1
|
Saunders EJ, Kote-Jarai Z, Eeles RA. Identification of Germline Genetic Variants that Increase Prostate Cancer Risk and Influence Development of Aggressive Disease. Cancers (Basel) 2021; 13:760. [PMID: 33673083 PMCID: PMC7917798 DOI: 10.3390/cancers13040760] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer (PrCa) is a heterogeneous disease, which presents in individual patients across a diverse phenotypic spectrum ranging from indolent to fatal forms. No robust biomarkers are currently available to enable routine screening for PrCa or to distinguish clinically significant forms, therefore late stage identification of advanced disease and overdiagnosis plus overtreatment of insignificant disease both remain areas of concern in healthcare provision. PrCa has a substantial heritable component, and technological advances since the completion of the Human Genome Project have facilitated improved identification of inherited genetic factors influencing susceptibility to development of the disease within families and populations. These genetic markers hold promise to enable improved understanding of the biological mechanisms underpinning PrCa development, facilitate genetically informed PrCa screening programmes and guide appropriate treatment provision. However, insight remains largely lacking regarding many aspects of their manifestation; especially in relation to genes associated with aggressive phenotypes, risk factors in non-European populations and appropriate approaches to enable accurate stratification of higher and lower risk individuals. This review discusses the methodology used in the elucidation of genetic loci, genes and individual causal variants responsible for modulating PrCa susceptibility; the current state of understanding of the allelic spectrum contributing to PrCa risk; and prospective future translational applications of these discoveries in the developing eras of genomics and personalised medicine.
Collapse
Affiliation(s)
- Edward J. Saunders
- The Institute of Cancer Research, London SM2 5NG, UK; (Z.K.-J.); (R.A.E.)
| | - Zsofia Kote-Jarai
- The Institute of Cancer Research, London SM2 5NG, UK; (Z.K.-J.); (R.A.E.)
| | - Rosalind A. Eeles
- The Institute of Cancer Research, London SM2 5NG, UK; (Z.K.-J.); (R.A.E.)
- Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| |
Collapse
|
2
|
Gumede NJ, Nxumalo W, Bisetty K, Escuder Gilabert L, Medina-Hernandez MJ, Sagrado S. Prospective computational design and in vitro bio-analytical tests of new chemical entities as potential selective CYP17A1 lyase inhibitors. Bioorg Chem 2019; 94:103462. [PMID: 31818479 DOI: 10.1016/j.bioorg.2019.103462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/27/2019] [Accepted: 11/20/2019] [Indexed: 10/25/2022]
Abstract
The development and advancement of prostate cancer (PCa) into stage 4, where it metastasize, is a major problem mostly in elder males. The growth of PCa cells is stirred up by androgens and androgen receptor (AR). Therefore, therapeutic strategies such as blocking androgens synthesis and inhibiting AR binding have been explored in recent years. However, recently approved drugs (or in clinical phase) failed in improving the expected survival rates for this metastatic-castration resistant prostate cancer (mCRPC) patients. The selective CYP17A1 inhibition of 17,20-lyase route has emerged as a novel strategy. Such inhibition blocks the production of androgens everywhere they are found in the body. In this work, a three dimensional-quantitative structure activity relationship (3D-QSAR) pharmacophore model is developed on a diverse set of non-steroidal inhibitors of CYP17A1 enzyme. Highly active compounds are selected to define a six-point pharmacophore hypothesis with a unique geometrical arrangement fitting the following description: two hydrogen bond acceptors (A), two hydrogen bond donors (D) and two aromatic rings (R). The QSAR model showed adequate predictive statistics. The 3D-QSAR model is further used for database virtual screening of potential inhibitory hit structures. Density functional theory (DFT) optimization provides the electronic properties explaining the reactivity of the hits. Docking simulations discovers hydrogen bonding and hydrophobic interactions as responsible for the binding affinities of hits to the CYP17A1 Protein Data Bank structure. 13 hits from the database search (including five derivatives) are then synthesized in the laboratory as different scaffolds. Ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) in vitro experiments reveals three new chemical entities (NCEs) with half maximal inhibitory concentration (IC50) values against the lyase route at mid-micromolar range with favorable selectivity to the lyase over the hydroxylase route (one of them with null hydroxylase inhibition). Thus, prospective computational design has enabled the design of potential lead lyase-selective inhibitors for further studies.
Collapse
Affiliation(s)
- N J Gumede
- Department of Chemistry, Mangosuthu University of Technology, PO Box 12363, Jacobs 4026, South Africa.
| | - W Nxumalo
- Department of Chemistry, University of Limpopo, Private Bag X 1106, Sovenga 0727, South Africa
| | - K Bisetty
- Department of Chemistry, Durban University of Technology, PO Box 1334, Durban 4000, South Africa
| | - L Escuder Gilabert
- Departamento de Química Analítica, Facultad de Farmacia, Universidad de Valencia, Avda. Vicent Andrés Estellés, s/n, E-46100 Burjassot, Valencia, Spain
| | - M J Medina-Hernandez
- Departamento de Química Analítica, Facultad de Farmacia, Universidad de Valencia, Avda. Vicent Andrés Estellés, s/n, E-46100 Burjassot, Valencia, Spain
| | - S Sagrado
- Departamento de Química Analítica, Facultad de Farmacia, Universidad de Valencia, Avda. Vicent Andrés Estellés, s/n, E-46100 Burjassot, Valencia, Spain; Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Avda. Vicent Andrés Estellés, s/n, E-46100 Burjassot, Valencia, Spain
| |
Collapse
|
3
|
Abstract
Although prostate cancer is the most common malignancy to affect men in the Western world, the molecular mechanisms underlying its development and progression remain poorly understood. Like all cancers, prostate cancer is a genetic disease that is characterized by multiple genomic alterations, including point mutations, microsatellite variations, and chromosomal alterations such as translocations, insertions, duplications, and deletions. In prostate cancer, but not other carcinomas, these chromosome alterations result in a high frequency of gene fusion events. The development and application of novel high-resolution technologies has significantly accelerated the detection of genomic alterations, revealing the complex nature and heterogeneity of the disease. The clinical heterogeneity of prostate cancer can be partly explained by this underlying genetic heterogeneity, which has been observed between patients from different geographical and ethnic populations, different individuals within these populations, different tumour foci within the same patient, and different cells within the same tumour focus. The highly heterogeneous nature of prostate cancer provides a real challenge for clinical disease management and a detailed understanding of the genetic alterations in all cells, including small subpopulations, would be highly advantageous.
Collapse
|
4
|
Functional and Structural Consequences of Damaging Single Nucleotide Polymorphisms in Human Prostate Cancer Predisposition Gene RNASEL. BIOMED RESEARCH INTERNATIONAL 2015; 2015:271458. [PMID: 26236721 PMCID: PMC4510121 DOI: 10.1155/2015/271458] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Revised: 06/08/2015] [Accepted: 06/10/2015] [Indexed: 12/22/2022]
Abstract
A commonly diagnosed cancer, prostate cancer (PrCa), is being regulated by the gene RNASEL previously known as PRCA1 codes for ribonuclease L which is an integral part of interferon regulated system that mediates antiviral and antiproliferative role of the interferons. Both somatic and germline mutations have been implicated to cause prostate cancer. With an array of available Single Nucleotide Polymorphism data on dbSNP this study is designed to sort out functional SNPs in RNASEL by implementing different authentic computational tools such as SIFT, PolyPhen, SNPs&GO, Fathmm, ConSurf, UTRScan, PDBsum, Tm-Align, I-Mutant, and Project HOPE for functional and structural assessment, solvent accessibility, molecular dynamics, and energy minimization study. Among 794 RNASEL SNP entries 124 SNPs were found nonsynonymous from which SIFT predicted 13 nsSNPs as nontolerable whereas PolyPhen-2 predicted 28. SNPs found on the 3' and 5' UTR were also assessed. By analyzing six tools having different perspectives an aggregate result was produced where nine nsSNPs were found to be most likely to exert deleterious effect. 3D models of mutated proteins were generated to determine the functional and structural effect of the mutations on ribonuclease L. The initial findings were reinforced by the results from I-Mutant and Project HOPE as these tools predicted significant structural and functional instability of the mutated proteins. Expasy-ProSit tool defined the mutations to be situated in the functional domains of the protein. Considering previous analysis this study revealed a conclusive result deducing the available SNP data on the database by identifying the most damaging three nsSNP rs151296858 (G59S), rs145415894 (A276V), and rs35896902 (R592H). As such studies involving polymorphisms of RNASEL were none to be found, the results of the current study would certainly be helpful in future prospects concerning prostate cancer in males.
Collapse
|
5
|
Decker B, Ostrander EA. Dysregulation of the homeobox transcription factor gene HOXB13: role in prostate cancer. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2014; 7:193-201. [PMID: 25206306 PMCID: PMC4157396 DOI: 10.2147/pgpm.s38117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Prostate cancer (PC) is the most common noncutaneous cancer in men, and epidemiological studies suggest that about 40% of PC risk is heritable. Linkage analyses in hereditary PC families have identified multiple putative loci. However, until recently, identification of specific risk alleles has proven elusive. Cooney et al used linkage mapping and segregation analysis to identify a putative risk locus on chromosome 17q21-22. In search of causative variant(s) in genes from the candidate region, a novel, potentially deleterious G84E substitution in homeobox transcription factor gene HOXB13 was observed in multiple hereditary PC families. In follow-up testing, the G84E allele was enriched in cases, especially those with an early diagnosis or positive family history of disease. This finding was replicated by others, confirming HOXB13 as a PC risk gene. The HOXB13 protein plays diverse biological roles in embryonic development and terminally differentiated tissue. In tumor cell lines, HOXB13 participates in a number of biological functions, including coactivation and localization of the androgen receptor and FOXA1. However, no consensus role has emerged and many questions remain. All HOXB13 variants with a proposed role in PC risk are predicted to damage the protein and lie in domains that are highly conserved across species. The G84E variant has the strongest epidemiological support and lies in a highly conserved MEIS protein-binding domain, which binds cofactors required for activation. On the basis of epidemiological and biological data, the G84E variant likely modulates the interaction between the HOXB13 protein and the androgen receptor, as well as affecting FOXA1-mediated transcriptional programming. However, further studies of the mutated protein are required to clarify the mechanisms by which this translates into PC risk.
Collapse
Affiliation(s)
- Brennan Decker
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA ; Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Elaine A Ostrander
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
6
|
Eeles R, Goh C, Castro E, Bancroft E, Guy M, Al Olama AA, Easton D, Kote-Jarai Z. The genetic epidemiology of prostate cancer and its clinical implications. Nat Rev Urol 2014; 11:18-31. [PMID: 24296704 DOI: 10.1038/nrurol.2013.266] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Worldwide, familial and epidemiological studies have generated considerable evidence of an inherited component to prostate cancer. Indeed, rare highly penetrant genetic mutations have been implicated. Genome-wide association studies (GWAS) have also identified 76 susceptibility loci associated with prostate cancer risk, which occur commonly but are of low penetrance. However, these mutations interact multiplicatively, which can result in substantially increased risk. Currently, approximately 30% of the familial risk is due to such variants. Evaluating the functional aspects of these variants would contribute to our understanding of prostate cancer aetiology and would enable population risk stratification for screening. Furthermore, understanding the genetic risks of prostate cancer might inform predictions of treatment responses and toxicities, with the goal of personalized therapy. However, risk modelling and clinical translational research are needed before we can translate risk profiles generated from these variants into use in the clinical setting for targeted screening and treatment.
Collapse
Affiliation(s)
- Rosalind Eeles
- Oncogenetics Team, Division of Cancer Genetics and Epidemiology, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | - Chee Goh
- Oncogenetics Team, Division of Cancer Genetics and Epidemiology, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | - Elena Castro
- Oncogenetics Team, Division of Cancer Genetics and Epidemiology, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | - Elizabeth Bancroft
- Clinical Academic Cancer Genetics Unit, The Royal Marsden NHS Foundation Trust, Sutton, Surrey SM2 5PT, UK
| | - Michelle Guy
- Oncogenetics Team, Division of Cancer Genetics and Epidemiology, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | - Ali Amin Al Olama
- Cancer Research UK Centre for Cancer Genetic Epidemiology, Strangeways Laboratory, University of Cambridge, Cambridge CB1 8RN, UK
| | - Douglas Easton
- Departments of Public Health & Primary Care and Oncology, Strangeways Laboratory, University of Cambridge, Cambridge CB1 8RN, UK
| | - Zsofia Kote-Jarai
- Oncogenetics Team, Division of Cancer Genetics and Epidemiology, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| |
Collapse
|
7
|
FitzGerald LM, Kumar A, Boyle EA, Zhang Y, McIntosh LM, Kolb S, Stott-Miller M, Smith T, Karyadi DM, Ostrander EA, Hsu L, Shendure J, Stanford JL. Germline missense variants in the BTNL2 gene are associated with prostate cancer susceptibility. Cancer Epidemiol Biomarkers Prev 2013; 22:1520-8. [PMID: 23833122 PMCID: PMC3769499 DOI: 10.1158/1055-9965.epi-13-0345] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Rare, inherited mutations account for 5% to 10% of all prostate cancer cases. However, to date, few causative mutations have been identified. METHODS To identify rare mutations for prostate cancer, we conducted whole-exome sequencing (WES) in multiple kindreds (n = 91) from 19 hereditary prostate cancer (HPC) families characterized by aggressive or early-onset phenotypes. Candidate variants (n = 130) identified through family- and bioinformatics-based filtering of WES data were then genotyped in an independent set of 270 HPC families (n = 819 prostate cancer cases; n = 496 unaffected relatives) for replication. Two variants with supportive evidence were subsequently genotyped in a population-based case-control study (n = 1,155 incident prostate cancer cases; n = 1,060 age-matched controls) for further confirmation. All participants were men of European ancestry. RESULTS The strongest evidence was for two germline missense variants in the butyrophilin-like 2 (BTNL2) gene (rs41441651, p.Asp336Asn and rs28362675, p.Gly454Cys) that segregated with affection status in two of the WES families. In the independent set of 270 HPC families, 1.5% (rs41441651; P = 0.0032) and 1.2% (rs28362675; P = 0.0070) of affected men, but no unaffected men, carried a variant. Both variants were associated with elevated prostate cancer risk in the population-based study (rs41441651: OR, 2.7; 95% CI, 1.27-5.87; P = 0.010; rs28362675: OR, 2.5; 95% CI, 1.16-5.46; P = 0.019). CONCLUSIONS Results indicate that rare BTNL2 variants play a role in susceptibility to both familial and sporadic prostate cancer. IMPACT Results implicate BTNL2 as a novel prostate cancer susceptibility gene.
