camacho I, Santos-López G, Scior T. Five Novel Non-Sialic Acid-Like Scaffolds Inhibit In Vitro H1N1 and H5N2 Neuraminidase Activity of Influenza a Virus. Molecules 2020; 25:molecules25184248. [PMID: 32947893 PMCID: PMC7571124 DOI: 10.3390/molecules25184248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 01/04/2023] Open
Abstract
Neuraminidase (NA) of influenza viruses enables the virus to access the cell membrane. It degrades the sialic acid contained in extracellular mucin. Later, it is responsible for releasing newly formed virions from the membrane of infected cells. Both processes become key functions within the viral cycle. Therefore, it is a therapeutic target for research of the new antiviral agents. Structure–activity relationships studies have revealed which are the important functional groups for the receptor–ligand interaction. Influenza virus type A NA activity was inhibited by five scaffolds without structural resemblance to sialic acid. Intending small organic compound repositioning along with drug repurposing, this study combined in silico simulations of ligand docking into the known binding site of NA, along with in vitro bioassays. The five proposed scaffolds are N-acetylphenylalanylmethionine, propanoic 3-[(2,5-dimethylphenyl) carbamoyl]-2-(piperazin-1-yl) acid, 3-(propylaminosulfonyl)-4-chlorobenzoic acid, ascorbic acid (vitamin C), and 4-(dipropylsulfamoyl) benzoic acid (probenecid). Their half maximal inhibitory concentration (IC50) was determined through fluorometry. An acidic reagent 2′-O-(4-methylumbelliferyl)-α-dN-acetylneuraminic acid (MUNANA) was used as substrate for viruses of human influenza H1N1 or avian influenza H5N2. Inhibition was observed in millimolar ranges in a concentration-dependent manner. The IC50 values of the five proposed scaffolds ranged from 6.4 to 73 mM. The values reflect a significant affinity difference with respect to the reference drug zanamivir (p < 0.001). Two compounds (N-acetyl dipeptide and 4-substituted benzoic acid) clearly showed competitive mechanisms, whereas ascorbic acid reflected non-competitive kinetics. The five small organic molecules constitute five different scaffolds with moderate NA affinities. They are proposed as lead compounds for developing new NA inhibitors which are not analogous to sialic acid.
Collapse
Affiliation(s)
- Luis Márquez-Domínguez
- Laboratorio de Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Metepec, Puebla 74630, Mexico; (L.M.-D.); (J.R.-L.)
- Posgrado en Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico
- Laboratorio de Simulaciones Computacionales Moleculares, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72592, Mexico
| | - Julio Reyes-Leyva
- Laboratorio de Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Metepec, Puebla 74630, Mexico; (L.M.-D.); (J.R.-L.)
| | - Irma Herrera-Camacho
- Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico;
| | - Gerardo Santos-López
- Laboratorio de Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Metepec, Puebla 74630, Mexico; (L.M.-D.); (J.R.-L.)
- Correspondence: (G.S.-L.); (T.S.); Tel.: +52-244-444-0122 (G.S.-L.)
| | - Thomas Scior
- Laboratorio de Simulaciones Computacionales Moleculares, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72592, Mexico
- Correspondence: (G.S.-L.); (T.S.); Tel.: +52-244-444-0122 (G.S.-L.)
| |
Collapse
|
28
|
Laninamivir-Interferon Lambda 1 Combination Treatment Promotes Resistance by Influenza A Virus More Rapidly than Laninamivir Alone. Antimicrob Agents Chemother 2020; 64:AAC.00301-20. [PMID: 32393488 DOI: 10.1128/aac.00301-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/30/2020] [Indexed: 12/18/2022] Open
Abstract
Each year, 5% to 20% of the population of the United States becomes infected with influenza A virus. Combination therapy with two or more antiviral agents has been considered a potential treatment option for influenza virus infection. However, the clinical results derived from combination treatment with two or more antiviral drugs have been variable. We examined the effectiveness of cotreatment with two distinct classes of anti-influenza drugs, i.e., neuraminidase (NA) inhibitor, laninamivir, and interferon lambda 1 (IFN-λ1), against the emergence of drug-resistant virus variants in vitro We serially passaged pandemic A/California/04/09 [A(H1N1)pdm09] influenza virus in a human lung epithelial cell line (Calu-3) in the presence or absence of increasing concentrations of laninamivir or laninamivir plus IFN-λ1. Surprisingly, laninamivir used in combination with IFN-λ1 promoted the emergence of the E119G NA mutation five passages earlier than laninamivir alone (passage 2 versus passage 7, respectively). Acquisition of this mutation resulted in significantly reduced sensitivity to the NA inhibitors laninamivir (∼284-fold) and zanamivir (∼1,024-fold) and decreased NA enzyme catalytic activity (∼5-fold) compared to the parental virus. Moreover, the E119G NA mutation emerged together with concomitant hemagglutinin (HA) mutations (T197A and D222G), which were selected more rapidly by combination treatment with laninamivir plus IFN-λ1 (passages 2 and 3, respectively) than by laninamivir alone (passage 10). Our results show that treatment with laninamivir alone or in combination with IFN-λ1 can lead to the emergence of drug-resistant influenza virus variants. The addition of IFN-λ1 in combination with laninamivir may promote acquisition of drug resistance more rapidly than treatment with laninamivir alone.
