1
|
Moy A, Nkongolo K. Decrypting Molecular Mechanisms Involved in Counteracting Copper and Nickel Toxicity in Jack Pine ( Pinus banksiana) Based on Transcriptomic Analysis. PLANTS (BASEL, SWITZERLAND) 2024; 13:1042. [PMID: 38611570 PMCID: PMC11013723 DOI: 10.3390/plants13071042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024]
Abstract
The remediation of copper and nickel-afflicted sites is challenged by the different physiological effects imposed by each metal on a given plant system. Pinus banksiana is resilient against copper and nickel, providing an opportunity to build a valuable resource to investigate the responding gene expression toward each metal. The objectives of this study were to (1) extend the analysis of the Pinus banksiana transcriptome exposed to nickel and copper, (2) assess the differential gene expression in nickel-resistant compared to copper-resistant genotypes, and (3) identify mechanisms specific to each metal. The Illumina platform was used to sequence RNA that was extracted from seedlings treated with each of the metals. There were 449 differentially expressed genes (DEGs) between copper-resistant genotypes (RGs) and nickel-resistant genotypes (RGs) at a high stringency cut-off, indicating a distinct pattern of gene expression toward each metal. For biological processes, 19.8% of DEGs were associated with the DNA metabolic process, followed by the response to stress (13.15%) and the response to chemicals (8.59%). For metabolic function, 27.9% of DEGs were associated with nuclease activity, followed by nucleotide binding (27.64%) and kinase activity (10.16%). Overall, 21.49% of DEGs were localized to the plasma membrane, followed by the cytosol (16.26%) and chloroplast (12.43%). Annotation of the top upregulated genes in copper RG compared to nickel RG identified genes and mechanisms that were specific to copper and not to nickel. NtPDR, AtHIPP10, and YSL1 were identified as genes associated with copper resistance. Various genes related to cell wall metabolism were identified, and they included genes encoding for HCT, CslE6, MPG, and polygalacturonase. Annotation of the top downregulated genes in copper RG compared to nickel RG revealed genes and mechanisms that were specific to nickel and not copper. Various regulatory and signaling-related genes associated with the stress response were identified. They included UGT, TIFY, ACC, dirigent protein, peroxidase, and glyoxyalase I. Additional research is needed to determine the specific functions of signaling and stress response mechanisms in nickel-resistant plants.
Collapse
Affiliation(s)
| | - Kabwe Nkongolo
- Biomolecular Sciences Program, Department of Biology, School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada;
| |
Collapse
|
2
|
Reyt G, Chao Z, Flis P, Salas-González I, Castrillo G, Chao DY, Salt DE. Uclacyanin Proteins Are Required for Lignified Nanodomain Formation within Casparian Strips. Curr Biol 2020; 30:4103-4111.e6. [PMID: 32857976 PMCID: PMC7575197 DOI: 10.1016/j.cub.2020.07.095] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/14/2020] [Accepted: 07/28/2020] [Indexed: 01/09/2023]
Abstract
Casparian strips (CSs) are cell wall modifications of vascular plants restricting extracellular free diffusion into and out of the vascular system [1]. This barrier plays a critical role in controlling the acquisition of nutrients and water necessary for normal plant development [2-5]. CSs are formed by the precise deposition of a band of lignin approximately 2 μm wide and 150 nm thick spanning the apoplastic space between adjacent endodermal cells [6, 7]. Here, we identified a copper-containing protein, Uclacyanin1 (UCC1), that is sub-compartmentalized within the CS. UCC1 forms a central CS nanodomain in comparison with other CS-located proteins that are found to be mainly accumulated at the periphery of the CS. We found that loss-of-function of two uclacyanins (UCC1 and UCC2) reduces lignification specifically in this central CS nanodomain, revealing a nano-compartmentalized machinery for lignin polymerization. This loss of lignification leads to increased endodermal permeability and, consequently, to a loss of mineral nutrient homeostasis.
Collapse
Affiliation(s)
- Guilhem Reyt
- Future Food Beacon of Excellence & School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Zhenfei Chao
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Paulina Flis
- Future Food Beacon of Excellence & School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Isai Salas-González
- Curriculum in Bioinformatics and Computational Biology, Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gabriel Castrillo
- Future Food Beacon of Excellence & School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Dai-Yin Chao
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - David E Salt
- Future Food Beacon of Excellence & School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK.