Collapse
Affiliation(s)
- Liesel M. FitzGerald
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109-1024, U.S.A
| | - Akash Kumar
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195-5065, U.S.A
| | - Evan A. Boyle
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195-5065, U.S.A
| | - Yuzheng Zhang
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109-1024, U.S.A
| | - Laura M. McIntosh
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109-1024, U.S.A
| | - Suzanne Kolb
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109-1024, U.S.A
| | - Marni Stott-Miller
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109-1024, U.S.A
| | - Tiffany Smith
- Cancer Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, 20892-8000, U.S.A
| | - Danielle M. Karyadi
- Cancer Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, 20892-8000, U.S.A
| | - Elaine A. Ostrander
- Cancer Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, 20892-8000, U.S.A
| | - Li Hsu
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109-1024, U.S.A
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195-5065, U.S.A
| | - Janet L. Stanford
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109-1024, U.S.A
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, 98195-7236, U.S.A
| |
Collapse
|
8
|
Stott-Miller M, Karyadi DM, King T, Kwon EM, Kolb S, Stanford JL, Ostrander EA. HOXB13 mutations in a population-based, case-control study of prostate cancer. Prostate 2013; 73:634-41. [PMID: 23129385 PMCID: PMC3612366 DOI: 10.1002/pros.22604] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 09/24/2012] [Indexed: 12/22/2022]
Abstract
BACKGROUND Prostate cancer (PC) is the most frequently diagnosed non-skin malignancy in men in the Western world, yet few disease-associated mutations have been found. Recently, a low frequency recurring mutation in the HOXB13 gene was reported among both hereditary PC families and men from the general population. MATERIALS AND METHODS We determined the distribution and frequency of the G84E HOXB13 variant in 1,310 incipient PC cases and 1,259 age-mated controls from a population-based, case-control study of PC. RESULTS The G84E mutation was more frequent in cases than controls (1.3% vs. 0.4%, respectively), and men with the HOXB13 G84E variant had a 3.3-fold higher relative risk of PC compared with noncarriers (95% CI, 1.21-8.96). There was a stronger association between the G84E variant and PC among men with no first-degree relative with PC (OR, 4.04; 95% CI, 1.12-14.51) compared to men with a family history of PC (OR, 1.49; 95% CI, 0.30-7.50; P = 0.36 for interaction). We observed some evidence of higher risk estimates associated with the variant for men with higher versus lower Gleason score (OR, 4.13; 95% CI, 1.38-12.38 vs. OR, 2.71; 95% CI, 0.88-8.30), and advanced versus local stage (OR, 4.47; 95% CI, 1.28-15.57 vs. OR, 2.98; 95% CI, 1.04-8.49), however these differences were not statistically different. CONCLUSIONS These results confirm the association of a rare HOXB13 mutation with PC in the general population and suggest that this variant may be associated with features of more aggressive disease.
Collapse
Affiliation(s)
- Marni Stott-Miller
- Division of Public Health Sciences, 1100 Fairview Ave N., Fred Hutchinson Cancer Research Center, Seattle WA, 98109
| | - Danielle M. Karyadi
- National Human Genome Research Institute, National Institutes of Health, Bethesda MD 20892
| | - Tiffany King
- National Human Genome Research Institute, National Institutes of Health, Bethesda MD 20892
| | - Erika M. Kwon
- National Human Genome Research Institute, National Institutes of Health, Bethesda MD 20892
| | - Suzanne Kolb
- Division of Public Health Sciences, 1100 Fairview Ave N., Fred Hutchinson Cancer Research Center, Seattle WA, 98109
| | - Janet L. Stanford
- Division of Public Health Sciences, 1100 Fairview Ave N., Fred Hutchinson Cancer Research Center, Seattle WA, 98109
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA 98195
| | - Elaine A. Ostrander
- National Human Genome Research Institute, National Institutes of Health, Bethesda MD 20892
| |
Collapse
|
9
|
Abstract
Prostate cancer (PCa) is one of the most common malignancies in the world with over 890 000 cases and over 258 000 deaths worldwide each year. Nearly all mortalities from PCa are due to metastatic disease, typically through tumors that evolve to be hormone-refractory or castrate-resistant. Despite intensive epidemiological study, there are few known environmental risk factors, and age and family history are the major determinants. However, there is extreme heterogeneity in PCa incidence worldwide, suggesting that major determining factors have not been described. Genome-wide association studies have been performed and a considerable number of significant, but low-risk loci have been identified. In addition, several groups have analyzed PCa by determination of genomic copy number, fusion gene generation and targeted resequencing of candidate genes, as well as exome and whole genome sequencing. These initial studies have examined both primary and metastatic tumors as well as murine xenografts and identified somatic alterations in TP53 and other potential driver genes, and the disturbance of androgen response and cell cycle pathways. It is hoped that continued characterization of risk factors as well as gene mutation and misregulation in tumors will aid in understanding, diagnosing and better treating PCa.
Collapse
Affiliation(s)
- Michael Dean
- Cancer and Inflammation Program, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
| | | |
Collapse
|
10
|
Bailey-Wilson JE, Childs EJ, Cropp CD, Schaid DJ, Xu J, Camp NJ, Cannon-Albright LA, Farnham JM, George A, Powell I, Carpten JD, Giles GG, Hopper JL, Severi G, English DR, Foulkes WD, Mæhle L, Møller P, Eeles R, Easton D, Guy M, Edwards S, Badzioch MD, Whittemore AS, Oakley-Girvan I, Hsieh CL, Dimitrov L, Stanford JL, Karyadi DM, Deutsch K, McIntosh L, Ostrander EA, Wiley KE, Isaacs SD, Walsh PC, Thibodeau SN, McDonnell SK, Hebbring S, Lange EM, Cooney KA, Tammela TLJ, Schleutker J, Maier C, Bochum S, Hoegel J, Grönberg H, Wiklund F, Emanuelsson M, Cancel-Tassin G, Valeri A, Cussenot O, Isaacs WB. Analysis of Xq27-28 linkage in the international consortium for prostate cancer genetics (ICPCG) families. BMC MEDICAL GENETICS 2012; 13:46. [PMID: 22712434 PMCID: PMC3495053 DOI: 10.1186/1471-2350-13-46] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 04/30/2012] [Indexed: 11/20/2022]
Abstract
BACKGROUND Genetic variants are likely to contribute to a portion of prostate cancer risk. Full elucidation of the genetic etiology of prostate cancer is difficult because of incomplete penetrance and genetic and phenotypic heterogeneity. Current evidence suggests that genetic linkage to prostate cancer has been found on several chromosomes including the X; however, identification of causative genes has been elusive. METHODS Parametric and non-parametric linkage analyses were performed using 26 microsatellite markers in each of 11 groups of multiple-case prostate cancer families from the International Consortium for Prostate Cancer Genetics (ICPCG). Meta-analyses of the resultant family-specific linkage statistics across the entire 1,323 families and in several predefined subsets were then performed. RESULTS Meta-analyses of linkage statistics resulted in a maximum parametric heterogeneity lod score (HLOD) of 1.28, and an allele-sharing lod score (LOD) of 2.0 in favor of linkage to Xq27-q28 at 138 cM. In subset analyses, families with average age at onset less than 65 years exhibited a maximum HLOD of 1.8 (at 138 cM) versus a maximum regional HLOD of only 0.32 in families with average age at onset of 65 years or older. Surprisingly, the subset of families with only 2-3 affected men and some evidence of male-to-male transmission of prostate cancer gave the strongest evidence of linkage to the region (HLOD = 3.24, 134 cM). For this subset, the HLOD was slightly increased (HLOD = 3.47 at 134 cM) when families used in the original published report of linkage to Xq27-28 were excluded. CONCLUSIONS Although there was not strong support for linkage to the Xq27-28 region in the complete set of families, the subset of families with earlier age at onset exhibited more evidence of linkage than families with later onset of disease. A subset of families with 2-3 affected individuals and with some evidence of male to male disease transmission showed stronger linkage signals. Our results suggest that the genetic basis for prostate cancer in our families is much more complex than a single susceptibility locus on the X chromosome, and that future explorations of the Xq27-28 region should focus on the subset of families identified here with the strongest evidence of linkage to this region.
Collapse
Affiliation(s)
- Joan E Bailey-Wilson
- Inherited Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, MD, 21224, USA
- African American Hereditary Prostate Cancer ICPCG Group, Phoenix, AZ, USA
- University of Tampere ICPCG Group, Tampere, Finland
| | - Erica J Childs
- Inherited Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, MD, 21224, USA
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Cheryl D Cropp
- Inherited Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Daniel J Schaid
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jianfeng Xu
- Data Coordinating Center for the ICPCG and Center for Human Genomics, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Nicola J Camp
- University of Utah ICPCG Group and Division of Genetic Epidemiology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Lisa A Cannon-Albright
- University of Utah ICPCG Group and Division of Genetic Epidemiology, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - James M Farnham
- University of Utah ICPCG Group and Division of Genetic Epidemiology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Asha George
- Inherited Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, MD, 21224, USA
- African American Hereditary Prostate Cancer ICPCG Group, Phoenix, AZ, USA
- Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Isaac Powell
- African American Hereditary Prostate Cancer ICPCG Group, Phoenix, AZ, USA
- Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - John D Carpten
- African American Hereditary Prostate Cancer ICPCG Group, Phoenix, AZ, USA
- Translational Genomics Research Institute, Genetic Basis of Human Disease Research Division, Phoenix, AZ, USA
| | - Graham G Giles
- ACTANE consortium
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Australia
- Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, School of Population Health, The University of Melbourne, Melbourne, Australia
| | - John L Hopper
- ACTANE consortium
- Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, School of Population Health, The University of Melbourne, Melbourne, Australia
| | - Gianluca Severi
- ACTANE consortium
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Australia
- Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, School of Population Health, The University of Melbourne, Melbourne, Australia
| | - Dallas R English
- ACTANE consortium
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Australia
- Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, School of Population Health, The University of Melbourne, Melbourne, Australia
| | - William D Foulkes
- ACTANE consortium
- Program in Cancer Genetics, McGill University, Montreal, QC, Canada
| | - Lovise Mæhle
- ACTANE consortium
- Department of Medical Genetics, Oslo University Hospital, The Norwegian Radium Hospital, Oslo,Norway
| | - Pål Møller
- ACTANE consortium
- Department of Medical Genetics, Oslo University Hospital, The Norwegian Radium Hospital, Oslo,Norway
| | - Rosalind Eeles
- ACTANE consortium
- Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Surrey, UK
| | - Douglas Easton
- ACTANE consortium
- Cancer Research UK Genetic Epidemiology Unit, Cambridge, UK
| | - Michelle Guy
- ACTANE consortium
- Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Surrey, UK
| | - Steve Edwards
- ACTANE consortium
- Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Surrey, UK
| | - Michael D Badzioch
- ACTANE consortium
- Division of Medical Genetics, University of Washington Medical Center, Seattle, WA, USA
| | - Alice S Whittemore
- BC/CA/HI ICPCG Group, Stanford, CA, USA
- Department of Health Research and Policy, Stanford School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford School of Medicine, Stanford, CA, USA
| | - Ingrid Oakley-Girvan
- BC/CA/HI ICPCG Group, Stanford, CA, USA
- Department of Health Research and Policy, Stanford School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford School of Medicine, Stanford, CA, USA
- Cancer Prevention Institute of California
| | - Chih-Lin Hsieh
- BC/CA/HI ICPCG Group, Stanford, CA, USA
- Department of Urology and Department of Biochemistry and Molecular Biology, University of Southern California, Los Ageles, CA, USA
| | - Latchezar Dimitrov
- Data Coordinating Center for the ICPCG and Center for Human Genomics, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Janet L Stanford
- FHCRC ICPCG Group, Seattle, WA, USA
- Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Seattle, WA, USA
| | - Danielle M Karyadi
- FHCRC ICPCG Group, Seattle, WA, USA
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kerry Deutsch
- FHCRC ICPCG Group, Seattle, WA, USA
- Institute for Systems Biology, Seattle, WA, USA
| | - Laura McIntosh
- FHCRC ICPCG Group, Seattle, WA, USA
- Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Seattle, WA, USA
| | - Elaine A Ostrander
- FHCRC ICPCG Group, Seattle, WA, USA
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kathleen E Wiley
- Johns Hopkins University ICPCG Group and Department of Urology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Sarah D Isaacs
- Johns Hopkins University ICPCG Group and Department of Urology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Patrick C Walsh
- Johns Hopkins University ICPCG Group and Department of Urology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | | | | | | | - Ethan M Lange
- University of Michigan ICPCG Group, Ann Arbor, MI, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Kathleen A Cooney
- University of Michigan ICPCG Group, Ann Arbor, MI, USA
- University of Michigan, Ann Arbor, MI, USA
| | - Teuvo LJ Tammela
- University of Tampere ICPCG Group, Tampere, Finland
- Institute of Biomedical Technology, University of Tampere, Tampere, Finland
- Centre for Laboratory Medicine and Department of Urology, Tampere University Hospital, Tampere, Finland
| | - Johanna Schleutker
- University of Tampere ICPCG Group, Tampere, Finland
- Institute of Biomedical Technology, University of Tampere, Tampere, Finland
- Centre for Laboratory Medicine and Department of Urology, Tampere University Hospital, Tampere, Finland
| | - Christiane Maier
- University of Ulm ICPCG Group, Ulm, Germany
- Dept of Urology, University of Ulm, Ulm, Germany
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | - Sylvia Bochum
- University of Ulm ICPCG Group, Ulm, Germany
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | - Josef Hoegel
- University of Ulm ICPCG Group, Ulm, Germany
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | - Henrik Grönberg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Fredrik Wiklund
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | - Olivier Cussenot
- CeRePP ICPCG Group, 75020, Paris, France
- Hopital Tenon, Assistance Publique-Hopitaux de Paris, 75020, Paris, France
| | - William B Isaacs
- Johns Hopkins University ICPCG Group and Department of Urology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| |
Collapse
|
11
|
Cicek MS, Cunningham JM, Fridley BL, Serie DJ, Bamlet WR, Diergaarde B, Haile RW, Le Marchand L, Krontiris TG, Younghusband HB, Gallinger S, Newcomb PA, Hopper JL, Jenkins MA, Casey G, Schumacher F, Chen Z, DeRycke MS, Templeton AS, Winship I, Green RC, Green JS, Macrae FA, Parry S, Young GP, Young JP, Buchanan D, Thomas DC, Bishop DT, Lindor NM, Thibodeau SN, Potter JD, Goode EL. Colorectal cancer linkage on chromosomes 4q21, 8q13, 12q24, and 15q22. PLoS One 2012; 7:e38175. [PMID: 22675446 PMCID: PMC3364975 DOI: 10.1371/journal.pone.0038175] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 05/01/2012] [Indexed: 12/19/2022] Open
Abstract
A substantial proportion of familial colorectal cancer (CRC) is not a consequence of known susceptibility loci, such as mismatch repair (MMR) genes, supporting the existence of additional loci. To identify novel CRC loci, we conducted a genome-wide linkage scan in 356 white families with no evidence of defective MMR (i.e., no loss of tumor expression of MMR proteins, no microsatellite instability (MSI)-high tumors, or no evidence of linkage to MMR genes). Families were ascertained via the Colon Cancer Family Registry multi-site NCI-supported consortium (Colon CFR), the City of Hope Comprehensive Cancer Center, and Memorial University of Newfoundland. A total of 1,612 individuals (average 5.0 per family including 2.2 affected) were genotyped using genome-wide single nucleotide polymorphism linkage arrays; parametric and non-parametric linkage analysis used MERLIN in a priori-defined family groups. Five lod scores greater than 3.0 were observed assuming heterogeneity. The greatest were among families with mean age of diagnosis less than 50 years at 4q21.1 (dominant HLOD = 4.51, α = 0.84, 145.40 cM, rs10518142) and among all families at 12q24.32 (dominant HLOD = 3.60, α = 0.48, 285.15 cM, rs952093). Among families with four or more affected individuals and among clinic-based families, a common peak was observed at 15q22.31 (101.40 cM, rs1477798; dominant HLOD = 3.07, α = 0.29; dominant HLOD = 3.03, α = 0.32, respectively). Analysis of families with only two affected individuals yielded a peak at 8q13.2 (recessive HLOD = 3.02, α = 0.51, 132.52 cM, rs1319036). These previously unreported linkage peaks demonstrate the continued utility of family-based data in complex traits and suggest that new CRC risk alleles remain to be elucidated.