Collapse
|
29
|
Wei CJ, Crank MC, Shiver J, Graham BS, Mascola JR, Nabel GJ. Next-generation influenza vaccines: opportunities and challenges. Nat Rev Drug Discov 2020; 19:239-252. [PMID: 32060419 PMCID: PMC7223957 DOI: 10.1038/s41573-019-0056-x] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2019] [Indexed: 02/07/2023]
Abstract
Seasonal influenza vaccines lack efficacy against drifted or pandemic influenza strains. Developing improved vaccines that elicit broader immunity remains a public health priority. Immune responses to current vaccines focus on the haemagglutinin head domain, whereas next-generation vaccines target less variable virus structures, including the haemagglutinin stem. Strategies employed to improve vaccine efficacy involve using structure-based design and nanoparticle display to optimize the antigenicity and immunogenicity of target antigens; increasing the antigen dose; using novel adjuvants; stimulating cellular immunity; and targeting other viral proteins, including neuraminidase, matrix protein 2 or nucleoprotein. Improved understanding of influenza antigen structure and immunobiology is advancing novel vaccine candidates into human trials.
Collapse
Affiliation(s)
- Chih-Jen Wei
- Sanofi Global Research and Development, Cambridge, MA, USA
| | - Michelle C Crank
- Vaccine Research Center, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Barney S Graham
- Vaccine Research Center, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John R Mascola
- Vaccine Research Center, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Gary J Nabel
- Sanofi Global Research and Development, Cambridge, MA, USA.
| |
Collapse
|
30
|
Li P, Du R, Wang Y, Hou X, Wang L, Zhao X, Zhan P, Liu X, Rong L, Cui Q. Identification of Chebulinic Acid and Chebulagic Acid as Novel Influenza Viral Neuraminidase Inhibitors. Front Microbiol 2020; 11:182. [PMID: 32256457 PMCID: PMC7093024 DOI: 10.3389/fmicb.2020.00182] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/24/2020] [Indexed: 11/23/2022] Open
Abstract
The influenza A virus (IAV) causes seasonal epidemics and occasional but devastating pandemics, which are of a major public health concern. Although several antiviral drugs are currently available, there is an urgent need to develop novel antiviral therapies with different mechanisms of action due to emergence of drug resistance. In this study, two related compounds, chebulagic acid (CHLA) and chebulinic acid (CHLI), were identified as novel inhibitors against IAV replication. A reporter virus-based infection assay demonstrated that CHLA and CHLI exhibit no inhibitory effect on IAV entry or RNA replication during the virus replication cycle. Results of viral release inhibition assay and neuraminidase (NA) inhibition assay indicated that CHLA and CHLI exert their inhibitory effect on the NA-mediated viral release. Moreover, oseltamivir-resistance mutation NA/H274Y of NA is susceptible to CHLA or CHLI, suggesting a different mechanism of action for CHLA and CHLI. In summary, CHLA and CHLI are promising new NA inhibitors that may be further developed as novel antivirals against IAVs.
Collapse
Affiliation(s)
- Ping Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ruikun Du
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
- Research Center, College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yanyan Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xuewen Hou
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lin Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiujuan Zhao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Qinghua Cui
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
- Research Center, College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
31
|
Fernández-Arjona MDM, Grondona JM, Fernández-Llebrez P, López-Ávalos MD. Microglial activation by microbial neuraminidase through TLR2 and TLR4 receptors. J Neuroinflammation 2019; 16:245. [PMID: 31791382 PMCID: PMC6889729 DOI: 10.1186/s12974-019-1643-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/18/2019] [Indexed: 12/31/2022] Open
Abstract
Background Neuraminidase (NA) is a sialidase present, among various locations, in the envelope/membrane of some bacteria/viruses (e.g., influenza virus), and is involved in infectiveness and/or dispersion. The administration of NA within the brain lateral ventricle represents a model of acute sterile inflammation. The relevance of the Toll-like receptors TLR2 and TLR4 (particularly those in microglial cells) in such process was investigated. Methods Mouse strains deficient in either TLR2 (TLR2-/-) or TLR4 (TLR4-/-) were used. NA was injected in the lateral ventricle, and the inflammatory reaction was studied by immunohistochemistry (IBA1 and IL-1β) and qPCR (cytokine response). Also, microglia was isolated from those strains and in vitro stimulated with NA, or with TLR2/TLR4 agonists as positive controls (P3C and LPS respectively). The relevance of the sialidase activity of NA was investigated by stimulating microglia with heat-inactivated NA, or with native NA in the presence of sialidase inhibitors (oseltamivir phosphate and N-acetyl-2,3-dehydro-2-deoxyneuraminic acid). Results In septofimbria and hypothalamus, IBA1-positive and IL-1β-positive cell counts increased after NA injection in wild type (WT) mice. In TLR4-/- mice, such increases were largely abolished, while were only slightly diminished in TLR2-/- mice. Similarly, the NA-induced expression of IL-1β, TNFα, and IL-6 was completely blocked in TLR4-/- mice, and only partially reduced in TLR2-/- mice. In isolated cultured microglia, NA induced a cytokine response (IL-1β, TNFα, and IL-6) in WT microglia, but was unable to do so in TLR4-/- microglia; TLR2 deficiency partially affected the NA-induced microglial response. When WT microglia was exposed in vitro to heat-inactivated NA or to native NA along with sialidase inhibitors, the NA-induced microglia activation was almost completely abrogated. Conclusions NA is able to directly activate microglial cells, and it does so mostly acting through the TLR4 receptor, while TLR2 has a secondary role. Accordingly, the inflammatory reaction induced by NA in vivo is partially dependent on TLR2, while TLR4 plays a crucial role. Also, the sialidase activity of NA is critical for microglial activation. These results highlight the relevance of microbial NA in the neuroinflammation provoked by NA-bearing pathogens and the possibility of targeting its sialidase activity to ameliorate its impact.
