1
|
Song Y, Zhu M, Islam MA, Gu W, Alim K, Cheng CS, Chen J, Xu Y, Xu H. Glutathione peroxidase 3 is essential for countering senescence in adipose remodelling by maintaining mitochondrial homeostasis. Redox Biol 2024; 77:103365. [PMID: 39312866 PMCID: PMC11447410 DOI: 10.1016/j.redox.2024.103365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/25/2024] Open
Abstract
Adipose tissue senescence is a precursor to organismal aging and understanding adipose remodelling contributes to discovering novel anti-aging targets. Glutathione peroxidase 3 (GPx3), a critical endogenous antioxidant enzyme, is diminished in the subcutaneous adipose tissue (sWAT) with white adipose expansion. Based on the active role of the antioxidant system in counteracting aging, we investigated the involvement of GPx3 in adipose senescence. We determined that knockdown of GPx3 in adipose tissue by adeno-associated viruses impaired mitochondrial function in mice, increased susceptibility to obesity, and exacerbated adipose tissue senescence. Impairment of GPx3 may cause mitochondrial dysfunction through inner mitochondrial membrane disruption. Adipose reshaping management (cold stimulation and intermittent diet) counteracted the aging of tissues, with an increase in GPx3 expression. Overall metabolic improvement induced by cold stimulation was partially attenuated when GPx3 was depleted. GPx3 may be involved in adipose browning by interacting with UCP1, and GPx3 may be a limiting factor for intracellular reactive oxygen species (ROS) accumulation during stem cell browning. Collectively, these findings emphasise the importance of restoring the imbalanced redox state in adipose tissue to counteract aging and that GPx3 may be a potential target for maintaining mitochondrial homeostasis and longevity.
Collapse
Affiliation(s)
- Yijie Song
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Mengjie Zhu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Md Ariful Islam
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Wenyi Gu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Kavsar Alim
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Chien-Shan Cheng
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai, 20025, China
| | - Jingxian Chen
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai, 20025, China
| | - Yu Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China.
| | - Hongxi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China; Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
2
|
Shi Q, Li X, He J, Ye D, Tang H, Xuan J, Tang Y, Zhang Y, Zhang Y. Effects of Auricularia auricula-judae (Bull.) Quél. polysaccharide acid hydrolysate on glucose metabolism in diabetic mice under oxidative stress. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155485. [PMID: 38640854 DOI: 10.1016/j.phymed.2024.155485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/11/2024] [Accepted: 02/24/2024] [Indexed: 04/21/2024]
Abstract
BACKGROUND Oxidative stress can lead to uncontrolled glucose metabolism and, thus, diabetes. Auricularia auricula-judae (Bull.) Quél. polysaccharides possess biological activities, such as antioxidant and hypoglycemic effects, but their mechanism of their acid hydrolysates on oxidative stress-injured glucose metabolism disorders is unclear. PURPOSE Using diabetic mice, we investigated the effect of the acid hydrolysate of polysaccharides from Auricularia auricula-judae (Bull.) Quél. on improving diabetes. STUDY DESIGN AND METHODS The structural information of sample polysaccharides was measured by high performance gel permeation chromatography, nuclear magnetic resolution, and high performance liquid chromatography. The diabetic model was established by intraperitoneal injection of streptozotocin. For eight consecutive weeks, the mice were orally administered sample polysaccharides (100, 200, and 300 mg/kg b.w. per day) for intervention. The improvement effect of the samples on diabetes was explored by detecting the changes in biochemical indicators in mice, and the underlying mechanism was studied by transcriptomic and metabolomic analysis. RESULTS The results showed that acid hydrolysate of Auricularia auricula-judae (Bull.) Quél. polysaccharides consisted mainly of mannose, xylose, glucuronic acid, and glucose; its weight-averaged molecular weight was 6.3842 × 104 Dalton, its number average molecular weight was 2.9594 × 104 Dalton; and the molecule contained α-Glc(1→4)-, β-Glc(1→3)-, and β-Man(1→4)-linked glycosidic bonds. A total of 100 mg/kg b.w. per day sample was the best intervention concentration. After eight weeks of intervention, the sample polysaccharides significantly reduced dynamic blood glucose and serum lipids, enhanced antioxidant enzyme activities, promoted glucagon like peptide-1 and insulin secretion, improved insulin sensitivity and alleviated insulin resistance in diabetic mice. Transcriptomic and metabolomic analyses showed that sample polysaccharides was able to ameliorate disorders of glucose metabolism by modulating gene expression such as glucokinase; and modulate the state of oxidative stress in mice in vivo by regulating the glutathione metabolism pathway. CONCLUSION Acid hydrolysate of Auricularia auricula-judae (Bull.) Quél. polysaccharides improved glucose metabolism disorders by slowing down the oxidative stress injury in mice, thereby alleviating diabetes. This study provided a basis for determining the underlying mechanism of the antidiabetic effect of Auricularia auricula-judae (Bull.) Quél. polysaccharides, which would significantly improve the deep development and application of these materials in diabetes control.
