1
|
Palanisamy H, Manoharan JP, Vidyalakshmi S. Prognostic microRNAs as biomarkers for prostate cancer. J Cancer Res Ther 2024; 20:297-303. [PMID: 38554337 DOI: 10.4103/jcrt.jcrt_1469_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/01/2022] [Indexed: 04/01/2024]
Abstract
OBJECTIVE Prostate cancer is the second largest cancer, most commonly diagnosed in men. Several studies reveal that miRNAs (microRNAs) are involved in various stages of prostate cancer. miRNAs are a family of small non-coding RNA species that have been implicated in the post-transcriptional regulation of gene expression. The present in silico study aims at identifying miRNA biomarkers that are significantly associated with the regulation of genes involved in prostate cancer. METHODS Dataset of miRNA and mRNA of prostate adenocarcinoma patients and controls was downloaded from The Cancer Genome Atlas (TCGA), and differential gene expression analysis was carried out. ROC and Kaplan-Meier survival analyses were performed on differentially expressed miRNAs. Pathway analysis was carried out for significant miRNAs, and protein-protein interaction of involved genes and miRNAs was examined. RESULTS A total of 185 miRNAs were differentially expressed between the patients and the control. ROC and Kaplan-Meier survival analysis showed that the two miRNAs hsa-mir-133b and hsa-mir-17-5p were found to be significantly associated with prostate cancer prognosis. HAS2 and EPHA10 gene targets of identified miRNA were also differentially expressed. A protein-protein interaction (PPI) network was constructed, and the HAS2 gene was found to be interacting with the epidermal growth factor receptor (EGFR). CONCLUSION This study highlights the potential of hsa-mir-133b and hsa-mir-17-5p miRNAs as biomarkers for the prognosis of prostate cancer. However, further experimental studies are required to validate this finding.
Collapse
Affiliation(s)
- Hema Palanisamy
- Department of Biotechnology, PSG College of Technology, Coimbatore Tamil Nadu, India
| | | | | |
Collapse
|
2
|
Liu Q, Ma Z, Cao Q, Zhao H, Guo Y, Liu T, Li J. Perineural invasion-associated biomarkers for tumor development. Biomed Pharmacother 2022; 155:113691. [PMID: 36095958 DOI: 10.1016/j.biopha.2022.113691] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Perineural invasion (PNI) is the process of neoplastic invasion of peripheral nerves and is considered to be the fifth mode of cancer metastasis. PNI has been detected in head and neck tumors and pancreatic, prostate, bile duct, gastric, and colorectal cancers. It leads to poor prognostic outcomes and high local recurrence rates. Despite the increasing number of studies on PNI, targeted therapeutic modalities have not been proposed. The identification of PNI-related biomarkers would facilitate the non-invasive and early diagnosis of cancers, the establishment of prognostic panels, and the development of targeted therapeutic approaches. In this review, we compile information on the molecular mediators involved in PNI-associated cancers. The expression and prognostic significance of molecular mediators and their receptors in PNI-associated cancers are analyzed, and the possible mechanisms of action of these mediators in PNI are explored, as well as the association of cells in the microenvironment where PNI occurs.
Collapse
Affiliation(s)
- Qi Liu
- Department of General Surgery, The Second Hospital of Jilin University, Changchun 130041, China
| | - Zhiming Ma
- Department of General Surgery, The Second Hospital of Jilin University, Changchun 130041, China
| | - Qian Cao
- Department of Education, The Second Hospital of Jilin University, Changchun 130041, China
| | - Hongyu Zhao
- Gastroenterology and Center of Digestive Endoscopy, The Second Hospital of Jilin University, Changchun 130041, China
| | - Yu Guo
- Department of General Surgery, The Second Hospital of Jilin University, Changchun 130041, China
| | - Tongjun Liu
- Department of General Surgery, The Second Hospital of Jilin University, Changchun 130041, China
| | - Jiannan Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun 130041, China.
| |
Collapse
|
3
|
The Role of Perineural Invasion in Prostate Cancer and Its Prognostic Significance. Cancers (Basel) 2022; 14:cancers14174065. [PMID: 36077602 PMCID: PMC9454778 DOI: 10.3390/cancers14174065] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Prostate cancer is one of the most frequently diagnosed cancers in men worldwide. Perineural invasion (PNI), the movement of cancer cells along nerves, is a commonly observed approach to tumor spread and is important in both research and clinical practice of prostate cancer. However, despite many studies reporting on molecules and pathways involved in PNI, understanding its clinical relevance remains insufficient. In this review, we aim to summarize the current knowledge of mechanisms and prognostic significance of PNI in prostate cancer, which may provide new perspectives for future studies and improved treatment. Abstract Perineural invasion (PNI) is a common indication of tumor metastasis that can be detected in multiple malignancies, including prostate cancer. In the development of PNI, tumor cells closely interact with the nerve components in the tumor microenvironment and create the perineural niche, which provides a supportive surrounding for their survival and invasion and benefits the nerve cells. Various transcription factors, cytokines, chemokines, and their related signaling pathways have been reported to be important in the progress of PNI. Nevertheless, the current understanding of the molecular mechanism of PNI is still very limited. Clinically, PNI is commonly associated with adverse clinicopathological parameters and poor outcomes for prostate cancer patients. However, whether PNI could act as an independent prognostic predictor remains controversial among studies due to inconsistent research aim and endpoint, sample type, statistical methods, and, most importantly, the definition and inclusion criteria. In this review, we provide a summary and comparison of the prognostic significance of PNI in prostate cancer based on existing literature and propose that a more standardized description of PNI would be helpful for a better understanding of its clinical relevance.
Collapse
|
4
|
Hurník P, Chyra Z, Ševčíková T, Štembírek J, Trtková KS, Gaykalova DA, Buchtová M, Hrubá E. Epigenetic Regulations of Perineural Invasion in Head and Neck Squamous Cell Carcinoma. Front Genet 2022; 13:848557. [PMID: 35571032 PMCID: PMC9091179 DOI: 10.3389/fgene.2022.848557] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
Carcinomas of the oral cavity and oropharynx belong among the ten most common malignancies in the human population. The prognosis of head and neck squamous cell carcinoma (HNSCC) is determined by the degree of invasiveness of the primary tumor and by the extent of metastatic spread into regional and distant lymph nodes. Moreover, the level of the perineural invasion itself associates with tumor localization, invasion's extent, and the presence of nodal metastases. Here, we summarize the current knowledge about different aspects of epigenetic changes, which can be associated with HNSCC while focusing on perineural invasion (PNI). We review epigenetic modifications of the genes involved in the PNI process in HNSCC from the omics perspective and specific epigenetic modifications in OSCC or other neurotropic cancers associated with perineural invasion. Moreover, we summarize DNA methylation status of tumor-suppressor genes, methylation and demethylation enzymes and histone post-translational modifications associated with PNI. The influence of other epigenetic factors on the HNSCC incidence and perineural invasion such as tobacco, alcohol and oral microbiome is overviewed and HPV infection is discussed as an epigenetic factor associated with OSCC and related perineural invasion. Understanding epigenetic regulations of axon growth that lead to tumorous spread or uncovering the molecular control of axon interaction with cancer tissue can help to discover new therapeutic targets for these tumors.
Collapse
Affiliation(s)
- Pavel Hurník
- Department of Clinical and Molecular Pathology and Medical Genetics, Faculty of Medicine and University Hospital Ostrava, Ostrava, Czechia
- Department of Histology and Embryology, Medical Faculty, Masaryk University, Brno, Czechia
| | - Zuzana Chyra
- Department of Hematooncology, University Hospital Ostrava, Ostrava, Czechia
| | - Tereza Ševčíková
- Department of Hematooncology, University Hospital Ostrava, Ostrava, Czechia
| | - Jan Štembírek
- Department of Maxillofacial Surgery, University Hospital Ostrava, Ostrava, Czechia
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
| | - Kateřina Smešný Trtková
- Department of Clinical and Molecular Pathology and Medical Genetics, Faculty of Medicine and University Hospital Ostrava, Ostrava, Czechia
- Department of Clinical and Molecular Pathology, Faculty of Medicine and University Hospital Olomouc, Olomouc, Czechia
| | - Daria A. Gaykalova
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland Medical Center, Baltimore, MD, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, United States
- Institute for Genome Sciences, University of Maryland Medical Center, Baltimore, MD, United States
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, United States
| | - Marcela Buchtová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Eva Hrubá
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| |
Collapse
|
5
|
Differential Gene Expression Profiles between N-Terminal Domain and Ligand-Binding Domain Inhibitors of Androgen Receptor Reveal Ralaniten Induction of Metallothionein by a Mechanism Dependent on MTF1. Cancers (Basel) 2022; 14:cancers14020386. [PMID: 35053548 PMCID: PMC8773799 DOI: 10.3390/cancers14020386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 02/04/2023] Open
Abstract
Hormonal therapies for prostate cancer target the androgen receptor (AR) ligand-binding domain (LBD). Clinical development for inhibitors that bind to the N-terminal domain (NTD) of AR has yielded ralaniten and its analogues. Ralaniten acetate is well tolerated in patients at 3600 mgs/day. Clinical trials are ongoing with a second-generation analogue of ralaniten. Binding sites on different AR domains could result in differential effects on AR-regulated gene expression. Here, we provide the first comparison between AR-NTD inhibitors and AR-LBD inhibitors on androgen-regulated gene expression in prostate cancer cells using cDNA arrays, GSEA, and RT-PCR. LBD inhibitors and NTD inhibitors largely overlapped in the profile of androgen-induced genes that they each inhibited. However, androgen also represses gene expression by various mechanisms, many of which involve protein-protein interactions. De-repression of the transcriptome of androgen-repressed genes showed profound variance between these two classes of inhibitors. In addition, these studies revealed a unique and strong induction of expression of the metallothionein family of genes by ralaniten by a mechanism independent of AR and dependent on MTF1, thereby suggesting this may be an off-target. Due to the relatively high doses that may be encountered clinically with AR-NTD inhibitors, identification of off-targets may provide insight into potential adverse events, contraindications, or poor efficacy.
Collapse
|
6
|
The Diagnosis of Perineural Invasion: A Crucial Factor in Novel Algorithm of Coexistence of Conventional and Nerve-Sparing Radical Hysterectomy. Diagnostics (Basel) 2021; 11:diagnostics11081308. [PMID: 34441243 PMCID: PMC8391994 DOI: 10.3390/diagnostics11081308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 11/17/2022] Open
Abstract
Nerve-sparing radical hysterectomy (NSRH) was introduced to mitigate adverse effects associated with conventional radical hysterectomy (CRH) in cervical cancer. However, the introduction of NSRH was compromised by possible existence of perineural invasion (PNI). Additionally, the coexistence of NSRH and CRH is currently the fact. The aim of the study was to review the literature and attempt to construct a novel and preliminary PNI diagnostic algorithm that would establish the coexistence of NSRH and CRH in one system of early-stage cervical cancer (ESCC) surgical treatment. This algorithm takes into account the PNI risk factors and current and future diagnostic methods such as imaging and biopsy.
Collapse
|
7
|
Zhang M, Xian HC, Dai L, Tang YL, Liang XH. MicroRNAs: emerging driver of cancer perineural invasion. Cell Biosci 2021; 11:117. [PMID: 34187567 PMCID: PMC8243427 DOI: 10.1186/s13578-021-00630-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
The perineural invasion (PNI), which refers to tumor cells encroaching on nerve, is a clinical feature frequently occurred in various malignant tumors, and responsible for postoperative recurrence, metastasis and decreased survival. The pathogenesis of PNI switches from 'low-resistance channel' hypothesis to 'mutual attraction' theory between peripheral nerves and tumor cells in perineural niche. Among various molecules in perineural niche, microRNA (miRNA) as an emerging modulator of PNI through generating RNA-induced silencing complex (RISC) to orchestrate oncogene and anti-oncogene has aroused a wide attention. This article systematically reviewed the role of microRNA in PNI, promising to identify new biomarkers and offer cancer therapeutic targets.
Collapse
Affiliation(s)
- Mei Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), No.14, Sec. 3, Renminnan Road, Chengdu, 610041, China
| | - Hong-Chun Xian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Pathology, West China Hospital of Stomatology (Sichuan University), No.14, Sec. 3, Renminnan Road, Chengdu, 610041, China
| | - Li Dai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), No.14, Sec. 3, Renminnan Road, Chengdu, 610041, China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Pathology, West China Hospital of Stomatology (Sichuan University), No.14, Sec. 3, Renminnan Road, Chengdu, 610041, China.