Collapse
Affiliation(s)
- María Del Mar Fernández-Arjona
- Dpto. de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071, Málaga, Spain.,Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
| | - Jesús M Grondona
- Dpto. de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071, Málaga, Spain.,Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
| | - Pedro Fernández-Llebrez
- Dpto. de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071, Málaga, Spain.,Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
| | - María Dolores López-Ávalos
- Dpto. de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071, Málaga, Spain. .,Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain.
| |
Collapse
|
32
|
Mohammadi Pour P, Fakhri S, Asgary S, Farzaei MH, Echeverría J. The Signaling Pathways, and Therapeutic Targets of Antiviral Agents: Focusing on the Antiviral Approaches and Clinical Perspectives of Anthocyanins in the Management of Viral Diseases. Front Pharmacol 2019; 10:1207. [PMID: 31787892 PMCID: PMC6856223 DOI: 10.3389/fphar.2019.01207] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/19/2019] [Indexed: 12/31/2022] Open
Abstract
As the leading cause of death worldwide, viruses significantly affect global health. Despite the rapid progress in human healthcare, there are few viricidal and antiviral therapies that are efficient enough. The rapid emergence of resistance, and high costs, as well as the related side effects of synthetic antiviral drugs, raise the need to identify novel, effective, and safe alternatives against viral diseases. Nature has been of the most exceptional help and source of inspiration for developing novel multi-target antiviral compounds, affecting several steps of the viral life cycle and host proteins. For that matter and due to safety and efficacy limitations, as well as high resistance rate of conventional therapies, hundreds of natural molecules are preferred over the synthetic drugs. Besides, natural antiviral agents have shown acceptable antiviral value in both preclinical and clinical trials.This is the first review regarding molecular and cellular pathways of the virus life cycle, treatment strategies, and therapeutic targets of several viral diseases with a particular focus on anthocyanins as promising natural compounds for significant antiviral enhancements. Clinical applications and the need to develop nano-formulation of anthocyanins in drug delivery systems are also considered.
Collapse
Affiliation(s)
- Pardis Mohammadi Pour
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sedigheh Asgary
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
33
|
Zuo P, Collins J, Okour M, Barth A, Shortino D, Yates P, Roberts G, Watson HA, Peppercorn A, Hossain M. Population Pharmacokinetic/Pharmacodynamic Analysis of Intravenous Zanamivir in Healthy Adults and Hospitalized Adult and Pediatric Subjects With Influenza. Clin Transl Sci 2019; 13:157-168. [PMID: 31664778 PMCID: PMC6951463 DOI: 10.1111/cts.12697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 07/28/2019] [Indexed: 11/30/2022] Open
Abstract
Zanamivir is a potent and highly selective inhibitor of influenza neuraminidase in which the inhibition of this enzyme prevents the virus from infecting other cells and specifically prevents release of the new virion from the host cell membrane. It is available as an oral powder for inhalation and intravenous formulations. The current population pharmacokinetic model based on data from eight studies of subjects treated with the intravenous formulation (125 healthy adults and 533 hospitalized adult and pediatric subjects with suspected or confirmed influenza) suggested a decreased zanamivir clearance in pediatric and renal impairment adult subjects. It also indicates that b.i.d. dosing is necessary to keep the exposure in influenza infected subjects above the 90% inhibitory concentration values of recently circulating viruses over the dosing interval. In the exposure‐response analysis (phases II and III studies), no apparent relationship was found between zanamivir exposure and clinically relevant pharmacodynamic end points.
Collapse
Affiliation(s)
- Peiying Zuo
- PAREXEL International, Durham, North Carolina, USA
| | - Jon Collins
- PAREXEL International, Durham, North Carolina, USA
| | - Malek Okour
- GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Aline Barth
- GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | | | | | | | | | | | - Mohammad Hossain
- GlaxoSmithKline, Collegeville, Pennsylvania, USA.,Agios Pharmaceuticals, Cambridge, Massachusetts, USA
| |
Collapse
|
34
|
Ahmed A, Hussain N, Bhardwaj M, Chhalodia AK, Kumar A, Mukherjee D. Palladium catalysed carbonylation of 2-iodoglycals for the synthesis of C-2 carboxylic acids and aldehydes taking formic acid as a carbonyl source. RSC Adv 2019; 9:22227-22231. [PMID: 35519467 PMCID: PMC9066652 DOI: 10.1039/c9ra03626a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/04/2019] [Indexed: 11/21/2022] Open
Abstract
Pd catalyzed carbonylative reaction of 2-iodo-glycals has been developed taking formic acid as a carbonyl source for the synthesis of 2-carboxylic acids of sugars by the hydroxycarbonylation strategy. The methodology was successfully extended to the synthesis of 2-formyl glycals by using a reductive carbonylation approach. Both ester and ether protected glycals undergo the reaction and furnished sugar acids in good yield which is otherwise not possible by literature methods. The C-2 sugar acids were successfully utilized for the construction of 2-amido glycals, 2-dipeptido-glycal by Ugi reaction and C-1 and C-2 branched glycosyl esters.
Collapse
Affiliation(s)
- Ajaz Ahmed
- Academy of Scientific and Innovative Research India
- Natural Product Chemistry Division, Indian Institute of Integrative Medicine India
| | - Nazar Hussain
- Academy of Scientific and Innovative Research India
- Natural Product Chemistry Division, Indian Institute of Integrative Medicine India
| | - Monika Bhardwaj
- Natural Product Chemistry Division, Indian Institute of Integrative Medicine India
| | - Anuj Kumar Chhalodia
- Natural Product Chemistry Division, Indian Institute of Integrative Medicine India
| | - Amit Kumar
- Natural Product Chemistry Division, Indian Institute of Integrative Medicine India
| | - Debaraj Mukherjee
- Academy of Scientific and Innovative Research India
- Natural Product Chemistry Division, Indian Institute of Integrative Medicine India
| |
Collapse
|
35
|
Abstract
Prominent in the current stage of drug development, antiviral compounds can be efficiently prepared through cycloaddition reactions. The chapter reports the use of classical Diels–Alder and their hetero version for the design and synthesis of compounds that were tested for their antiviral activities against a variety of viruses. Furthermore, 1,3-dipolar cycloaddition reactions of selected 1,3-dipoles, such as azides, nitrones, and nitrile oxides, are reviewed in the light of their application in the preparation of key intermediates for antiviral synthesis. A few examples of [2+2] cycloaddition reactions are also presented. The products obtained from these pericyclic reaction approaches were all tested for their activities in terms of blocking the virus replication, and the relevant biological data are highlighted.