Collapse
Affiliation(s)
- Mine S. Cicek
- Departments of Health Sciences Research, Laboratory Medicine and Pathology, and Medical Genetics, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Julie M. Cunningham
- Departments of Health Sciences Research, Laboratory Medicine and Pathology, and Medical Genetics, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Brooke L. Fridley
- Departments of Health Sciences Research, Laboratory Medicine and Pathology, and Medical Genetics, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Daniel J. Serie
- Departments of Health Sciences Research, Laboratory Medicine and Pathology, and Medical Genetics, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - William R. Bamlet
- Departments of Health Sciences Research, Laboratory Medicine and Pathology, and Medical Genetics, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Brenda Diergaarde
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Robert W. Haile
- Department of Preventive Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Loic Le Marchand
- University of Hawaii Cancer Center, Honolulu, Hawaii, United States of America
| | - Theodore G. Krontiris
- Department of Molecular Medicine, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
| | | | - Steven Gallinger
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Polly A. Newcomb
- Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - John L. Hopper
- Departments of Public Health and Medicine, University of Melbourne, Victoria, Australia
| | - Mark A. Jenkins
- Departments of Public Health and Medicine, University of Melbourne, Victoria, Australia
| | - Graham Casey
- Department of Preventive Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Fredrick Schumacher
- Department of Preventive Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Zhu Chen
- Department of Preventive Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Melissa S. DeRycke
- Departments of Health Sciences Research, Laboratory Medicine and Pathology, and Medical Genetics, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Allyson S. Templeton
- Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Ingrid Winship
- Departments of Public Health and Medicine, University of Melbourne, Victoria, Australia
| | - Roger C. Green
- Faculty of Medicine, Memorial University of Newfoundland, St. Johns, Newfoundland, Canada
| | - Jane S. Green
- Faculty of Medicine, Memorial University of Newfoundland, St. Johns, Newfoundland, Canada
| | - Finlay A. Macrae
- Colorectal Medicine and Genetics and Department of Medicine, University of Melbourne, The Royal Melbourne Hospital, Victoria, Australia
| | - Susan Parry
- New Zealand Familial GI Cancer Registry, Auckland City Hospital, Auckland, New Zealand
- Department of Gastroenterology, Middlemore Hospital, Auckland, New Zealand
| | - Graeme P. Young
- Flinders Centre for Cancer Prevention and Control, Flinders University, Adelaide, Australia
| | - Joanne P. Young
- Familial Cancer Laboratory, Queensland Institute of Medical Research, Queensland, Australia
| | - Daniel Buchanan
- Familial Cancer Laboratory, Queensland Institute of Medical Research, Queensland, Australia
| | - Duncan C. Thomas
- Department of Preventive Medicine, University of Southern California, Los Angeles, California, United States of America
| | - D. Timothy Bishop
- University of Leeds, Leeds Institute of Molecular Medicine, Leeds, United Kingdom
| | - Noralane M. Lindor
- Departments of Health Sciences Research, Laboratory Medicine and Pathology, and Medical Genetics, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Stephen N. Thibodeau
- Departments of Health Sciences Research, Laboratory Medicine and Pathology, and Medical Genetics, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - John D. Potter
- Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Centre for Public Health Research, Massey University, Wellington, New Zealand
| | - Ellen L. Goode
- Departments of Health Sciences Research, Laboratory Medicine and Pathology, and Medical Genetics, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
- * E-mail:
| | | |
Collapse
|
12
|
Castro E, Eeles R. The role of BRCA1 and BRCA2 in prostate cancer. Asian J Androl 2012; 14:409-14. [PMID: 22522501 PMCID: PMC3720154 DOI: 10.1038/aja.2011.150] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 02/23/2012] [Indexed: 12/19/2022] Open
Abstract
One of the strongest risk factors for prostate cancer is a family history of the disease. Germline mutations in the breast cancer predisposition gene 2 (BRCA2) are the genetic events known to date that confer the highest risk of prostate cancer (8.6-fold in men ≤65 years). Although the role of BRCA2 and BRCA1 in prostate tumorigenesis remains unrevealed, deleterious mutations in both genes have been associated with more aggressive disease and poor clinical outcomes. The increasing incidence of prostate cancer worldwide supports the need for new methods to predict outcome and identify patients with potentially lethal forms of the disease. As we present here, BRCA germline mutations, mainly in the BRCA2 gene, are one of those predictive factors. We will also discuss the implications of these mutations in the management of prostate cancer and hypothesize on the potential for the development of strategies for sporadic cases with similar characteristics.
Collapse
Affiliation(s)
- Elena Castro
- Oncogenetics Team, The Institute of Cancer Research, Sutton, UK
| | | |
Collapse
|
13
|
Lu L, Cancel-Tassin G, Valeri A, Cussenot O, Lange EM, Cooney KA, Farnham JM, Camp NJ, Cannon-Albright LA, Tammela TL, Schleutker J, Hoegel J, Herkommer K, Maier C, Vogel W, Wiklund F, Emanuelsson M, Grönberg H, Wiley KE, Isaacs SD, Walsh PC, Helfand BT, Kan D, Catalona WJ, Stanford JL, FitzGerald LM, Johanneson B, Deutsch K, McIntosh L, Ostrander EA, Thibodeau SN, McDonnell SK, Hebbring S, Schaid DJ, Whittemore AS, Oakley-Girvan I, Hsieh CL, Powell I, Bailey-Wilson JE, Carpten JD, Seminara D, Zheng SL, Xu J, Giles GG, Severi G, Hopper JL, English DR, Foulkes WD, Maehle L, Moller P, Badzioch MD, Edwards S, Guy M, Eeles R, Easton D, Isaacs WB. Chromosomes 4 and 8 implicated in a genome wide SNP linkage scan of 762 prostate cancer families collected by the ICPCG. Prostate 2012; 72:410-26. [PMID: 21748754 PMCID: PMC3568777 DOI: 10.1002/pros.21443] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 05/25/2011] [Indexed: 01/30/2023]
Abstract
BACKGROUND In spite of intensive efforts, understanding of the genetic aspects of familial prostate cancer (PC) remains largely incomplete. In a previous microsatellite-based linkage scan of 1,233 PC families, we identified suggestive evidence for linkage (i.e., LOD ≥ 1.86) at 5q12, 15q11, 17q21, 22q12, and two loci on 8p, with additional regions implicated in subsets of families defined by age at diagnosis, disease aggressiveness, or number of affected members. METHODS In an attempt to replicate these findings and increase linkage resolution, we used the Illumina 6000 SNP linkage panel to perform a genome-wide linkage scan of an independent set of 762 multiplex PC families, collected by 11 International Consortium for Prostate Cancer Genetics (ICPCG) groups. RESULTS Of the regions identified previously, modest evidence of replication was observed only on the short arm of chromosome 8, where HLOD scores of 1.63 and 3.60 were observed in the complete set of families and families with young average age at diagnosis, respectively. The most significant linkage signals found in the complete set of families were observed across a broad, 37 cM interval on 4q13-25, with LOD scores ranging from 2.02 to 2.62, increasing to 4.50 in families with older average age at diagnosis. In families with multiple cases presenting with more aggressive disease, LOD scores over 3.0 were observed at 8q24 in the vicinity of previously identified common PC risk variants, as well as MYC, an important gene in PC biology. CONCLUSIONS These results will be useful in prioritizing future susceptibility gene discovery efforts in this common cancer.