| |
Collapse
|
3
|
Opperman DJ, Murgida DH, Dalosto SD, Brondino CD, Ferroni FM. A three-domain copper-nitrite reductase with a unique sensing loop. IUCRJ 2019; 6:248-258. [PMID: 30867922 PMCID: PMC6400189 DOI: 10.1107/s2052252519000241] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/06/2019] [Indexed: 06/09/2023]
Abstract
Dissimilatory nitrite reductases are key enzymes in the denitrification pathway, reducing nitrite and leading to the production of gaseous products (NO, N2O and N2). The reaction is catalysed either by a Cu-containing nitrite reductase (NirK) or by a cytochrome cd 1 nitrite reductase (NirS), as the simultaneous presence of the two enzymes has never been detected in the same microorganism. The thermophilic bacterium Thermus scotoductus SA-01 is an exception to this rule, harbouring both genes within a denitrification cluster, which encodes for an atypical NirK. The crystal structure of TsNirK has been determined at 1.63 Å resolution. TsNirK is a homotrimer with subunits of 451 residues that contain three copper atoms each. The N-terminal region possesses a type 2 Cu (T2Cu) and a type 1 Cu (T1CuN) while the C-terminus contains an extra type 1 Cu (T1CuC) bound within a cupredoxin motif. T1CuN shows an unusual Cu atom coordination (His2-Cys-Gln) compared with T1Cu observed in NirKs reported so far (His2-Cys-Met). T1CuC is buried at ∼5 Å from the molecular surface and located ∼14.1 Å away from T1CuN; T1CuN and T2Cu are ∼12.6 Å apart. All these distances are compatible with an electron-transfer process T1CuC → T1CuN → T2Cu. T1CuN and T2Cu are connected by a typical Cys-His bridge and an unexpected sensing loop which harbours a SerCAT residue close to T2Cu, suggesting an alternative nitrite-reduction mechanism in these enzymes. Biophysicochemical and functional features of TsNirK are discussed on the basis of X-ray crystallography, electron paramagnetic resonance, resonance Raman and kinetic experiments.
Collapse
Affiliation(s)
- Diederik Johannes Opperman
- Department of Biotechnology, University of the Free State, 205 Nelson Mandela Drive, Bloemfontein, Free State 9300, South Africa
| | - Daniel Horacio Murgida
- Departamento de Química Inorgánica, Analítica y Química Física and INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2 piso 1, Buenos Aires, Buenos Aires C1428EHA, Argentina
| | - Sergio Daniel Dalosto
- Instituto de Física del Litoral, CONICET-UNL, Güemes 3450, Santa Fe, Santa Fe S3000ZAA, Argentina
| | - Carlos Dante Brondino
- Departamento de Física, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), CONICET, Ciudad Universitaria, Paraje El Pozo, Santa Fe, Santa Fe S3000ZAA, Argentina
| | - Felix Martín Ferroni
- Departamento de Física, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL), CONICET, Ciudad Universitaria, Paraje El Pozo, Santa Fe, Santa Fe S3000ZAA, Argentina
| |
Collapse
|
4
|
Wu H, Shen Y, Hu Y, Tan S, Lin Z. A phytocyanin-related early nodulin-like gene, BcBCP1, cloned from Boea crassifolia enhances osmotic tolerance in transgenic tobacco. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:935-43. [PMID: 21459474 DOI: 10.1016/j.jplph.2010.09.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 09/23/2010] [Accepted: 09/23/2010] [Indexed: 05/03/2023]
Abstract
Using the mRNA differential display combined with 5' rapid amplification of cDNA ends (RACE) technique, an early nodulin-like protein gene (BcBCP1) (accession no. AY243047.1) was isolated from drought-treated Boea crassifolia leaves. The full-length cDNA of BcBCP1 consists of 844 bp nucleotides and has an open reading frame of 606 bp, encoding a putative polypeptide of 201 amino acids with a predicted molecular mass of 22 kDa and a pI of 5.13. The putative protein precursor contains four sequence domains, including a 27 amino acid hydrophobic N-terminal transit peptide, a 100 amino acid phytocyanin-homologous globular domain, a 51 amino acid hydroxyproline-rich cell wall structural protein domain, and a 22 amino acid hydrophobic extension domain. Sequence alignment defined the encoded protein as an early nodulin-like protein, and the absence of key ligands implies that it is unlikely to bind copper. BcBCP1 expression was strongly induced by dehydration, salinity and abscisic acid (ABA), slightly induced by moderate heat shock, and weakly inhibited by low temperature, methyl jasmonic acid (MeJA), and a low concentration of salicylic acid (SA). Overexpression of BcBCP1 in tobacco under the control of CaMV 35S promoter enhanced tolerance to osmotic stress, as indicated by the less impaired growth, less damaged membrane integrity and lower lipid peroxidation levels after osmotic stress. Transgenic tobacco lines overexpressing BcBCP1 showed higher photosynthetic rates, higher antioxidant enzyme activities and higher cytosyl ascorbic peroxidase transcription levels than non-transgenic tobacco plants, both under normal conditions and under osmotic stress.