Collapse
Affiliation(s)
- Qianwen Shi
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province, 310018, China
| | - Xiangyu Li
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province, 310018, China
| | - Jiyuan He
- Liang Xin College, China Jiliang University, Hangzhou, Zhejiang Province, 310018, China
| | - Deting Ye
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province, 310018, China
| | - Huinan Tang
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province, 310018, China
| | - Jinjie Xuan
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province, 310018, China
| | - Yuxuan Tang
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province, 310018, China
| | - Yakun Zhang
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province, 310018, China
| | - Yongjun Zhang
- College of Life Sciences, Key Laboratory of Specialty Agri-product Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang Province, 310018, China.
| |
Collapse
|
3
|
Li Y, Zhou Y, Liu D, Wang Z, Qiu J, Zhang J, Chen P, Zeng G, Guo Y, Wang X, DiSanto ME, Zhang X. Glutathione Peroxidase 3 induced mitochondria-mediated apoptosis via AMPK /ERK1/2 pathway and resisted autophagy-related ferroptosis via AMPK/mTOR pathway in hyperplastic prostate. J Transl Med 2023; 21:575. [PMID: 37633909 PMCID: PMC10463608 DOI: 10.1186/s12967-023-04432-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/11/2023] [Indexed: 08/28/2023] Open
Abstract
BACKGROUND Benign prostatic hyperplasia (BPH) is a common disease in elderly men, mainly resulted from an imbalance between cell proliferation and death. Glutathione peroxidase 3 (GPX3) was one of the differentially expressed genes in BPH identified by transcriptome sequencing of 5 hyperplastic and 3 normal prostate specimens, which had not been elucidated in the prostate. This study aimed to ascertain the mechanism of GPX3 involved in cell proliferation, apoptosis, autophagy and ferroptosis in BPH. METHODS Human prostate tissues, GPX3 silencing and overexpression prostate cell (BPH-1 and WPMY-1) models and testosterone-induced rat BPH (T-BPH) model were utilized. The qRT-PCR, CCK8 assay, flow cytometry, Western blotting, immunofluorescence, hematoxylin and eosin, masson's trichrome, immunohistochemical staining and transmission electron microscopy analysis were performed during in vivo and in vitro experiments. RESULTS Our study indicated that GPX3 was localized both in the stroma and epithelium of prostate, and down-regulated in BPH samples. Overexpression of GPX3 inhibited AMPK and activated ERK1/2 pathway, thereby inducing mitochondria-dependent apoptosis and G0/G1 phase arrest, which could be significantly reversed by MEK1/2 inhibitor U0126 preconditioning. Moreover, overexpression of GPX3 further exerted anti-autophagy by inhibiting AMPK/m-TOR and up-regulated nuclear factor erythroid 2-related factor 2 (Nrf2)/glutathione peroxidase 4 (GPX4, mitochondrial GPX4 and cytoplasmic GPX4) to antagonize autophagy-related ferroptosis. Consistently, GPX3 deficiency generated opposite changes in both cell lines. Finally, T-BPH rat model was treated with GPX3 indirect agonist troglitazone (TRO) or GPX4 inhibitor RAS-selective lethal 3 (RSL3) or TRO plus RSL3. These treatments produced significant atrophy of the prostate and related molecular changes were similar to our in vitro observations. CONCLUSIONS Our novel data manifested that GPX3, which was capable of inducing apoptosis via AMPK/ERK1/2 pathway and antagonizing autophagy-related ferroptosis through AMPK/m-TOR signalling, was a promising therapeutic target for BPH in the future.
Collapse
Affiliation(s)
- Yan Li
- Department of Urology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
| | - Yongying Zhou
- Department of Urology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
| | - Daoquan Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
| | - Zhen Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
| | - Jizhang Qiu
- Department of Urology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
| | - Junchao Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
| | - Ping Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
| | - Guang Zeng
- Department of Urology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
| | - Yuming Guo
- Department of Urology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China
| | - Michael E DiSanto
- Department of Surgery and Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Xinhua Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, People's Republic of China.
| |
Collapse
|
4
|
Tamarindo GH, Gobbo MG, Taboga SR, Almeida EA, Góes RM. Melatonin ameliorates degenerative alterations caused by age in the rat prostate and mitigates high-fat diet damages. Cell Biol Int 2020; 45:92-106. [PMID: 32991000 DOI: 10.1002/cbin.11472] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/03/2020] [Accepted: 09/26/2020] [Indexed: 12/16/2022]
Abstract
Imbalance of sexual steroids milieu and oxidative stress are often observed during aging and correlated to prostate disorders. Likewise, high-fat intake has been related to prostate damage and tumor development. Melatonin (MLT) is an antioxidant whose secretion decreases in elderly and is also suggested to protect the gland. This study evaluated the impact of a long-term high-fat diet during aging on prostate morphology and antioxidant system of rats and tested the effects of MLT supplementation under these conditions. Male rats were assigned into four groups: control, treated with MLT, high-fat diet and high-fat diet treated with MLT. The high-fat diet was provided from the 24th week of age, MLT from the 48th (100 μg/kg/day) and rats were euthanized at the 62nd week. The high-fat diet increased body weight, retroperitoneal fatness, glycaemia, and circulating estrogen levels. It aggravated the aging effects, leading to epithelial atrophy (∼32% reduction of epithelial height) and collagen fibers increase (83%). MLT alone did not alter biometric and physiological parameters, except for the prostate weight decrease, whereas it alleviated biometric as well as ameliorated acinar atrophy induced by high-lipid intake. Systemic oxidative stress increased, and prostatic glutathione peroxidase activity decreased fivefold with the high-fat diet despite the indole. Regardless of the diet, MLT triggered epithelial desquamation, reduced androgen receptor-positive cells, increased smooth muscle layer thickness (12%), decreased at least 50% corpora amylacea formation, and stimulated prostatic gluthatione-S-transferase activity. In conclusion, MLT partially recovered prostate damage induced by aging and the long-term high-fat diet and ameliorated degenerative prostate alterations.