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), No.14, Sec. 3, Renminnan Road, Chengdu, 610041, China.
| |
Collapse
|
8
|
Guo JA, Hoffman HI, Shroff SG, Chen P, Hwang PG, Kim DY, Kim DW, Cheng SW, Zhao D, Mahal BA, Alshalalfa M, Niemierko A, Wo JY, Loeffler JS, Fernandez-Del Castillo C, Jacks T, Aguirre AJ, Hong TS, Mino-Kenudson M, Hwang WL. Pan-cancer Transcriptomic Predictors of Perineural Invasion Improve Occult Histopathologic Detection. Clin Cancer Res 2021; 27:2807-2815. [PMID: 33632928 DOI: 10.1158/1078-0432.ccr-20-4382] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/16/2021] [Accepted: 02/19/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Perineural invasion (PNI) is associated with aggressive tumor behavior, recurrence, and metastasis, and can influence the administration of adjuvant treatment. However, standard histopathologic examination has limited sensitivity in detecting PNI and does not provide insights into its mechanistic underpinnings. EXPERIMENTAL DESIGN A multivariate Cox regression was performed to validate associations between PNI and survival in 2,029 patients across 12 cancer types. Differential expression and gene set enrichment analysis were used to learn PNI-associated programs. Machine learning models were applied to build a PNI gene expression classifier. A blinded re-review of hematoxylin and eosin (H&E) slides by a board-certified pathologist helped determine whether the classifier could improve occult histopathologic detection of PNI. RESULTS PNI associated with both poor overall survival [HR, 1.73; 95% confidence interval (CI), 1.27-2.36; P < 0.001] and disease-free survival (HR, 1.79; 95% CI, 1.38-2.32; P < 0.001). Neural-like, prosurvival, and invasive programs were enriched in PNI-positive tumors (P adj < 0.001). Although PNI-associated features likely reflect in part the increased presence of nerves, many differentially expressed genes mapped specifically to malignant cells from single-cell atlases. A PNI gene expression classifier was derived using random forest and evaluated as a tool for occult histopathologic detection. On a blinded H&E re-review of sections initially described as PNI negative, more specimens were reannotated as PNI positive in the high classifier score cohort compared with the low-scoring cohort (P = 0.03, Fisher exact test). CONCLUSIONS This study provides salient biological insights regarding PNI and demonstrates a role for gene expression classifiers to augment detection of histopathologic features.
Collapse
Affiliation(s)
- Jimmy A Guo
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts.,Koch Institute for Integrative Cancer Research and Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts.,Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, Massachusetts.,School of Medicine, University of California, San Francisco, San Francisco, California.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Hannah I Hoffman
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts.,Koch Institute for Integrative Cancer Research and Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Stuti G Shroff
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Peter Chen
- Raytheon Technologies, Brooklyn, New York
| | - Peter G Hwang
- Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Daniel Y Kim
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Daniel W Kim
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | | | - Daniel Zhao
- New York Medical College, Valhalla, New York
| | - Brandon A Mahal
- Department of Radiation Oncology, Miller School of Medicine, Miami, Florida
| | - Mohammed Alshalalfa
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Andrzej Niemierko
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Jennifer Y Wo
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Jay S Loeffler
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | | | - Tyler Jacks
- Koch Institute for Integrative Cancer Research and Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Andrew J Aguirre
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Theodore S Hong
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - William L Hwang
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts. .,Koch Institute for Integrative Cancer Research and Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
9
|
Bi YN, Guan JP, Wang L, Li P, Yang FX. Clinical significance of microRNA-125b and its contribution to ovarian carcinogenesis. Bioengineered 2020; 11:939-948. [PMID: 32842846 PMCID: PMC8291798 DOI: 10.1080/21655979.2020.1814660] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The underlying mechanisms of recurrence and metastasis of epithelial ovarian cancer (EOC) are largely unknown. In the present study, we investigated the clinical significance of microRNA-125b (miR-125b) and its role in ovarian tumorigenesis and progression. Seventy patients of EOC and paired tissues were enrolled from 2015 to 2017. qRT-PCR was used to evaluate miR-125b expression in tumor tissues and EOC cell line. Gain-and-loss function of miR-125b was achieved to explore the changes in cell biological function. We found that miR-125b expression in EOC tissues, especially in the high-grade tissues (P < 0.001), was significantly lower compared to the matched adjacent noncancerous tissues and associated with pathological type, stage, and overall survival (P < 0.05). Upregulation of miR-125b promoted apoptosis and decreased cell survival rate and migration, and vice versa in vitro. Mechanistically, miR-125b negatively regulated S100A4, a metastasis-associated protein. MiR-125b overexpression significantly decreased tumor growth and inhibited lung metastasis in vivo. Our results supported that miR-125b contributes to the progression of EOC by targeting S100A4. It potentially acts as a potential biomarker and therapeutic target of EOC.
Collapse
Affiliation(s)
- Ya-Nan Bi
- Department of Operating Room, The Affiliated Hospital of Qingdao University , Qingdao, Shandong, China
| | - Jin-Ping Guan
- Department of Surgery, The Affiliated Hospital of Qingdao University , Qingdao, Shandong, China
| | - Liming Wang
- Department of Gynecology, The Affiliated Hospital of Qingdao University , Qingdao, Shandong, China
| | - Ping Li
- Department of Ultrasound, The Affiliated Hospital of Qingdao University , Huangdao, Shandong, China
| | - Feng-Xia Yang
- Department of Ultrasound, The Affiliated Hospital of Qingdao University , Huangdao, Shandong, China
| |
Collapse
|
10
|
Zhan B, Huang L, Chen Y, Ye W, Li J, Chen J, Yang S, Jiang W. miR-196a-mediated downregulation of p27 kip1 protein promotes prostate cancer proliferation and relates to biochemical recurrence after radical prostatectomy. Prostate 2020; 80:1024-1037. [PMID: 32628792 DOI: 10.1002/pros.24036] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/13/2020] [Accepted: 06/17/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND Dysregulation of microRNAs has performed vital gene regulatory functions in the genesis, progression, and prognosis of multiple malignant tumors. This study aimed to elucidate the regulatory mechanism of miR-196a in prostate cancer (PCa) and explore its clinical significance. METHODS Quantitative real-time polymerase chain reaction was implemented to examine miR-196a and p27kip1 messenger RNA expression in PCa. Cell proliferation was evaluated via Cell Counting Kit-8, colony formation, and nude mouse tumorigenicity assays. Luciferase reporter assay was applied to identify target genes. p27kip1 protein expression in PCa was investigated using Western blot analysis and immunohistochemistry. RESULTS There was a dramatic upregulation of miR-196a in PCa. Upregulated miR-196a was related to worse Gleason score (GS), later pathological stage, and poor biochemical recurrence (BCR)-free survival. In vivo and in vitro experiments exhibited that miR-196a promoted PCa proliferation and expedited G1/S-phase progression through the downregulation of p27kip1 protein. Additionally, p27kip1 protein was distinctly downregulated in PCa. Low p27kip1 protein expression had a strong correlation with increased GS and was an independent predictor of BCR after radical prostatectomy (RP). CONCLUSIONS Excessive expression of miR-196a and subsequent downregulation of p27kip1 protein play essential roles in promoting PCa proliferation and leading to BCR after RP. miR-196a and its target p27kip1 may become novel molecular biomarkers and therapeutic targets for PCa.
Collapse
Affiliation(s)
- Bin Zhan
- Department of Urology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Linjin Huang
- Department of Urology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yachun Chen
- Department of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Wen Ye
- Department of Urology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jingkun Li
- Department of Urology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jianhui Chen
- Department of Urology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Sheng Yang
- Department of Medical Oncology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Wei Jiang
- Department of Urology, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
11
|
Dwivedi S, Krishnan A. Neural invasion: a scenic trail for the nervous tumor and hidden therapeutic opportunity. Am J Cancer Res 2020; 10:2258-2270. [PMID: 32905513 PMCID: PMC7471340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023] Open
Abstract
Neural invasion (NI) is the invasion of cancer cells into nerves, influencing the pathological characteristics of malignant tumors. NI promotes metastasis and is associated with reduced survival of affected patients. Although known for decades, its prognostic and therapeutic implications have not been not much appreciated due to the scattered information available on its clinical complications. The use of multiple nomenclatures to describe NI also generated confusions among researchers to understand this pathological process. Here, we discuss the multiple classifications of NI and review its clinical complications. Recent findings of the regulatory roles of nerves on tumor growth have fuelled research in this field, and there has been several attempts to molecularly define the NI interface and the cancer cells involved. Therefore, in this review, we discuss the large datasets available to characterize the cancer cells in NI and also discuss the roles of Schwann cells and macrophages participating in NI.
Collapse
Affiliation(s)
- Shubham Dwivedi
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of SaskatchewanSaskatoon, SK, S7N 5E5, Canada
- Cameco MS Neuroscience Research Centre, University of SaskatchewanSaskatoon, SK, S7K 0M7, Canada
| | - Anand Krishnan
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of SaskatchewanSaskatoon, SK, S7N 5E5, Canada
- Cameco MS Neuroscience Research Centre, University of SaskatchewanSaskatoon, SK, S7K 0M7, Canada
| |
Collapse
|
12
|
Amit M, Takahashi H, Dragomir MP, Lindemann A, Gleber-Netto FO, Pickering CR, Anfossi S, Osman AA, Cai Y, Wang R, Knutsen E, Shimizu M, Ivan C, Rao X, Wang J, Silverman DA, Tam S, Zhao M, Caulin C, Zinger A, Tasciotti E, Dougherty PM, El-Naggar A, Calin GA, Myers JN. Loss of p53 drives neuron reprogramming in head and neck cancer. Nature 2020; 578:449-454. [PMID: 32051587 DOI: 10.1038/s41586-020-1996-3] [Citation(s) in RCA: 255] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/15/2020] [Indexed: 12/22/2022]
Abstract
The solid tumour microenvironment includes nerve fibres that arise from the peripheral nervous system1,2. Recent work indicates that newly formed adrenergic nerve fibres promote tumour growth, but the origin of these nerves and the mechanism of their inception are unknown1,3. Here, by comparing the transcriptomes of cancer-associated trigeminal sensory neurons with those of endogenous neurons in mouse models of oral cancer, we identified an adrenergic differentiation signature. We show that loss of TP53 leads to adrenergic transdifferentiation of tumour-associated sensory nerves through loss of the microRNA miR-34a. Tumour growth was inhibited by sensory denervation or pharmacological blockade of adrenergic receptors, but not by chemical sympathectomy of pre-existing adrenergic nerves. A retrospective analysis of samples from oral cancer revealed that p53 status was associated with nerve density, which was in turn associated with poor clinical outcomes. This crosstalk between cancer cells and neurons represents mechanism by which tumour-associated neurons are reprogrammed towards an adrenergic phenotype that can stimulate tumour progression, and is a potential target for anticancer therapy.
Collapse
Affiliation(s)
- Moran Amit
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Hideaki Takahashi
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Otorhinolaryngology Head and Neck Surgery, Yokohama City University, Yokohama, Japan
| | - Mihnea Paul Dragomir
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Antje Lindemann
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Frederico O Gleber-Netto
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Curtis R Pickering
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Simone Anfossi
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Abdullah A Osman
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yu Cai
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rong Wang
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Erik Knutsen
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Medical Biology, Faculty of Health Sciences, UiT, The Arctic University of Norway, Tromsø, Norway
| | - Masayoshi Shimizu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cristina Ivan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiayu Rao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Deborah A Silverman
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Samantha Tam
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mei Zhao
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carlos Caulin
- Department of Otolaryngology, Head and Neck Surgery, University of Arizona, Tucson, AZ, USA.,University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Assaf Zinger
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, USA.,Department of Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Ennio Tasciotti
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, USA.,Department of Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Patrick M Dougherty
- Department of Pain Medicine, Division of Anesthesiology, Critical Care, and Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Adel El-Naggar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. .,Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Jeffrey N Myers
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. .,Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
13
|
Alrawashdeh W, Jones R, Dumartin L, Radon TP, Cutillas PR, Feakins RM, Dmitrovic B, Demir IE, Ceyhan GO, Crnogorac‐Jurcevic T. Perineural invasion in pancreatic cancer: proteomic analysis and in vitro modelling. Mol Oncol 2019; 13:1075-1091. [PMID: 30690892 PMCID: PMC6487729 DOI: 10.1002/1878-0261.12463] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 11/27/2018] [Accepted: 01/10/2019] [Indexed: 12/17/2022] Open
Abstract
Perineural invasion (PNI) is a common and characteristic feature of pancreatic ductal adenocarcinoma (PDAC) that is associated with poor prognosis, tumor recurrence, and generation of pain. However, the molecular alterations in cancer cells and nerves within PNI have not previously been comprehensively analyzed. Here, we describe our proteomic analysis of the molecular changes underlying neuro-epithelial interactions in PNI using liquid chromatography-mass spectrometry (LC-MS/MS) in microdissected PNI and non-PNI cancer, as well as in invaded and noninvaded nerves from formalin-fixed, paraffin-embedded PDAC tissues. In addition, an in vitro model of PNI was developed using a co-culture system comprising PDAC cell lines and PC12 cells as the neuronal element. The overall proteomic profiles of PNI and non-PNI cancer appeared largely similar. In contrast, upon invasion by cancer cells, nerves demonstrated widespread plasticity with a pattern consistent with neuronal injury. The up-regulation of SCG2 (secretogranin II) and neurosecretory protein VGF (nonacronymic) in invaded nerves in PDAC tissues was further validated using immunohistochemistry. The tested PDAC cell lines were found to be able to induce neuronal plasticity in PC12 cells in our in vitro established co-culture model. Changes in expression levels of VGF, as well as of two additional proteins previously reported to be overexpressed in PNI, Nestin and Neuromodulin (GAP43), closely recapitulated our proteomic findings in PDAC tissues. Furthermore, induction of VGF, while not necessary for PC12 survival, mediated neurite extension induced by PDAC cell lines. In summary, here we report the proteomic alterations underlying PNI in PDAC and confirm that PDAC cells are able to induce neuronal plasticity. In addition, we describe a novel, simple, and easily adaptable co-culture model for in vitro study of neuro-epithelial interactions.