Collapse
Affiliation(s)
- Hanying Wu
- College of Life Science, National Key Laboratory of Protein Engineering and Plant Genetic Engineering, Peking University, Beijing 100871, China.
| | | | | | | | | |
Collapse
|
5
|
Delfino I, Manzoni C, Sato K, Dennison C, Cerullo G, Cannistraro S. Ultrafast Pump−Probe Study of Excited-State Charge-Transfer Dynamics in Umecyanin from Horseradish Root. J Phys Chem B 2006; 110:17252-9. [PMID: 16928024 DOI: 10.1021/jp062904y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have applied femtosecond pump-probe spectroscopy to investigate the excited-state dynamics of umecyanin from horseradish roots, by exciting its 600-nm ligand-to-metal charge-transfer band with a 15-fs pulse and probing over a broad range in the visible region. The decay of the pump-induced ground-state bleaching is modulated by clearly visible oscillations and occurs exponentially with a time constant depending on the observed spectral component of the transmission difference signal, ranging from 270 fs up to 700 fs. The slower decaying process characterizes the spectral component corresponding to the metal-to-ligand charge-transfer transition. The excited-state decay rate is significantly lower than in other blue copper proteins, probably because of the larger energy gap between ligand- and metal-based orbitals in umecyanin. Wavelength dependence of the recovery times could be due to either the excitation of several transitions or the occurrence of intramolecular vibrational relaxation within the excited state. We also find evidence of a hot ground-state absorption, at 700 nm, persisting for several picoseconds. The vibrational coherence induced by the ultrashort pump pulse allows vibrational activity to be observed, mainly in the ground state, as expected in a system with fast excited-state decay. However, we find evidence of a rapidly damped oscillation, which we assign to the excited state. Finally, the Fourier transform of the oscillatory component of the signal presents additional bands in the low-frequency region which are assigned to collective motions of the protein.
Collapse
Affiliation(s)
- Ines Delfino
- Biophysics and Nanoscience Centre, CNISM - Università della Tuscia, I-01100 Viterbo, Italy
| | | | | | | | | | | |
Collapse
|
6
|
Dong J, Kim ST, Lord EM. Plantacyanin plays a role in reproduction in Arabidopsis. PLANT PHYSIOLOGY 2005; 138:778-89. [PMID: 15908590 PMCID: PMC1150396 DOI: 10.1104/pp.105.063388] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Plantacyanins belong to the phytocyanin family of blue copper proteins. In the Arabidopsis (Arabidopsis thaliana) genome, only one gene encodes plantacyanin. The T-DNA-tagged mutant is a knockdown mutant that shows no visible phenotype. We used both promoter-beta-glucuronidase transgenic plants and immunolocalization to show that Arabidopsis plantacyanin is expressed most highly in the inflorescence and, specifically, in the transmitting tract of the pistil. Protein levels show a steep gradient in expression from the stigma into the style and ovary. Overexpression plants were generated using cauliflower mosaic virus 35S, and protein levels in the pistil were examined as well as the pollination process. Seed set in these plants is highly reduced mainly due to a lack of anther dehiscence, which is caused by degeneration of the endothecium. Callose deposits occur on the pollen walls in plants that overexpress plantacyanin, and a small percentage of these pollen grains germinate in the closed anthers. When wild-type pollen was used on the overexpression stigma, seed set was still decreased compared to the control pollinations. We detected an increase in plantacyanin levels in the overexpression pistil, including the transmitting tract. Guidance of the wild-type pollen tube on the overexpression stigma is disrupted as evidenced by the growth behavior of pollen tubes after they penetrate the papillar cell. Normally, pollen tubes travel down the papilla cell and into the style. Wild-type pollen tubes on the overexpression stigma made numerous turns around the papilla cell before growing toward the style. In some rare cases, pollen tubes circled up the papilla cell away from the style and were arrested there. We propose that when plantacyanin levels in the stigma are increased, pollen tube guidance into the style is disrupted.
Collapse
Affiliation(s)
- Juan Dong
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA
| | | | | |
Collapse
|
7
|
Harrison MD, Dennison C. Characterization of Arabidopsis thaliana stellacyanin: A comparison with umecyanin. Proteins 2004; 55:426-35. [PMID: 15048833 DOI: 10.1002/prot.20017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The cupredoxin domain of a putative type 1 blue copper protein (BCB) from Arabidopsis thaliana was overexpressed and purified. A recursive polymerase chain reaction method was used to synthesize an artificial coding region for the cupredoxin domain of horseradish stellacyanin (commonly known as umecyanin), prior to overexpression and purification. The recombinant proteins were refolded from inclusion bodies and reconstituted with copper, and their in vitro characteristics were studied. Recombinant umecyanin, which is nonglycosylated, has identical spectroscopic and redox properties to the native protein. The UV/Vis and EPR spectra of recombinant BCB and umecyanin demonstrate that they have comparable axial type 1 copper binding sites. Paramagnetic (1)H NMR spectroscopy highlights the similarity between the active site architectures of BCB and umecyanin. The reduction potential of recombinant BCB is 252 mV, compared to 293 mV for recombinant umecyanin. Identical pK(a) values of 9.7 are obtained for the alkaline transitions in both proteins. This study demonstrates that BCB is the A. thaliana stellacyanin and the results form the biochemical basis for a discussion of BCB function in the model vascular plant.