Collapse
Affiliation(s)
- Guilherme H Tamarindo
- Institute of Biology, State University of Campinas, Campinas, São Paulo, Brazil.,Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, São José do Rio Preto, São Paulo, Brazil
| | - Marina G Gobbo
- Institute of Biology, State University of Campinas, Campinas, São Paulo, Brazil.,Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, São José do Rio Preto, São Paulo, Brazil
| | - Sebastião R Taboga
- Institute of Biology, State University of Campinas, Campinas, São Paulo, Brazil.,Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, São José do Rio Preto, São Paulo, Brazil
| | - Eduardo A Almeida
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, São José do Rio Preto, São Paulo, Brazil.,Department of Natural Sciences, Regional University of Blumenau, Blumenau, Santa Catarina, Brazil
| | - Rejane M Góes
- Institute of Biology, State University of Campinas, Campinas, São Paulo, Brazil.,Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, São José do Rio Preto, São Paulo, Brazil
| |
Collapse
|
5
|
Lamas CA, Kido LA, Hermes TA, Nogueira-Lima E, Minatel E, Collares-Buzato CB, Maróstica MR, Cagnon VHA. Brazilian berry extract (Myrciaria jaboticaba): A promising therapy to minimize prostatic inflammation and oxidative stress. Prostate 2020; 80:859-871. [PMID: 32460430 DOI: 10.1002/pros.24017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/11/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Brazilian berry is a fruit popularly known as "Jaboticaba," rich in bioactive compounds with antioxidant and anti-inflammatory properties. Senescence and overweight are increasing worldwide and are considered risk factors to prostatic pathogenesis mainly due to oxidative and inflammatory processes induction. Thus, this study aimed to evaluate the effect of two increasing doses of the patented jaboticaba peel extract (PJE) on oxidative-stress and inflammation in the prostate of aging or high-fat-fed aging mice. METHODS PJE and/or high-fat diet (HFD) treatments started with 11-month-old mice and lasted 60 days. The levels or the immunoexpression of different inflammatory (nuclear factor κB [NFκB], CD3+, cyclooxygenase 2 [COX-2], toll-like receptor 4 [TLR4], phosphorylated signal transducers and activators of transcription 3 [pSTAT-3], tumor necrosis factor α [TNF-α], interleukin 6 [IL-6], and IL-1β) and oxidative-stress (catalase, superoxide dismutase 2 [SOD2], glutathione reductase [GSR], reduced glutathione, and glutathione peroxidase 3 [GPx3]) related molecules were analyzed by western-blotting, immunohistochemistry, and enzyme-linked immunosorbent assays. RESULTS Both PJE doses reduced the levels of oxidative-stress-related molecules (GPx3, GSR, catalase), lipid peroxidation (4-hydroxynonenal), inflammatory mediators (COX-2, TNF-α, and pSTAT-3) and CD3+ T cells number, which were associated with the maintenance of the glandular morphological integrity in aging and HFD-fed-aging mice. Nevertheless, only the high PJE dose reduced the NFκB and TLR4 levels in aging mice; and SOD2, IL-6, and IL-1β levels in HFD-aging mice. Aging itself promoted an oxidative inflammation in the prostate, interfering in the levels of the different oxidative-stress, lipid peroxidation, and inflammatory mediators evaluated, in association with high incidence of prostate epithelial and stromal damages. The HFD intake intensified aging alterations, showing an unfavorable prostatic microenvironment prone to oxidative and inflammatory damages. CONCLUSIONS PJE exerted a dose-dependent effect controlling inflammation and oxidative-stress in aging and HFD-fed aging mice prostate. This fact contributed to prostate microenvironment balance recovery, preserving the tissue architecture of this gland. Thus, the PJE emerges as a potential therapy to prevent inflammation and oxidative stress in the prostate.
