1
|
Liu Y, Hatano K, Nonomura N. Liquid Biomarkers in Prostate Cancer Diagnosis: Current Status and Emerging Prospects. World J Mens Health 2025; 43:8-27. [PMID: 38772530 PMCID: PMC11704174 DOI: 10.5534/wjmh.230386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/12/2024] [Accepted: 01/22/2024] [Indexed: 05/23/2024] Open
Abstract
Prostate cancer (PCa) is a major health concern that necessitates appropriate diagnostic approaches for timely intervention. This review critically evaluates the role of liquid biopsy techniques, focusing on blood- and urine-based biomarkers, in overcoming the limitations of conventional diagnostic methods. The 4Kscore test and Prostate Health Index have demonstrated efficacy in distinguishing PCa from benign conditions. Urinary biomarker tests such as PCa antigen 3, MyProstateScore, SelectMDx, and ExoDx Prostate IntelliScore test have revolutionized risk stratification and minimized unnecessary biopsies. Emerging biomarkers, including non-coding RNAs, circulating tumor DNA, and prostate-specific antigen (PSA) glycosylation, offer valuable insights into PCa biology, enabling personalized treatment strategies. Advancements in non-invasive liquid biomarkers for PCa diagnosis may facilitate the stratification of patients and avoid unnecessary biopsies, particularly when PSA is in the gray area of 4 to 10 ng/mL.
Collapse
Affiliation(s)
- Yutong Liu
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Koji Hatano
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan.
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
2
|
Borbiev T, Kohaar I, Petrovics G. Clinical Biofluid Assays for Prostate Cancer. Cancers (Basel) 2023; 16:165. [PMID: 38201592 PMCID: PMC10777952 DOI: 10.3390/cancers16010165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/11/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
This mini review summarizes the currently available clinical biofluid assays for PCa. The second most prevalent cancer worldwide is PCa. PCa is a heterogeneous disease, with a large percentage of prostate tumors being indolent, and with a relatively slow metastatic potential. However, due to the high case numbers, the absolute number of PCa-related deaths is still high. In fact, it causes the second highest number of cancer deaths in American men. As a first step for the diagnosis of PCa, the PSA test has been widely used. However, it has low specificity, which results in a high number of false positives leading to overdiagnosis and overtreatment. Newer derivatives of the original PSA test, including the Food and Drug Administration (FDA)-approved 4K (four kallikreins) and the PHI (Prostate Health Index) blood tests, have higher specificities. Tissue-based PCa tests are problematic as biopsies are invasive and have limited accuracy due to prostate tumor heterogeneity. Liquid biopsies offer a minimally or non-invasive choice for the patients, while providing a more representative reflection of the spatial heterogeneity in the prostate. In addition to the abovementioned blood-based tests, urine is a promising source of PCa biomarkers, offering a supplementary avenue for early detection and improved tumor classification. Four urine-based PCa tests are either FDA- or CLIA-approved: PCA3 (PROGENSA), ExoDX Prostate Intelliscore, MiPS, and SelectMDx. We will discuss these urine-based, as well as the blood-based, clinical PCa tests in more detail. We also briefly discuss a few promising biofluid marker candidates (DNA methylation, micro-RNAs) which are not in clinical application. As no single assay is perfect, we envision that a combination of biomarkers, together with imaging, will become the preferred practice.