Collapse
Affiliation(s)
- Wasfi Alrawashdeh
- Centre for Molecular OncologyBarts Cancer InstituteQueen Mary University of LondonUK
| | | | - Laurent Dumartin
- Centre for Molecular OncologyBarts Cancer InstituteQueen Mary University of LondonUK
| | - Tomasz P. Radon
- Centre for Molecular OncologyBarts Cancer InstituteQueen Mary University of LondonUK
| | - Pedro R. Cutillas
- Centre for Haemato‐OncologyBart Cancer InstituteQueen Mary University of LondonUK
| | | | - Branko Dmitrovic
- Department of Pathology and Forensic MedicineFaculty of MedicineUniversity of OsijekCroatia
| | - Ihsan Ekin Demir
- Department of SurgeryKlinikum rechts der Isar Technische UniversitätMunichGermany
| | - Guralp O. Ceyhan
- Department of SurgeryKlinikum rechts der Isar Technische UniversitätMunichGermany
| | | |
Collapse
|
14
|
Zhu Y, Zhang GN, Shi Y, Cui L, Leng XF, Huang JM. Perineural invasion in cervical cancer: pay attention to the indications of nerve-sparing radical hysterectomy. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:203. [PMID: 31205921 DOI: 10.21037/atm.2019.04.35] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Perineural invasion (PNI) in early-stage cervical cancer, is associated with multiple high-risk factors and represents a poor outcome in the patients. For nerve-sparing radical hysterectomy (NSRH) to become a standard and widely used treatment for cervical cancer, we need to define its oncological safety, and to establish standardized surgical procedures and indications of NSRH. Here, we review the definition and mechanisms, and clinical significance of PNI in cervical cancer, and discuss the indications of NSRH. PNI should be regarded as one of the main pathological features of cervical cancer and a factor affecting prognosis. A deeper understanding of PNI in cervical cancer, hopefully, will provide clear indications of NSRH.
Collapse
Affiliation(s)
- Yi Zhu
- Department of Gynecologic Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Cancer Hospital affiliate to School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China.,Department of Ultrasound, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Cancer Hospital affiliate to School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Guo-Nan Zhang
- Department of Gynecologic Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Cancer Hospital affiliate to School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Yu Shi
- Department of Gynecologic Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Cancer Hospital affiliate to School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Ling Cui
- Department of Gynecologic Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Cancer Hospital affiliate to School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Xue-Feng Leng
- Department of Thoracic Surgery, the Affiliated Hospital of Chengdu University, Chengdu 610000, China
| | - Jian-Ming Huang
- Department of Biochemistry & Molecular Biology, Sichuan Cancer Hospital & Institute, Cancer Hospital Affiliated to School of Medicine, University of Electronic Science and Technology of China, Chengdu 610000, China
| |
Collapse
|
15
|
Abstract
Metallothioneins (MTs) are small cysteine-rich proteins that play important roles in metal homeostasis and protection against heavy metal toxicity, DNA damage, and oxidative stress. In humans, MTs have four main isoforms (MT1, MT2, MT3, and MT4) that are encoded by genes located on chromosome 16q13. MT1 comprises eight known functional (sub)isoforms (MT1A, MT1B, MT1E, MT1F, MT1G, MT1H, MT1M, and MT1X). Emerging evidence shows that MTs play a pivotal role in tumor formation, progression, and drug resistance. However, the expression of MTs is not universal in all human tumors and may depend on the type and differentiation status of tumors, as well as other environmental stimuli or gene mutations. More importantly, the differential expression of particular MT isoforms can be utilized for tumor diagnosis and therapy. This review summarizes the recent knowledge on the functions and mechanisms of MTs in carcinogenesis and describes the differential expression and regulation of MT isoforms in various malignant tumors. The roles of MTs in tumor growth, differentiation, angiogenesis, metastasis, microenvironment remodeling, immune escape, and drug resistance are also discussed. Finally, this review highlights the potential of MTs as biomarkers for cancer diagnosis and prognosis and introduces some current applications of targeting MT isoforms in cancer therapy. The knowledge on the MTs may provide new insights for treating cancer and bring hope for the elimination of cancer.
Collapse
Affiliation(s)
- Manfei Si
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730 China
| | - Jinghe Lang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730 China
| |
Collapse
|
16
|
Cao C, Li L, Li H, He X, Wu G, Yu X. Cyclic biaxial tensile strain promotes bone marrow-derived mesenchymal stem cells to differentiate into cardiomyocyte-like cells by miRNA-27a. Int J Biochem Cell Biol 2018; 99:125-132. [DOI: 10.1016/j.biocel.2018.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 03/30/2018] [Accepted: 04/04/2018] [Indexed: 12/16/2022]
|
17
|
Cui J, Gong C, Cao B, Li L. MicroRNA-27a participates in the pathological process of depression in rats by regulating VEGFA. Exp Ther Med 2018; 15:4349-4355. [PMID: 29731825 PMCID: PMC5921192 DOI: 10.3892/etm.2018.5942] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/19/2018] [Indexed: 12/19/2022] Open
Abstract
The present study aimed to determine the expression of vascular endothelial growth factor A (VEGFA) and microRNA (miRNA/miR)-27a in hippocampal tissues, and serum from a depression model of rats. In addition, the present study aimed to understand the mechanism of regulation of miR-27a in depression. A total of 40 male rats were selected, and divided into the control and depression model groups. The rats in the model group were subjected to 14 types of stimulations to model depression. By determining the body weight, syrup consumption rate and open field test score, the extent of depression in the rats was evaluated. Quantitative-polymerase chain reaction was used to determine the expression of VEGFA mRNA and miR-27a in hippocampal tissues, and serum. ELISA was used to measure the content of VEGFA protein in serum, while western blotting was employed to determine the expression of VEGFA protein in hippocampal tissues. A dual luciferase assay was carried out to identify the interactions between VEGFA mRNA and miR-27a. The rats in the depression model group showed depression symptoms and the depression model was successfully constructed. Rats with depression had lower VEGFA mRNA and protein expression in the hippocampus, and peripheral blood compared with the control group. Rats in the depression model group had reduced levels of miR-27a in the hippocampus and peripheral blood, which may be associated with the levels of VEGFA. miR-27a was able to bind with the 3′-untranslated region of VEGFA mRNA to regulate its expression. The present study demonstrated that miR-27a expression in hippocampal tissues and blood from rats with depression is upregulated, while the expression of VEGFA mRNA and protein is downregulated. miR-27a may participate in the pathological process of depression in rats by regulating VEGFA.
Collapse
Affiliation(s)
- Jian Cui
- Department of Psychiatry, Jining Psychiatric Hospital, Jining, Shandong 272051, P.R. China
| | - Cunqi Gong
- Department of Psychiatry, Zaozhuang Mental Health Center, Zaozhuang, Shandong 277100, P.R. China
| | - Baorui Cao
- Department of Psychiatry, Zaozhuang Mental Health Center, Zaozhuang, Shandong 277100, P.R. China
| | - Longfei Li
- Department of Psychiatry, Jining Psychiatric Hospital, Jining, Shandong 272051, P.R. China
| |
Collapse
|
18
|
Zhu Y, Zhang G, Yang Y, Cui L, Jia S, Shi Y, Song S, Xu S. Perineural invasion in early-stage cervical cancer and its relevance following surgery. Oncol Lett 2018; 15:6555-6561. [PMID: 29755594 DOI: 10.3892/ol.2018.8116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 04/06/2017] [Indexed: 01/02/2023] Open
Abstract
Perineural invasion (PNI) is the neoplastic invasion of nerves by cancer cells, a process that has attracted attention as a novel prognostic factor for cancer. The present study aimed to investigate the prognostic value of PNI in patients with early-stage cervical cancer (International Federation of Gynecology and Obstetrics stage IA2-IIA). A total of 210 patients who underwent radical hysterectomy and pelvic lymphadenectomy between 2007 and 2012 were included in the current study, of whom 8.57% (18/210) exhibited PNI. Patients with PNI were more likely to exhibit adverse histopathological features, such as increased tumor size, depth of stromal invasion, parametrial invasion, lymphovascular space invasion and lymph nodes metastases (all P<0.05). Patients with PNI exhibited shorter disease-free and overall survival (P=0.002 and P=0.017, respectively). However, PNI was not identified as an independent risk factor for either recurrence or death by multivariate analysis. Furthermore, 88.9% (16/18) of patients with PNI received adjuvant therapy following surgery. PNI was significantly associated with well-established indicators for adjuvant therapy. In conclusion, PNI was associated with multiple high-risk factors and its presence was indicative of a poor outcome in patients with early-stage cervical cancer, which may influence management decisions regarding adjuvant therapy.
Collapse
Affiliation(s)
- Yi Zhu
- Department of Gynecological Oncology, Sichuan Cancer Hospital & Institute, Cancer Hospital Affiliated to School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China.,Department of Ultrasound, Sichuan Cancer Hospital & Institute, Cancer Hospital Affiliated to School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Guonan Zhang
- Department of Gynecological Oncology, Sichuan Cancer Hospital & Institute, Cancer Hospital Affiliated to School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China.,Graduate School, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China.,Department of Gynecology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610057, P.R. China
| | - Yan Yang
- Graduate School, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Ling Cui
- Department of Gynecological Oncology, Sichuan Cancer Hospital & Institute, Cancer Hospital Affiliated to School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Shijun Jia
- Department of Pathology, Sichuan Cancer Hospital & Institute, Cancer Hospital Affiliated to School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Yu Shi
- Department of Gynecological Oncology, Sichuan Cancer Hospital & Institute, Cancer Hospital Affiliated to School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Shuiqin Song
- Department of Gynecological Oncology, Sichuan Cancer Hospital & Institute, Cancer Hospital Affiliated to School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Shiqiang Xu
- Department of Gynecological Oncology, Sichuan Cancer Hospital & Institute, Cancer Hospital Affiliated to School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
19
|
Circular RNAs and their associations with breast cancer subtypes. Oncotarget 2018; 7:80967-80979. [PMID: 27829232 PMCID: PMC5348369 DOI: 10.18632/oncotarget.13134] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 10/29/2016] [Indexed: 12/22/2022] Open
Abstract
Circular RNAs (circRNAs) are highly stable forms of non-coding RNAs with diverse biological functions. They are implicated in modulation of gene expression thus affecting various cellular and disease processes. Based on existing bioinformatics approaches, we developed a comprehensive workflow called Circ-Seq to identify and report expressed circRNAs. Circ-Seq also provides informative genomic annotation along circRNA fused junctions thus allowing prioritization of circRNA candidates. We applied Circ-Seq first to RNA-sequence data from breast cancer cell lines and validated one of the large circRNAs identified. Circ-Seq was then applied to a larger cohort of breast cancer samples (n = 885) provided by The Cancer Genome Atlas (TCGA), including tumors and normal-adjacent tissue samples. Notably, circRNA results reveal that normal-adjacent tissues in estrogen receptor positive (ER+) subtype have relatively higher numbers of circRNAs than tumor samples in TCGA. Similar phenomenon of high circRNA numbers were observed in normal breast-mammary tissues from the Genotype-Tissue Expression (GTEx) project. Finally, we observed that number of circRNAs in normal-adjacent samples of ER+ subtype is inversely correlated to the risk-of-relapse proliferation (ROR-P) score for proliferating genes, suggesting that circRNA frequency may be a marker for cell proliferation in breast cancer. The Circ-Seq workflow will function for both single and multi-threaded compute environments. We believe that Circ-Seq will be a valuable tool to identify circRNAs useful in the diagnosis and treatment of other cancers and complex diseases.