Collapse
Affiliation(s)
- Celina A Lamas
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, São Paulo, Brazil
| | - Larissa A Kido
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, São Paulo, Brazil
- Department of Food and Nutrition, School of Food Engineering, University of Campinas, São Paulo, Brazil
| | - Túlio A Hermes
- Department of Morphology and Physiology, ABC Medical School, Santo Andre, São Paulo, Brazil
| | - Ellen Nogueira-Lima
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, São Paulo, Brazil
| | - Elaine Minatel
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, São Paulo, Brazil
| | - Carla B Collares-Buzato
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, São Paulo, Brazil
| | - Mário R Maróstica
- Department of Food and Nutrition, School of Food Engineering, University of Campinas, São Paulo, Brazil
| | - Valéria H A Cagnon
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, São Paulo, Brazil
| |
Collapse
|
6
|
Chang SN, Lee JM, Oh H, Kim U, Ryu B, Park JH. Troglitazone inhibits the migration and invasion of PC-3 human prostate cancer cells by upregulating E-cadherin and glutathione peroxidase 3. Oncol Lett 2018; 16:5482-5488. [PMID: 30250621 DOI: 10.3892/ol.2018.9278] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 04/28/2017] [Indexed: 11/06/2022] Open
Abstract
Troglitazone (TGZ) is a synthetic peroxisome proliferator-activated receptor γ (PPARγ) ligand that exhibits potential antitumor effects on a number of cancer subtypes, including prostate cancer. However, little is known about the effect of TGZ on metastasis in prostate cancer. The aim of the present study was to determine the inhibitory effect and mechanism underlying TGZ on cell growth, migration and invasion using the prostate cancer PC-3 cell line. Cellular migration and invasion were evaluated by performing a wound healing assay and Matrigel assay, respectively. The expression levels of mRNA and protein were determined by reverse transcription-quantitative polymerase chain reaction and western blotting. The results demonstrated that TGZ dose-dependently inhibited cell migration and invasion of PC-3 cells. The present study also revealed that TGZ increased the mRNA and protein levels of E-cadherin and glutathione peroxidase 3 (GPx3) in human prostate cancer PC-3 cells. In addition, GW9662, a PPARγ antagonist, attenuated the increased mRNA and protein levels of E-cadherin and GPx3, suggesting that the PPARγ-dependent signaling pathway was involved. Taken together, these results suggested that the anti-migration and anti-invasion effect of TGZ on PC-3 prostate cancer cells is, at least in part, mediated via upregulation of E-cadherin and GPx3. The present study also concluded that PPARγ may be used as a potential remedial target for the prevention and treatment of prostate cancer cell invasion and metastasis.
Collapse
Affiliation(s)
- Seo-Na Chang
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
| | - Ji Min Lee
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
| | - Hanseul Oh
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
| | - Ukjin Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
| | - Bokyeong Ryu
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
| | - Jae-Hak Park
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
| |
Collapse
|
7
|
Ayyappan JP, Nagajyothi JF. Diet Modulates Adipose Tissue Oxidative Stress in a Murine Acute Chagas Model. JSM ATHEROSCLEROSIS 2017; 2:1030. [PMID: 30221258 PMCID: PMC6135525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Chagas disease, also known as American trypanosomiasis, is a tropical parasitic disease caused by the protozoan Trypanosoma cruzi. T. cruzi targets adipose tissue, which serves as a reservoir of this parasite. T. cruzi infection of adipose tissue is characterized by increased lipolysis, oxidative stress, and parasitemia. High fat diet (HFD) decreases lipolysis and increases the survival rate in the mice infected with T. cruzi during acute infection. However, the effect of HFD on oxidative stress in adipose tissue has not been examined in detail. In the present study we evaluated the effect of HFD on oxidative stress markers in both white and brown adipose tissues (WAT and BAT) during acute infection. We used qPCR to examine the mRNA expression levels of genes involved in several antioxidant defence systems, such as those acting in ROS metabolism, peroxidases, and relevant oxygen transporter genes. The result of our study showed that HFD regulates the expression levels of oxidative stress genes in adipose tissues and that these effects are often different in WAT and BAT. For instance, while HFD down-regulated the levels of most antioxidant genes in both WAT and BAT, it differentially affected the expression pattern of genes involved in ROS metabolism (e.g. peroxidases) in WAT and BAT tissues of infected mice. Together with our previous studies, these findings show that infection and diet both regulate antioxidant enzymes and other oxidative stress defenses in mouse adipose tissues during acute T. cruzi infection.