Collapse
Affiliation(s)
- Mark D Harrison
- School of Natural Sciences, University of Newcastle upon Tyne, Newcastle upon Tyne, United Kingdom
| | | |
Collapse
|
8
|
Dennison C, Harrison MD. The Active-Site Structure of Umecyanin, the Stellacyanin from Horseradish Roots. J Am Chem Soc 2004; 126:2481-9. [PMID: 14982457 DOI: 10.1021/ja0375378] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The type 1 copper sites of cupredoxins typically have a His(2)Cys equatorial ligand set with a weakly interacting axial Met, giving a distorted tetrahedral geometry. Natural variations to this coordination environment are known, and we have utilized paramagnetic (1)H NMR spectroscopy to study the active-site structure of umecyanin (UMC), a stellacyanin with an axial Gln ligand. The assigned spectra of the Cu(II) UMC and its Ni(II) derivative [Ni(II) UMC] demonstrate that this protein has the typical His(2)Cys equatorial coordination observed in other structurally characterized cupredoxins. The NMR spectrum of the Cu(II) protein does not exhibit any paramagnetically shifted resonances from the axial ligand, showing that this residue does not contribute to the singly occupied molecular orbital (SOMO) in Cu(II) UMC. The assigned paramagnetic (1)H NMR spectrum of Ni(II) UMC demonstrates that the axial Gln ligand coordinates in a monodentate fashion via its side-chain amide oxygen atom. The alkaline transition, a feature common to stellacyanins, influences all of the ligating residues but does not alter the coordination mode of the axial Gln ligand in UMC. The structural features which result in Cu(II) UMC possessing a classic type 1 site as compared to the perturbed type 1 center observed for other stellacyanins do not have a significant influence on the paramagnetic (1)H NMR spectra of the Cu(II) or Ni(II) proteins.
Collapse
Affiliation(s)
- Christopher Dennison
- School of Natural Sciences, Bedson Building, University of Newcastle upon Tyne, Newcastle upon Tyne, NE1 7RU, UK.
| | | |
Collapse
|
9
|
DeBeer George S, Basumallick L, Szilagyi RK, Randall DW, Hill MG, Nersissian AM, Valentine JS, Hedman B, Hodgson KO, Solomon EI. Spectroscopic Investigation of Stellacyanin Mutants: Axial Ligand Interactions at the Blue Copper Site. J Am Chem Soc 2003; 125:11314-28. [PMID: 16220954 DOI: 10.1021/ja035802j] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Detailed electronic and geometric structural descriptions of the blue copper sites in wild-type (WT) stellacyanin and its Q99M and Q99L axial mutants have been obtained using a combination of XAS, resonance Raman, MCD, EPR, and DFT calculations. The results show that the origin of the short Cu-S(Cys) bond in blue copper proteins is the weakened axial interaction, which leads to a shorter (based on EXAFS results) and more covalent (based on S K-edge XAS) Cu-S bond. XAS pre-edge energies show that the effective nuclear charge on the copper increases going from O(Gln) to S(Met) to no axial (Leu) ligand, indicating that the weakened axial ligand is not fully compensated for by the increased donation from the thiolate. This is further supported by EPR results. MCD data show that the decreased axial interaction leads to an increase in the equatorial ligand field, indicating that the site acquires a more trigonally distorted tetrahedral structure. These geometric and electronic structural changes, which result from weakening the bonding interaction of the axial ligand, allow the site to maintain efficient electron transfer (high H(DA) and low reorganization energy), while modulating the redox potential of the site to the biologically relevant range. These spectroscopic studies are complemented by DFT calculations to obtain insight into the factors that allow stellacyanin to maintain a trigonally distorted tetrahedral structure with a relatively strong axial Cu(II)-oxygen bond.
Collapse
|
10
|
Affiliation(s)
- Aram M Nersissian
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, USA
| | | |
Collapse
|
11
|
Borner GHH, Sherrier DJ, Stevens TJ, Arkin IT, Dupree P. Prediction of glycosylphosphatidylinositol-anchored proteins in Arabidopsis. A genomic analysis. PLANT PHYSIOLOGY 2002; 129:486-99. [PMID: 12068095 PMCID: PMC161667 DOI: 10.1104/pp.010884] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2001] [Revised: 11/08/2001] [Accepted: 01/07/2002] [Indexed: 05/17/2023]
Abstract
Glycosylphosphatidylinositol (GPI) anchoring of proteins provides a potential mechanism for targeting to the plant plasma membrane and cell wall. However, relatively few such proteins have been identified. Here, we develop a procedure for database analysis to identify GPI-anchored proteins (GAP) based on their possession of common features. In a comprehensive search of the annotated Arabidopsis genome, we identified 167 novel putative GAP in addition to the 43 previously described candidates. Many of these 210 proteins show similarity to characterized cell surface proteins. The predicted GAP include homologs of beta-1,3-glucanases (16), metallo- and aspartyl proteases (13), glycerophosphodiesterases (6), phytocyanins (25), multi-copper oxidases (2), extensins (6), plasma membrane receptors (19), and lipid-transfer-proteins (18). Classical arabinogalactan (AG) proteins (13), AG peptides (9), fasciclin-like proteins (20), COBRA and 10 homologs, and novel potential signaling peptides that we name GAPEPs (8) were also identified. A further 34 proteins of unknown function were predicted to be GPI anchored. A surprising finding was that over 40% of the proteins identified here have probable AG glycosylation modules, suggesting that AG glycosylation of cell surface proteins is widespread. This analysis shows that GPI anchoring is likely to be a major modification in plants that is used to target a specific subset of proteins to the cell surface for extracellular matrix remodeling and signaling.