Collapse
Affiliation(s)
- Lingyi Lu
- Data Coordinating Center for the ICPCG and Center for Human Genomics, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Geraldine Cancel-Tassin
- CeRePP ICPCG Group, Hopital Tenon, Assistance publique-Hopitaux de Paris, 75020 Paris, France
| | - Antoine Valeri
- CeRePP ICPCG Group, Hopital Tenon, Assistance publique-Hopitaux de Paris, 75020 Paris, France
| | - Olivier Cussenot
- CeRePP ICPCG Group, Hopital Tenon, Assistance publique-Hopitaux de Paris, 75020 Paris, France
| | - Ethan M. Lange
- University of Michigan ICPCG Group
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Kathleen A. Cooney
- University of Michigan ICPCG Group
- Department of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - James M. Farnham
- University of Utah ICPCG Group, Division of Genetic Epidemiology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Nicola J. Camp
- University of Utah ICPCG Group, Division of Genetic Epidemiology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Lisa A. Cannon-Albright
- University of Utah ICPCG Group, Division of Genetic Epidemiology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Teuvo L.J. Tammela
- University of Tampere ICPCG Group, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Johanna Schleutker
- University of Tampere ICPCG Group, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Josef Hoegel
- University of Ulm ICPCG Group
- Institut fuer Humangenetik, Universitaet Ulm, Germany
| | - Kathleen Herkommer
- University of Ulm ICPCG Group
- Urologische Klinik, Universität Ulm, Germany
- Urologische Klinik rechts der Isar, Technische Universitaet Muenchen, Germany
| | - Christiane Maier
- University of Ulm ICPCG Group
- Institut fuer Humangenetik, Universitaet Ulm, Germany
| | - Walther Vogel
- University of Ulm ICPCG Group
- Institut fuer Humangenetik, Universitaet Ulm, Germany
| | - Fredrik Wiklund
- Karolinska Institute ICPCG Group
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Monica Emanuelsson
- Karolinska Institute ICPCG Group
- Oncologic Centre, Umeå University, Umeå, Sweden
| | - Henrik Grönberg
- Karolinska Institute ICPCG Group
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Kathleen E. Wiley
- Johns Hopkins University ICPCG Group and Department of Urology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Sarah D. Isaacs
- Johns Hopkins University ICPCG Group and Department of Urology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Patrick C. Walsh
- Johns Hopkins University ICPCG Group and Department of Urology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Brian T. Helfand
- Northwestern University ICPCG group, Department of Urology, Northwestern University Chicago, IL USA
| | - Donghui Kan
- Northwestern University ICPCG group, Department of Urology, Northwestern University Chicago, IL USA
| | - William J. Catalona
- Northwestern University ICPCG group, Department of Urology, Northwestern University Chicago, IL USA
| | - Janet L. Stanford
- FHCRC ICPCG Group
- Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Seattle, WA, USA
| | - Liesel M. FitzGerald
- FHCRC ICPCG Group
- Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Seattle, WA, USA
| | - Bo Johanneson
- FHCRC ICPCG Group
- Cancer Genetics Branch, NHGRI, National Institutes of Health, Bethesda, MD, USA
| | - Kerry Deutsch
- FHCRC ICPCG Group
- Institute for Systems Biology, Seattle, WA, USA
| | - Laura McIntosh
- FHCRC ICPCG Group
- Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Seattle, WA, USA
| | - Elaine A. Ostrander
- FHCRC ICPCG Group
- Cancer Genetics Branch, NHGRI, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | - Alice S. Whittemore
- BC/CA/HI ICPCG Group
- Department of Health Research and Policy, Stanford School of Medicine, CA, USA
- Stanford Comprehensive Cancer Center, Stanford School of Medicine, CA, USA
| | - Ingrid Oakley-Girvan
- BC/CA/HI ICPCG Group
- Stanford Comprehensive Cancer Center, Stanford School of Medicine, CA, USA
| | - Chih-Lin Hsieh
- BC/CA/HI ICPCG Group
- Department of Urology and Department of Biochemistry and Molecular Biology, University of Southern California, CA, USA
| | - Isaac Powell
- African American Hereditary Prostate Cancer ICPCG Group
- Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Joan E. Bailey-Wilson
- African American Hereditary Prostate Cancer ICPCG Group
- National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - John D. Carpten
- African American Hereditary Prostate Cancer ICPCG Group
- Translational Genomics Research Institute, Genetic Basis of Human Disease Research Division, Phoenix, AZ, USA
| | | | - S. Lilly Zheng
- Data Coordinating Center for the ICPCG and Center for Human Genomics, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Jianfeng Xu
- Data Coordinating Center for the ICPCG and Center for Human Genomics, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Graham G. Giles
- ACTANE Consortium ICPCG Group
- Cancer Epidemiology Centre, The Cancer Council Victoria, Melbourne, Australia
| | - Gianluca Severi
- ACTANE Consortium ICPCG Group
- Cancer Epidemiology Centre, The Cancer Council Victoria, Melbourne, Australia
| | - John L. Hopper
- ACTANE Consortium ICPCG Group
- Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, School of Population Health, The University of Melbourne, Melbourne, Australia
| | - Dallas R. English
- ACTANE Consortium ICPCG Group
- Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, School of Population Health, The University of Melbourne, Melbourne, Australia
| | - William D. Foulkes
- ACTANE Consortium ICPCG Group
- Program in Cancer Genetics, McGill University, Montreal, Quebec, Canada
| | - Lovise Maehle
- ACTANE Consortium ICPCG Group
- The Norwegian Radium Hospital, Oslo, Norway
| | - Pal Moller
- ACTANE Consortium ICPCG Group
- The Norwegian Radium Hospital, Oslo, Norway
| | - Michael D. Badzioch
- ACTANE Consortium ICPCG Group
- Division of Medical Genetics, University of Washington Medical Center, Seattle, WA, USA
| | - Steve Edwards
- ACTANE Consortium ICPCG Group
- Institute of Cancer Research, Royal Marsden NHS Foundation Trust, Surrey, UK
| | - Michelle Guy
- ACTANE Consortium ICPCG Group
- Institute of Cancer Research, Royal Marsden NHS Foundation Trust, Surrey, UK
| | - Ros Eeles
- ACTANE Consortium ICPCG Group
- Institute of Cancer Research, Royal Marsden NHS Foundation Trust, Surrey, UK
| | - Douglas Easton
- ACTANE Consortium ICPCG Group
- Cancer Research UK Genetic Epidemiology Unit, Cambridge, UK
| | - William B. Isaacs
- Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Seattle, WA, USA
| |
Collapse
|
14
|
Cheng Y, Liu W, Kim ST, Sun J, Lu L, Sun J, Zheng SL, Isaacs WB, Xu J. Evaluation of PPP2R2A as a prostate cancer susceptibility gene: a comprehensive germline and somatic study. Cancer Genet 2011; 204:375-81. [PMID: 21872824 DOI: 10.1016/j.cancergen.2011.05.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 04/28/2011] [Accepted: 05/05/2011] [Indexed: 12/22/2022]
Abstract
PPP2R2A, mapped to 8p21.2, codes for the α isoform of the regulatory B55 subfamily of protein phosphatase 2 (PP2A). PP2A is one of the four major serine/threonine phosphatases and is implicated in the negative control of cell growth and division. Because of its known functions and location within a chromosomal region where evidence for linkage and somatic loss of heterozygosity was found, we hypothesized that either somatic copy number changes or germline sequence variants in PPP2R2A may increase prostate cancer (PCa) risk. We examined PPP2R2A deletion status in 141 PCa samples using Affymetrix SNP arrays. It was found that PPP2R2A was commonly (67.1%) deleted in tumor samples, including a homozygous deletion in three tumors (2.1%). We performed a mutation screen for PPP2R2A in 96 probands of hereditary prostate cancer families. No high risk mutations were identified. In addition, we re-analyzed 10 SNPs of PPP2R2A in sporadic PCa cases and controls. No significant differences in the allele and genotype frequencies were observed among either PCa cases and controls or PCa aggressive and non-aggressive cases. Taken together, these results suggest that a somatic deletion rather than germline sequence variants of PPP2R2A may play a more important role in PCa susceptibility.
Collapse
Affiliation(s)
- Yu Cheng
- Center for Cancer Genomics, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Hindorff LA, Gillanders EM, Manolio TA. Genetic architecture of cancer and other complex diseases: lessons learned and future directions. Carcinogenesis 2011; 32:945-54. [PMID: 21459759 DOI: 10.1093/carcin/bgr056] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Genome-wide association studies have broadened our understanding of the genetic architecture of cancer to include common variants, in addition to the rare variants previously identified by linkage analysis. We review current knowledge on the genetic architecture of four cancers--breast, lung, prostate and colorectal--for which the balance of common and rare alleles identified ranges from fewer common alleles (lung cancer) to more common alleles (prostate cancer). Although most variants are cancer specific, pleiotropy has been observed for several variants, for example, variants at the 8q24 locus and breast, ovarian and prostate cancers or variants in KITLG in relation to hair color and testicular cancer. Although few studies have been adequately powered to investigate heterogeneity among ancestry groups, effect sizes associated with common variants have been reported to be fairly homogenous among ethnic groups. Some associations appear to be ancestry specific, such as HNF1B, which is associated with prostate cancer in European Americans and Latinos but not in African-Americans. Studies of cancer and other complex diseases suggest that a simple dichotomy between rare and common allelic architectures may be too simplistic and that future research is needed to characterize a fuller spectrum of allele frequency (common (>5%), uncommon (1-5%) and rare (<<1%) alleles) and effect size. In addition, a broadening of the concept of genetic architecture to encompass both population architecture, which reflects differences in exposures, genetic factors and population level risk among diverse groups of people, and genomic architecture, which includes structural, epigenomic and somatic variation, is envisioned.
Collapse
Affiliation(s)
- Lucia A Hindorff
- Office of Population Genomics, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-9307, USA.
| | | | | |
Collapse
|
16
|
Kral M, Rosinska V, Student V, Grepl M, Hrabec M, Bouchal J. GENETIC DETERMINANTS OF PROSTATE CANCER: A REVIEW. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2011; 155:3-9. [DOI: 10.5507/bp.155.2011.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
17
|
Agalliu I, Leanza SM, Smith L, Trent JM, Carpten JD, Bailey-Wilson JE, Burk RD. Contribution of HPC1 (RNASEL) and HPCX variants to prostate cancer in a founder population. Prostate 2010; 70:1716-27. [PMID: 20564318 PMCID: PMC3404133 DOI: 10.1002/pros.21207] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Prostate cancer is a genetically complex disease with locus and disease heterogeneity. The RNASEL gene and HPCX locus have been implicated in hereditary prostate cancer; however, their contributions to sporadic forms of this malignancy remain uncertain. METHODS Associations of prostate cancer with two variants in the RNASEL gene (a founder mutation, 471delAAAG, and a non-synonymous SNP, rs486907), and with five microsatellite markers in the HPCX locus, were examined in 979 cases and 1,251 controls of Ashkenazi Jewish descent. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using logistic regression models. RESULTS There was an inverse association between RNASEL rs486907 and prostate cancer in younger men (<65 years) and those with a first-degree relative with prostate cancer; men with AA genotype had ORs of 0.64 and 0.47 (both P < 0.05), respectively, in comparison to men with GG genotype. Within the HPCX region, there were positive associations for allele 135 of bG82i1.1 marker (OR = 1.77, P = 0.01) and allele 188 of DXS1205 (OR = 1.65, P = 0.02). In addition, allele 248 of marker D33 was inversely associated (OR = 0.65, P = 0.05) with Gleason score ≥7 tumors. CONCLUSIONS Results suggest that variants in RNASEL contribute to susceptibility to early onset and familial forms of prostate cancer, whereas HPCX variants are associated with prostate cancer risk and tumor aggressiveness. The observation that a mutation predicted to completely inactivate RNASEL protein was not associated with prostate cancer, but that a missense variant was associated, suggests that the effect is due to either partial inactivation of the protein, and/or acquisition of a new protein activity.
Collapse
Affiliation(s)
- Ilir Agalliu
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
| | - Suzanne M. Leanza
- Department of Pediatrics (Genetics), Albert Einstein College of Medicine, Bronx, New York
| | - Lorrie Smith
- Department of Pediatrics (Genetics), Albert Einstein College of Medicine, Bronx, New York
| | - Jeffrey M. Trent
- The Translational Genomics Research Institute (TGen), Phoenix, Arizona
| | - John D. Carpten
- The Translational Genomics Research Institute (TGen), Phoenix, Arizona
| | - Joan E. Bailey-Wilson
- Inherited Disease Research Branch, National Human Genome Research Institute, Bethesda, Maryland
| | - Robert D. Burk
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
- Department of Pediatrics (Genetics), Albert Einstein College of Medicine, Bronx, New York
- Departments of Microbiology and Immunology; and Obstetrics, Gynecology and Women’s Health, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
18
|
Johanneson B, McDonnell SK, Karyadi DM, Quignon P, McIntosh L, Riska SM, FitzGerald LM, Johnson G, Deutsch K, Williams G, Tillmans LS, Stanford JL, Schaid DJ, Thibodeau SN, Ostrander EA. Family-based association analysis of 42 hereditary prostate cancer families identifies the Apolipoprotein L3 region on chromosome 22q12 as a risk locus. Hum Mol Genet 2010; 19:3852-62. [PMID: 20631155 DOI: 10.1093/hmg/ddq283] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Multiple genome-wide scans for hereditary prostate cancer (HPC) have identified susceptibility loci on nearly every chromosome. However, few results have been replicated with statistical significance. One exception is chromosome 22q, for which five independent linkage studies yielded strong evidence for a susceptibility locus in HPC families. Previously, we refined this region to a 2.53 Mb interval, using recombination mapping in 42 linked pedigrees. We now refine this locus to a 15 kb interval, spanning Apolipoprotein L3 (APOL3), using family-based association analyses of 150 total prostate cancer (PC) cases from two independent family collections with 506 unrelated population controls. Analysis of the two independent sets of PC cases highlighted single nucleotide polymorphisms (SNPs) within the APOL3 locus showing the strongest associations with HPC risk, with the most robust results observed when all 150 cases were combined. Analysis of 15 tagSNPs across the 5' end of the locus identified six SNPs with P-values < or =2 × 10(-4). The two independent sets of HPC cases highlight the same 15 kb interval at the 5' end of the APOL3 gene and provide strong evidence that SNPs within this 15 kb interval, or in strong linkage disequilibrium with it, contribute to HPC risk. Further analyses of this locus in an independent population-based, case-control study revealed an association between an SNP within the APOL3 locus and PC risk, which was not confirmed in the Cancer Genetic Markers of Susceptibility data set. This study further characterizes the 22q locus in HPC risk and suggests that the role of this region in sporadic PC warrants additional studies.
Collapse
Affiliation(s)
- Bo Johanneson
- National Human Genome Research Institute, National Institutes of Health, 50 South Drive, Building 50, Room 5351, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Bock CH, Schwartz AG, Ruterbusch JJ, Levin AM, Neslund-Dudas C, Land SJ, Wenzlaff AS, Reich D, McKeigue P, Chen W, Heath EI, Powell IJ, Kittles RA, Rybicki BA. Results from a prostate cancer admixture mapping study in African-American men. Hum Genet 2009; 126:637-42. [PMID: 19568772 PMCID: PMC2975267 DOI: 10.1007/s00439-009-0712-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Accepted: 06/21/2009] [Indexed: 11/24/2022]
Abstract
There are considerable racial disparities in prostate cancer risk, with a 60% higher incidence rate among African-American (AA) men compared with European-American (EA) men, and a 2.4-fold higher mortality rate in AA men than in EA men. Recently, studies have implicated several African-ancestry associated prostate cancer susceptibility loci on chromosome 8q24. In the current study, we performed admixture mapping in AA men from two independent case-control studies of prostate cancer to confirm the 8q24 ancestry association and also identify other genomic regions that may harbor prostate cancer susceptibility genes. A total of 482 cases and 261 controls were genotyped for 1,509 ancestry informative markers across the genome. The mean estimated individual admixture proportions were 20% European and 80% African. The most significant observed increase in European ancestry occurred at rs2141360 on chromosome 7q31 in both the case-only (P = 0.0000035) and case-control analyses. The most significant observed increase in African ancestry across the genome occurred at a locus on chromosome 5q35 identified by SNPs rs7729084 (case-only analysis P = 0.002), and rs12474977 (case-control analysis P = 0.004), which are separated by 646 kb and were adjacent to one another on the panel. On chromosome 8, rs4367565 was associated with the greatest excess African ancestry in both the case-only and case-control analyses (case-only and case-control P = 0.02), confirming previously reported African-ancestry associations with chromosome 8q24. In conclusion, we confirmed ancestry associations on 8q24, and identified additional ancestry-associated regions potentially harboring prostate cancer susceptibility loci.