Collapse
Affiliation(s)
| | - Jyothi F Nagajyothi
- Corresponding author: Jyothi F Nagajyothi, Department of Microbiology, Rutgers State University of New Jersey, 225, Warren Street, Newark, NJ- 07103, USA, Tel: 973-854-3450; Fax: 973-854-3101;
| |
Collapse
|
8
|
Parental High-Fat Diet Promotes Inflammatory and Senescence-Related Changes in Prostate. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4962950. [PMID: 28261375 PMCID: PMC5316447 DOI: 10.1155/2017/4962950] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/24/2016] [Accepted: 12/08/2016] [Indexed: 01/08/2023]
Abstract
Background. Obesity and dietary habits are associated with increased incidences of aging-related prostatic diseases. The present study was aimed to investigate transgenerational effects of chronic high-fat diet (HFD) feeding on inflammation and senescence-related changes in prostate. Methods. Sprague-Dawley rats were kept on either normal or HFD one. Senescence-associated β-galactosidase (SA β-gal) activity, inflammation, and cellular proliferation were determined in the prostate. Results. Increased SA β-gal activity, expression of p53, and cell proliferation marker PCNA were observed in ventral prostate of HFD-fed rats. Immunostaining for p53 and PCNA revealed that the p53 immunopositive cells were primarily in stroma while PCNA immunopositive cells were epithelial cells. An increase in expression of cycloxygenase-2 (COX-2) and phosphorylation of nuclear factor-kappa B (NF-kB) was observed in prostate of weaning pups HFD-fed parents. However, in adult pups, irrespective of dietary habit, a significant increase in the expression of COX-2, PCNA, phosphorylation of NF-kB, infiltration of inflammatory cells, and SA β-gal activity was observed. Conclusions. Present investigation reports that HFD feeding promotes accumulation of p53 expressing cells, proliferation of epithelial cells, and senescence-related changes in prostate. Further, parental HFD-feeding upholds inflammatory, proliferative, and senescence-related changes in prostate of pups.
Collapse
|
9
|
Daneshgari F, Liu G, Hanna-Mitchell AT. Path of translational discovery of urological complications of obesity and diabetes. Am J Physiol Renal Physiol 2017; 312:F887-F896. [PMID: 28052873 DOI: 10.1152/ajprenal.00489.2016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/15/2016] [Accepted: 01/01/2017] [Indexed: 01/07/2023] Open
Abstract
Diabetes mellitus (DM) is a prevalent chronic disease. Type 1 DM (T1DM) is a metabolic disorder that is characterized by hyperglycemia in the context of absolute lack of insulin, whereas type 2 DM (T2DM) is due to insulin resistance-related relative insulin deficiency. In comparison with T1DM, T2DM is more complex. The natural history of T2DM in most patients typically involves a course of obesity to impaired glucose tolerance, to insulin resistance, to hyperinsulinemia, to hyperglycemia, and finally to insulin deficiency. Obesity is a risk factor of T2DM. Diabetes causes some serious microvascular and macrovascular complications, such as retinopathy, nephropathy, neuropathy, angiopathy and stroke. Urological complications of obesity and diabetes (UCOD) affect quality of life, but are not well investigated. The urological complications in T1DM and T2DM are different. In addition, obesity itself affects the lower urinary tract. The aim of this perspective is to review the available data, combined with the experience of our research teams, who have spent a good part of last decade on studies of association between DM and lower urinary tract symptoms (LUTS) with the aim of bringing more focus to the future scientific exploration of UCOD. We focus on the most commonly seen urological complications, urinary incontinence, bladder dysfunction, and LUTS, in obesity and diabetes. Knowledge of these associations will lead to a better understanding of the pathophysiology underlying UCOD and hopefully assist urologists in the clinical management of obese or diabetic patients with LUTS.
Collapse
Affiliation(s)
- Firouz Daneshgari
- Department of Surgery, MetroHealth Medical Center, Case Western Reserve University, Cleveland, Ohio
| | - Guiming Liu
- Department of Surgery, MetroHealth Medical Center, Case Western Reserve University, Cleveland, Ohio
| | - Ann T Hanna-Mitchell
- Department of Surgery, MetroHealth Medical Center, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
10
|
Chang SN, Lee JM, Oh H, Park JH. Glutathione Peroxidase 3 Inhibits Prostate Tumorigenesis in TRAMP Mice. Prostate 2016; 76:1387-98. [PMID: 27325372 DOI: 10.1002/pros.23223] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 06/07/2016] [Indexed: 01/06/2023]
Abstract
BACKGROUND Glutathione peroxidase 3 (GPx3) is involved in protecting cells from oxidative damage, and down-regulated levels of expression have been found in prostate cancer samples. We hypothesize that loss of the GPx3 increases the rate of prostate carcinogenesis and generated GPx3-deficient transgenic adenocarcinoma of the mouse prostate (TRAMP) mice. METHODS Prostate cancer incidence and progression were determined in TRAMP, TRAMP/GPx3 (+/-) HET, and TRAMP/GPx3 (-/-) KO mice at 8, 16, and 20 weeks of age. RESULTS We found that GPx3 expression was decreased in TRAMP mice and not detected in GPx3 KO mice both in mRNA and protein levels. Disruption of GPx3 expression in TRAMP mice increased the GU tract weights and the histopathological scores in each lobes with increased proliferation rates. Moreover, inactivation of one (+/-) or both (-/-) alleles of GPx3 resulted in increase in prostate cancer incidence with activated Wnt/β-catenin pathway. CONCLUSIONS Our results provide the first in vivo molecular genetic evidence that GPx3 does indeed function as a tumor suppressor during prostate carcinogenesis. Prostate 76:1387-1398, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Seo-Na Chang