Collapse
|
20
|
Extracellular miR-224 as a prognostic marker for clear cell renal cell carcinoma. Oncotarget 2017; 8:109877-109888. [PMID: 29299115 PMCID: PMC5746350 DOI: 10.18632/oncotarget.22436] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/27/2017] [Indexed: 12/22/2022] Open
Abstract
Exosome-miRNAs (exo-miR) have recently been identified as modulators of cancer progression and distant metastasis. We previously found that intracellular miR-224 is up-regulated and significantly related to cancer invasion and metastasis in clear cell renal cell carcinoma (ccRCC). We therefore investigated the role of exosome miR-224 in ccRCC and explored the interaction between intra- and extracellular miR-224 in renal cell carcinoma. To validate the method for isolating exosomes from blood samples or cell culture media, we examined exosome morphology using transmission electron microscope (TEM). We investigated the relationship between exo-miR-224 expression and patient prognosis in 108 ccRCC patients. We isolated exosomes from a metastatic renal cancer cell line and tested their effects on a primary renal cancer cell line with several functional analyses. We found that the high expression level exo-miR-224 group has significantly shorter progression-free survival, cancer-specific survival, and overall survival compared with the low expression group. In multivariate analysis, a high level of exo-miR-224 was a significant risk factor related to all prognoses investigated. After adding exosomes from a metastatic RCC cell line to a primary RCC cell line, cell proliferation and invasion were increased while the percentage of apoptotic cells was significantly decreased. Intracellular levels of miR-224 were significantly up-regulated in the primary renal cancer cell line. Extracellular miR-224 in exosomes impacts on patient prognosis and is a potential prognostic biomarker for ccRCC patients.
Collapse
|
21
|
Pan Y, Mao Y, Jin R, Jiang L. Crosstalk between the Notch signaling pathway and non-coding RNAs in gastrointestinal cancers. Oncol Lett 2017; 15:31-40. [PMID: 29285185 DOI: 10.3892/ol.2017.7294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 09/07/2017] [Indexed: 12/14/2022] Open
Abstract
The Notch signaling pathway is one of the main signaling pathways that mediates direct contact between cells, and is essential for normal development. It regulates various cellular processes, including cell proliferation, apoptosis, migration, invasion, angiogenesis and metastasis. It additionally serves an important function in tumor progression. Non-coding RNAs mainly include small microRNAs, long non-coding RNAs and circular RNAs. At present, a large body of literature supports the biological significance of non-coding RNAs in tumor progression. It is also becoming increasingly evident that cross-talk exists between Notch signaling and non-coding RNAs. The present review summarizes the current knowledge of Notch-mediated gastrointestinal cancer cell processes, and the effect of the crosstalk between the three major types of non-coding RNAs and the Notch signaling pathway on the fate of gastrointestinal cancer cells.
Collapse
Affiliation(s)
- Yangyang Pan
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yuyan Mao
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Rong Jin
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Lei Jiang
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
22
|
Krizkova S, Kepinska M, Emri G, Eckschlager T, Stiborova M, Pokorna P, Heger Z, Adam V. An insight into the complex roles of metallothioneins in malignant diseases with emphasis on (sub)isoforms/isoforms and epigenetics phenomena. Pharmacol Ther 2017; 183:90-117. [PMID: 28987322 DOI: 10.1016/j.pharmthera.2017.10.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Metallothioneins (MTs) belong to a group of small cysteine-rich proteins that are ubiquitous throughout all kingdoms. The main function of MTs is scavenging of free radicals and detoxification and homeostating of heavy metals. In humans, 16 genes localized on chromosome 16 have been identified to encode four MT isoforms labelled by numbers (MT-1-MT-4). MT-2, MT-3 and MT-4 proteins are encoded by a single gene. MT-1 comprises many (sub)isoforms. The known active MT-1 genes are MT-1A, -1B, -1E, -1F, -1G, -1H, -1M and -1X. The rest of the MT-1 genes (MT-1C, -1D, -1I, -1J and -1L) are pseudogenes. The expression and localization of individual MT (sub)isoforms and pseudogenes vary at intra-cellular level and in individual tissues. Changes in MT expression are associated with the process of carcinogenesis of various types of human malignancies, or with a more aggressive phenotype and therapeutic resistance. Hence, MT (sub)isoform profiling status could be utilized for diagnostics and therapy of tumour diseases. This review aims on a comprehensive summary of methods for analysis of MTs at (sub)isoforms levels, their expression in single tumour diseases and strategies how this knowledge can be utilized in anticancer therapy.
Collapse
Affiliation(s)
- Sona Krizkova
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Marta Kepinska
- Department of Biomedical and Environmental Analysis, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| | - Gabriella Emri
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Nagyerdei krt 98, H-4032 Debrecen, Hungary
| | - Tomas Eckschlager
- Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University, and University Hospital Motol, V Uvalu 84, CZ-150 06 Prague 5, Czech Republic
| | - Marie Stiborova
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, CZ-128 40 Prague 2, Czech Republic
| | - Petra Pokorna
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, CZ-128 40 Prague 2, Czech Republic; Department of Oncology, 2nd Faculty of Medicine, Charles University, and University Hospital Motol, V Uvalu 84, CZ-150 06 Prague 5, Czech Republic
| | - Zbynek Heger
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Vojtech Adam
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic.
| |
Collapse
|
23
|
Luu HN, Lin HY, Sørensen KD, Ogunwobi OO, Kumar N, Chornokur G, Phelan C, Jones D, Kidd L, Batra J, Yamoah K, Berglund A, Rounbehler RJ, Yang M, Lee SH, Kang N, Kim SJ, Park JY, Di Pietro G. miRNAs associated with prostate cancer risk and progression. BMC Urol 2017; 17:18. [PMID: 28320379 PMCID: PMC5359825 DOI: 10.1186/s12894-017-0206-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 03/02/2017] [Indexed: 12/26/2022] Open
Abstract
Prostate cancer is the most common malignancy among men in the US. Though considerable improvement in the diagnosis of prostate cancer has been achieved in the past decade, predicting disease outcome remains a major clinical challenge. Recent expression profiling studies in prostate cancer suggest microRNAs (miRNAs) may serve as potential biomarkers for prostate cancer risk and disease progression. miRNAs comprise a large family of about 22-nucleotide-long non-protein coding RNAs, regulate gene expression post-transcriptionally and participate in the regulation of numerous cellular processes. In this review, we discuss the current status of miRNA in studies evaluating the disease progression of prostate cancer. The discussion highlights key findings from previous studies, which reported the role of miRNAs in risk and progression of prostate cancer, providing an understanding of the influence of miRNA on prostate cancer. Our review indicates that somewhat consistent results exist between these studies and reports on several prostate cancer related miRNAs. Present promising candidates are miR-1, −21, 106b, 141, −145, −205, −221, and −375, which are the most frequently studied and seem to be the most promising for diagnosis and prognosis for prostate cancer. Nevertheless, the findings from previous studies suggest miRNAs may play an important role in the risk and progression of prostate cancer as promising biomarkers.
Collapse
Affiliation(s)
- Hung N Luu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA.,Department of Epidemiology and Biostatistics, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Hui-Yi Lin
- Biostatistics Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | | | - Olorunseun O Ogunwobi
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY, 10065, USA
| | - Nagi Kumar
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Ganna Chornokur
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Catherine Phelan
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Dominique Jones
- Department of Pharmacology and Toxicology, James Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - LaCreis Kidd
- Department of Pharmacology and Toxicology, James Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Jyotsna Batra
- Australian Prostate Cancer Research Centre-QLD, Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Kosj Yamoah
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.,Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Anders Berglund
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Robert J Rounbehler
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Mihi Yang
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyoung Women's University, Seoul, Republic of Korea
| | - Sang Haak Lee
- Department of Internal Medicine, The Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Nahyeon Kang
- Department of Internal Medicine, The Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung Joon Kim
- Department of Internal Medicine, The Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jong Y Park
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
| | - Giuliano Di Pietro
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.,Department of Pharmacy, Federal University of Sergipe, Rodovia Marechal Rodon, Jardim Rosa Elze, Sao Cristóvão, Brazil
| |
Collapse
|
24
|
Danielson KM, Rubio R, Abderazzaq F, Das S, Wang YE. High Throughput Sequencing of Extracellular RNA from Human Plasma. PLoS One 2017; 12:e0164644. [PMID: 28060806 PMCID: PMC5218574 DOI: 10.1371/journal.pone.0164644] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/28/2016] [Indexed: 01/03/2023] Open
Abstract
The presence and relative stability of extracellular RNAs (exRNAs) in biofluids has led to an emerging recognition of their promise as ‘liquid biopsies’ for diseases. Most prior studies on discovery of exRNAs as disease-specific biomarkers have focused on microRNAs (miRNAs) using technologies such as qRT-PCR and microarrays. The recent application of next-generation sequencing to discovery of exRNA biomarkers has revealed the presence of potential novel miRNAs as well as other RNA species such as tRNAs, snoRNAs, piRNAs and lncRNAs in biofluids. At the same time, the use of RNA sequencing for biofluids poses unique challenges, including low amounts of input RNAs, the presence of exRNAs in different compartments with varying degrees of vulnerability to isolation techniques, and the high abundance of specific RNA species (thereby limiting the sensitivity of detection of less abundant species). Moreover, discovery in human diseases often relies on archival biospecimens of varying age and limiting amounts of samples. In this study, we have tested RNA isolation methods to optimize profiling exRNAs by RNA sequencing in individuals without any known diseases. Our findings are consistent with other recent studies that detect microRNAs and ribosomal RNAs as the major exRNA species in plasma. Similar to other recent studies, we found that the landscape of biofluid microRNA transcriptome is dominated by several abundant microRNAs that appear to comprise conserved extracellular miRNAs. There is reasonable correlation of sets of conserved miRNAs across biological replicates, and even across other data sets obtained at different investigative sites. Conversely, the detection of less abundant miRNAs is far more dependent on the exact methodology of RNA isolation and profiling. This study highlights the challenges in detecting and quantifying less abundant plasma miRNAs in health and disease using RNA sequencing platforms.
Collapse
Affiliation(s)
- Kirsty M. Danielson
- Cardiovascular Institute, Massachusetts General Hospital, Boston, MA, United States of America
| | - Renee Rubio
- Center for Cancer Computational Biology, Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, United States of America
| | - Fieda Abderazzaq
- Center for Cancer Computational Biology, Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, United States of America
| | - Saumya Das
- Cardiovascular Institute, Massachusetts General Hospital, Boston, MA, United States of America
- * E-mail: (YEW); (SD)
| | - Yaoyu E. Wang
- Center for Cancer Computational Biology, Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, United States of America
- * E-mail: (YEW); (SD)
| |
Collapse
|
25
|
Akbayır S, Muşlu N, Erden S, Bozlu M. Diagnostic value of microRNAs in prostate cancer patients with prostate specific antigen (PSA) levels between 2, and 10 ng/mL. Turk J Urol 2016; 42:247-255. [PMID: 27909617 DOI: 10.5152/tud.2016.52463] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Prostate specific antigen (PSA), used for the early diagnosis of prostate cancer (PCa), is one of the best tumour markers known so far. However, in situations when PSA is between 2-10 ng/mL, which is named as grey zone, PSA falls short of distinguishing benign prostate diseases from PCa. On the other hand, it was demonstrated in many previous studies that microRNA (miRNA) could be a marker for cancer. Therefore, in this study, it was aimed to enhance the diagnostic power of PSA, especially with grey zone patients, by the use of miRNA. MATERIAL AND METHODS Ninety-four patients included in the study were divided into three groups as "control group" (n=44, PSA=2-10 ng/mL and benign), "PCa 1 group" (n=37, PSA=2-10 ng/mL), and "PCa 2 group" (n=13, PSA >10 ng/mL), according to their pathological results and PSA levels. Free PSA (fPSA) and total PSA (T-PSA) levels were measured with chemiluminometric sandwich immunoassay method. Expressions of miRNAs were analyzed using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) method. The most appropriate specificity, sensitivity and prediction values were found by drawing the receiver operating characteristic (ROC) curves of total PSA, free/total PSA (f/T PSA) ratio, and miRNAs, and the diagnostic powers were compared with each other. RESULTS Diagnostic powers of the f/T PSA ratio and miRNA were compared in PCa 1 and the control groups to determine the marker with higher area under the curve (AUC). It was shown that the diagnostic power of the combination of miR-16-5p and f/T PSA was higher than that obtained when they were used separately. CONCLUSION As a result, while making the the discrimination between benign and malignant prostate in patients with grey zone, it was determined that the combination of miR-16-5p and f/T PSA was more valuable than T-PSA or f/T PSA alone. It was thought that diagnostic role of miRNAs in the early diagnosis of the different stages of PCa needed to be examined in further studies with larger groups.