Collapse
|
36
|
Kang J, Yeom G, Ha SJ, Kim MG. Development of a DNA aptamer selection method based on the heterogeneous sandwich form and its application in a colorimetric assay for influenza A virus detection. NEW J CHEM 2019. [DOI: 10.1039/c8nj06458j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this paper, we introduce an effective method for selecting aptamer that increases the signal-to-noise ratio in a heterogenous sandwich-type immunosensor and confirm the efficiency of selected aptamer candidates in the colorimetric assay. Using the proposed method, four aptamer candidates withKdvalues ranging from 77.6 nM to 125.7 nM were obtained.
Collapse
Affiliation(s)
- Juyoung Kang
- Department of Chemistry
- School of Physics and Chemistry
- Gwangju Institute of Science and Technology (GIST)
- Gwangju
- Republic of Korea
| | - Gyuho Yeom
- Department of Chemistry
- School of Physics and Chemistry
- Gwangju Institute of Science and Technology (GIST)
- Gwangju
- Republic of Korea
| | - Su-Ji Ha
- Department of Chemistry
- School of Physics and Chemistry
- Gwangju Institute of Science and Technology (GIST)
- Gwangju
- Republic of Korea
| | - Min-Gon Kim
- Department of Chemistry
- School of Physics and Chemistry
- Gwangju Institute of Science and Technology (GIST)
- Gwangju
- Republic of Korea
| |
Collapse
|
37
|
Shin WJ, Seong BL. Novel antiviral drug discovery strategies to tackle drug-resistant mutants of influenza virus strains. Expert Opin Drug Discov 2018; 14:153-168. [PMID: 30585088 DOI: 10.1080/17460441.2019.1560261] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
INTRODUCTION The emergence of drug-resistant influenza virus strains highlights the need for new antiviral therapeutics to combat future pandemic outbreaks as well as continuing seasonal cycles of influenza. Areas covered: This review summarizes the mechanisms of current FDA-approved anti-influenza drugs and patterns of resistance to those drugs. It also discusses potential novel targets for broad-spectrum antiviral drugs and recent progress in novel drug design to overcome drug resistance in influenza. Expert opinion: Using the available structural information about drug-binding pockets, research is currently underway to identify molecular interactions that can be exploited to generate new antiviral drugs. Despite continued efforts, antivirals targeting viral surface proteins like HA, NA, and M2, are all susceptible to developing resistance. Structural information on the internal viral polymerase complex (PB1, PB2, and PA) provides a new avenue for influenza drug discovery. Host factors, either at the initial step of viral infection or at the later step of nuclear trafficking of viral RNP complex, are being actively pursued to generate novel drugs with new modes of action, without resulting in drug resistance.
Collapse
Affiliation(s)
- Woo-Jin Shin
- a Department of Molecular Microbiology and Immunology, Keck School of Medicine , University of Southern California , Los Angeles , CA , USA
| | - Baik L Seong
- b Department of Biotechnology , College of Life Science and Biotechnology, Yonsei University , Seoul , South Korea.,c Vaccine Translational Research Center , Yonsei University , Seoul , South Korea
| |
Collapse
|
38
|
Mostafa A, Abdelwhab EM, Mettenleiter TC, Pleschka S. Zoonotic Potential of Influenza A Viruses: A Comprehensive Overview. Viruses 2018; 10:v10090497. [PMID: 30217093 PMCID: PMC6165440 DOI: 10.3390/v10090497] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/24/2018] [Accepted: 09/13/2018] [Indexed: 02/06/2023] Open
Abstract
Influenza A viruses (IAVs) possess a great zoonotic potential as they are able to infect different avian and mammalian animal hosts, from which they can be transmitted to humans. This is based on the ability of IAV to gradually change their genome by mutation or even reassemble their genome segments during co-infection of the host cell with different IAV strains, resulting in a high genetic diversity. Variants of circulating or newly emerging IAVs continue to trigger global health threats annually for both humans and animals. Here, we provide an introduction on IAVs, highlighting the mechanisms of viral evolution, the host spectrum, and the animal/human interface. Pathogenicity determinants of IAVs in mammals, with special emphasis on newly emerging IAVs with pandemic potential, are discussed. Finally, an overview is provided on various approaches for the prevention of human IAV infections.
Collapse
Affiliation(s)
- Ahmed Mostafa
- Institute of Medical Virology, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany.
- Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC), Giza 12622, Egypt.
| | - Elsayed M Abdelwhab
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany.
| | - Thomas C Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany.
| | - Stephan Pleschka
- Institute of Medical Virology, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany.
| |
Collapse
|
39
|
Zoonotic Influenza and Human Health-Part 2: Clinical Features, Diagnosis, Treatment, and Prevention Strategies. Curr Infect Dis Rep 2018; 20:38. [PMID: 30069787 PMCID: PMC7102074 DOI: 10.1007/s11908-018-0643-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Purpose of Review Zoonotic influenza viruses are those influenza viruses that cross the animal-human barrier and can cause disease in humans, manifesting from minor respiratory illnesses to multiorgan dysfunction. The increasing incidence of infections caused by these viruses worldwide has necessitated focused attention to improve both diagnostic as well as treatment modalities. In this second part of a two-part review, we discuss the clinical features, diagnostic modalities, and treatment of zoonotic influenza, and provide an overview of prevention strategies. Recent Findings Illnesses caused by novel reassortant avian influenza viruses continue to be detected and described; most recently, a human case of avian influenza A(H7N4) has been described from China. We continue to witness increasing rates of A(H7N9) infections, with the latest (fifth) wave, from late 2016 to 2017, being the largest to date. The case fatality rate for A(H7N9) and A(H5N1) infections among humans is much higher than that of seasonal influenza infections. Since the emergence of the A(H1N1) 2009 pandemic, and subsequently A(H7N9), testing and surveillance for novel influenzas have become more effective. Various newer treatment options, including peramivir, favipiravir (T-705), and DAS181, and human or murine monoclonal antibodies have been evaluated in vitro and in animal models. Summary Armed with robust diagnostic modalities, antiviral medications, vaccines, and advanced surveillance systems, we are today better prepared to face a new influenza pandemic and to limit the burden of zoonotic influenza than ever before. Sustained efforts and robust research are necessary to efficiently deal with the highly mutagenic zoonotic influenza viruses.