Collapse
|
20
|
Grindedal EM, Møller P, Eeles R, Stormorken AT, Bowitz-Lothe IM, Landrø SM, Clark N, Kvåle R, Shanley S, Maehle L. Germ-line mutations in mismatch repair genes associated with prostate cancer. Cancer Epidemiol Biomarkers Prev 2009; 18:2460-7. [PMID: 19723918 DOI: 10.1158/1055-9965.epi-09-0058] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Genetic predisposition to prostate cancer includes multiple common variants with a low penetrance (single nucleotide polymorphisms) and rare variants with higher penetrance. The mismatch repair (MMR) genes MLH1, MSH2, MSH6, and PMS2 are associated with Lynch syndrome where colon and endometrial cancers are the predominant phenotypes. The purpose of our study was to investigate whether germ-line mutations in these genes may be associated with prostate cancer. One hundred and six male carriers or obligate carriers of MMR mutations were identified. Nine had contracted prostate cancer. Immunohistochemical analysis was done on tumor tissue from eight of the nine tumors. Observed incidence, cumulative risk at 60 and 70 years of age, age of onset, and Gleason score were compared with expected as assessed from population-based series. Absence of gene product from the mutated MMR gene was found in seven of eight tumors. Expected number of prostate cancers was 1.52 compared with 9 observed (P < 0.01). Mean age of onset of prostate cancer was 60.4 years compared with 66.6 expected (P = 0.006); the number of men with a Gleason score between 8 and 10 was significantly higher than expected (P < 0.00001). Kaplan-Meier analysis suggested that cumulative risk by 70 years in MMR mutation carriers may be 30% (SE, 0.088) compared with 8.0% in the general population. This is similar to the high risk associated with BRCA2 mutations. To our knowledge, this study is the first to indicate that the MMR genes may be among the rare genetic variants that confer a high risk of prostate cancer when mutated.
Collapse
Affiliation(s)
- Eli Marie Grindedal
- Section for Inherited Cancer, Department of Medical Genetics, Rikshospitalet University Hospital, N-0310 Oslo, Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Wagenius M, Borg A, Johansson L, Giwercman A, Bratt O. CHEK2*1100delC is not an important high-risk gene in families with hereditary prostate cancer in southern Sweden. ACTA ACUST UNITED AC 2009; 40:23-5. [PMID: 16452051 DOI: 10.1080/00365590500368518] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
OBJECTIVE CHEK2*1100delC is a frame-shifting germ-line mutation which abolishes the function of cell-cycle-checkpoint kinase 2 (chk2) and hence impairs the cells' response to DNA damage. This variant occurs in 1% of the general Western population but has been reported to be more common among patients with breast and prostate cancer. The aim of this study was to investigate the significance of CHEK2*1100delC as a possible high-risk gene for hereditary prostate cancer in the population of southern Sweden. MATERIAL AND METHODS We screened for the CHEK2*1100delC variant in 419 men diagnosed with prostate cancer in southern Sweden, 145 of whom were sporadic cases that were divided into two subgroups depending on whether they were diagnosed before (n=64) or after (n=81) the age of 55 years. A further 126 men were classified as familial prostate cancer cases and 148 as hereditary prostate cancer cases. The control group consisted of 305 military conscripts aged 18 years (range 18-21 years). RESULTS The CHEK2*1100delC variant was found in 1.2% of the cases (sporadic: 0.7%; familial: 1.6%; hereditary: 1.4%) and in 1.0% of the controls. CONCLUSION The CHEK2 1100delC mutation is not a clinically important high-risk gene for hereditary prostate cancer susceptibility in the population of southern Sweden.
Collapse
Affiliation(s)
- M Wagenius
- Unit of Urology, Helsingborg Hospital, Helsingborg, Sweden.
| | | | | | | | | |
Collapse
|
22
|
Susceptibility loci in a molecular subtype of prostate cancer. Nat Rev Urol 2009; 6:357-8. [DOI: 10.1038/nrurol.2009.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
23
|
Stanford JL, FitzGerald LM, McDonnell SK, Carlson EE, McIntosh LM, Deutsch K, Hood L, Ostrander EA, Schaid DJ. Dense genome-wide SNP linkage scan in 301 hereditary prostate cancer families identifies multiple regions with suggestive evidence for linkage. Hum Mol Genet 2009; 18:1839-48. [PMID: 19251732 DOI: 10.1093/hmg/ddp100] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The search for susceptibility loci in hereditary prostate cancer (HPC) has proven challenging due to genetic and disease heterogeneity. Multiple risk loci have been identified to date, however few loci have been replicated across independent linkage studies. In addition, most previous analyses have been hampered by the relatively poor information content provided by microsatellite scans. To overcome these issues, we have performed linkage analyses on members of 301 HPC families genotyped using the Illumina SNP linkage panel IVb. The information content for this panel, averaged over all pedigrees and all chromosomes, was 86% (range 83-87% over chromosomes). Analyses were also stratified on families according to disease aggressiveness, age at diagnosis and number of affected individuals to achieve more genetically homogeneous subsets. Suggestive evidence for linkage was identified at 7q21 (HLOD = 1.87), 8q22 (KCLOD = 1.88) and 15q13-q14 (HLOD = 1.99) in 289 Caucasian families, and nominal evidence for linkage was identified at 2q24 (LOD = 1.73) in 12 African American families. Analysis of more aggressive prostate cancer phenotypes provided evidence for linkage to 11q25 (KCLOD = 2.02), 15q26 (HLOD = 1.99) and 17p12 (HLOD = 2.13). Subset analyses according to age at diagnosis and number of affected individuals also identified several regions with suggestive evidence for linkage, including a KCLOD of 2.82 at 15q13-q14 in 128 Caucasian families with younger ages at diagnosis. The results presented here provide further evidence for a prostate cancer susceptibility locus on chromosome 15q and demonstrate the power of utilizing high information content SNP scans in combination with homogenous collections of large prostate cancer pedigrees.
Collapse
Affiliation(s)
- Janet L Stanford
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Agalliu I, Gern R, Leanza S, Burk RD. Associations of high-grade prostate cancer with BRCA1 and BRCA2 founder mutations. Clin Cancer Res 2009; 15:1112-20. [PMID: 19188187 PMCID: PMC3722558 DOI: 10.1158/1078-0432.ccr-08-1822] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE Protein-truncating mutations in BRCA1 and in particular BRCA2 genes have been associated with prostate cancer. However, there is still uncertainty about the magnitude of association particularly with Gleason score, and family history of prostate, breast, and ovary cancers. EXPERIMENTAL DESIGN To further examine associations between three founder mutations located in BRCA1 (185delAG, 5382insC) or BRCA2 (6174delT) genes and prostate cancer, we conducted a study of 979 prostate cancer cases and 1,251 controls among Ashkenazi Jewish men. Detailed information was obtained on prostate cancer pathology, age at diagnosis, and family history of all cancers. Odds ratios (OR) and 95% confidence intervals (CIs) were estimated using logistic regression models. RESULTS Prostate cancer risk was increased (OR, 1.9; 95% CI 0.9-4.1) for BRCA2 mutation carriers but not for BRCA1 mutation carriers. BRCA2 mutation carriers had an OR of 3.2 (95% CI, 1.4-7.3) for Gleason score of 7 to 10, but no association was observed for Gleason score of < 7. Carriers of BRCA1-185delAG mutation also had an OR of 3.5 (95% CI, 1.2-10.3) for Gleason score of > or =7 tumors; however, the association of either BRCA1-185delAG or 5382insC mutation was not statistically significant. Associations between founder mutations and prostate cancer were stronger in men with no first-degree family history of breast and/or ovarian cancers but were unaffected by family history of prostate cancer. CONCLUSION These results indicate that the BRCA2 founder mutation confers a 3-fold elevated risk of high-grade prostate cancer. Although BRCA1 mutations were not associated with prostate cancer, the BRCA1-185delAG was associated with high Gleason score tumors. These findings should be carefully considered in genetic counseling and/or evaluating therapeutic options.
Collapse
Affiliation(s)
- Ilir Agalliu
- Department of Epidemiology Population Health, Albert Einstein College of Medicine, Bronx, New York
| | - Robert Gern
- Department of Epidemiology Population Health, Albert Einstein College of Medicine, Bronx, New York
| | - Suzanne Leanza
- Department of Pediatrics (Genetics), Albert Einstein College of Medicine, Bronx, New York
| | - Robert D. Burk
- Department of Epidemiology Population Health, Albert Einstein College of Medicine, Bronx, New York
- Department of Pediatrics (Genetics), Albert Einstein College of Medicine, Bronx, New York
- Department of Microbiology and Immunology, and Obstetrics, Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
25
|
Kote-Jarai Z, Jugurnauth S, Mulholland S, Leongamornlert DA, Guy M, Edwards S, Tymrakiewitcz M, O'Brien L, Hall A, Wilkinson R, Al Olama AA, Morrison J, Muir K, Neal D, Donovan J, Hamdy F, Easton DF, Eeles R. A recurrent truncating germline mutation in the BRIP1/FANCJ gene and susceptibility to prostate cancer. Br J Cancer 2009; 100:426-30. [PMID: 19127258 PMCID: PMC2634720 DOI: 10.1038/sj.bjc.6604847] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 12/01/2008] [Accepted: 12/01/2008] [Indexed: 12/27/2022] Open
Abstract
Although prostate cancer (PrCa) is one of the most common cancers in men in Western countries, little is known about the inherited factors that influence PrCa risk. On the basis of the fact that BRIP1/FANCJ interacts with BRCA1 and functions as a regulator of DNA double-strand break repair pathways, and that germline mutations within the BRIP1/FANCJ gene predispose to breast cancer, we chose this gene as a candidate for mutation screening in familial and young-onset PrCa cases. We identified a truncating mutation, R798X, in the BRIP1/FANCJ gene in 4 out of 2714 UK PrCa cases enriched for familial (2 out of 641; 0.3%) and young-onset cases (2 out of 2073; 0.1%). On screening 2045 controls from the UK population, we found one R798X sequence alteration (0.05%; odds ratio 2.4 (95% CI 0.25-23.4)). In addition, using our data from a genome-wide association study, we analysed 25 SNPs in the genomic region of the BRIP1/FANCJ gene. Two SNPs showed evidence of association with familial and young-onset PrCa (rs6504074; P(trend)=0.04 and rs8076727; P(trend)=0.01). These results suggest that truncating mutations in BRIP1/FANCJ might confer an increased risk of PrCa and common SNPs might also contribute to the alteration of risk, but larger case-control series will be required to confirm or refute this association.
Collapse
Affiliation(s)
- Z Kote-Jarai
- Translational Cancer Genetics Team, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | - S Jugurnauth
- Translational Cancer Genetics Team, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | - S Mulholland
- Translational Cancer Genetics Team, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | - D A Leongamornlert
- Translational Cancer Genetics Team, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | - M Guy
- Translational Cancer Genetics Team, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | - S Edwards
- Translational Cancer Genetics Team, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | - M Tymrakiewitcz
- Translational Cancer Genetics Team, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | - L O'Brien
- Translational Cancer Genetics Team, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | - A Hall
- Translational Cancer Genetics Team, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT, and Fulham Road, London SW3 6JJ, UK
| | - R Wilkinson
- Translational Cancer Genetics Team, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | - A A Al Olama
- CR-UK Genetic Epidemiology Unit, University of Cambridge, Strangeways Laboratory, Worts Causeway, Cambridge CB1 8RN, UK
| | - J Morrison
- CR-UK Genetic Epidemiology Unit, University of Cambridge, Strangeways Laboratory, Worts Causeway, Cambridge CB1 8RN, UK
| | - K Muir
- University of Nottingham Medical School, Queens Medical Centre, Nottingham NG7 2UH, UK
| | - D Neal
- Surgical Oncology (Uro-Oncology: S4), Departments of Oncology and Surgery, University of Cambridge, Box 279, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - J Donovan
- Department of Social Medicine, University of Bristol, Canynge Hall, Whiteladies Road, Bristol BS8 2PR, UK
| | - F Hamdy
- Academic Urology Unit, University of Sheffield, Sheffield S10 2JF, UK
| | - D F Easton
- CR-UK Genetic Epidemiology Unit, University of Cambridge, Strangeways Laboratory, Worts Causeway, Cambridge CB1 8RN, UK
| | - The UKGPCS Collaborators, The British Association of Urological Surgeons' Section of Oncology9
- Translational Cancer Genetics Team, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT, and Fulham Road, London SW3 6JJ, UK
- CR-UK Genetic Epidemiology Unit, University of Cambridge, Strangeways Laboratory, Worts Causeway, Cambridge CB1 8RN, UK
- University of Nottingham Medical School, Queens Medical Centre, Nottingham NG7 2UH, UK
- Surgical Oncology (Uro-Oncology: S4), Departments of Oncology and Surgery, University of Cambridge, Box 279, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
- Department of Social Medicine, University of Bristol, Canynge Hall, Whiteladies Road, Bristol BS8 2PR, UK
- Academic Urology Unit, University of Sheffield, Sheffield S10 2JF, UK
| | - R Eeles
- Translational Cancer Genetics Team, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
- The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey SM2 5PT, and Fulham Road, London SW3 6JJ, UK
| |
Collapse
|
26
|
Abstract
Recent genetics and genomics studies of prostate cancer have helped to clarify the genetic basis of this common but complex disease. Genome-wide studies have detected numerous variants associated with disease as well as common gene fusions and expression 'signatures' in prostate tumours. On the basis of these results, some advocate gene-based individualized screening for prostate cancer, although such testing might only be worthwhile to distinguish disease aggressiveness. Lessons learned from these studies provide strategies for further deciphering the genetic causes of prostate cancer and other diseases.