Collapse
Affiliation(s)
- Georg H H Borner
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | | | | | | | | |
Collapse
|
12
|
Kataoka K, Kondo A, Yamaguchi K, Suzuki S. Spectroscopic and electrochemical properties of the Met86Gln mutant of Achromobacter cycloclastes pseudoazurin. J Inorg Biochem 2000; 82:79-84. [PMID: 11132642 DOI: 10.1016/s0162-0134(00)00146-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mutant replacing the Met86 ligand of Achromobacter cycloclastes pseudoazurin (Ac-pAz) with Gln has been prepared and spectroscopically and electrochemically characterized. Ac-pAz has four ligands (2His, Cys, and Met) and donates one electron to its cognate Cu-containing nitrite reductase (Ac-NIR). The mutant ([Met86Gln]pAz) shows the electronic absorption and CD spectra considerably similar to those of zucchini mavicyanin (Mv) and lacquer and cucumber stellacyanins (St) having 2His, Cys, and Gln. The EPR signal of the mutant has an axial character, although those of Mv and St show rhombic signals. The findings indicate that the Cu site having Gln might be a distorted trigonal geometry. The half-wave potentials (E(1/2)) of [Met86Gln]pAz and the intermolecular electron-transfer rate constant (kET) from the mutant to Ac-NIR were determined by cyclic voltammetry at pH 7.0 and 25 degrees C. The E(1/2) is +134 mV (versus NHE) and the coordination of Gln instead of Met negatively shifts the E(1/2) of Ac-pAz (+260 mV (versus NHE)). The kET of [Met86Gln]pAz (1.2x10(6) M(-1) s(-1)) is larger than that of the recombinant Ac-pAz (7.5x10(5) M(-1) s(-1)).
Collapse
Affiliation(s)
- K Kataoka
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Japan
| | | | | | | |
Collapse
|
13
|
DeBeer S, Randall DW, Nersissian AM, Valentine JS, Hedman B, Hodgson KO, Solomon EI. X-ray Absorption Edge and EXAFS Studies of the Blue Copper Site in Stellacyanin: Effects of Axial Amide Coordination. J Phys Chem B 2000. [DOI: 10.1021/jp001334d] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Serena DeBeer
- Contribution from Department of Chemistry, Stanford University, Stanford, California 94305, Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095-1569, and Stanford Synchrotron Radiation Laboratory, SLAC, Stanford University, Stanford, California 94309
| | - David W. Randall
- Contribution from Department of Chemistry, Stanford University, Stanford, California 94305, Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095-1569, and Stanford Synchrotron Radiation Laboratory, SLAC, Stanford University, Stanford, California 94309
| | - Aram M. Nersissian
- Contribution from Department of Chemistry, Stanford University, Stanford, California 94305, Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095-1569, and Stanford Synchrotron Radiation Laboratory, SLAC, Stanford University, Stanford, California 94309
| | - Joan Selverstone Valentine
- Contribution from Department of Chemistry, Stanford University, Stanford, California 94305, Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095-1569, and Stanford Synchrotron Radiation Laboratory, SLAC, Stanford University, Stanford, California 94309
| | - Britt Hedman
- Contribution from Department of Chemistry, Stanford University, Stanford, California 94305, Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095-1569, and Stanford Synchrotron Radiation Laboratory, SLAC, Stanford University, Stanford, California 94309
| | - Keith O. Hodgson
- Contribution from Department of Chemistry, Stanford University, Stanford, California 94305, Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095-1569, and Stanford Synchrotron Radiation Laboratory, SLAC, Stanford University, Stanford, California 94309
| | - Edward I. Solomon
- Contribution from Department of Chemistry, Stanford University, Stanford, California 94305, Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095-1569, and Stanford Synchrotron Radiation Laboratory, SLAC, Stanford University, Stanford, California 94309
| |
Collapse
|
14
|
Bertini I, Fernández CO, Karlsson BG, Leckner J, Luchinat C, Malmström BG, Nersissian AM, Pierattelli R, Shipp E, Valentine JS, Vila AJ. Structural Information through NMR Hyperfine Shifts in Blue Copper Proteins. J Am Chem Soc 2000. [DOI: 10.1021/ja992674j] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ivano Bertini
- Contribution from the Magnetic Resonance Center, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy, LANAIS RMN-300, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, Argentina, Department of Molecular Biotechnology, Chalmers University of Technology, P.O. Box 462 SE-405 30 Göteborg, Sweden, Department of Chemistry, Biochemistry and Biophysics, Göteborg University, SE-40530 Göteborg, Sweden, Department of Chemistry and
| | - Claudio O. Fernández
- Contribution from the Magnetic Resonance Center, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy, LANAIS RMN-300, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, Argentina, Department of Molecular Biotechnology, Chalmers University of Technology, P.O. Box 462 SE-405 30 Göteborg, Sweden, Department of Chemistry, Biochemistry and Biophysics, Göteborg University, SE-40530 Göteborg, Sweden, Department of Chemistry and
| | - B. Göran Karlsson
- Contribution from the Magnetic Resonance Center, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy, LANAIS RMN-300, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, Argentina, Department of Molecular Biotechnology, Chalmers University of Technology, P.O. Box 462 SE-405 30 Göteborg, Sweden, Department of Chemistry, Biochemistry and Biophysics, Göteborg University, SE-40530 Göteborg, Sweden, Department of Chemistry and
| | - Johan Leckner