Collapse
|
40
|
Redox Biology of Respiratory Viral Infections. Viruses 2018; 10:v10080392. [PMID: 30049972 PMCID: PMC6115776 DOI: 10.3390/v10080392] [Citation(s) in RCA: 251] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/17/2018] [Accepted: 07/24/2018] [Indexed: 12/16/2022] Open
Abstract
Respiratory viruses cause infections of the upper or lower respiratory tract and they are responsible for the common cold—the most prevalent disease in the world. In many cases the common cold results in severe illness due to complications, such as fever or pneumonia. Children, old people, and immunosuppressed patients are at the highest risk and require fast diagnosis and therapeutic intervention. However, the availability and efficiencies of existing therapeutic approaches vary depending on the virus. Investigation of the pathologies that are associated with infection by respiratory viruses will be paramount for diagnosis, treatment modalities, and the development of new therapies. Changes in redox homeostasis in infected cells are one of the key events that is linked to infection with respiratory viruses and linked to inflammation and subsequent tissue damage. Our review summarizes current knowledge on changes to redox homeostasis, as induced by the different respiratory viruses.
Collapse
|
41
|
Dou D, Revol R, Östbye H, Wang H, Daniels R. Influenza A Virus Cell Entry, Replication, Virion Assembly and Movement. Front Immunol 2018; 9:1581. [PMID: 30079062 PMCID: PMC6062596 DOI: 10.3389/fimmu.2018.01581] [Citation(s) in RCA: 301] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/26/2018] [Indexed: 12/20/2022] Open
Abstract
Influenza viruses replicate within the nucleus of the host cell. This uncommon RNA virus trait provides influenza with the advantage of access to the nuclear machinery during replication. However, it also increases the complexity of the intracellular trafficking that is required for the viral components to establish a productive infection. The segmentation of the influenza genome makes these additional trafficking requirements especially challenging, as each viral RNA (vRNA) gene segment must navigate the network of cellular membrane barriers during the processes of entry and assembly. To accomplish this goal, influenza A viruses (IAVs) utilize a combination of viral and cellular mechanisms to coordinate the transport of their proteins and the eight vRNA gene segments in and out of the cell. The aim of this review is to present the current mechanistic understanding for how IAVs facilitate cell entry, replication, virion assembly, and intercellular movement, in an effort to highlight some of the unanswered questions regarding the coordination of the IAV infection process.
Collapse
Affiliation(s)
- Dan Dou
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Rebecca Revol
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Henrik Östbye
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Hao Wang
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Robert Daniels
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| |
Collapse
|
42
|
Lee N, Khalenkov AM, Lugovtsev VY, Ireland DD, Samsonova AP, Bovin NV, Donnelly RP, Ilyushina NA. The use of plant lectins to regulate H1N1 influenza A virus receptor binding activity. PLoS One 2018; 13:e0195525. [PMID: 29630683 PMCID: PMC5891020 DOI: 10.1371/journal.pone.0195525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/23/2018] [Indexed: 01/02/2023] Open
Abstract
We applied an in vitro selection approach using two different plant lectins that bind to α2,3- or α2,6-linked sialic acids to determine which genetic changes of the A/California/04/09 (H1N1) virus alter hemagglutinin (HA) receptor binding toward α2,3- or α2,6-linked glycans. Consecutive passages of the A/California/04/09 virus with or without lectins in human lung epithelial Calu-3 cells led to development of three HA1 amino acid substitutions, N129D, G155E, and S183P, and one mutation in the neuraminidase (NA), G201E. The S183P mutation significantly increased binding to several α2,6 SA-linked glycans, including YDS, 6'SL(N), and 6-Su-6'SLN, compared to the wild-type virus (↑3.6-fold, P < 0.05). Two other HA1 mutations, N129D and G155E, were sufficient to significantly increase binding to α2,6-linked glycans, 6'SLN and 6-Su-6'SLN, compared to S183P (↑4.1-fold, P < 0.05). These HA1 mutations also increased binding affinity for 3'SLN glycan compared to the wild-type virus as measured by Biacore surface plasmon resonance method. In addition, the HA1 N129D and HA1 G155E substitutions were identified as antigenic mutations. Furthermore, the G201E mutation in NA reduced the NA enzyme activity (↓2.3-fold). These findings demonstrate that the A/California/04/09 (H1N1) virus can acquire enhanced receptor affinity for both α2,3- and α2,6-linked sialic receptors under lectin-induced selective pressure. Such changes in binding affinity are conferred by selection of beneficial HA1 mutations that affect receptor specificity, antigenicity, and/or functional compatibility with the NA protein.