Collapse
Affiliation(s)
- John S Witte
- Department of Epidemiology and Biostatistics, Institute for Human Genetics, University of California, San Francisco, 513 Parnassus Avenue, Room S965, San Francisco, California 94143-0794, USA.
| |
Collapse
|
27
|
Ostrander EA, Udler MS. The role of the BRCA2 gene in susceptibility to prostate cancer revisited. Cancer Epidemiol Biomarkers Prev 2008; 17:1843-8. [PMID: 18708369 DOI: 10.1158/1055-9965.epi-08-0556] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Prostate cancer is a genetically complex disease with multiple predisposing factors affecting presentation, progression, and outcome. Epidemiologic studies have long shown an aggregation of breast and prostate cancer in some families. More recently, studies have reported an apparent excess of prostate cancer cases among BRCA2 mutation-carrying families. Additionally, population-based screens of early-onset prostate cancer patients have suggested that the prevalence of deleterious BRCA2 mutations in this group is 1% to 2%, imparting a significantly increased risk of the disease compared with noncarrier cases. However, studies of high-risk prostate cancer families suggest that BRCA2 plays at most a minimal role in these individuals, highlighting the potential genetic heterogeneity of the disease. In this commentary, we review the current literature and hypotheses surrounding the relationship between BRCA2 mutations and susceptibility to prostate cancer and speculate on the potential for involvement of additional genes.
Collapse
Affiliation(s)
- Elaine A Ostrander
- Cancer Genetic Branch, National Human Genome Research Institute, NIH, Room 52451, Building 50, Bethesda, MD 20892, USA.
| | | |
Collapse
|
28
|
Kote-Jarai Z, Easton DF, Stanford JL, Ostrander EA, Schleutker J, Ingles SA, Schaid D, Thibodeau S, Dörk T, Neal D, Donovan J, Hamdy F, Cox A, Maier C, Vogel W, Guy M, Muir K, Lophatananon A, Kedda MA, Spurdle A, Steginga S, John EM, Giles G, Hopper J, Chappuis PO, Hutter P, Foulkes WD, Hamel N, Salinas CA, Koopmeiners JS, Karyadi DM, Johanneson B, Wahlfors T, Tammela TL, Stern MC, Corral R, McDonnell SK, Schürmann P, Meyer A, Kuefer R, Leongamornlert DA, Tymrakiewicz M, Liu JF, O'Mara T, Gardiner RAF, Aitken J, Joshi AD, Severi G, English DR, Southey M, Edwards SM, Al Olama AA, Eeles RA. Multiple novel prostate cancer predisposition loci confirmed by an international study: the PRACTICAL Consortium. Cancer Epidemiol Biomarkers Prev 2008; 17:2052-61. [PMID: 18708398 DOI: 10.1158/1055-9965.epi-08-0317] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A recent genome-wide association study found that genetic variants on chromosomes 3, 6, 7, 10, 11, 19 and X were associated with prostate cancer risk. We evaluated the most significant single-nucleotide polymorphisms (SNP) in these loci using a worldwide consortium of 13 groups (PRACTICAL). Blood DNA from 7,370 prostate cancer cases and 5,742 male controls was analyzed by genotyping assays. Odds ratios (OR) associated with each genotype were estimated using unconditional logistic regression. Six of the seven SNPs showed clear evidence of association with prostate cancer (P = 0.0007-P = 10(-17)). For each of these six SNPs, the estimated per-allele OR was similar to those previously reported and ranged from 1.12 to 1.29. One SNP on 3p12 (rs2660753) showed a weaker association than previously reported [per-allele OR, 1.08 (95% confidence interval, 1.00-1.16; P = 0.06) versus 1.18 (95% confidence interval, 1.06-1.31)]. The combined risks associated with each pair of SNPs were consistent with a multiplicative risk model. Under this model, and in combination with previously reported SNPs on 8q and 17q, these loci explain 16% of the familial risk of the disease, and men in the top 10% of the risk distribution have a 2.1-fold increased risk relative to general population rates. This study provides strong confirmation of these susceptibility loci in multiple populations and shows that they make an important contribution to prostate cancer risk prediction.
Collapse
Affiliation(s)
- Zsofia Kote-Jarai
- Section of Cancer Genetics Team, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Guy M, Kote-Jarai Z, Giles GG, Al Olama AA, Jugurnauth SK, Mulholland S, Leongamornlert DA, Edwards SM, Morrison J, Field HI, Southey MC, Severi G, Donovan JL, Hamdy FC, Dearnaley DP, Muir KR, Smith C, Bagnato M, Ardern-Jones AT, Hall AL, O'Brien LT, Gehr-Swain BN, Wilkinson RA, Cox A, Lewis S, Brown PM, Jhavar SG, Tymrakiewicz M, Lophatananon A, Bryant SL, Horwich A, Huddart RA, Khoo VS, Parker CC, Woodhouse CJ, Thompson A, Christmas T, Ogden C, Fisher C, Jameson C, Cooper CS, English DR, Hopper JL, Neal DE, Easton DF, Eeles RA. Identification of new genetic risk factors for prostate cancer. Asian J Androl 2008; 11:49-55. [PMID: 19050691 DOI: 10.1038/aja.2008.18] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
There is evidence that a substantial part of genetic predisposition to prostate cancer (PCa) may be due to lower penetrance genes which are found by genome-wide association studies. We have recently conducted such a study and seven new regions of the genome linked to PCa risk have been identified. Three of these loci contain candidate susceptibility genes: MSMB, LMTK2 and KLK2/3. The MSMB and KLK2/3 genes may be useful for PCa screening, and the LMTK2 gene might provide a potential therapeutic target. Together with results from other groups, there are now 23 germline genetic variants which have been reported. These results have the potential to be developed into a genetic test. However, we consider that marketing of tests to the public is premature, as PCa risk can not be evaluated fully at this stage and the appropriate screening protocols need to be developed. Follow-up validation studies, as well as studies to explore the psychological implications of genetic profile testing, will be vital prior to roll out into healthcare.
Collapse
Affiliation(s)
- Michelle Guy
- Section of Cancer Genetics, The Institute of Cancer Research, Sutton, Surrey, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
|
31
|
Ostrander EA, Johannesson B. Prostate cancer susceptibility loci: finding the genes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 617:179-90. [PMID: 18497042 DOI: 10.1007/978-0-387-69080-3_17] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
Studies to date suggest that PC is a genetically very heterogeneous disease. High-risk families, in which multiple men are affected likely, reflect the contributions of a number of genes, some that are rare and highly penetrant, while others are more common and weakly penetrant. In this review, we have discussed only the first type of loci, and found that the identification of such genomic regions is a formidable problem. Replication between seemingly similar data sets is weak, likely reflecting the older age of onset associated with the disease, the inability to collect affected individuals from more than two generations in a family, and the variation seen in disease presentation, in addition to the underlying locus heterogeneity. Indeed, the definition of PC is ever changing, as diagnostic criteria and tools for pinpointing early lesions improve. Are we making progress? Clearly the answer is yes. The ability to divide large data sets into homogenous subset of families likely to share common genetic under-pinnings has improved power to identify loci and reproducibility between loci is now more common. Indeed, several groups report linkage to loci on chromosomes 1, 17, 19, and 22. Key to our continued success is our ever increasing ability to understand the disease. Identifying the subset of men who are likely to get clinically significant disease is the goal of genetic studies like these, and identifying the underlying loci is the key for developing diagnostics. The willingness of the community to work together has been an important factor in the successes the community has enjoyed to date, and will likely be as important as we move forward to untangle the genetics of this complex and common disorder.
Collapse
Affiliation(s)
- Elanie A Ostrander
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
32
|
Fine mapping of familial prostate cancer families narrows the interval for a susceptibility locus on chromosome 22q12.3 to 1.36 Mb. Hum Genet 2007; 123:65-75. [PMID: 18066601 DOI: 10.1007/s00439-007-0451-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Accepted: 12/02/2007] [Indexed: 10/22/2022]
Abstract
Genetic studies suggest that hereditary prostate cancer is a genetically heterogeneous disease with multiple contributing loci. Studies of high-risk prostate cancer families selected for aggressive disease, analysis of large multigenerational families, and a meta-analysis from the International Consortium for Prostate Cancer Genetics (ICPCG), all highlight chromosome 22q12.3 as a susceptibility locus with strong statistical significance. Recently, two publications have narrowed the 22q12.3 locus to a 2.18 Mb interval using 54 high-risk families from the ICPCG collaboration, as defined by three recombination events on either side of the locus. In this paper, we present the results from fine mapping studies at 22q12.3 using both haplotype and recombination data from 42 high-risk families contributed from the Mayo Clinic and the Prostate Cancer Genetic Research Study (PROGRESS) mapping studies. No clear consensus interval is present when all families are used. However, in the subset of 14 families with >/=5 affected men per family, a 2.53-Mb shared consensus segment that overlaps with the previously published interval is identified. Combining these results with data from the earlier ICPCG study reduces the three-recombination interval at 22q12.3 to approximately 1.36 Mb.
Collapse
|
33
|
Cunningham JM, Hebbring SJ, McDonnell SK, Cicek MS, Christensen GB, Wang L, Jacobsen SJ, Cerhan JR, Blute ML, Schaid DJ, Thibodeau SN. Evaluation of genetic variations in the androgen and estrogen metabolic pathways as risk factors for sporadic and familial prostate cancer. Cancer Epidemiol Biomarkers Prev 2007; 16:969-78. [PMID: 17507624 DOI: 10.1158/1055-9965.epi-06-0767] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Previous studies suggest that enzymes involved in the androgen metabolic pathway are susceptibility factors for prostate cancer. Estrogen metabolites functioning as genotoxins have also been proposed as risk factors. In this study, we systematically tested the hypothesis that common genetic variations for those enzymes involved in the androgen and estrogen metabolic pathways increase risk for sporadic and familial prostate cancer. From these two pathways, 46 polymorphisms (34 single nucleotide polymorphisms, 10 short tandem repeat polymorphisms, and 2 null alleles) in 25 genes were tested for possible associations. Those genes tested included PRL, LHB, CYP11A1, HSD3B1, HSD3B2, HSD17B2, CYP17, SRD5A2, AKR1C3, UGT2B15, AR, SHBG, and KLK3 from the androgen pathway and CYP19, HSD17B1, CYP1A1, CYP1A2, CYP1B1, COMT, GSTP1, GSTT1, GSTM1, NQO1, ESR1, and ESR2 from the estrogen pathway. A case-control study design was used with two sets of cases: familial cases with a strong prostate cancer family history (n = 438 from 178 families) and sporadic cases with a negative prostate cancer family history (n = 499). The controls (n = 493) were derived from a population-based collection. Our results provide suggestive findings for an association with either familial or sporadic prostate cancer with polymorphisms in four genes: AKR1C3, HSD17B1, NQO1, and GSTT1. Additional suggestive findings for an association with clinical variables (disease stage, grade, and/or node status) were observed for single nucleotide polymorphisms in eight genes: HSD3B2, SRD5A2, SHBG, ESR1, CYP1A1, CYP1B1, GSTT1, and NQO1. However, none of the findings were statistically significant after appropriate corrections for multiple comparisons. Given that the point estimates for the odds ratio for each of these polymorphisms are <2.0, much larger sample sizes will be required for confirmation.
Collapse
Affiliation(s)
- Julie M Cunningham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Antón Aparicio LM, García Campelo R, Cassinello Espinosa J, Valladares Ayerbes M, Reboredo López M, Díaz Prado S, Aparicio Gallego G. Prostate cancer and Hedgehog signalling pathway. Clin Transl Oncol 2007; 9:420-8. [PMID: 17652055 DOI: 10.1007/s12094-007-0080-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The Hedgehog (Hh) family of intercellular signalling proteins have come to be recognised as key mediators in many fundamental processes in embryonic development. Their activities are central to the growth, patterning and morphogenesis of many different regions within the bodies of vertebrates. In some contexts, Hh signals act as morphogens in the dose-dependent induction of distinct cell fates within a target field, in others as mitogens in the regulation of cell proliferation or as inducing factors controlling the form of a developing organ. These diverse functions of Hh proteins raise many intriguing questions about their mode of action. Various studies have now demonstrated the function of Hh signalling in the control of cell proliferation, especially for stem cells and stem-like progenitors. Abnormal activation of the Hh pathway has been demonstrated in a variety of human tumours. Hh pathway activity in these tumours is required for cancer cell proliferation and tumour growth. Recent studies have uncovered the role for Hh signalling in advanced prostate cancer and demonstrated that autocrine signalling by tumour cells is required for proliferation, viability and invasive behaviour. Thus, Hh signalling represents a novel pathway in prostate cancer that offers opportunities for prognostic biomarker development, drug targeting and therapeutic response monitoring.