Collapse
Affiliation(s)
- Serin Akbayır
- Karaman State Hospital, Biochemistry Laboratory, Karaman, Turkey
| | - Necati Muşlu
- Department of Biochemistry, Mersin University School of Medicine, Mersin, Turkey
| | - Sema Erden
- Mersin University, Vocational School of Health Services, Mersin, Turkey
| | - Murat Bozlu
- Department of Urology, Mersin University School of Medicine, Mersin, Turkey
| |
Collapse
|
26
|
SRC family kinase FYN promotes the neuroendocrine phenotype and visceral metastasis in advanced prostate cancer. Oncotarget 2016; 6:44072-83. [PMID: 26624980 PMCID: PMC4792542 DOI: 10.18632/oncotarget.6398] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 11/14/2015] [Indexed: 01/08/2023] Open
Abstract
FYN is a SRC family kinase (SFK) that has been shown to be up-regulated in human prostate cancer (PCa) tissues and cell lines. In this study, we observed that FYN is strongly up-regulated in human neuroendocrine PCa (NEPC) tissues and xenografts, as well as cells derived from a NEPC transgenic mouse model. In silico analysis of FYN expression in prostate cancer cell line databases revealed an association with the expression of neuroendocrine (NE) markers such as CHGA, CD44, CD56, and SYP. The loss of FYN abrogated the invasion of PC3 and ARCaPM cells in response to MET receptor ligand HGF. FYN also contributed to the metastatic potential of NEPC cells in two mouse models of visceral metastasis with two different cell lines (PC3 and TRAMPC2-RANKL). The activation of MET appeared to regulate neuroendocrine (NE) features as evidenced by increased expression of NE markers in PC3 cells with HGF. Importantly, the overexpression of FYN protein in DU145 cells was directly correlated with the increase of CHGA. Thus, our data demonstrated that the neuroendocrine differentiation that occurs in PCa cells is, at least in part, regulated by FYN kinase. Understanding the role of FYN in the regulation of NE markers will provide further support for ongoing clinical trials of SFK and MET inhibitors in castration-resistant PCa patients.
Collapse
|
27
|
Wang Y, Ledet RJ, Imberg-Kazdan K, Logan SK, Garabedian MJ. Dynein axonemal heavy chain 8 promotes androgen receptor activity and associates with prostate cancer progression. Oncotarget 2016; 7:49268-49280. [PMID: 27363033 PMCID: PMC5226506 DOI: 10.18632/oncotarget.10284] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/28/2016] [Indexed: 01/06/2023] Open
Abstract
To gain insight into cellular factors regulating AR action that could promote castration resistant prostate cancer (CRPC), we performed a genome-wide RNAi screen for factors that promote ligand-independent AR transcriptional activity and integrated clinical databases for candidate genes that are positively associated with prostate cancer metastasis and recurrence. From this analysis, we identified Dynein Axonemal Heavy Chain 8 (DNAH8) as an AR regulator that displayed higher mRNA expression in metastatic than in primary tumors, and showed high expression in patients with poor prognosis. Axonemal dyneins function in cellular motility, but the function of DNAH8 in prostate cancer or other cell types has not been reported. DNAH8 is on chromosome 6q21.2, a cancer-associated amplicon, and is primarily expressed in prostate and testis. Its expression is higher in primary tumors compared to normal prostate, and is further increased in metastatic prostate cancers. Patients expressing high levels of DNAH8 have a greater risk of relapse and a poor prognosis after prostatectomy. Depletion of DNAH8 in prostate cancer cells suppressed AR transcriptional activity and proliferation. Androgen treatment increased DNAH8 mRNA expression, and AR bound the DNAH8 promoter sequence indicating DNAH8 is an AR target gene. Thus, DNAH8 is a new regulator of AR associated with metastatic tumors and poor prognosis.
Collapse
Affiliation(s)
- Yu Wang
- Department of Urology, New York University School of Medicine, New York, NY, 10016, USA
- Department of Microbiology, New York University School of Medicine, New York, NY, 10016, USA
| | - Russell J. Ledet
- Department of Microbiology, New York University School of Medicine, New York, NY, 10016, USA
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
| | - Keren Imberg-Kazdan
- Department of Microbiology, New York University School of Medicine, New York, NY, 10016, USA
| | - Susan K. Logan
- Department of Urology, New York University School of Medicine, New York, NY, 10016, USA
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
| | - Michael J. Garabedian
- Department of Urology, New York University School of Medicine, New York, NY, 10016, USA
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
| |
Collapse
|
28
|
MicroRNA-224 aggrevates tumor growth and progression by targeting mTOR in gastric cancer. Int J Oncol 2016; 49:1068-80. [PMID: 27315344 DOI: 10.3892/ijo.2016.3581] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 05/20/2016] [Indexed: 11/05/2022] Open
Abstract
Growing evidence suggests that microRNA plays an essential role in the development and metastasis of many tumors, including gastric cancer. Aberrant miR-224 expression has been indicated in tumor growth, the mechanism of miR-224 promoting the proliferation and metastatic ability for gastric cancer remains unclear. Accumulating evidence reports that mTOR signal pathway plays an important role in the cellular process, such as apoptosis, cell growth and proliferation. The goal of the present study was to identify whether miR-224 could inhibit the growth, migration, invasion, proliferation and metastasis of gastric cancer through targeting mTOR expression. Real-time PCR (RT-PCR) was used to quantify miR-224 expression in vitro and in vivo experiments. Luciferase reporter assays were performed to confirm the activity of mTOR pathway, and immunofluorescence staining assay was conducted to observe apoptosis and cell proliferation ability. Bioinformatics as well as cell luciferase function studies distinguished the direct modulation of miR-224 on the 3'-UTR of the mTOR, which leads to the inactivation of apoptosis signaling and the activation of cell proliferation. In addition, inhibition of miR-224 significantly reduced the expression of mTOR and improved caspase-9/3 expression while decreased cyclin D1/2 levels, attenuating gastric cancer cell proliferation. Therefore, the present study revealed the mechanistic links between miR-224 and mTOR in the pathogenesis of gastric cancer through modulation of caspase-9/3 and cyclin D1/2. In addition, targeting miR-224 could serve as a novel strategy for future gastric cancer therapy.
Collapse
|
29
|
Qu W, Ding SM, Cao G, Wang SJ, Zheng XH, Li GH. miR-132 mediates a metabolic shift in prostate cancer cells by targeting Glut1. FEBS Open Bio 2016; 6:735-41. [PMID: 27398313 PMCID: PMC4932453 DOI: 10.1002/2211-5463.12086] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/09/2016] [Accepted: 05/02/2016] [Indexed: 01/03/2023] Open
Abstract
Prostate cancer is the second leading cause of cancer‐related deaths among men worldwide. Early diagnosis increases survival rates in patients but the survival rate has remained relatively poor over the past years. Increasing evidence shows that altered metabolism is a critical hallmark in prostate cancer. There is a strong need to explore the molecular mechanisms underlying cancer metabolism for prostate cancer therapy. Whether the aberrant expression of microRNA (miRNA) contributes to cancer metabolism is not fully known. In this study, we found that microRNA‐132 (miR‐132) expression is reduced and thus leads to a metabolic switch in prostate cancer cells. miR‐132 performs this role by increasing Glut1 expression, resulting in the enhanced rate of lactate production and glucose uptake. The altered metabolism induced by decreased miR‐132 levels confers the rapid growth of the cancer cells. These data indicate that miR‐132 is involved in regulating the Warburg effect in prostate cancer by inhibiting Glut1 expression.
Collapse
Affiliation(s)
- Wei Qu
- Department of Nuclear Medicine The Second Affiliated Hospital of Medical School of Xi'an Jiaotong University Shaanxi China
| | - Shi-Mei Ding
- Department of Endocrinology The Second Affiliated Hospital of Medical School of Xi'an Jiaotong University Shaanxi China
| | - Gang Cao
- Department of General Surgery The Second Affiliated Hospital of Medical School of Xi'an Jiaotong University Shaanxi China
| | - She-Jiao Wang
- Department of Nuclear Medicine The Second Affiliated Hospital of Medical School of Xi'an Jiaotong University Shaanxi China
| | - Xiang-Hong Zheng
- Department of Nuclear Medicine The Second Affiliated Hospital of Medical School of Xi'an Jiaotong University Shaanxi China
| | - Guo-Hui Li
- Department of Nuclear Medicine The Second Affiliated Hospital of Medical School of Xi'an Jiaotong University Shaanxi China
| |
Collapse
|
30
|
Zuberi M, Khan I, Mir R, Gandhi G, Ray PC, Saxena A. Utility of Serum miR-125b as a Diagnostic and Prognostic Indicator and Its Alliance with a Panel of Tumor Suppressor Genes in Epithelial Ovarian Cancer. PLoS One 2016; 11:e0153902. [PMID: 27092777 PMCID: PMC4836713 DOI: 10.1371/journal.pone.0153902] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/05/2016] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs (miRNAs) have been found to be dysregulated in epithelial ovarian cancer (EOC) and may function as either tumor suppressor genes (TSGs) or as oncogenes. Hypermethylation of miRNA silences the tumour suppressive function of a miRNA or hypermethylation of a TSG regulating that miRNA (or vice versa) leads to its loss of function. The present study aims to evaluate the impact of aberrant microRNA-125b (miR-125b) expression on various clinicopathological features in epithelial ovarian cancer and its association with anomalous methylation of several TSGs. We enrolled 70 newly diagnosed cases of epithelial ovarian cancer, recorded their clinical history and 70 healthy female volunteers. Serum miR-125b levels were determined by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and the methylation status of various TSGs was investigated by methylation specific PCR. ROC curves were constructed to estimate the diagnostic and prognostic usefulness of miR-125b. The Kaplan-Meier method was applied to compare survival curves. Expression of miR-125b was found to be significantly upregulated (p<0.0001) in comparison with healthy controls. The expression level of miR-125b was found to be significantly associated with FIGO stage, lymph node and distant metastasis. ROC curve for diagnostic potential yielded significant AUC with an equitable sensitivity and specificity. ROC curves for prognosis yielded significant AUCs for histological grade, distal metastasis, lymph node status and survival. The expression of miR-125b also correlated significantly with the hypermethylation of TSGs. Our results indicate that DNA hypermethylation may be involved in the inactivation of miR-125b and miR-125b may function as a potential independent biomarker for clinical outcome in EOC.
Collapse
Affiliation(s)
- Mariyam Zuberi
- Department of Biochemistry, Maulana Azad Medical College and Associated Hospitals, New Delhi, India
| | - Imran Khan
- Department of Surgery, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Rashid Mir
- Prince Fahd Bin Sultan Research Chair, Faculty of Applied Medical Sciences, University of Tabuk, Saudi Arabia, Tabuk-71491
| | - Gauri Gandhi
- Department of Gynaecology and Obstetrics, Lok Nayak Hospital, New Delhi, India
| | - Prakash Chandra Ray
- Department of Biochemistry, Maulana Azad Medical College and Associated Hospitals, New Delhi, India
| | - Alpana Saxena
- Department of Biochemistry, Maulana Azad Medical College and Associated Hospitals, New Delhi, India
| |
Collapse
|
31
|
Chen X, Yan CC, Zhang X, You ZH, Deng L, Liu Y, Zhang Y, Dai Q. WBSMDA: Within and Between Score for MiRNA-Disease Association prediction. Sci Rep 2016; 6:21106. [PMID: 26880032 PMCID: PMC4754743 DOI: 10.1038/srep21106] [Citation(s) in RCA: 247] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 01/18/2016] [Indexed: 12/18/2022] Open
Abstract
Increasing evidences have indicated that microRNAs (miRNAs) are functionally associated with the development and progression of various complex human diseases. However, the roles of miRNAs in multiple biological processes or various diseases and their underlying molecular mechanisms still have not been fully understood yet. Predicting potential miRNA-disease associations by integrating various heterogeneous biological datasets is of great significance to the biomedical research. Computational methods could obtain potential miRNA-disease associations in a short time, which significantly reduce the experimental time and cost. Considering the limitations in previous computational methods, we developed the model of Within and Between Score for MiRNA-Disease Association prediction (WBSMDA) to predict potential miRNAs associated with various complex diseases. WBSMDA could be applied to the diseases without any known related miRNAs. The AUC of 0.8031 based on Leave-one-out cross validation has demonstrated its reliable performance. WBSMDA was further applied to Colon Neoplasms, Prostate Neoplasms, and Lymphoma for the identification of their potential related miRNAs. As a result, 90%, 84%, and 80% of predicted miRNA-disease pairs in the top 50 prediction list for these three diseases have been confirmed by recent experimental literatures, respectively. It is anticipated that WBSMDA would be a useful resource for potential miRNA-disease association identification.
Collapse
Affiliation(s)
- Xing Chen
- National Center for Mathematics and Interdisciplinary Sciences, Chinese Academy of Sciences, Beijing, 100190, China
- Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chenggang Clarence Yan
- Institute of Information and Control, Hangzhou Dianzi University, Hangzhou, 310018, China
- Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Xu Zhang
- School of Mechanical, Electrical & Information Engineering, Shandong University, Weihai, 264209, China
| | - Zhu-Hong You
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, 221116, China
| | - Lixi Deng
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Liu
- School of Economics and Management, Beihang University, Beijing, 100191, China
| | - Yongdong Zhang
- Key Lab of Intelligent Information Processing of Chinese Academy of Sciences, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, China
| | - Qionghai Dai
- Department of Automation, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
32
|
Ceder Y. Non-coding RNAs in Prostate Cancer: From Discovery to Clinical Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 886:155-170. [PMID: 26659491 DOI: 10.1007/978-94-017-7417-8_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Prostate cancer is a heterogeneous disease for which the molecular mechanisms are still not fully elucidated. Prostate cancer research has traditionally focused on genomic and epigenetic alterations affecting the proteome, but over the last decade non-coding RNAs, especially microRNAs, have been recognized to play a key role in prostate cancer progression. A considerable number of individual microRNAs have been found to be deregulated in prostate cancer and their biological significance elucidated in functional studies. This review will delineate the current advances regarding the involvement of microRNAs and their targets in prostate cancer biology as well as their potential usage in the clinical management of the disease. The main focus will be on microRNAs contributing to initiation and progression of prostate cancer, including androgen signalling, cellular plasticity, stem cells biology and metastatic processes. To conclude, implications on potential future microRNA-based therapeutics based on the recent advances regarding the interplay between microRNAs and their targets are discussed.