- Contribution from the Magnetic Resonance Center, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy, LANAIS RMN-300, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, Argentina, Department of Molecular Biotechnology, Chalmers University of Technology, P.O. Box 462 SE-405 30 Göteborg, Sweden, Department of Chemistry, Biochemistry and Biophysics, Göteborg University, SE-40530 Göteborg, Sweden, Department of Chemistry and
| | - Claudio Luchinat
- Contribution from the Magnetic Resonance Center, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy, LANAIS RMN-300, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, Argentina, Department of Molecular Biotechnology, Chalmers University of Technology, P.O. Box 462 SE-405 30 Göteborg, Sweden, Department of Chemistry, Biochemistry and Biophysics, Göteborg University, SE-40530 Göteborg, Sweden, Department of Chemistry and
| | - Bo G. Malmström
- Contribution from the Magnetic Resonance Center, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy, LANAIS RMN-300, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, Argentina, Department of Molecular Biotechnology, Chalmers University of Technology, P.O. Box 462 SE-405 30 Göteborg, Sweden, Department of Chemistry, Biochemistry and Biophysics, Göteborg University, SE-40530 Göteborg, Sweden, Department of Chemistry and
| | - Aram M. Nersissian
- Contribution from the Magnetic Resonance Center, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy, LANAIS RMN-300, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, Argentina, Department of Molecular Biotechnology, Chalmers University of Technology, P.O. Box 462 SE-405 30 Göteborg, Sweden, Department of Chemistry, Biochemistry and Biophysics, Göteborg University, SE-40530 Göteborg, Sweden, Department of Chemistry and
| | - Roberta Pierattelli
- Contribution from the Magnetic Resonance Center, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy, LANAIS RMN-300, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, Argentina, Department of Molecular Biotechnology, Chalmers University of Technology, P.O. Box 462 SE-405 30 Göteborg, Sweden, Department of Chemistry, Biochemistry and Biophysics, Göteborg University, SE-40530 Göteborg, Sweden, Department of Chemistry and
| | - Eric Shipp
- Contribution from the Magnetic Resonance Center, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy, LANAIS RMN-300, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, Argentina, Department of Molecular Biotechnology, Chalmers University of Technology, P.O. Box 462 SE-405 30 Göteborg, Sweden, Department of Chemistry, Biochemistry and Biophysics, Göteborg University, SE-40530 Göteborg, Sweden, Department of Chemistry and
| | - Joan S. Valentine
- Contribution from the Magnetic Resonance Center, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy, LANAIS RMN-300, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, Argentina, Department of Molecular Biotechnology, Chalmers University of Technology, P.O. Box 462 SE-405 30 Göteborg, Sweden, Department of Chemistry, Biochemistry and Biophysics, Göteborg University, SE-40530 Göteborg, Sweden, Department of Chemistry and
| | - Alejandro J. Vila
- Contribution from the Magnetic Resonance Center, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy, LANAIS RMN-300, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, Argentina, Department of Molecular Biotechnology, Chalmers University of Technology, P.O. Box 462 SE-405 30 Göteborg, Sweden, Department of Chemistry, Biochemistry and Biophysics, Göteborg University, SE-40530 Göteborg, Sweden, Department of Chemistry and
| |
Collapse
|
15
|
|
16
|
Dennison C, Kohzuma T. Alkaline Transition of Pseudoazurin from Achromobacter cycloclastes Studied by Paramagnetic NMR and Its Effect on Electron Transfer. Inorg Chem 1999. [DOI: 10.1021/ic981242r] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Christopher Dennison
- Department of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland, and Department of Chemistry, Ibaraki University, Mito, Ibaraki 310, Japan
| | - Takamitsu Kohzuma
- Department of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland, and Department of Chemistry, Ibaraki University, Mito, Ibaraki 310, Japan
| |
Collapse
|
17
|
Rydberg EH, Sidhu G, Vo HC, Hewitt J, Côte HC, Wang Y, Numao S, MacGillivray RT, Overall CM, Brayer GD, Withers SG. Cloning, mutagenesis, and structural analysis of human pancreatic alpha-amylase expressed in Pichia pastoris. Protein Sci 1999; 8:635-43. [PMID: 10091666 PMCID: PMC2144294 DOI: 10.1110/ps.8.3.635] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Human pancreatic alpha-amylase (HPA) was expressed in the methylotrophic yeast Pichia pastoris and two mutants (D197A and D197N) of a completely conserved active site carboxylic acid were generated. All recombinant proteins were shown by electrospray ionization mass spectrometry (ESI-MS) to be glycosylated and the site of attachment was shown to be Asn461 by peptide mapping in conjunction with ESI-MS. Treatment of these proteins with endoglycosidase F demonstrated that they contained a single N-linked oligosaccharide and yielded a protein product with a single N-acetyl glucosamine (GlcNAc), which could be crystallized. Solution of the crystal structure to a resolution of 2.0 A confirmed the location of the glycosyl group as Asn461 and showed that the recombinant protein had essentially the same conformation as the native enzyme. The kinetic parameters of the glycosylated and deglycosylated wild-type proteins were the same while the k(cat)/Km values for D197A and D197N were 10(6)-10(7) times lower than the wild-type enzyme. The decreased k(cat)/Km values for the mutants confirm that D197 plays a crucial role in the hydrolytic activity of HPA, presumably as the catalytic nucleophile.