Collapse
Affiliation(s)
- Talaibek Borbiev
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA; (T.B.); (I.K.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Indu Kohaar
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA; (T.B.); (I.K.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Rockville, MD 20850, USA
| | - Gyorgy Petrovics
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20817, USA; (T.B.); (I.K.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| |
Collapse
|
3
|
Cussenot O, Renard-Penna R, Montagne S, Ondet V, Pilon A, Guechot J, Comperat E, Hamdy F, Lamb A, Cancel-Tassin G. Clinical performance of magnetic resonance imaging and biomarkers for prostate cancer diagnosis in men at high genetic risk. BJU Int 2023; 131:745-754. [PMID: 36648168 DOI: 10.1111/bju.15968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVES To evaluate different scenarios for the management of early diagnosis of cancer (PCa) in men at high genetic risk, using recently developed blood and urinary molecular biomarkers in combination with clinical information alongside multiparametric magnetic resonance imaging (mpMRI). PATIENTS AND METHODS A total of 322 patients with a high genetic risk (familial or personal history of cancers or a predisposing germline variant) were included in this study. The primary outcome was the detection rates of PCa (positive biopsy) or clinically significant PCa (biopsy with International Society of Urological Pathology [ISUP] grade >1). Clinical parameters included age, body mass index, ancestry, and germline mutational status, mpMRI, prostate-specific antigen density (PSAD), Prostate Health Index and urinary markers (Prostate Cancer Associated 3, SelectMdx™ and T2:ERG score) were assessed. Sensitivity (Se) and specificity (Sp) for each marker at their recommended cut-off for clinical practice were calculated. Comparison between diagnoses accuracy of each procedure and scenario was computed using mutual information based and direct effect contribution using a supervised Bayesian network approach. RESULTS A mpMRI Prostate Imaging-Reporting and Data System (PI-RADS) score ≥3 showed higher Se than mpMRI PI-RADS score ≥4 for detection of PCa (82% vs 61%) and for the detection of ISUP grade >1 lesions (96% vs 80%). mpMRI PI-RADS score ≥3 performed better than a PSA level of ≥3 ng/mL (Se 96%, Sp 53% vs Se 91%, Sp 8%) for detection of clinically significant PCa. In case of negative mpMRI results, the supervised Bayesian network approach showed that urinary markers (with the same accuracy for all) and PSAD of ≥0.10 ng/mL/mL were the most useful indicators of decision to biopsy. CONCLUSIONS We found that screening men at high genetic risk of PCa must be based on mpMRI without pre-screening based on a PSA level of >3 ng/mL, to avoid missing too many ISUP grade >1 tumours and to significantly reduce the number of unnecessary biopsies. However, urinary markers or a PSAD of ≥0.10 ng/mL/mL when mpMRI was negative increased the detection of ISUP grade >1 cancers. We suggest that a baseline mpMRI be discussed for men at high genetic risk from the age of 40 years.
Collapse
Affiliation(s)
- Olivier Cussenot
- CeRePP, Paris, France
- GRC 5 Predictive Onco-Urology, Sorbonne University, AP-HP Sorbonne University, Paris, France
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Raphaele Renard-Penna
- CeRePP, Paris, France
- GRC 5 Predictive Onco-Urology, Sorbonne University, AP-HP Sorbonne University, Paris, France
| | - Sarah Montagne
- GRC 5 Predictive Onco-Urology, Sorbonne University, AP-HP Sorbonne University, Paris, France
| | - Valerie Ondet
- GRC 5 Predictive Onco-Urology, Sorbonne University, AP-HP Sorbonne University, Paris, France
| | - Antoine Pilon
- Department of Medical Biology and Pathology, AP-HP Sorbonne University, Paris, France
| | - Jerome Guechot
- Department of Medical Biology and Pathology, AP-HP Sorbonne University, Paris, France
| | - Eva Comperat
- CeRePP, Paris, France
- GRC 5 Predictive Onco-Urology, Sorbonne University, AP-HP Sorbonne University, Paris, France
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Freddie Hamdy
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Alastair Lamb
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Geraldine Cancel-Tassin
- CeRePP, Paris, France
- GRC 5 Predictive Onco-Urology, Sorbonne University, AP-HP Sorbonne University, Paris, France
| |
Collapse
|
4
|
A review on the role of PCA3 lncRNA in carcinogenesis with an especial focus on prostate cancer. Pathol Res Pract 2022; 231:153800. [DOI: 10.1016/j.prp.2022.153800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 02/05/2022] [Accepted: 02/09/2022] [Indexed: 12/31/2022]
|
5
|
Low Levels of Urinary PSA Better Identify Prostate Cancer Patients. Cancers (Basel) 2021; 13:cancers13143570. [PMID: 34298784 PMCID: PMC8303247 DOI: 10.3390/cancers13143570] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 01/08/2023] Open
Abstract
Simple Summary Elevated PSA levels in blood tests are the gold standard for early prostate cancer detection, but its lack of specificity limits its clinical use as a mass screening test. The paradox is that it has long been known that advanced prostate cancers can lose PSA expression. We have observed that in the presence of tumors, the prostate produces and secretes less PSA than in healthy or benign conditions. Therefore, the PSA evaluation in urine provided more accurate information on the presence of prostate tumors than the blood test, representing a new method for the screening of prostate cancer. Abstract Serum prostatic specific antigen (PSA) has proven to have limited accuracy in early diagnosis and in making clinical decisions about different therapies for prostate cancer (PCa). This is partially due to the fact that an increase in PSA in the blood is due to the compromised architecture of the prostate, which is only observed in advanced cancer. On the contrary, PSA observed in the urine (uPSA) reflects the quantity produced by the prostate, and therefore can give more information about the presence of disease. We enrolled 574 men scheduled for prostate biopsy at the urology clinic, and levels of uPSA were evaluated. uPSA levels resulted lower among subjects with PCa when compared to patients with negative biopsies. An indirect correlation was observed between uPSA amount and the stage of disease. Loss of expression of PSA appears as a characteristic of prostate cancer development and its evaluation in urine represents an interesting approach for the early detection of the disease and the stratification of patients.