Collapse
Affiliation(s)
- L M Antón Aparicio
- Medical Oncology Service, C.H.U. Juan Canalejo, Department of Medicine, University of La Coruña, A Coruña, Spain.
| | | | | | | | | | | | | |
Collapse
|
35
|
Ostrander EA, Kwon EM, Stanford JL. Genetic susceptibility to aggressive prostate cancer. Cancer Epidemiol Biomarkers Prev 2007; 15:1761-4. [PMID: 17035380 DOI: 10.1158/1055-9965.epi-06-0730] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Elaine A Ostrander
- Cancer Genetics Branch, National Human Genome Research Institute, NIH, 50 South Drive, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
36
|
Suuriniemi M, Agalliu I, Schaid DJ, Johanneson B, McDonnell SK, Iwasaki L, Stanford JL, Ostrander EA. Confirmation of a positive association between prostate cancer risk and a locus at chromosome 8q24. Cancer Epidemiol Biomarkers Prev 2007; 16:809-14. [PMID: 17416775 DOI: 10.1158/1055-9965.epi-06-1049] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Family-based linkage studies, association studies, and studies of tumors have highlighted human chromosome 8q as a genomic region of interest for prostate cancer susceptibility loci. Recently, a locus at 8q24, characterized by both a single nucleotide polymorphism (SNP) and a microsatellite marker, was shown to be associated with prostate cancer risk in Icelandic, Swedish, and U.S. samples. Although the data were provocative, the U.S. samples were not population based, which precludes assessment of the potential contribution of this locus to prostate cancer incidence in the United States. METHODS We analyzed both markers in a population-based, case-control study of middle-aged men from King County, Washington. RESULTS Overall, there was a significant positive association between the A allele of the SNP rs1447295 and prostate cancer risk [odds ratio, 1.4; 95% confidence interval (95% CI), 1.1-2.0] but no significant association with the microsatellite DG8S737. However, significant associations were observed for both markers in men with high Gleason scores. Adjusting for age, first-degree family history of prostate cancer, and prostate cancer screening history, the adjusted odds ratios were 1.4 (95% CI, 1.1-1.8) for the A allele of the SNP and 1.9 (95% CI, 1.2-2.8) for the -10 allele of the microsatellite. CONCLUSIONS These data suggest that the locus on chromosome 8q24 harbors a genetic variant associated with prostate cancer and that the microsatellite marker is a stronger risk factor for aggressive prostate cancers defined by poorly differentiated tumor morphology.
Collapse
Affiliation(s)
- Miia Suuriniemi
- Cancer Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Maier C, Vogel W. Genetik des Prostatakarzinoms. MED GENET-BERLIN 2007. [DOI: 10.1007/s11825-007-0010-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Zusammenfassung
Das Prostatakarzinom ist der häufigste maligne Tumor des Mannes, und es weist ätiologisch den größten genetischen Einfluss auf. Dennoch konnten bislang keine Gene identifiziert werden, die einen größeren Teil familiärer Fälle erklären und entsprechende Diagnostik ermöglichen. Keimbahnmutationen in 3 aus Kopplungsanalysen hervorgegangenen Genen (ELAC2, RNASEL, MSR1) sind zu selten und in ihrer Penetranz fraglich. Assoziationen zu diversen Genen sind meist schwach und nur für BRCA2 bzw. familiären Brustkrebs klinisch von Bedeutung. Infolge der extremen Heterogenität muss sich die genetische Beratung auf Risikoschätzungen aus dem Stammbaum stützen, wobei bereits ein betroffener Verwandter 1. Grades zu einem relevanten Risiko führt.
Collapse
Affiliation(s)
- C. Maier
- Aff1 grid.410712.1 Institut für Humangenetik Universitätsklinikum Ulm Albert-Einstein-Allee 11 89081 Ulm Deutschland
| | - W. Vogel
- Aff1 grid.410712.1 Institut für Humangenetik Universitätsklinikum Ulm Albert-Einstein-Allee 11 89081 Ulm Deutschland
| |
Collapse
|
38
|
Johanneson B, Deutsch K, McIntosh L, Friedrichsen-Karyadi DM, Janer M, Kwon EM, Iwasaki L, Hood L, Ostrander EA, Stanford JL. Suggestive genetic linkage to chromosome 11p11.2-q12.2 in hereditary prostate cancer families with primary kidney cancer. Prostate 2007; 67:732-42. [PMID: 17372923 DOI: 10.1002/pros.20528] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND The Seattle-based PROGRESS study was started in 1995 to ascertain hereditary prostate cancer (HPC) families for studies of genetic susceptibility. Subsequent studies by several research groups, including our own, suggest that HPC is a genetically heterogeneous disease. To be successful in mapping loci for such a complex disease, one must consider ways of grouping families into subsets that likely share the same genetic origin. Towards that end, we analyzed a genome-wide scan of HPC families with primary kidney cancer. METHODS An 8.1 cM genome-wide scan including 441 microsatellite markers was analyzed by both parametric and non-parametric linkage approaches in fifteen HPC families with the co-occurrence of kidney cancer. RESULTS There was no evidence for significant linkage in the initial findings. However, two regions of suggestive linkage were observed at 11q12 and 4q21, with HLOD scores of 2.59 and 2.10, respectively. The primary result on chromosome 11 was strengthened after excluding two families with members who had rare transitional cell carcinoma (TCC). Specifically, we observed a non-parametric Kong and Cox P-value of 0.004 for marker D11S1290 at 11p11.2. The 8 cM region between 11p11.2 and 11q12.2 was refined by the addition of 16 new markers. The subset of HPC families with a median age of diagnosis >65 years demonstrated the strongest evidence for linkage, with an HLOD = 2.50. The P-values associated with non-parametric analysis ranged from 0.004 to 0.05 across five contiguous markers. CONCLUSIONS Analysis of HPC families with members diagnosed with primary renal cell carcinoma demonstrates suggestive linkage to chromosome 11p11.2-q12.2.
Collapse
Affiliation(s)
- Bo Johanneson
- Cancer Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Schaid DJ, Stanford JL, McDonnell SK, Suuriniemi M, McIntosh L, Karyadi DM, Carlson EE, Deutsch K, Janer M, Hood L, Ostrander EA. Genome-wide linkage scan of prostate cancer Gleason score and confirmation of chromosome 19q. Hum Genet 2007; 121:729-35. [PMID: 17486369 DOI: 10.1007/s00439-007-0368-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Accepted: 04/12/2007] [Indexed: 11/26/2022]
Abstract
Despite evidence that prostate cancer has a genetic etiology, it has been extremely difficult to confirm genetic linkage results across studies, emphasizing the large extent of genetic heterogeneity associated with this disease. Because prostate cancer is common--approximately one in six men will be diagnosed with prostate cancer in their life--genetic linkage studies are likely plagued by phenocopies (i.e., men with prostate cancer due to environmental or lifestyle factors), weakly penetrant alleles, or a combination of both, making it difficult to replicate linkage findings. One way to account for heterogeneous causes is to use clinical information that is related to the aggressiveness of disease as an endpoint for linkage analyses. Gleason grade is a measure of prostate tumor differentiation, with higher grades associated with more aggressive disease. This semi-quantitative score has been used as a quantitative trait for linkage analysis in several prior studies. Our aim was to determine if prior linkage reports of Gleason grade to specific loci could be replicated, and to ascertain if new regions of linkage could be found. Gleason scores were available for 391 affected sib pairs from 183 hereditary prostate cancer pedigrees as part of the PROGRESS study. Analyzing Gleason score as a quantitative trait, and using microsatellite markers, suggestive evidence for linkage (P-value <or= 0.001) was found on chromosomes 19q and 5q, with P-values <or= 0.01 observed on chromosomes 3q, 7q, and 16q. Our results confirm reports of Gleason score linkage to chromosome 19q and suggest new loci for further investigation.
Collapse
|
40
|
Agalliu I, Kwon EM, Zadory D, McIntosh L, Thompson J, Stanford JL, Ostrander EA. Germline mutations in the BRCA2 gene and susceptibility to hereditary prostate cancer. Clin Cancer Res 2007; 13:839-43. [PMID: 17289875 DOI: 10.1158/1078-0432.ccr-06-2164] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Several epidemiologic studies have reported that carriers of germline mutations in the BRCA2 gene have an increased risk of prostate cancer, with the highest risk observed in men diagnosed at earlier ages. However, studies of the contribution of BRCA2 mutations to the etiology of hereditary prostate cancer (HPC) have been inconsistent. EXPERIMENTAL DESIGN To further address this issue, 266 subjects from 194 HPC families participating in the Seattle-based Prostate Cancer Genetic Research Study were screened for BRCA2 mutations by sequencing the coding regions, intron-exon boundaries, and suspected regulatory elements of this gene. Of selected HPC families, 32 had multiple breast or ovarian cancer cases, 16 were Jewish, 8 had a pancreatic cancer case, and 138 had at least one affected man diagnosed with prostate cancer at an early age (<60 years). RESULTS No disease-associated protein truncating BRCA2 mutations were found in 266 subjects from HPC families. There were 61 DNA sequence variants, of which 31 (50.8%) changed the predicted amino acids. No associations were found between these missense changes and family characteristics. Among affected men with prostate cancer, there were no statistically significant differences between the genotype frequencies of DNA variants with a minor allele frequency of 1% or higher and between the strata defined by median age at diagnosis or by clinical features. CONCLUSION No evidence was found in this study for an association between BRCA2 mutations and susceptibility to HPC in men selected from high-risk families.
Collapse
Affiliation(s)
- Ilir Agalliu
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Department of Epidemiology, School of Public Health and Community Medicine, University of Washington, Seattle, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Christensen GB, Camp NJ, Farnham JM, Cannon-Albright LA. Genome-wide linkage analysis for aggressive prostate cancer in Utah high-risk pedigrees. Prostate 2007; 67:605-13. [PMID: 17299800 DOI: 10.1002/pros.20554] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND It has been proposed that studying alternative phenotypes, such as tumor aggressiveness, may be a solution for overcoming the apparent heterogeneity that has hindered the identification of prostate cancer (PC) genes. We present the results of a genome-scan for predisposition to aggressive PC using the Utah high-risk pedigree resource. METHODS We identified 259 subjects with aggressive PC in 57 extended and nuclear families. Parametric and non-parametric multipoint linkage statistics were calculated for a genome-wide set of 401 microsatellite markers using the MCLINK software package. Stratification analyses by the number of affected subjects per pedigree (<5, >or=5) and the average age at diagnosis of affected subjects (<70 years, >or=70 years) were also performed. RESULTS No significant results were observed at the genome-wide level, but suggestive evidence for linkage was observed on chromosomes 9q (HLOD = 2.04) and 14q (HLOD = 2.08); several pedigrees showed individual evidence for linkage at each locus (LOD > 0.58). The subset of pedigrees with earlier age at onset demonstrated nominal linkage evidence on chromosomes 3q (HLOD = 1.79), 8q (HLOD = 1.67), and 20q (HLOD=1.82). The late-onset subset showed suggestive linkage on chromosome 6p (HLOD = 2.37) and the subset of pedigrees with fewer than five affected subjects showed suggestive linkage on chromosome 10p (HLOD = 1.99). CONCLUSIONS Linkage evidence observed on chromosomes 6p, 8q, and 20q support previously reported PC aggressiveness loci. While these results are encouraging, further research is necessary to identify the gene or genes responsible for PC aggressiveness and surmount the overarching problem of PC heterogeneity.
Collapse
Affiliation(s)
- G B Christensen
- Department of Biomedical Informatics, University of Utah School of Medicine, Utah, USA.
| | | | | | | |
Collapse
|
42
|
Schaid DJ, McDonnell SK, Carlson EE, Thibodeau SN, Ostrander EA, Stanford JL. Affected relative pairs and simultaneous search for two-locus linkage in the presence of epistasis. Genet Epidemiol 2007; 31:431-49. [PMID: 17410530 DOI: 10.1002/gepi.20223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
It is commonly believed that multiple interacting genes increase the susceptibility of genetically complex diseases, yet few linkage analyses of human diseases scan for more than one locus at a time. To overcome some of the statistical and computational limitations of a simultaneous search for two disease susceptibility loci in the presence of epistasis, we developed new score statistics to simultaneously scan for two disease susceptibility loci in pedigree data. These model-free score statistics are based on developments for model-free maximum lod scores, which in turn are based on variance components for indicators of disease status. To overcome reduced power caused by many parameters in the general two-locus model, we impose constraints on ratios of variance components, much like those used for robust single-locus linkage statistics (e.g., minimax constraints). The resulting three-degree of freedom score statistic, constrained as a one-sided multivariate test, can be computed rapidly, making simultaneous search feasible for human genetic linkage studies. Furthermore, using recent developments to rapidly compute simulation P-values for score statistics, it is feasible to empirically evaluate the statistical significance of the proposed score statistics. Application of these methods to two large studies of the genetic linkage of prostate cancer illuminates their strengths and limitations. The results provide weak suggestions for linkage of several pairs of chromosomal regions (chromosome pairs 1-21, 3-13, 5-9, and 14-19), all of which showed stronger linkage signals when the score statistics accounted for epistasis. These novel score statistics should prove useful for linkage studies of other complex human diseases.
Collapse
Affiliation(s)
- Daniel J Schaid
- Division of Biostatistics, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Pierce BL, Friedrichsen-Karyadi DM, McIntosh L, Deutsch K, Hood L, Ostrander EA, Austin MA, Stanford JL. Genomic scan of 12 hereditary prostate cancer families having an occurrence of pancreas cancer. Prostate 2007; 67:410-5. [PMID: 17192958 DOI: 10.1002/pros.20527] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Prostate cancer is a genetically heterogeneous disease. Using the occurrence of other cancers in hereditary prostate cancer (HPC) families is a promising strategy for developing genetically homogeneous data sets that can enhance the ability to identify susceptibility loci using linkage analysis. METHODS Twelve HPC families with the co-occurrence of adenocarcinoma of the pancreas were selected from the Prostate Cancer Genetic Research Study (PROGRESS). Non-parametric linkage analysis for a prostate/pancreas cancer susceptibility phenotype was performed using 441 genome-wide microsatellite markers. RESULTS No statistically significant linkage signal was detected in this analysis. The strongest linkage signals, as measured by Kong and Cox LOD score (KC LOD), were observed on chromosomes 2q37.2-q37.3 (KC LOD = 1.01; P = 0.02) and 16q23.2 (KC LOC = 1.05; P = 0.01). CONCLUSIONS Despite the lack of statistically significant findings, four chromosomal regions, three of which (2q, 16q, 17q) were previously noted as harboring potential susceptibility loci, showed suggestive linkage results in this scan.