Collapse
MESH Headings
- Amino Acid Substitution
- Animals
- Antigens, Viral/chemistry
- Antigens, Viral/genetics
- Antigens, Viral/metabolism
- Cell Line
- Dogs
- Hemagglutinin Glycoproteins, Influenza Virus/chemistry
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/metabolism
- Humans
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/pathogenicity
- Influenza A Virus, H1N1 Subtype/physiology
- Madin Darby Canine Kidney Cells
- Neuraminidase/chemistry
- Neuraminidase/genetics
- Neuraminidase/metabolism
- Plant Lectins/metabolism
- Polysaccharides/chemistry
- Polysaccharides/genetics
- Polysaccharides/metabolism
- Protein Binding
- Receptors, Virus/physiology
- Selection, Genetic
- Surface Plasmon Resonance
Collapse
Affiliation(s)
- Nicolette Lee
- Division of Biotechnology Research and Review II, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Alexey M. Khalenkov
- Division of Plasma Protein Therapeutics, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Vladimir Y. Lugovtsev
- Division of Viral Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Derek D. Ireland
- Division of Biotechnology Research and Review II, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Anastasia P. Samsonova
- Division of Viral Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Nicolai V. Bovin
- Carbohydrate Chemistry Laboratory, Shemyakin Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Raymond P. Donnelly
- Division of Biotechnology Research and Review II, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
- * E-mail: (NAI); (RPD)
| | - Natalia A. Ilyushina
- Division of Biotechnology Research and Review II, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
- * E-mail: (NAI); (RPD)
| |
Collapse
|
43
|
Filip R, Leluk J. Comparative studies on variability, phylogenesis, and correlated mutations of neuraminidases from influenza virus type A. BIO-ALGORITHMS AND MED-SYSTEMS 2018. [DOI: 10.1515/bams-2017-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Neuraminidase (NA) is an important protein for the replication cycle of influenza A viruses. NA is an enzyme that cleaves the sialic acid receptors; this process plays a significant role in viral life cycle. Blocking NA with a specific inhibitor is an effective way to treat the flu. However, some strains show resistance to current drugs. Therefore, NA is the focus for the intense research for new antiviral drugs and also for the explanation of the functions of new mutations. This research focuses on determining the profile of variability and phylogenetic analysis and finding the correlated mutations within a set of 149 sequences of NA belonging to various strains of influenza A virus. In this study, we have used the original programs (Corm, Consensus Constructor, and SSSSg) and also other bioinformatics software. NA proteins are characterized by various levels of variability in different regions, which was presented in detail with the aid of ConSurf. The use of four independent methods to create the phylogenetic trees gave some new data on the evolutionary relationship within the NA family proteins. The search for correlated mutations shows several potentially important correlated positions that were not reported previously to be significant. The use of such an approach can be potentially important and gives new information regarding NA proteins of influenza A virus.
Collapse
|
44
|
Comparison of the Efficacy of N9 Neuraminidase-Specific Monoclonal Antibodies against Influenza A(H7N9) Virus Infection. J Virol 2018; 92:JVI.01588-17. [PMID: 29167344 DOI: 10.1128/jvi.01588-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/20/2017] [Indexed: 01/07/2023] Open
Abstract
The fifth wave of A(H7N9) virus infection in China from 2016 to 2017 caused great concern due to the large number of individuals infected, the isolation of drug-resistant viruses, and the emergence of highly pathogenic strains. Antibodies against neuraminidase (NA) provide added benefit to hemagglutinin-specific immunity and may be important contributors to the effectiveness of A(H7N9) vaccines. We generated a panel of mouse monoclonal antibodies (MAbs) to identify antigenic domains on NA of the novel A(H7N9) virus and compared their functional properties. The loop formed in the region of residue 250 (250 loop) and the domain formed by the loops containing residues 370, 400, and 430 were identified as major antigenic regions. MAbs 1E8, 2F6, 10F4, and 11B2, which recognize these two antigenic domains, were characterized in depth. These four MAbs differ in their abilities to inhibit cleavage of small and large substrates (methyl-umbelliferyl-acetyl neuraminic acid [MU-NANA] and fetuin, respectively) in NA inhibition assays. 1E8 and 11B2 did not inhibit NA cleavage of either MU-NANA or fetuin, and 2F6 inhibited cleavage of fetuin alone, whereas 10F4 inhibited cleavage of both substrates. All four MAbs reduced the in vitro spread of viruses carrying either the wild-type N9 or N9 with antiviral-resistant mutations but to different degrees. These MAbs have different in vivo levels of effectiveness: 10F4 was the most effective in protecting mice against challenge with A(H7N9) virus, 2F6 was less effective, and 11B2 failed to protect BALB/c mice at the doses tested. Our study confirms that NA-specific antibodies can protect against A(H7N9) infection and suggests that in vitro properties can be used to rank antibodies with therapeutic potential.IMPORTANCE The novel A(H7N9) viruses that emerged in China in 2013 continue to infect humans, with a high fatality rate. The most recent outbreak resulted in a larger number of human cases than previous epidemic waves. Due to the absence of a licensed vaccine and the emergence of drug-resistant viruses, there is a need to develop alternative approaches to prevent or treat A(H7N9) infection. We have made a panel of mouse monoclonal antibodies (MAbs) specific for neuraminidase (NA) of A(H7N9) viruses; some of these MAbs are effective in inhibiting viruses that are resistant to antivirals used to treat A(H7N9) patients. Binding avidity, inhibition of NA activity, and plaque formation correlated with the effectiveness of these MAbs to protect mice against lethal A(H7N9) virus challenge. This study identifies in vitro measures that can be used to predict the in vivo efficacy of NA-specific antibodies, providing a way to select MAbs for further therapeutic development.