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Ji Min Lee
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hanseul Oh
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jae-Hak Park
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
11
|
Does Consumption of Omega-3 Polyunsaturated Fatty Acids Affect Lipid Profile and Fasting Blood Glucose in Patients With Traumatic Spinal Cord Injury? A Double-Blinded Randomized Clinical Trial. TOP CLIN NUTR 2015. [DOI: 10.1097/tin.0000000000000051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
Li X, Lao Y, Zhang H, Wang X, Tan H, Lin Z, Xu H. The natural compound Guttiferone F sensitizes prostate cancer to starvation induced apoptosis via calcium and JNK elevation. BMC Cancer 2015; 15:254. [PMID: 25885018 PMCID: PMC4394563 DOI: 10.1186/s12885-015-1292-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 03/30/2015] [Indexed: 12/31/2022] Open
Abstract
Background In a cytotoxicity screen in serum-free medium, Guttiferone F showed strong growth inhibitory effect against prostate cancer cells. Methods Prostate cancer cells LNCaP and PC3 were treated with Guttiferone F in serum depleted medium. Sub-G1 phase distributions were estimated with flow cytometry. Mitochondrial disruption was observed under confocal microscope using Mitotracker Red staining. Gene and protein expression changes were detected by real-time PCR and Western blotting. Ca2+ elevation was examined by Fluo-4 staining under fluorescence microscope. PC3 xenografts in mice were examined by immunohistochemical analysis. Results Guttiferone F had strong growth inhibitory effect against prostate cancer cell lines under serum starvation. It induced a significant increase in sub-G1 fraction and DNA fragmentation. In serum-free medium, Guttiferone F triggered mitochondria dependent apoptosis by regulating Bcl-2 family proteins. In addition, Guttiferone F attenuated the androgen receptor expression and phosphorylation of ERK1/2, while activating the phosphorylation of JNK and Ca2+ flux. Combination of caloric restriction with Guttiferone F in vivo could increase the antitumor effect without causing toxicity. Conclusions Guttiferone F induced prostate cancer cell apoptosis under serum starvation via Ca2+ elevation and JNK activation. Combined with caloric restriction, Guttiferone F exerted significant growth inhibition of PC3 cells xenograft in vivo. Guttiferone F is therefore a potential anti-cancer compound. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1292-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xin Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P.R. China. .,Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, P.R. China.
| | - Yuanzhi Lao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P.R. China. .,Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, P.R. China.
| | - Hong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P.R. China. .,Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, P.R. China.
| | - Xiaoyu Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P.R. China. .,Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, P.R. China.
| | - Hongsheng Tan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P.R. China. .,Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, P.R. China.
| | - Zhixiu Lin
- School of Chinese Medicine, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, SAR, China.
| | - Hongxi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P.R. China. .,Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, P.R. China.
| |
Collapse
|
13
|
Shankar E, Bhaskaran N, MacLennan GT, Liu G, Daneshgari F, Gupta S. Inflammatory Signaling Involved in High-Fat Diet Induced Prostate Diseases. JOURNAL OF UROLOGY AND RESEARCH 2015; 2:1018. [PMID: 26417612 PMCID: PMC4583131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
High-Fat Diet (HFD) has emerged as an important risk factor not only for obesity and diabetes but also for urological disorders. Recent research provides ample evidence that HFD is a putative cause for prostatic diseases including prostate cancer. The mechanisms whereby these diseases develop in the prostate have not been fully elucidated. In this review we discuss signaling pathways intricately involved in HFD-induced prostate disease. We performed a search through PUBMED using key words "high fat diet" and "prostate". Our data and perspectives are included in this review along with research performed by various other groups. HFD is positively associated with an increased risk of benign prostatic hyperplasia (BPH) and prostate cancer. HFD induces oxidative stress and inflammation in the prostate gland, and these adverse influences transform it from a normal to a diseased state. Studies demonstrate that HFD accelerates the generation of reactive oxygen species by driving the NADPH oxidase system, exacerbating oxidative stress in the prostate. HFD also causes a significant increase in the levels of pro-inflammatory cytokines and gene products through activation of two important signaling pathways: the Signal Transducer and Activator of Transcription (STAT)-3 and Nuclear Factor-kappa B (NF-κB). Both these pathways function as transcription factors required for regulating genes involved in proliferation, survival, angiogenesis, invasion and inflammation. The crosstalk between these two pathways enhances their regulatory function. Through its influences on the NF-κB and Stat-3 signaling pathways, it appears likely that HFD increases the risk of development of BPH and prostate cancer.