Collapse
Affiliation(s)
- Yvonne Ceder
- Translational Cancer Research, Lund University, Medicon Village, Building 404:A3, 223 81, Lund, Sweden.
| |
Collapse
|
33
|
Hypermethylation-Associated Silencing of miR-125a and miR-125b: A Potential Marker in Colorectal Cancer. DISEASE MARKERS 2015; 2015:345080. [PMID: 26693202 PMCID: PMC4674596 DOI: 10.1155/2015/345080] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 11/11/2015] [Accepted: 11/12/2015] [Indexed: 01/09/2023]
Abstract
Background. MicroRNAs (miRNAs) have been found to be downregulated in human colorectal cancer (CRC), and some of them may function as tumor suppressor genes (TSGs). Aberrant methylation triggers the inactivation of TSGs during tumorigenesis. Patients and Methods. We investigated the methylation status of miR-125 family in CRC tissues and adjacent nontumor tissues by using bisulfite sequencing PCR (BSP). The expression levels of the two miRNAs were determined by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Results. The methylation frequency of miR-125a and miR-125b was higher in CRC tissues. QRT-PCR analysis showed that miR-125a and miR-125b were significantly downregulated in CRC tissues. Moreover, the expression levels of miR-125a and miR-125b were inversely correlated to CpG island methylation in CRC. Conclusions. Our results suggest that DNA hypermethylation may be involved in the inactivation of miR-125a and miR-125b in CRC, and hypermethylation of miR-125 is a potential biomarker for clinical outcome.
Collapse
|
34
|
Gasch C, Plummer PN, Jovanovic L, McInnes LM, Wescott D, Saunders CM, Schneeweiss A, Wallwiener M, Nelson C, Spring KJ, Riethdorf S, Thompson EW, Pantel K, Mellick AS. Heterogeneity of miR-10b expression in circulating tumor cells. Sci Rep 2015; 5:15980. [PMID: 26522916 PMCID: PMC4629160 DOI: 10.1038/srep15980] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 10/05/2015] [Indexed: 01/03/2023] Open
Abstract
Circulating tumor cells (CTCs) in the blood of cancer patients are recognized as important potential targets for future anticancer therapies. As mediators of metastatic spread, CTCs are also promising to be used as ‘liquid biopsy’ to aid clinical decision-making. Recent work has revealed potentially important genotypic and phenotypic heterogeneity within CTC populations, even within the same patient. MicroRNAs (miRNAs) are key regulators of gene expression and have emerged as potentially important diagnostic markers and targets for anti-cancer therapy. Here, we describe a robust in situ hybridization (ISH) protocol, incorporating the CellSearch® CTC detection system, enabling clinical investigation of important miRNAs, such as miR-10b on a cell by cell basis. We also use this method to demonstrate heterogeneity of such as miR-10b on a cell-by-cell basis. We also use this method to demonstrate heterogeneity of miR-10b in individual CTCs from breast, prostate and colorectal cancer patients.
Collapse
Affiliation(s)
- Christin Gasch
- School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Prue N Plummer
- School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Lidija Jovanovic
- Australian Prostate Cancer Research Centre-Queensland, Queensland University of Technology, Brisbane, QLD, Australia.,Institute of Health and Biomedical Innovation &School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Linda M McInnes
- School of Surgery, The University of Western Australia, Perth, WA, Australia
| | - David Wescott
- School of Medicine, Deakin University, Geelong, VIC, Australia
| | | | - Andreas Schneeweiss
- National Center for Tumor Diseases, Heidelberg, Germany.,Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg Germany
| | - Markus Wallwiener
- National Center for Tumor Diseases, Heidelberg, Germany.,Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg Germany
| | - Colleen Nelson
- Australian Prostate Cancer Research Centre-Queensland, Queensland University of Technology, Brisbane, QLD, Australia.,Institute of Health and Biomedical Innovation &School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Kevin J Spring
- Ingham Institute for Applied Medical Research, Liverpool Hospital, Liverpool, NSW, Australia.,Liverpool Clinical School, School of Medicine, Western Sydney University, NSW, Australia
| | - Sabine Riethdorf
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Erik W Thompson
- Institute of Health and Biomedical Innovation &School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.,St. Vincent's Institute of Medical Research and Department of Surgery, University of Melbourne, Melbourne, Australia
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Albert S Mellick
- School of Medicine, Deakin University, Geelong, VIC, Australia.,School of Medicine, University of New South Wales, NSW, Australia
| |
Collapse
|
35
|
He X, Zhang Z, Li M, Li S, Ren L, Zhu H, Xiao B, Shi R. Expression and role of oncogenic miRNA-224 in esophageal squamous cell carcinoma. BMC Cancer 2015; 15:575. [PMID: 26245343 PMCID: PMC4545858 DOI: 10.1186/s12885-015-1581-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 07/27/2015] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Aberrant expression of miR-224 is associated with tumor development and progression. This study investigated the role of miR-224 in esophageal squamous cell carcinoma (ESCC) ex vivo and in vitro. METHODS A total of 103 esophageal intraepithelial neoplasia, ESCC tissue specimens, and their matched distant normal tissues were collected to test miR-224 expression using qRT-PCR analysis. Western blot was used to quantify the level of PH domain leucine-rich repeat protein phosphatase 1 (PHLPP1) and PHLPP2 in ESCC tissues. Cell viability, apoptosis, invasion, and colony formation assays were used to assess the altered phenotypes of esophageal cancer cell lines after miR-224 expression or inhibition. A luciferase reporter assay was used to confirm miR-224 binding to PHLPP1 and PHLPP2 mRNA. RESULTS miR-224 was significantly overexpressed in esophageal intraepithelial neoplasia and ESCC tissues, while the expression of PHLPP1 and PHLPP2 proteins, the target genes of miR-224, was downregulated in ESCC tissues. miR-224 expression was associated with advanced clinical TNM stage, pathologic grade, and the level of PHLPP1 and PHLPP2 proteins in ESCC tissues. Ectopic overexpression of miR-224 promoted proliferation, migration, and invasion, but suppressed apoptosis of ESCC cells. miR-224 was able to bind to the 3' untranslated region (3'-UTR) of PHLPP1 and PHLPP2 mRNA to suppress their expression. CONCLUSIONS The current study demonstrated that miR-224 acts as an oncogenic miRNA in ESCC, possibly by targeting PHLPP1 and PHLPP2.
Collapse
Affiliation(s)
- Xiaoyan He
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, China.
- Department of Gastroenterology, Dongyang People's Hospital, 60 Wuningxi Road, Jinhua, China.
| | - Zhimei Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, China.
- Department of Gastroenterology, The First People's Hospital of Lianyungang, 182 Tongguanbei Road, Lianyungang, China.
| | - Ming Li
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, China.
- Department of Gastroenterology, Friendship Hospital of Yangzhou, 440 Siwangting Road, Yangzhou, China.
| | - Shuo Li
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, China.
| | - Lihua Ren
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, China.
- Department of Gastroenterology, Zhangjiagang First People's Hospital, 68 Jiyangxi Road, Suzhou, China.
| | - Hong Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, China.
| | - Bin Xiao
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, China.
| | - Ruihua Shi
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, China.
- Department of Gastroenterology, Zhongda Hospital, Southeast University, 87 Dingjiaqiao Road, Nanjing, China.
| |
Collapse
|
36
|
Lichner Z, Ding Q, Samaan S, Saleh C, Nasser A, Al-Haddad S, Samuel JN, Fleshner NE, Stephan C, Jung K, Yousef GM. miRNAs dysregulated in association with Gleason grade regulate extracellular matrix, cytoskeleton and androgen receptor pathways. J Pathol 2015; 237:226-37. [DOI: 10.1002/path.4568] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 05/14/2015] [Accepted: 05/23/2015] [Indexed: 01/06/2023]
Affiliation(s)
- Zsuzsanna Lichner
- Department of Laboratory Medicine, and the Keenan Research Centre for Biomedical Science at the Li Ka Shing Knowledge Institute; St. Michael's Hospital; Toronto Canada
| | - Qiang Ding
- Department of Laboratory Medicine, and the Keenan Research Centre for Biomedical Science at the Li Ka Shing Knowledge Institute; St. Michael's Hospital; Toronto Canada
| | - Sara Samaan
- Department of Laboratory Medicine, and the Keenan Research Centre for Biomedical Science at the Li Ka Shing Knowledge Institute; St. Michael's Hospital; Toronto Canada
| | - Carol Saleh
- Department of Laboratory Medicine, and the Keenan Research Centre for Biomedical Science at the Li Ka Shing Knowledge Institute; St. Michael's Hospital; Toronto Canada
| | - Aurfan Nasser
- Department of Laboratory Medicine, and the Keenan Research Centre for Biomedical Science at the Li Ka Shing Knowledge Institute; St. Michael's Hospital; Toronto Canada
- Department of Laboratory Medicine and Pathobiology; University of Toronto; M5G 1L5 Canada
| | - Sahar Al-Haddad
- Department of Laboratory Medicine, and the Keenan Research Centre for Biomedical Science at the Li Ka Shing Knowledge Institute; St. Michael's Hospital; Toronto Canada
- Department of Laboratory Medicine and Pathobiology; University of Toronto; M5G 1L5 Canada
| | - Joseph N Samuel
- Department of Laboratory Medicine, and the Keenan Research Centre for Biomedical Science at the Li Ka Shing Knowledge Institute; St. Michael's Hospital; Toronto Canada
| | - Neil E Fleshner
- Department of Surgery; University Health Network; Toronto Canada
| | - Carsten Stephan
- Department of Urology; University Hospital Charité; D-10117 Berlin Germany
| | - Klaus Jung
- Department of Urology; University Hospital Charité; D-10117 Berlin Germany
| | - George M Yousef
- Department of Laboratory Medicine, and the Keenan Research Centre for Biomedical Science at the Li Ka Shing Knowledge Institute; St. Michael's Hospital; Toronto Canada
- Department of Laboratory Medicine and Pathobiology; University of Toronto; M5G 1L5 Canada
| |
Collapse
|
37
|
A Circulating MicroRNA Signature as a Biomarker for Prostate Cancer in a High Risk Group. J Clin Med 2015; 4:1369-79. [PMID: 26239681 PMCID: PMC4519795 DOI: 10.3390/jcm4071369] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 06/18/2015] [Accepted: 06/18/2015] [Indexed: 12/24/2022] Open
Abstract
Introduction: Mi(cro)RNAs are small non-coding RNAs whose differential expression in tissue has been implicated in the development and progression of many malignancies, including prostate cancer. The discovery of miRNAs in the blood of patients with a variety of malignancies makes them an ideal, novel biomarker for prostate cancer diagnosis. The aim of this study was to identify a unique expression profile of circulating miRNAs in patients with prostate cancer attending a rapid access prostate assessment clinic. Methods: To conduct this study blood and tissue samples were collected from 102 patients (75 with biopsy confirmed cancer and 27 benign samples) following ethical approval and informed consent. These patients were attending a prostate assessment clinic. Samples were reverse-transcribed using stem-loop primers and expression levels of each of 12 candidate miRNAs were determined using real-time quantitative polymerase chain reaction. miRNA expression levels were then correlated with clinicopathological data and subsequently analysed using qBasePlus software and Minitab. Results: Circulating miRNAs were detected and quantified in all subjects. The analysis of miRNA mean expression levels revealed that four miRNAs were significantly dysregulated, including let-7a (p = 0.005) which has known tumour suppressor characteristics, along with miR-141 (p = 0.01) which has oncogenic characteristics. In 20 patients undergoing a radical retropubic-prostatectomy, the expression levels of miR-141 returned to normal at day 10 post-operatively. A panel of four miRNAs could be used in combination to detect prostate cancer with an area under the curve (AUC) of 0.783 and a PPV of 80%. Conclusion: These findings identify a unique expression profile of miRNA detectable in the blood of prostate cancer patients. This confirms their use as a novel, diagnostic biomarker for prostate cancer.