Collapse
|
45
|
Xiao A, Li Y, Li X, Santra A, Yu H, Li W, Chen X. Sialidase-catalyzed one-pot multienzyme (OPME) synthesis of sialidase transition-state analogue inhibitors. ACS Catal 2018; 8:43-47. [PMID: 29713561 PMCID: PMC5920526 DOI: 10.1021/acscatal.7b03257] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sialidase transition state analog inhibitor 2,3-dehydro-2-deoxy-N-acetylneuraminic acid (Neu5Ac2en, DANA) has played a leading role in developing clinically used anti-influenza virus drugs. Taking advantage of the Neu5Ac2en-forming catalytic property of Streptococcus pneumoniae sialidase SpNanC, an effective one-pot multienzyme (OPME) strategy has been developed to directly access Neu5Ac2en and its C-5, C-9, and C-7-analogs from N-acetylmannosamine (ManNAc) and analogs. The obtained Neu5Ac2en analogs can be further derivatized at various positions to generate a larger inhibitor library. Inhibition studies demonstrated improved selectivity of several C-5- or C-9-modified Neu5Ac2en derivatives against several bacterial sialidases. The study provides an efficient enzymatic method to access sialidase inhibitors with improved selectivity.
Collapse
Affiliation(s)
- An Xiao
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Yanhong Li
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Xixuan Li
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Abhishek Santra
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Hai Yu
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Wanqing Li
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Xi Chen
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
46
|
Meng X, Yang M, Li Y, Li X, Jia T, He H, Yu Q, Guo N, He Y, Yu P, Yang Y. Multivalent neuraminidase hydrolysis resistant triazole-sialoside protein conjugates as influenza-adsorbents. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.10.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
47
|
Screening for Neuraminidase Inhibitor Resistance Markers among Avian Influenza Viruses of the N4, N5, N6, and N8 Neuraminidase Subtypes. J Virol 2017; 92:JVI.01580-17. [PMID: 29046464 DOI: 10.1128/jvi.01580-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 10/09/2017] [Indexed: 12/22/2022] Open
Abstract
Several subtypes of avian influenza viruses (AIVs) are emerging as novel human pathogens, and the frequency of related infections has increased in recent years. Although neuraminidase (NA) inhibitors (NAIs) are the only class of antiviral drugs available for therapeutic intervention for AIV-infected patients, studies on NAI resistance among AIVs have been limited, and markers of resistance are poorly understood. Previously, we identified unique NAI resistance substitutions in AIVs of the N3, N7, and N9 NA subtypes. Here, we report profiles of NA substitutions that confer NAI resistance in AIVs of the N4, N5, N6, and N8 NA subtypes using gene-fragmented random mutagenesis. We generated libraries of mutant influenza viruses using reverse genetics (RG) and selected resistant variants in the presence of the NAIs oseltamivir carboxylate and zanamivir in MDCK cells. In addition, two substitutions, H274Y and R292K (N2 numbering), were introduced into each NA gene for comparison. We identified 37 amino acid substitutions within the NA gene, 16 of which (4 in N4, 4 in N5, 4 in N6, and 4 in N8) conferred resistance to NAIs (oseltamivir carboxylate, zanamivir, or peramivir) as determined using a fluorescence-based NA inhibition assay. Substitutions conferring NAI resistance were mainly categorized as either novel NA subtype specific (G/N147V/I, A246V, and I427L) or previously reported in other subtypes (E119A/D/V, Q136K, E276D, R292K, and R371K). Our results demonstrate that each NA subtype possesses unique NAI resistance markers, and knowledge of these substitutions in AIVs is important in facilitating antiviral susceptibility monitoring of NAI resistance in AIVs.IMPORTANCE The frequency of human infections with avian influenza viruses (AIVs) has increased in recent years. Despite the availability of vaccines, neuraminidase inhibitors (NAIs), as the only available class of drugs for AIVs in humans, have been constantly used for treatment, leading to the inevitable emergence of drug-resistant variants. To screen for substitutions conferring NAI resistance in AIVs of N4, N5, N6, and N8 NA subtypes, random mutations within the target gene were generated, and resistant viruses were selected from mutant libraries in the presence of individual drugs. We identified 16 NA substitutions conferring NAI resistance in the tested AIV subtypes; some are novel and subtype specific, and others have been previously reported in other subtypes. Our findings will contribute to an increased and more comprehensive understanding of the mechanisms of NAI-induced inhibition of influenza virus and help lead to the development of drugs that bind to alternative interaction motifs.
Collapse
|
48
|
Zhang L, Ai HX, Li SM, Qi MY, Zhao J, Zhao Q, Liu HS. Virtual screening approach to identifying influenza virus neuraminidase inhibitors using molecular docking combined with machine-learning-based scoring function. Oncotarget 2017; 8:83142-83154. [PMID: 29137330 PMCID: PMC5669956 DOI: 10.18632/oncotarget.20915] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 08/28/2017] [Indexed: 01/27/2023] Open
Abstract
In recent years, an epidemic of the highly pathogenic avian influenza H7N9 virus has persisted in China, with a high mortality rate. To develop novel anti-influenza therapies, we have constructed a machine-learning-based scoring function (RF-NA-Score) for the effective virtual screening of lead compounds targeting the viral neuraminidase (NA) protein. RF-NA-Score is more accurate than RF-Score, with a root-mean-square error of 1.46, Pearson’s correlation coefficient of 0.707, and Spearman’s rank correlation coefficient of 0.707 in a 5-fold cross-validation study. The performance of RF-NA-Score in a docking-based virtual screening of NA inhibitors was evaluated with a dataset containing 281 NA inhibitors and 322 noninhibitors. Compared with other docking–rescoring virtual screening strategies, rescoring with RF-NA-Score significantly improved the efficiency of virtual screening, and a strategy that averaged the scores given by RF-NA-Score, based on the binding conformations predicted with AutoDock, AutoDock Vina, and LeDock, was shown to be the best strategy. This strategy was then applied to the virtual screening of NA inhibitors in the SPECS database. The 100 selected compounds were tested in an in vitro H7N9 NA inhibition assay, and two compounds with novel scaffolds showed moderate inhibitory activities. These results indicate that RF-NA-Score improves the efficiency of virtual screening for NA inhibitors, and can be used successfully to identify new NA inhibitor scaffolds. Scoring functions specific for other drug targets could also be established with the same method.