Collapse
Affiliation(s)
- Brandon L Pierce
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Cannon Albright LA. Utah family-based analysis: past, present and future. Hum Hered 2007; 65:209-20. [PMID: 18073491 DOI: 10.1159/000112368] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Accepted: 07/30/2007] [Indexed: 01/24/2023] Open
Abstract
A unique genealogical resource linked to phenotype data was created in Utah over 30 years ago. Here we review the history and content of this resource. In addition, we review three current methodologies used in conjunction with this resource to define the heritable contribution to phenotypes and to identify predisposition genes responsible for these phenotypes. Example analyses and high-risk pedigrees are presented. Finally we briefly review ways this resource, or others like it, may expand in future.
Collapse
Affiliation(s)
- Lisa A Cannon Albright
- Division of Genetic Epidemiology, Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, Utah 84108, USA.
| |
Collapse
|
45
|
Baffoe-Bonnie AB, Kittles RA, Gillanders E, Ou L, George A, Robbins C, Ahaghotu C, Bennett J, Boykin W, Hoke G, Mason T, Pettaway C, Vijayakumar S, Weinrich S, Jones MP, Gildea D, Riedesel E, Albertus J, Moses T, Lockwood E, Klaric M, Faruque M, Royal C, Trent JM, Berg K, Collins FS, Furbert-Harris PM, Bailey-Wilson JE, Dunston GM, Powell I, Carpten JD. Genome-wide linkage of 77 families from the African American Hereditary Prostate Cancer study (AAHPC). Prostate 2007; 67:22-31. [PMID: 17031815 DOI: 10.1002/pros.20456] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND The African American Hereditary Prostate Cancer (AAHPC) Study was designed to recruit families with early-onset disease fulfilling criteria of >or=4 affected. METHODS We present a approximately 10 cM genome-wide linkage (GWL) analysis on 77 families including 254 affected and 274 unaffected genotyped. RESULTS Linkage analysis revealed three chromosomal regions with GENEHUNTER multipoint HLOD scores >or=1.3 for all 77 families at 11q22, 17p11, and Xq21. One family yielded genome-wide significant evidence of linkage (LOD = 3.5) to the 17p11 region with seven other families >or=2.3 in this region. Twenty-nine families with no-male-to-male (MM) transmission gave a peak HLOD of 1.62 (alpha = 0.33) at the Xq21 locus. Two novel peaks >or=0.91 for the 16 families with '>6 affected' occurred at 2p21 and 22q12. CONCLUSIONS These chromosomal regions in the genome warrant further follow-up based on the hypothesis of multiple susceptibility genes with modest effects, or several major genes segregating in small subsets of families.
Collapse
|
46
|
Lange EM, Robbins CM, Gillanders EM, Zheng SL, Xu J, Wang Y, White KA, Chang BL, Ho LA, Trent JM, Carpten JD, Isaacs WB, Cooney KA. Fine-mapping the putative chromosome 17q21-22 prostate cancer susceptibility gene to a 10 cM region based on linkage analysis. Hum Genet 2006; 121:49-55. [PMID: 17120048 DOI: 10.1007/s00439-006-0274-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Accepted: 10/02/2006] [Indexed: 11/25/2022]
Abstract
Prostate cancer linkage studies have suggested the existence of a prostate cancer susceptibility gene on chromosome 17q21-22. We now report the results of an extended linkage analysis including 95 new multiplex prostate cancer families and 9 additional microsatellite markers resulting in a maximum LOD score of 2.99 at approximately 81-82 cM for all 453 pedigrees. Results from these 95 new pedigrees provide additional support for a chromosome 17q21-22 prostate cancer susceptibility gene. Inclusion of the 9 additional markers significantly reduced the size of the candidate region, as defined using a 1-LOD support interval, especially when focusing analyses on subsets of pedigrees with four or more confirmed affecteds or average age of diagnosis less than or equal to 65 years. A novel subset analysis of only those families (n = 147) that had four or more prostate cancer cases and an average age of prostate cancer diagnosis < or = 65 years results in a maximum LOD score of 5.49 at 78 cM with a 1-LOD support interval of 10 cM. This large set of pedigrees with four more prostate cancer cases characterized by early-onset disease will serve as a useful resource for identifying the putative 17q21-22 prostate cancer susceptibility gene.
Collapse
Affiliation(s)
- Ethan M Lange
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Siddiqui SA, Sengupta S, Slezak JM, Bergstralh EJ, Zincke H, Blute ML. Impact of Familial and Hereditary Prostate Cancer on Cancer Specific Survival After Radical Retropubic Prostatectomy. J Urol 2006; 176:1118-21. [PMID: 16890705 DOI: 10.1016/j.juro.2006.04.077] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2005] [Indexed: 12/24/2022]
Abstract
PURPOSE Men with a family history of prostate cancer are at higher risk for prostate cancer. There are conflicting data regarding the impact of hereditary forms of prostate cancer on long-term outcomes after radical prostatectomy. We examined the impact of familial and hereditary prostate cancer treatment in the prostate specific antigen era. MATERIALS AND METHODS Patients who underwent radical prostatectomy for prostate cancer from 1987 to 1997 were surveyed (3,560 responders) to determine the family history of prostate cancer. Patients were categorized as having familial prostate cancer if they had at least 1 first-degree relative with prostate cancer. Hereditary prostate cancer was defined as nuclear families with 3 cases of prostate cancer, families with prostate cancer in each of 3 generations and families with 2 men diagnosed before age 55 years. Sporadic prostate cancer was defined as patients with no family history. Clinical and pathological features, and long-term outcome measures, including biochemical recurrence-free, systemic progression-free and cancer specific survival, were compared among patients with familial, hereditary and sporadic prostate cancer. RESULTS A total of 865 and 133 patients were categorized as having familial prostate cancer and hereditary prostate cancer, respectively. Preoperatively prostate specific antigen was higher in patients with hereditary prostate cancer than in the other 2 groups (p = 0.04). Ten-year biochemical progression-free, systemic progression-free and cancer specific survival were equivalent. CONCLUSIONS Except for preoperative prostate specific antigen, clinicopathological features and long-term oncological outcomes are equivalent after radical prostatectomy in patients with familial, hereditary and sporadic prostate cancer.
Collapse
Affiliation(s)
- Sameer A Siddiqui
- Department of Urology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|
48
|
Schaid DJ, McDonnell SK, Zarfas KE, Cunningham JM, Hebbring S, Thibodeau SN, Eeles RA, Easton DF, Foulkes WD, Simard J, Giles GG, Hopper JL, Mahle L, Moller P, Badzioch M, Bishop DT, Evans C, Edwards S, Meitz J, Bullock S, Hope Q, Guy M, Hsieh CL, Halpern J, Balise RR, Oakley-Girvan I, Whittemore AS, Xu J, Dimitrov L, Chang BL, Adams TS, Turner AR, Meyers DA, Friedrichsen DM, Deutsch K, Kolb S, Janer M, Hood L, Ostrander EA, Stanford JL, Ewing CM, Gielzak M, Isaacs SD, Walsh PC, Wiley KE, Isaacs WB, Lange EM, Ho LA, Beebe-Dimmer JL, Wood DP, Cooney KA, Seminara D, Ikonen T, Baffoe-Bonnie A, Fredriksson H, Matikainen MP, Tammela TLJ, Bailey-Wilson J, Schleutker J, Maier C, Herkommer K, Hoegel JJ, Vogel W, Paiss T, Wiklund F, Emanuelsson M, Stenman E, Jonsson BA, Grönberg H, Camp NJ, Farnham J, Cannon-Albright LA, Catalona WJ, Suarez BK, Roehl KA. Pooled genome linkage scan of aggressive prostate cancer: results from the International Consortium for Prostate Cancer Genetics. Hum Genet 2006; 120:471-85. [PMID: 16932970 DOI: 10.1007/s00439-006-0219-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Accepted: 06/05/2006] [Indexed: 10/24/2022]
Abstract
While it is widely appreciated that prostate cancers vary substantially in their propensity to progress to a life-threatening stage, the molecular events responsible for this progression have not been identified. Understanding these molecular mechanisms could provide important prognostic information relevant to more effective clinical management of this heterogeneous cancer. Hence, through genetic linkage analyses, we examined the hypothesis that the tendency to develop aggressive prostate cancer may have an important genetic component. Starting with 1,233 familial prostate cancer families with genome scan data available from the International Consortium for Prostate Cancer Genetics, we selected those that had at least three members with the phenotype of clinically aggressive prostate cancer, as defined by either high tumor grade and/or stage, resulting in 166 pedigrees (13%). Genome-wide linkage data were then pooled to perform a combined linkage analysis for these families. Linkage signals reaching a suggestive level of significance were found on chromosomes 6p22.3 (LOD = 3.0), 11q14.1-14.3 (LOD = 2.4), and 20p11.21-q11.21 (LOD = 2.5). For chromosome 11, stronger evidence of linkage (LOD = 3.3) was observed among pedigrees with an average at diagnosis of 65 years or younger. Other chromosomes that showed evidence for heterogeneity in linkage across strata were chromosome 7, with the strongest linkage signal among pedigrees without male-to-male disease transmission (7q21.11, LOD = 4.1), and chromosome 21, with the strongest linkage signal among pedigrees that had African American ancestry (21q22.13-22.3; LOD = 3.2). Our findings suggest several regions that may contain genes which, when mutated, predispose men to develop a more aggressive prostate cancer phenotype. This provides a basis for attempts to identify these genes, with potential clinical utility for men with aggressive prostate cancer and their relatives.
Collapse
Affiliation(s)
- Daniel J Schaid
- Harwick 7, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Kittles RA, Baffoe-Bonnie AB, Moses TY, Robbins CM, Ahaghotu C, Huusko P, Pettaway C, Vijayakumar S, Bennett J, Hoke G, Mason T, Weinrich S, Trent JM, Collins FS, Mousses S, Bailey-Wilson J, Furbert-Harris P, Dunston G, Powell IJ, Carpten JD. A common nonsense mutation in EphB2 is associated with prostate cancer risk in African American men with a positive family history. J Med Genet 2006; 43:507-11. [PMID: 16155194 PMCID: PMC2564535 DOI: 10.1136/jmg.2005.035790] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2005] [Revised: 08/31/2005] [Accepted: 09/04/2005] [Indexed: 11/03/2022]
Abstract
BACKGROUND The EphB2 gene was recently implicated as a prostate cancer (PC) tumour suppressor gene, with somatic inactivating mutations occurring in approximately 10% of sporadic tumours. We evaluated the contribution of EphB2 to inherited PC susceptibility in African Americans (AA) by screening the gene for germline polymorphisms. METHODS Direct sequencing of the coding region of EphB2 was performed on 72 probands from the African American Hereditary Prostate Cancer Study (AAHPC). A case-control association analysis was then carried out using the AAHPC probands and an additional 183 cases of sporadic PC compared with 329 healthy AA male controls. In addition, we performed an ancestry adjusted association study where we adjusted for individual ancestry among all subjects, in order to rule out a spurious association due to population stratification. RESULTS Ten coding sequence variants were identified, including the K1019X (3055A-->T) nonsense mutation which was present in 15.3% of the AAHPC probands but only 1.7% of 231 European American (EA) control samples. We observed that the 3055A-->T mutation significantly increased risk for prostate cancer over twofold (Fisher's two sided test, p = 0.003). The T allele was significantly more common among AAHPC probands (15.3%) than among healthy AA male controls (5.2%) (odds ratio 3.31; 95% confidence interval 1.5 to 7.4; p = 0.008). The ancestry adjusted analyses confirmed the association. CONCLUSIONS Our data show that the K1019X mutation in the EphB2 gene differs in frequency between AA and EA, is associated with increased risk for PC in AA men with a positive family history, and may be an important genetic risk factor for prostate cancer in AA.
Collapse
Affiliation(s)
- R A Kittles
- Department of Molecular Virology, Immunology and Medical Genetics, Arthur G James Cancer Hospital and Richard J Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Chen H, Hernandez W, Shriver MD, Ahaghotu CA, Kittles RA. ICAM gene cluster SNPs and prostate cancer risk in African Americans. Hum Genet 2006; 120:69-76. [PMID: 16733712 DOI: 10.1007/s00439-006-0184-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Accepted: 03/30/2006] [Indexed: 11/30/2022]
Abstract
Intercellular adhesion molecules (ICAMs) are known to be involved in various human cancers. An ICAM gene cluster lying within a 26 kb region on chromosome 19p13.2, and containing ICAM1, ICAM4, and ICAM5 has recently been identified as harboring a breast and prostate cancer susceptibility locus in two populations of European ancestry from Germany and Australia. The objective of this study was to confirm the ICAM association with prostate cancer in a sample of African American prostate cancer cases (N = 286) and controls (N = 391). Six single nucleotide polymorphisms (SNPs) within the three ICAM genes were genotyped. To control for potential population stratification an ancestry-adjusted association analysis was performed. We found that ICAM1 SNPs, -9A/C (rs5490) and K469E (rs5498) were associated with prostate cancer risk in men with a family history of prostate cancer (P = 0.008). Specifically, increased risk was observed for individuals who possessed the CC genotype of the -9 A/C variant (odds ratio = 2.5; 95% CI = 1.0-6.3) and at least one G allele of non-synonymous K469E variant (odds ratio = 1.8; 95% CI = 1.2-3.1). Strong linkage disequilibrium was observed across the ICAM region (P < 0.001). A common haplotype within the ICAM gene cluster, harboring the -9A/C variant was significantly associated with prostate cancer (P = 0.03), mainly due to men with family history (P = 0.01). Our results replicate previous findings of association of the ICAM gene cluster with prostate cancer and suggest that common genetic variation within ICAM1 and not ICAM5 may be an important risk factor for prostate cancer.
Collapse
Affiliation(s)
- Hankui Chen
- Human Cancer Genetics, Comprehensive Cancer Center, The Ohio State University, 494 Tzagournis Medical Research Facility, 420 W. 12th Avenue, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|