Collapse
|
38
|
Chen W, Qi J, Bao G, Wang T, Du CW, Wang MD. Emerging role of microRNA-27a in human malignant glioma cell survival via targeting of prohibitin. Mol Med Rep 2015; 12:1515-23. [PMID: 25777779 DOI: 10.3892/mmr.2015.3475] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 02/05/2015] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRs) function as oncogenes and tumor suppressors, and have roles in most cellular processes. To date, the possible role of miR-27a, which is part of the miR-23a/27a/24-2 cluster, in malignant gliomas has remained elusive. Therefore, the present study aimed to explore the role of miR-27a in glioma and its potential target. Through transfection with miR-27a inhibitor or oligonucleotide mimics, the impact of miR-27a silencing or overexpression on the growth, apoptosis, cell cycle and invasiveness of U251 and U87MG cells was examined in vitro. The present study initially identified the potential target of miR-27a in glioma cells through a bioinformatics analysis, which was used for screening of the literature on the proteomics of gliomas. Prohibitin (PHB) was then confirmed as a target by absolute luciferase reporter assays, quantitative real-time polymerase chain reaction and western blot analysis. Treatment with miR-27a mimics oligonucleotides suppressed U251 cell proliferation, promoted apoptosis by inducing G2/M phase arrest, and impaired the invasive potential of U251 cells in vitro. In addition, miR-27a expression was downregulated in glioma tissues. A PHB-3'-untranslated region luciferase reporter assay confirmed PHB as a direct target gene of miR-27a. PHB mRNA expression was reversely correlated with levels of miR-27a in U251 cells. Overexpression of miR-27a in U251 cells at 72 h and 96 h post‑transfection with miR-27a mimics significantly decreased PHB protein expression by 17.2% and 43.9%, respectively. In conclusion, miR-27a was shown to be a significant tumor suppressor by targeting and decreasing PHB protein expression in glioma U251 cells. miR-27a targeting of PHB may be a novel potential therapeutic strategy for glioma.
Collapse
Affiliation(s)
- Wei Chen
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jun Qi
- Institute of Transfusion Research, Shaanxi Blood Center, Xi'an, Shaanxi 710061, P.R. China
| | - Gang Bao
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Tuo Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Chang-Wang Du
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Mao-De Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
39
|
Chiu SC, Chung HY, Cho DY, Chan TM, Liu MC, Huang HM, Li TY, Lin JY, Chou PC, Fu RH, Yang WK, Harn HJ, Lin SZ. Therapeutic potential of microRNA let-7: tumor suppression or impeding normal stemness. Cell Transplant 2015; 23:459-69. [PMID: 24816444 DOI: 10.3727/096368914x678418] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The first microRNA, let-7, and its family were discovered in Caenorhabditis elegans and are functionally conserved from worms to humans in the regulation of embryonic development and stemness. The let-7 family has been shown to have an essential role in stem cell differentiation and tumor-suppressive activity. Deregulating expression of let-7 is commonly reported in many human cancers. Emerging evidence has accumulated and suggests that reestablishment of let-7 in tumor cells is a valuable therapeutic strategy. However, findings reach beyond tumor therapeutics and may impinge on stemness and differentiation of stem cells. In this review, we discuss the role of let-7 in development and differentiation of normal adult stem/progenitor cells and offer a viewpoint of the association between deregulated let-7 expression and tumorigenesis. The regulation of let-7 expression, cancer-relevant let-7 targets, and the application of let-7 are highlighted.
Collapse
Affiliation(s)
- Shao-Chih Chiu
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kachakova D, Mitkova A, Popov E, Popov I, Vlahova A, Dikov T, Christova S, Mitev V, Slavov C, Kaneva R. Combinations of serum prostate-specific antigen and plasma expression levels of let-7c, miR-30c, miR-141, and miR-375 as potential better diagnostic biomarkers for prostate cancer. DNA Cell Biol 2014; 34:189-200. [PMID: 25521481 DOI: 10.1089/dna.2014.2663] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In the current study, expression levels of let-7c, miR-30c, miR-141, and miR-375 in plasma from 59 prostate cancer (PC) patients with different clinicopathological characteristics and two groups of controls: 16 benign prostatic hyperplasia (BPH) samples and 11 young asymptomatic men (YAM) were analyzed to evaluate their diagnostic and prognostic value in comparison to prostate-specific antigen (PSA). miR-375 was significantly downregulated in 83.5% of patients compared to BPH controls and showed stronger diagnostic accuracy (area under the curve [AUC]=0.809, 95% CI: 0.697-0.922, p=0.00016) compared with PSA (AUC=0.710, 95% CI: 0.559-0.861, p=0.013). Expression levels of let-7c showed potential to distinguish PC patients from BPH controls with AUC=0.757, but the result did not reach significance. Better discriminating performance was observed when combinations of studied biomarkers were used. Sensitivity of 86.8% and specificity of 81.8% were reached when all biomarkers were combined (AUC=0.877) and YAM were used as calibrators. None of the studied microRNAs (miRNAs) showed correlation with clinicopathological characteristics. PSA levels were significantly correlated with the Gleason score, tumor stage, and lymph node metastasis with Spearman correlation coefficients: 0.612, 0.576, and 0.458. In conclusion, the combination of the studied circulating plasma miRNAs and serum PSA has the potential to be used as a noninvasive diagnostic biomarker for PC screening outperforming the PSA testing alone.
Collapse
Affiliation(s)
- Darina Kachakova
- 1 Department of Medical Chemistry and Biochemistry, Molecular Medicine Center , Medical University-Sofia, Sofia, Bulgaria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kristensen H, Haldrup C, Strand S, Mundbjerg K, Mortensen MM, Thorsen K, Ostenfeld MS, Wild PJ, Arsov C, Goering W, Visakorpi T, Egevad L, Lindberg J, Grönberg H, Høyer S, Borre M, Ørntoft TF, Sørensen KD. Hypermethylation of the GABRE~miR-452~miR-224 promoter in prostate cancer predicts biochemical recurrence after radical prostatectomy. Clin Cancer Res 2014; 20:2169-81. [PMID: 24737792 DOI: 10.1158/1078-0432.ccr-13-2642] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Available tools for prostate cancer diagnosis and prognosis are suboptimal and novel biomarkers are urgently needed. Here, we investigated the regulation and biomarker potential of the GABRE∼miR-452∼miR-224 genomic locus. EXPERIMENTAL DESIGN GABRE/miR-452/miR-224 transcriptional expression was quantified in 80 nonmalignant and 281 prostate cancer tissue samples. GABRE∼miR-452∼miR-224 promoter methylation was determined by methylation-specific qPCR (MethyLight) in 35 nonmalignant, 293 prostate cancer [radical prostatectomy (RP) cohort 1] and 198 prostate cancer tissue samples (RP cohort 2). Diagnostic/prognostic biomarker potential of GABRE∼miR-452∼miR-224 methylation was evaluated by ROC, Kaplan-Meier, uni- and multivariate Cox regression analyses. Functional roles of miR-224 and miR-452 were investigated in PC3 and DU145 cells by viability, migration, and invasion assays and gene-set enrichment analysis (GSEA) of posttransfection transcriptional profiling data. RESULTS GABRE∼miR-452∼miR-224 was significantly downregulated in prostate cancer compared with nonmalignant prostate tissue and had highly cancer-specific aberrant promoter hypermethylation (AUC = 0.98). Functional studies and GSEA suggested that miR-224 and miR-452 inhibit proliferation, migration, and invasion of PC3 and DU145 cells by direct/indirect regulation of pathways related to the cell cycle and cellular adhesion and motility. Finally, in uni- and multivariate analyses, high GABRE∼miR-452∼miR-224 promoter methylation was significantly associated with biochemical recurrence in RP cohort 1, which was successfully validated in RP cohort 2. CONCLUSION The GABRE∼miR-452∼miR-224 locus is downregulated and hypermethylated in prostate cancer and is a new promising epigenetic candidate biomarker for prostate cancer diagnosis and prognosis. Tumor-suppressive functions of the intronic miR-224 and miR-452 were demonstrated in two prostate cancer cell lines, suggesting that epigenetic silencing of GABRE∼miR-452∼miR-224 may be selected for in prostate cancer.
Collapse
Affiliation(s)
- Helle Kristensen
- Authors' Affiliations: Departments of Molecular Medicine and Urology and Institute of Pathology, Aarhus University Hospital, Aarhus, Denmark; Institute of Surgical Pathology, University Hospital Zurich, Zurich, Switzerland; Department of Urology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany; Institute of Biomedical Technology and BioMediTech, University of Tampere and Tampere University Hospital, Tampere, Finland; Departments of Oncology and Pathology and Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Wan Y, Zeng ZC, Xi M, Wan S, Hua W, Liu YL, Zhou YL, Luo HW, Jiang FN, Zhong WD. Dysregulated microRNA-224/apelin axis associated with aggressive progression and poor prognosis in patients with prostate cancer. Hum Pathol 2014; 46:295-303. [PMID: 25532941 DOI: 10.1016/j.humpath.2014.10.027] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 10/06/2014] [Accepted: 10/08/2014] [Indexed: 12/11/2022]
Abstract
Our previous study revealed that microRNA (miR)-224 down-regulation could promote tumor progression of prostate cancer (PCa) and might be associated with poor biochemical recurrence-free survival of patients with this malignancy. However, the underlying mechanisms of miR-224 have not been fully elucidated. In the current study, apelin (APLN) was identified as a target gene of miR-224. Forced expression of miR-224 inhibited PCa cell invasion and migration by suppressing the expression of APLN. In addition, the down-regulation of miR-224 was negatively correlated with the up-regulation of APLN mRNA in PCa tissues. Moreover, miR-224 down-regulation was significantly associated with advanced clinical stage (P = .027) and metastasis (P = .001), whereas APLN up-regulation more frequently occurred in PCa tissues with advanced pathologic stage (P = .003), metastasis (P < .001), and prostate-specific antigen failure (P = .001). Furthermore, patients with PCa in the miR-224-low/APLN-high group more frequently had shorter biochemical recurrence-free survival than those in groups with other expression patterns of the 2 molecules. Taken together, our data strongly confirmed for the first time that the dysregulated miR-224/APLN axis may be associated with tumorigenesis and aggressive progression of PCa. More importantly, miR-224 down-regulation and APLN up-regulation may synergistically predict biochemical recurrence-free survival in patients with PCa.
Collapse
Affiliation(s)
- Yueping Wan
- Department of Urology, Huadu District People's Hospital, Southern Medical University,Guangzhou 510800, China
| | - Zhao-chang Zeng
- Department of Urology, Huadu District People's Hospital, Southern Medical University,Guangzhou 510800, China
| | - Ming Xi
- Department of Urology, Huadu District People's Hospital, Southern Medical University,Guangzhou 510800, China
| | - Song Wan
- Department of Urology, Huadu District People's Hospital, Southern Medical University,Guangzhou 510800, China
| | - Wei Hua
- Department of Urology, Huadu District People's Hospital, Southern Medical University,Guangzhou 510800, China
| | - Yuan-ling Liu
- Department of Urology, Huadu District People's Hospital, Southern Medical University,Guangzhou 510800, China
| | - Yu-lin Zhou
- Department of Urology, Huadu District People's Hospital, Southern Medical University,Guangzhou 510800, China
| | - Hong-wei Luo
- Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou 510515, China
| | - Fu-neng Jiang
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, China
| | - Wei-de Zhong
- Department of Urology, Huadu District People's Hospital, Southern Medical University,Guangzhou 510800, China; Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou 510515, China; Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, China.
| |
Collapse
|
43
|
Adamopoulos PG, Kontos CK, Rapti SM, Papadopoulos IN, Scorilas A. miR-224 overexpression is a strong and independent prognosticator of short-term relapse and poor overall survival in colorectal adenocarcinoma. Int J Oncol 2014; 46:849-59. [PMID: 25420464 DOI: 10.3892/ijo.2014.2775] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 12/04/2013] [Indexed: 12/11/2022] Open
Abstract
Colorectal adenocarcinoma constitutes the most frequent form of colorectal cancer and a serious cause of cancer-related deaths. The expression of multiple miRNAs, including miR-224, is deregulated in colorectal adenocarcinoma. The aim of this study was the investigation of the prognostic value of miR-224 in colorectal adenocarcinoma. For this purpose, total RNA was isolated from 115 colorectal adenocarcinomas and 66 adjacent non-cancer mucosae. Total RNA (2 µg) was polyadenylated and reverse transcribed. A quantitative PCR method based on SYBR-Green chemistry was developed and applied for the quantification of miR-224 levels, followed by extensive biostatistical analysis. miR-224 levels in malignant colorectal adenocarcinomas ranged between 1.81 and 187.75 RQU (miR-224 copies/1,000 SNORD48 copies) with a median of 34.27, and were significantly elevated, compared to miR-224 levels in adjacent non-cancer mucosae (p<0.001). Enhanced miR-224 expression constitutes a rather strong prognosticator in colorectal adenocarcinoma, predicting short-term relapse and poor overall survival in these patients (p=0.012 and p=0.005, respectively), independent of established clinicopathological parameters. In conclusion, miR-224 is significantly upregulated in malignant colorectal tumors compared to adjacent non-cancer mucosae, and its enhanced expression constitutes an independent predictor of short-term relapse and poor overall survival in colorectal adenocarcinoma patients.