Collapse
Affiliation(s)
- Li Zhang
- School of Life Science, Liaoning University, Shenyang 110036, China.,Research Center for Computer Simulating and Information Processing of Bio-macromolecules of Liaoning Province, Shenyang 110036, China
| | - Hai-Xin Ai
- School of Life Science, Liaoning University, Shenyang 110036, China.,Research Center for Computer Simulating and Information Processing of Bio-macromolecules of Liaoning Province, Shenyang 110036, China.,Engineering Laboratory for Molecular Simulation and Designing of Drug Molecules of Liaoning, Shenyang 110036, China
| | - Shi-Meng Li
- School of Life Science, Liaoning University, Shenyang 110036, China
| | - Meng-Yuan Qi
- School of Life Science, Liaoning University, Shenyang 110036, China
| | - Jian Zhao
- School of Life Science, Liaoning University, Shenyang 110036, China
| | - Qi Zhao
- School of Mathematics, Liaoning University, Shenyang 110036, China
| | - Hong-Sheng Liu
- School of Life Science, Liaoning University, Shenyang 110036, China.,Research Center for Computer Simulating and Information Processing of Bio-macromolecules of Liaoning Province, Shenyang 110036, China.,Engineering Laboratory for Molecular Simulation and Designing of Drug Molecules of Liaoning, Shenyang 110036, China
| |
Collapse
|
49
|
Zhang X, Xu G, Wang C, Jiang M, Gao W, Wang M, Sun H, Sun Y, Chang KC, Liu J, Pu J. Enhanced pathogenicity and neurotropism of mouse-adapted H10N7 influenza virus are mediated by novel PB2 and NA mutations. J Gen Virol 2017; 98:1185-1195. [PMID: 28597818 DOI: 10.1099/jgv.0.000770] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The H10 subtype of avian influenza viruses (AIVs) circulates globally in wild birds and poultry, and this subtype has been shown to be increasingly prevalent in China. Among the various H10 viruses, H10N7 AIVs have caused repeated mammal and human infections. To investigate their genetic adaptation in mammals, we generated a mouse-adapted avian H10N7 variant (A/mallard/Beijing/27/2011-MA; BJ27-MA) which exhibited increased virulence in mice compared to wild-type virus and acquired neurotropism. Sequencing showed the absence of the widely recognized mammalian adaptation markers of E627K and D701N in PB2 in the mouse-adapted strain; instead, five amino acid mutations were identified: E158G and M631L in PB2; G218E in haemagglutinin (H3 numbering); and K110E and S453I in neuraminidase (NA). The neurovirulence of the BJ27-MA virus necessitated the combined presence of the PB2 and NA mutations. Mutations M631L and E158G of PB2 and K110E of NA were required to mediate increased virus replication and severity of infection in mice and mammalian cells. PB2-M631L was functionally the most dominant mutation in that it strongly upregulated viral polymerase activity and played a critical role in the enhancement of virus replication and disease severity in mice. K110E mutation in NA, on the other hand, significantly promoted NA enzymatic activity. These results indicate that the novel mutations in PB2 and NA genes are critical for the adaptation of H10N7 AIV in mice, and they could serve as molecular signatures of virus transmission to mammalian hosts, including humans.
Collapse
Affiliation(s)
- Xuxiao Zhang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, PR China
| | - Guanlong Xu
- China Institute of Veterinary Drug Control, Beijing, PR China
| | - Chenxi Wang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, PR China
| | - Ming Jiang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, PR China
| | - Weihua Gao
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, PR China
| | - Mingyang Wang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, PR China
| | - Honglei Sun
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, PR China
| | - Yipeng Sun
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, PR China
| | - Kin-Chow Chang
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, UK
| | - Jinhua Liu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, PR China
| | - Juan Pu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, PR China
| |
Collapse
|
50
|
Hussain M, Galvin HD, Haw TY, Nutsford AN, Husain M. Drug resistance in influenza A virus: the epidemiology and management. Infect Drug Resist 2017; 10:121-134. [PMID: 28458567 PMCID: PMC5404498 DOI: 10.2147/idr.s105473] [Citation(s) in RCA: 284] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Influenza A virus (IAV) is the sole cause of the unpredictable influenza pandemics and deadly zoonotic outbreaks and constitutes at least half of the cause of regular annual influenza epidemics in humans. Two classes of anti-IAV drugs, adamantanes and neuraminidase (NA) inhibitors (NAIs) targeting the viral components M2 ion channel and NA, respectively, have been approved to treat IAV infections. However, IAV rapidly acquired resistance against both classes of drugs by mutating these viral components. The adamantane-resistant IAV has established itself in nature, and a majority of the IAV subtypes, especially the most common H1N1 and H3N2, circulating globally are resistant to adamantanes. Consequently, adamantanes have become practically obsolete as anti-IAV drugs. Similarly, up to 100% of the globally circulating IAV H1N1 subtypes were resistant to oseltamivir, the most commonly used NAI, until 2009. However, the 2009 pandemic IAV H1N1 subtype, which was sensitive to NAIs and has now become one of the dominant seasonal influenza virus strains, has replaced the pre-2009 oseltamivir-resistant H1N1 variants. This review traces the epidemiology of both adamantane- and NAI-resistant IAV subtypes since the approval of these drugs and highlights the susceptibility status of currently circulating IAV subtypes to NAIs. Further, it provides an overview of currently and soon to be available control measures to manage current and emerging drug-resistant IAV. Finally, this review outlines the research directions that should be undertaken to manage the circulation of IAV in intermediate hosts and develop effective and alternative anti-IAV therapies.
Collapse
Affiliation(s)
- Mazhar Hussain
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Henry D Galvin
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Tatt Y Haw
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Ashley N Nutsford
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Matloob Husain
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|