Collapse
|
6
|
Li K, Fan J, Qin X, Wei Q. Novel therapeutic compounds for prostate adenocarcinoma treatment: An analysis using bioinformatic approaches and the CMap database. Medicine (Baltimore) 2020; 99:e23768. [PMID: 33371142 PMCID: PMC7748316 DOI: 10.1097/md.0000000000023768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 11/17/2020] [Indexed: 01/15/2023] Open
Abstract
INTRODUCTION Prostate adenocarcinoma is the most frequently diagnosed malignancy, particularly for people >70 years old. The main challenge in the treatment of advanced neoplasm is bone metastasis and therapeutic resistance for known oncology drugs. Novel treatment methods to prolong the survival time and improve the life quality of these specific patients are required. The present study attempted to screen potential therapeutic compounds for the tumor through bioinformatics approaches, in order to provide conceptual treatment for this malignant disease. METHODS Differentially expressed genes were obtained from the Gene Expression Omnibus database and submitted into the Connectivity Map database for the detection of potentially associated compounds. Target genes were extracted from the search results. Functional annotation and pathway enrichment were performed for the confirmation. Survival analysis was used to measure potential therapeutic effects. RESULTS It was revealed that 3 compounds (vanoxerine, tolnaftate, and gabexate) may help to prolong the disease-free survival time from tumor metastasis of patients with the tumor. A total of 6 genes [also-keto reductase family 1 member C3 (AKR1C3), collagen type III α 1 chain (COL3A1), lipoprotein lipase (LPL), glucuronidase, β pseudogene 11 (GUSBP11), apolipoprotein E (APOE), and collagen type I α 1 chain (COL1A1)] were identified to be the potential therapeutic targets for the aforementioned compounds. CONCLUSION In the present study, it was speculated that 3 compounds may function as the potential therapeutic drugs of bone metastatic prostate adenocarcinoma; however, further studies verifying vitro and in vivo are necessary.
Collapse
Affiliation(s)
- Kai Li
- Departments of Orthopedics, The First Affiliated Hospital, Guangxi Medical University
| | - Jingyuan Fan
- Departments of Orthopedics, The First Affiliated Hospital, Guangxi Medical University
| | - Xinyi Qin
- Graduate School of Guangxi Medical University, Nanning, Guangxi, PR China
| | - Qingjun Wei
- Departments of Orthopedics, The First Affiliated Hospital, Guangxi Medical University
| |
Collapse
|
7
|
Tonry C, Finn S, Armstrong J, Pennington SR. Clinical proteomics for prostate cancer: understanding prostate cancer pathology and protein biomarkers for improved disease management. Clin Proteomics 2020; 17:41. [PMID: 33292167 PMCID: PMC7678104 DOI: 10.1186/s12014-020-09305-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022] Open
Abstract
Following the introduction of routine Prostate Specific Antigen (PSA) screening in the early 1990's, Prostate Cancer (PCa) is often detected at an early stage. There are also a growing number of treatment options available and so the associated mortality rate is generally low. However, PCa is an extremely complex and heterogenous disease and many patients suffer disease recurrence following initial therapy. Disease recurrence commonly results in metastasis and metastatic PCa has an average survival rate of just 3-5 years. A significant problem in the clinical management of PCa is being able to differentiate between patients who will respond to standard therapies and those who may benefit from more aggressive intervention at an earlier stage. It is also acknowledged that for many men the disease is not life threatenting. Hence, there is a growing desire to identify patients who can be spared the significant side effects associated with PCa treatment until such time (if ever) their disease progresses to the point where treatment is required. To these important clinical needs, current biomarkers and clinical methods for patient stratification and personlised treatment are insufficient. This review provides a comprehensive overview of the complexities of PCa pathology and disease management. In this context it is possible to review current biomarkers and proteomic technologies that will support development of biomarker-driven decision tools to meet current important clinical needs. With such an in-depth understanding of disease pathology, the development of novel clinical biomarkers can proceed in an efficient and effective manner, such that they have a better chance of improving patient outcomes.