Collapse
Affiliation(s)
- E H Rydberg
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kataoka K, Nakai M, Yamaguchi K, Suzuki S. Gene synthesis, expression, and mutagenesis of zucchini mavicyanin: the fourth ligand of blue copper center is Gln. Biochem Biophys Res Commun 1998; 250:409-13. [PMID: 9753643 DOI: 10.1006/bbrc.1998.9310] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The gene coding for the 109-amino-acid, non-glycosylated form of mavicyanin was synthesized and expressed in Escherichia coli. The recombinant protein refolded from E. coli inclusion bodies was purified and characterized. Its spectroscopic properties are fully identical to those of mavicyanin isolated from zucchini, even in the absence of its carbohydrate moiety. The blue cooper center of mavicyanin strongly binds three ligands (2His and Cys) as well as many blue copper proteins. To disclose the fourth ligand of mavicyanin, Met was substituted for Gln95 by site-directed mutagenesis. The replacement changes from a rhombic EPR signal to an axial one and exhibits the quite similar absorption and CD spectra to those of plastocyanin. The midpoint potential of Gln95-->Met mavicyanin shows the positive shift of 187 mV compared with the recombinant protein, being close to the values of plastocyanins. The differences of the spectroscopic and electrochemical properties between mavicyanin and its mutant demonstrate that the fourth ligand of mavicyanin is Gln95.
Collapse
Affiliation(s)
- K Kataoka
- Department of Chemistry, Graduate School of Science, Osaka University, Japan.
| | | | | | | |
Collapse
|
19
|
Nersissian AM, Immoos C, Hill MG, Hart PJ, Williams G, Herrmann RG, Valentine JS. Uclacyanins, stellacyanins, and plantacyanins are distinct subfamilies of phytocyanins: plant-specific mononuclear blue copper proteins. Protein Sci 1998; 7:1915-29. [PMID: 9761472 PMCID: PMC2144163 DOI: 10.1002/pro.5560070907] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The cDNAs encoding plantacyanin from spinach were isolated and characterized. In addition, four new cDNA sequences from Arabidopsis ESTs were identified that encode polypeptides resembling phytocyanins, plant-specific proteins constituting a distinct family of mononuclear blue copper proteins. One of them encodes plantacyanin from Arabidopsis, while three others, designated as uclacyanin 1, 2, and 3, encode protein precursors that are closely related to precursors of stellacyanins and a blue copper protein from pea pods. Comparative analyses with known phytocyanins allow further classification of these proteins into three distinct subfamilies designated as uclacyanins, stellacyanins, and plantacyanins. This specification is based on (1) their spectroscopic properties, (2) their glycosylation state, (3) the domain organization of their precursors, and (4) their copper-binding amino acids. The recombinant copper binding domain of Arabidopsis uclacyanin 1 was expressed, purified, and shown to bind a copper atom in a fashion known as "blue" or type 1. The mutant of cucumber stellacyanin in which the glutamine axial ligand was substituted by a methionine (Q99M) was purified and shown to possess spectroscopic properties similar to uclacyanin 1 rather than to plantacyanins. Its redox potential was determined by cyclic voltammetry to be +420 mV, a value that is significantly higher than that determined for the wild-type protein (+260 mV). The available structural data suggest that stellacyanins (and possibly other phytocyanins) might not be diffusible electron-transfer proteins participating in long-range electron-transfer processes. Conceivably, they are involved in redox reactions occurring during primary defense responses in plants and/or in lignin formation.
Collapse
Affiliation(s)
- A M Nersissian
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
The nature of cell wall proteins is as varied as the many functions of plant cell walls. With the exception of glycine-rich proteins, all are glycosylated and contain hydroxyproline (Hyp). Again excepting glycine-rich proteins, they also contain highly repetitive sequences that can be shared between them. The majority of cell wall proteins are cross-linked into the wall and probably have structural functions, although they may also participate in morphogenesis. On the other hand, arabinogalactan proteins are readily soluble and possibly play a major role in cell-cell interactions during development. The interactions of these proteins between themselves and with other wall components is still unknown, as is how wall components are assembled. The possible functions of cell wall proteins are suggested based on repetitive sequence, localization in the plant body, and the general morphogenetic pattern in plants.