Collapse
Affiliation(s)
- Eswar Shankar
- Department of Urology, Case Western Reserve University & University Hospitals Case Medical Center, Cleveland, Ohio 44106 USA
| | - Natarajan Bhaskaran
- Department of Urology, Case Western Reserve University & University Hospitals Case Medical Center, Cleveland, Ohio 44106 USA
| | - Gregory T MacLennan
- Department of Pathology, Case Western Reserve University & University Hospitals Case Medical Center, Cleveland, Ohio 44106 USA
| | - Guiming Liu
- Department of Urology, Case Western Reserve University & University Hospitals Case Medical Center, Cleveland, Ohio 44106 USA
| | - Firouz Daneshgari
- Department of Urology, Case Western Reserve University & University Hospitals Case Medical Center, Cleveland, Ohio 44106 USA
| | - Sanjay Gupta
- Department of Urology, Case Western Reserve University & University Hospitals Case Medical Center, Cleveland, Ohio 44106 USA
- Department of Nutrition, Case Western Reserve University, Cleveland, Ohio 44106 USA
- Case Comprehensive Cancer Center, Cleveland, Ohio 44106 USA
| |
Collapse
|
14
|
Chang SN, Han J, Abdelkader TS, Kim TH, Lee JM, Song J, Kim KS, Park JH, Park JH. High animal fat intake enhances prostate cancer progression and reduces glutathione peroxidase 3 expression in early stages of TRAMP mice. Prostate 2014; 74:1266-77. [PMID: 25053105 DOI: 10.1002/pros.22843] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 06/03/2014] [Indexed: 12/23/2022]
Abstract
BACKGROUND Prostate cancer is the most frequently diagnosed cancer in Western men, and more men have been diagnosed at younger ages in recent years. A high-fat Western-style diet is a known risk factor for prostate cancer and increases oxidative stress. METHODS We evaluated the association between dietary animal fat and expression of antioxidant enzymes, particularly glutathione peroxidase 3 (GPx3), in the early stages of transgenic adenocarcinoma of the mouse prostate (TRAMP) mice. Six-week-old male nontransgenic and TRAMP mice were placed on high animal fat (45% Kcal fat) or control (10% Kcal fat) diets and sacrificed after 5 or 10 weeks. RESULTS The histopathological score increased with age and high-fat diet consumption. The histopathological scores in dorsal and lateral lobes increased in the 10-week high-fat diet group (6.2±0.2 and 6.2±0.4, respectively) versus the 10-week control diet group (5.3±0.3 and 5.2±0.2, respectively). GPx3 decreased both at the mRNA and protein levels in mouse prostate. GPx3 mRNA expression decreased (∼36.27% and ∼23.91%, respectively) in the anterior and dorsolateral prostate of TRAMP mice fed a high-fat diet compared to TRAMP mice fed a control diet. Cholesterol treatment increased PC-3 human prostate cancer cell proliferation, decreased GPx3 mRNA and protein levels, and increased H2 O2 levels in culture medium. Moreover, increasing GPx3 mRNA expression by troglitazone in PC-3 cells decreased cell proliferation and lowered H2 O2 levels. CONCLUSIONS Dietary fat enhances prostate cancer progression, possibly by suppressing GPx3 expression and increasing proliferation of prostate intraepithelial neoplasia (PIN) epithelial cells.
Collapse
Affiliation(s)
- Seo-Na Chang
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Al-Rejaie SS, Aleisa AM, Sayed-Ahmed MM, AL-Shabanah OA, Abuohashish HM, Ahmed MM, Al-Hosaini KA, Hafez MM. Protective effect of rutin on the antioxidant genes expression in hypercholestrolemic male Westar rat. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 13:136. [PMID: 23773725 PMCID: PMC3717094 DOI: 10.1186/1472-6882-13-136] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 06/13/2013] [Indexed: 01/09/2023]
Abstract
Background High-cholesterol diet (HCD) increases the oxidative stress in different tissues leading to many diseases. Rutin (RT) is a natural flavonoid (vitamin p), which possesses an antioxidant activity with protective potential. The present study aimed to examine the potential effects of rutin on hypercholesterolemia-induced hepatotoxicity in rat. Methods Male Wistar rats were divided into four groups: GI) control (Rat chow), GII) Rutin (0.2% in rat chow), GIII) HCD (1% cholesterol and 0.5% cholic acid in rat chow) and GIV) rutin (0.2%) + HCD. Results Rutin in combination with HCD induced a significant protective effect against the hepatotoxicity by reducing the plasma level of alanine transaminase (ALT), aspartate aminotransferase (AST), triglyceride (TG), total cholesterol (TC), and low-density lipoprotein (LDL). The HCD (GII) showed a decrease in glutathione peroxidase (GPx), glutathione reductase (GR) and increase in glutathione S transferase α (GSTα), sulfiredoxin-1(Srx1), glutamate-cysteine ligase (GCL) and paraoxonase-1(PON-1) genes expression levels. Conclusion Treatment with rutin reversed all the altered genes induced by HCD nearly to the control levels. The present study concluded that the HCD feedings altered the expression levels of some genes involved in the oxidative stress pathway resulting in DNA damage and hepatotoxicity. Rutin have a hepatoprotective effect through the mechanism of enhancing the antioxidant effect via amelioration of oxidative stress genes.