Collapse
Affiliation(s)
- Panagiotis G Adamopoulos
- Department of Biochemistry and Molecular Biology, University of Athens, Panepistimiopolis, Athens, Greece
| | - Christos K Kontos
- Department of Biochemistry and Molecular Biology, University of Athens, Panepistimiopolis, Athens, Greece
| | - Stamatia-Maria Rapti
- Department of Biochemistry and Molecular Biology, University of Athens, Panepistimiopolis, Athens, Greece
| | - Iordanis N Papadopoulos
- Fourth Surgery Department, University of Athens, University General Hospital 'Attikon', Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, University of Athens, Panepistimiopolis, Athens, Greece
| |
Collapse
|
44
|
Mortensen MM, Høyer S, Orntoft TF, Sørensen KD, Dyrskjøt L, Borre M. High miR-449b expression in prostate cancer is associated with biochemical recurrence after radical prostatectomy. BMC Cancer 2014; 14:859. [PMID: 25416653 PMCID: PMC4247690 DOI: 10.1186/1471-2407-14-859] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 10/30/2014] [Indexed: 11/23/2022] Open
Abstract
Background Prostate cancer is one of the leading causes of cancer death amongst men in economically advanced countries. The disease is characterized by a greatly varying clinical course, where some patients harbor non- or slowly-progressive disease, others highly aggressive disease. There is a great lack of markers to differentiate between aggressive and indolent disease. Markers that could help to identify patients needing curative treatment while sparing those who do not. Methods MicroRNA profiling of 672 microRNAs using multiplex RT-qPCR was performed using 36 prostate cancer samples to evaluate the association of microRNAs and biochemical recurrence after radical prostatectomy. Results Among 31 microRNAs associated with recurrence, we identified miR-449b, which was further validated in an independent cohort of 163 radical prostatectomy patients. Patients expressing miR-449b had a significantly higher risk of recurrence (HR = 1.57; p = 0.028), and miR-449b was shown to be an independent predictor of recurrence after prostatectomy (HR = 1.9; p = 0.003) when modeled with known risk factors of recurrent disease in multivariate analysis. Conclusion High miR-449b expression was shown to be an independent predictor of biochemical recurrence after radical prostatectomy.
Collapse
Affiliation(s)
| | | | | | | | - Lars Dyrskjøt
- Department of Molecular Medicine, Aarhus University Hospital, Brendstrupgaardsvej 100, 8200 Aarhus N, Denmark.
| | | |
Collapse
|
45
|
Melbø-Jørgensen C, Ness N, Andersen S, Valkov A, Dønnem T, Al-Saad S, Kiselev Y, Berg T, Nordby Y, Bremnes RM, Busund LT, Richardsen E. Stromal expression of MiR-21 predicts biochemical failure in prostate cancer patients with Gleason score 6. PLoS One 2014; 9:e113039. [PMID: 25401698 PMCID: PMC4234532 DOI: 10.1371/journal.pone.0113039] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 10/17/2014] [Indexed: 11/29/2022] Open
Abstract
AIM microRNAs (miRNAs) are involved in various neoplastic diseases, including prostate cancer (PCs). The aim of this study was to investigate the miRNA profile in PC tissue, to assess their association with clinicopathologic data, and to evaluate the potential of miRNAs as diagnostic and prognostic markers. MATERIALS AND METHODS From a cohort of 535 patients submitted to radical prostatectomy (RP), a sample of 30 patients (14 patients with rapid biochemical failure (BF) and 16 patients without BF) with Gleason score 7 were analyzed. A total of 1435 miRNAs were quantified by microarray hybridization, and selected miRNAs with the highest Standard deviation (n = 50) were validated by real-time quantitative PCR (qRT-PCR). In situ hybridization (ISH) was used to evaluate the expression of miR-21. RESULTS miR-21 was the only miR that was significantly up-regulated in the BF group (p = 0.045) miR-21 was up-regulated in patients with BF compared with non-BF group (p = 0.05). In univariate analyses, high stromal expression of miR-21 had predictive impact on biochemical failure-free survival (BFFS) and clinical failure-free survival (CFFS) (p = 0.006 and p = 0.04, respectively). In the multivariate analysis, high stromal expression of miR-21 expression was found to be an independent prognostic factor for BFFS in patients with Gleason score 6 (HR 2.41, CI 95% 1.06-5.49, p = 0.037). CONCLUSION High stromal expression of miR-21 was associated with poor biochemical recurrence-free survival after RP. For patients with Gleason score 6, miR-21 may help predict the risk of future disease progression and thereby help select patients for potential adjuvant treatment or a more stringent follow-up.
Collapse
Affiliation(s)
| | - Nora Ness
- Department of Medical Biology, UIT The Arctic University of Norway, Tromsø, Norway
| | - Sigve Andersen
- Department of Clinical Medicine, UIT The Arctic University of Norway, Tromsø, Norway
- Department Oncology, University Hospital of North Norway, Tromsø, Norway
| | - Andrej Valkov
- Department of Clinical Pathology, University Hospital of North Norway, Tromso, Norway
| | - Tom Dønnem
- Department of Clinical Medicine, UIT The Arctic University of Norway, Tromsø, Norway
- Department Oncology, University Hospital of North Norway, Tromsø, Norway
| | - Samer Al-Saad
- Department of Medical Biology, UIT The Arctic University of Norway, Tromsø, Norway
- Department of Clinical Pathology, University Hospital of North Norway, Tromso, Norway
| | - Yury Kiselev
- Department of Medical Biology, UIT The Arctic University of Norway, Tromsø, Norway
- Department of Pharmacy, UIT The Arctic University of Norway, Tromsø, Norway
| | - Thomas Berg
- Department of Clinical Pathology, University Hospital of North Norway, Tromso, Norway
| | - Yngve Nordby
- Department of Clinical Medicine, UIT The Arctic University of Norway, Tromsø, Norway
- Department of Urology, University Hospital of North Norway, Tromsø, Norway
| | - Roy M. Bremnes
- Department of Clinical Medicine, UIT The Arctic University of Norway, Tromsø, Norway
- Department Oncology, University Hospital of North Norway, Tromsø, Norway
| | - Lill-Tove Busund
- Department of Medical Biology, UIT The Arctic University of Norway, Tromsø, Norway
- Department of Clinical Pathology, University Hospital of North Norway, Tromso, Norway
| | - Elin Richardsen
- Department of Medical Biology, UIT The Arctic University of Norway, Tromsø, Norway
- Department of Clinical Pathology, University Hospital of North Norway, Tromso, Norway
| |
Collapse
|
46
|
Prostate biopsy perineural invasion is not independently associated with positive surgical margins following radical retropubic prostatectomy. World J Urol 2014; 33:1269-74. [DOI: 10.1007/s00345-014-1430-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 10/22/2014] [Indexed: 12/18/2022] Open
|
47
|
ZHANG BEIBEI, GUO XIAORONG, ZHANG JINGXI, LIU XIAO, ZHAN XIANBAO, LI ZHAOSHEN. MicroRNA-224 is downregulated in mucinous cystic neoplasms of the pancreas and may regulate tumorigenesis by targeting Jagged1. Mol Med Rep 2014; 10:3303-9. [DOI: 10.3892/mmr.2014.2658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 06/09/2014] [Indexed: 11/06/2022] Open
|
48
|
Ren Q, Liang J, Wei J, Basturk O, Wang J, Daniels G, Gellert LL, Li Y, Shen Y, Osman I, Zhao J, Melamed J, Lee P. Epithelial and stromal expression of miRNAs during prostate cancer progression. Am J Transl Res 2014; 6:329-339. [PMID: 25075250 PMCID: PMC4113495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 06/12/2014] [Indexed: 06/03/2023]
Abstract
Global microRNA (miRNA) profile may predict prostate cancer (PCa) behaviors. In this study, we examined global miRNA expression by miRNA profiling as well as specific miRNA expression levels in PCa epithelium and stroma by in situ hybridization (ISH) and correlated with various clinicopathological features. We first performed comprehensive miRNA profiling on 27 macrodissected cases of PCa by miRNA microarray. A total of 299 miRNAs were significantly dysregulated in high grade and advanced stage PCa. We demonstrated that PCa can be readily classified into high grade/stage and low-grade/stage groups by its global miRNA expression profile. Next, we examined the expression of several selected dysregulated miRNAs, including let-7c, miR-21, miR-27a, miR-30c, and miR-219, in PCa by ISH. The levels of miRNA expression in epithelial and stromal cells were scored semiquantitatively and compared with clinicopathological features, including age, race, Gleason score, stage, PSA recurrence, metastasis, hormone resistance and survival. We found that the expression of miR-30c and miR-219 were significantly down-regulated in PCa. miR-21 and miR-30c were significantly down-regulated in PCa in African Americans compared to Caucasian Americans. In addition, down-regulation of let-7c, miR-21, miR-30c, and miR-219 are associated with metastatic disease. Furthermore, down-regulation of miR-30c and let-7c are significantly associated with androgen-dependent PCa. In PCa stromal cells, let-7c downregulation is significantly associated with extraprostatic extension. Our data suggest that selected miRNAs may serve as potential biomarkers to predict cancer progression.
Collapse
Affiliation(s)
- Qinghu Ren
- Department of Pathology, New York University School of MedicineNew York, USA
| | - Jiaqian Liang
- Department of Pathology, New York University School of MedicineNew York, USA
- Department of Urology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, Hubei Province, China
| | - Jianjun Wei
- Department of Pathology, Northwestern University School of MedicineChicago, IL, USA
| | - Olca Basturk
- Department of Pathology, New York University School of MedicineNew York, USA
| | - Jinhua Wang
- Department of NYU Cancer Institute, New York University School of MedicineNew York, USA
| | - Garrett Daniels
- Department of Pathology, New York University School of MedicineNew York, USA
| | - Lan Lin Gellert
- Department of Pathology, New York University School of MedicineNew York, USA
| | - Yirong Li
- Department of Pathology, New York University School of MedicineNew York, USA
| | - Ying Shen
- Department of Pathology, New York University School of MedicineNew York, USA
| | - Iman Osman
- Department of Urology, New York University School of MedicineNew York, USA
| | - Jun Zhao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, Hubei Province, China
| | - Jonathan Melamed
- Department of Pathology, New York University School of MedicineNew York, USA
| | - Peng Lee
- Department of Pathology, New York University School of MedicineNew York, USA
- Department of NYU Cancer Institute, New York University School of MedicineNew York, USA
- Department of Urology, New York University School of MedicineNew York, USA
- Department of New York Harbor Healthcare System, New York University School of MedicineNew York, USA
| |
Collapse
|
49
|
Casanova-Salas I, Rubio-Briones J, Calatrava A, Mancarella C, Masiá E, Casanova J, Fernández-Serra A, Rubio L, Ramírez-Backhaus M, Armiñán A, Domínguez-Escrig J, Martínez F, García-Casado Z, Scotlandi K, Vicent MJ, López-Guerrero JA. Identification of miR-187 and miR-182 as Biomarkers of Early Diagnosis and Prognosis in Patients with Prostate Cancer Treated with Radical Prostatectomy. J Urol 2014; 192:252-9. [DOI: 10.1016/j.juro.2014.01.107] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2014] [Indexed: 10/25/2022]
Affiliation(s)
- Irene Casanova-Salas
- Laboratory of Molecular Biology, Fundación Instituto Valenciano de Oncología, Valencia, Spain
| | - José Rubio-Briones
- Service of Urology, Fundación Instituto Valenciano de Oncología, Valencia, Spain
| | - Ana Calatrava
- Department of Pathology, Fundación Instituto Valenciano de Oncología, Valencia, Spain
| | - Caterina Mancarella
- Laboratory of Experimental Oncology, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Esther Masiá
- Polymer Therapeutics Laboratory, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Juan Casanova
- Service of Urology, Fundación Instituto Valenciano de Oncología, Valencia, Spain
| | - Antonio Fernández-Serra
- Laboratory of Molecular Biology, Fundación Instituto Valenciano de Oncología, Valencia, Spain
| | - Luis Rubio
- Laboratory of Molecular Biology, Fundación Instituto Valenciano de Oncología, Valencia, Spain
| | | | - Ana Armiñán
- Polymer Therapeutics Laboratory, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | | | | | - Zaida García-Casado
- Laboratory of Molecular Biology, Fundación Instituto Valenciano de Oncología, Valencia, Spain
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - María J. Vicent
- Polymer Therapeutics Laboratory, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | | |
Collapse
|
50
|
Dietrich D, Meller S, Uhl B, Ralla B, Stephan C, Jung K, Ellinger J, Kristiansen G. Nucleic acid-based tissue biomarkers of urologic malignancies. Crit Rev Clin Lab Sci 2014; 51:173-99. [DOI: 10.3109/10408363.2014.906130] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|