Collapse
Affiliation(s)
- Gladys I. Cassab
- Department of Plant Molecular Biology, Institute of Biotechnology, National University of Mexico, Apdo. 510-3 Cuernavaca, Morelia 62250, Mexico; e-mail:
| |
Collapse
|
21
|
Probing the metal site in Rhus vernicifera stellacyanin by Ni(II) substitution and paramagnetic NMR spectroscopy. Inorganica Chim Acta 1998. [DOI: 10.1016/s0020-1693(97)06073-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Greene EA, Erard M, Dedieu A, Barker DG. MtENOD16 and 20 are members of a family of phytocyanin-related early nodulins. PLANT MOLECULAR BIOLOGY 1998; 36:775-783. [PMID: 9526510 DOI: 10.1023/a:1005916821224] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We have identified two single-copy genes from the model legume. Medicago truncatula (MtENOD16 and 20) whose expression can be correlated with early stages of root nodulation and whose predicted coding sequences are partially homologous to both pea/vetch ENOD5 and soybean N315/ENOD55. Database searching and sequence alignment have defined the encoded early nodulins as a distinct sub-family of phytocyanin-related proteins, although the absence of key ligands implies that they are unlikely to bind copper. Molecular modelling based on known phytocyanin structure has been used to predict the 3-dimensional conformation of the principle globular domain of MtENOD16/20. Additional structural features common to both early nodulin and phytocyanin precursors include an N-terminal transit peptide, a highly variable (hydroxy)proline-rich sequence which probably undergoes extensive post-translational modification, and a hydrophobic C-terminal tail.
Collapse
Affiliation(s)
- E A Greene
- Laboratoire de Biologie Moléculaire des Relations Plantes-Microorganismes, INRA-CNRS, Castanet-Tolosan, France
| | | | | | | |
Collapse
|
23
|
Fernández CO, Sannazzaro AI, Vila AJ. Alkaline transition of Rhus vernicifera stellacyanin, an unusual blue copper protein. Biochemistry 1997; 36:10566-70. [PMID: 9265638 DOI: 10.1021/bi970504i] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Stellacyanin from Rhus vernificera is a blue copper protein in which the metal is coordinated to a Cys, two His, and a Gln residue. It displays a low redox potential, a fast electron exchange rate, and a reversible alkaline transition. We have studied this transition in Cu(II)- and Co(II)-stellacyanin by means of electronic and NMR spectroscopy. The data indicate that a conformational rearrangement of the metal site occurs at high pH. A drastic alteration in the Gln coordination mode, as initially proposed, is discarded. These results show that the metal site in stellacyanin is more flexible than the sites of other blue copper proteins. The present study demonstrates that the paramagnetic shifts of the bound Cys in the Co(II) derivative are sensitive indicators of the electron delocalization and conformational changes experienced by this residue.
Collapse
Affiliation(s)
- C O Fernández
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000 Rosario, Argentina
| | | | | |
Collapse
|
24
|
Hart PJ, Nersissian AM, Herrmann RG, Nalbandyan RM, Valentine JS, Eisenberg D. A missing link in cupredoxins: crystal structure of cucumber stellacyanin at 1.6 A resolution. Protein Sci 1996; 5:2175-83. [PMID: 8931136 PMCID: PMC2143285 DOI: 10.1002/pro.5560051104] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Stellacyanins are blue (type I) copper glycoproteins that differ from other members of the cupredoxin family in their spectroscopic and electron transfer properties. Until now, stellacyanins have eluded structure determination. Here we report the three-dimensional crystal structure of the 109 amino acid, non-glycosylated copper binding domain of recombinant cucumber stellacyanin refined to 1.6 A resolution. The crystallographic R-value for all 18,488 reflections (sigma > 0) between 50-1.6 A is 0.195. The overall fold is organized in two beta-sheets, both with four beta-stands. Two alpha-helices are found in loop regions between beta-strands. The beta-sheets form a beta-sandwich similar to those found in other cupredoxins, but some features differ from proteins such as plastocyanin and azurin in that the beta-barrel is more flattened, there is an extra N-terminal alpha-helix, and the copper binding site is much more solvent accessible. The presence of a disulfide bond at the copper binding end of the protein confirms that cucumber stellacyanin has a phytocyanin-like fold. The ligands to copper are two histidines, one cysteine, and one glutamine, the latter replacing the methionine typically found in mononuclear blue copper proteins. The Cu-Gln bond is one of the shortest axial ligand bond distances observed to date in structurally characterized type I copper proteins. The characteristic spectroscopic properties and electron transfer reactivity of stellacyanin, which differ significantly from those of other well-characterized cupredoxins, can be explained by its more exposed copper site, its distinctive amino acid ligand composition, and its nearly tetrahedral ligand geometry. Surface features on the cucumber stellacyanin molecule that could be involved in interactions with putative redox partners are discussed.
Collapse
Affiliation(s)
- P J Hart
- UCLA-DOE Laboratory of Structural Biology and Molecular Medicine, University of California 90095, USA
| | | | | | | | | | | |
Collapse
|