Collapse
|
16
|
High-fat diets rich in ω-3 or ω-6 polyunsaturated fatty acids have distinct effects on lipid profiles and lipid peroxidation in mice selected for either high body weight or leanness. Nutrition 2013; 29:765-71. [DOI: 10.1016/j.nut.2012.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 10/16/2012] [Accepted: 10/18/2012] [Indexed: 12/26/2022]
|
17
|
Abstract
BACKGROUND With increasing evidence that hydroperoxides are not only toxic but rather exert essential physiological functions, also hydroperoxide removing enzymes have to be re-viewed. In mammals, the peroxidases inter alia comprise the 8 glutathione peroxidases (GPx1-GPx8) so far identified. SCOPE OF THE REVIEW Since GPxs have recently been reviewed under various aspects, we here focus on novel findings considering their diverse physiological roles exceeding an antioxidant activity. MAJOR CONCLUSIONS GPxs are involved in balancing the H2O2 homeostasis in signalling cascades, e.g. in the insulin signalling pathway by GPx1; GPx2 plays a dual role in carcinogenesis depending on the mode of initiation and cancer stage; GPx3 is membrane associated possibly explaining a peroxidatic function despite low plasma concentrations of GSH; GPx4 has novel roles in the regulation of apoptosis and, together with GPx5, in male fertility. Functions of GPx6 are still unknown, and the proposed involvement of GPx7 and GPx8 in protein folding awaits elucidation. GENERAL SIGNIFICANCE Collectively, selenium-containing GPxs (GPx1-4 and 6) as well as their non-selenium congeners (GPx5, 7 and 8) became key players in important biological contexts far beyond the detoxification of hydroperoxides. This article is part of a Special Issue entitled Cellular functions of glutathione.
Collapse
Affiliation(s)
- Regina Brigelius-Flohé
- Department of Biochemistry of Micronutrients, German Institute of Human Nutrition, Nuthetal, Germany.
| | | |
Collapse
|
18
|
Shankar E, Vykhovanets EV, Vykhovanets OV, MacLennan GT, Singh R, Bhaskaran N, Shukla S, Gupta S. High-fat diet activates pro-inflammatory response in the prostate through association of Stat-3 and NF-κB. Prostate 2012; 72:233-43. [PMID: 21604287 PMCID: PMC3161175 DOI: 10.1002/pros.21425] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 04/28/2011] [Indexed: 01/05/2023]
Abstract
BACKGROUND Signal transducer and activator of transcription (Stat)-3 and nuclear factor-kappa B (NF-κB) are important signaling pathways constitutively activated during inflammation. We previously reported that high-fat diet (HFD) intake induces oxidative stress in the prostate through elevated expression of NADPH oxidase subunits causing NF-κB activation. We sought to determine whether Stat-3 is involved in the activation of NF-κB in the prostate as a result of HFD feeding, leading to inflammation. METHODS C57BL/6 mice were either fed with regular diet (RD) or HFD for 4 and 8 weeks. Plasma cytokine levels were determined by multiplex analysis. Western blotting was performed to determine the expression of NF-κB, Stat-3, Akt, PDK1, PKCε, and their phosphorylated forms along with pathologic evaluation of the prostate. Immunoprecipitation and electrophoretic mobility shift assay (EMSA) were conducted to study the association between Stat-3 and NF-κB. RESULTS C57BL/6 mice fed with HFD showed a significant increase in the plasma levels of IL-1ß, IL-6, IL-17, and TNFα after 4 and 8 weeks of feeding, compared with RD controls. HFD feeding elevated the intraprostatic expression of IL-6 and caused activation of PKCε and Akt, the upstream kinase regulating Stat-3 and NF-κB. Nuclear extracts from the prostates of mice fed with HFD exhibited constitutively activated levels of Stat-3 and NF-κB/p65. Increased association between the activated forms of Stat-3 and NF-κB/p65 was observed in the nucleus as a result of HFD feeding, a finding that was accompanied by morphologic evidence of increased intraprostatic inflammation. CONCLUSIONS Our findings suggest that HFD activates Stat-3 and NF-κB/p65 in the prostate, and their interaction is associated with increased inflammation in the prostate.
Collapse
Affiliation(s)
- Eswar Shankar
- Department of Urology, Case Western Reserve University & The Urology Institute, University Hospitals Case Medical Center, Cleveland, Ohio 44106
| | - Eugene V Vykhovanets
- Department of Urology, Case Western Reserve University & The Urology Institute, University Hospitals Case Medical Center, Cleveland, Ohio 44106
| | - Olena V Vykhovanets
- Department of Urology, Case Western Reserve University & The Urology Institute, University Hospitals Case Medical Center, Cleveland, Ohio 44106
| | - Gregory T MacLennan
- Department of Pathology, Case Western Reserve University & The Urology Institute, University Hospitals Case Medical Center, Cleveland, Ohio 44106
| | - Rajesh Singh
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, Georgia 30310
| | - Natarajan Bhaskaran
- Department of Urology, Case Western Reserve University & The Urology Institute, University Hospitals Case Medical Center, Cleveland, Ohio 44106
| | - Sanjeev Shukla
- Department of Urology, Case Western Reserve University & The Urology Institute, University Hospitals Case Medical Center, Cleveland, Ohio 44106
| | - Sanjay Gupta
- Department of Urology, Case Western Reserve University & The Urology Institute, University Hospitals Case Medical Center, Cleveland, Ohio 44106
- Department of Nutrition, Case Western Reserve University & The Urology Institute, University Hospitals Case Medical Center, Cleveland, Ohio 44106
| |
Collapse
|