Collapse
Affiliation(s)
- Claire Tonry
- UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Stephen Finn
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin 8, Ireland
| | | | | |
Collapse
|
8
|
Lebastchi AH, Russell CM, Niknafs YS, Eyrich NW, Chopra Z, Botbyl R, Kabeer R, Osawa T, Siddiqui J, Siddiqui R, Davenport MS, Mehra R, Tomlins SA, Kunju LP, Chinnaiyan AM, Wei JT, Tosoian JJ, Morgan TM. Impact of the MyProstateScore (MPS) Test on the Clinical Decision to Undergo Prostate Biopsy: Results From a Contemporary Academic Practice. Urology 2020; 145:204-210. [PMID: 32777370 DOI: 10.1016/j.urology.2020.07.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/03/2020] [Accepted: 07/27/2020] [Indexed: 01/04/2023]
Abstract
OBJECTIVE To evaluate the association of the MyProstateScore (MPS) urine test on the decision to undergo biopsy in men referred for prostate biopsy in urology practice. METHODS MPS testing was offered as an alternative to immediate biopsy in men referred to the University of Michigan for prostate biopsy from October 2013 through October 2016. The primary endpoint was the decision to perform biopsy. The proportion of patients undergoing biopsy was compared to predicted risk scores from the Prostate Cancer Prevention Trial risk calculator (PCPTrc). Analyses were stratified by the use of multiparametric magnetic resonance imaging (mpMRI). The associations of PCPTrc, MPS, and mpMRI with the decision to undergo biopsy were explored in a multivariable logistic regression model. RESULTS Of 248 patients, 134 (54%) proceeded to prostate biopsy. MPS was significantly higher in biopsied patients (median 29 vs14, P < .001). The use of biopsy was strongly associated with MPS, with biopsy rates of 26%, 38%, 58%, 90%, and 85% in the first through fifth quintiles, respectively (P < .001). MPS association with biopsy persisted upon stratification by mpMRI. On multivariable analysis, MPS was strongly associated with the decision to undergo biopsy when modeled as both a continuous (odds ratio [OR] 1.05, 95%; confidence interval [CI] 1.04-1.08; <.001) and binary (OR 7.76, 95%; CI 4.14-14.5; P < .001) variable. CONCLUSION Many patients (46%) undergoing clinical MPS testing as an alternative to immediate prostate biopsy were able to avoid biopsy. Increasing MPS was strongly associated with biopsy rates. These findings were robust to use of mpMRI.
Collapse
Affiliation(s)
| | | | - Yashar S Niknafs
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI
| | | | - Zoey Chopra
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI
| | - Rachel Botbyl
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI
| | - Rana Kabeer
- Department of Urology, University of Michigan, Ann Arbor, MI
| | - Takahiro Osawa
- Department of Urology, University of Michigan, Ann Arbor, MI
| | - Javed Siddiqui
- Department of Urology, University of Michigan, Ann Arbor, MI; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI
| | - Rabia Siddiqui
- Department of Urology, University of Michigan, Ann Arbor, MI
| | | | - Rohit Mehra
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI; Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Scott A Tomlins
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI; Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Lakshimi P Kunju
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI; Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Arul M Chinnaiyan
- Department of Urology, University of Michigan, Ann Arbor, MI; Rogel Cancer Center, University of Michigan, Ann Arbor, MI; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI; Department of Pathology, University of Michigan, Ann Arbor, MI; Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI
| | - John T Wei
- Department of Urology, University of Michigan, Ann Arbor, MI; Dow Division of Health Services Research, University of Michigan, Ann Arbor, MI
| | - Jeffrey J Tosoian
- Department of Urology, University of Michigan, Ann Arbor, MI; Rogel Cancer Center, University of Michigan, Ann Arbor, MI; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI.
| | - Todd M Morgan
- Department of Urology, University of Michigan, Ann Arbor, MI; Rogel Cancer Center, University of Michigan, Ann Arbor, MI; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
9
|
Jeon J, Olkhov-Mitsel E, Xie H, Yao CQ, Zhao F, Jahangiri S, Cuizon C, Scarcello S, Jeyapala R, Watson JD, Fraser M, Ray J, Commisso K, Loblaw A, Fleshner NE, Bristow RG, Downes M, Vesprini D, Liu S, Bapat B, Boutros PC. Temporal Stability and Prognostic Biomarker Potential of the Prostate Cancer Urine miRNA Transcriptome. J Natl Cancer Inst 2020; 112:247-255. [PMID: 31161221 PMCID: PMC7073919 DOI: 10.1093/jnci/djz112] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 03/01/2019] [Accepted: 05/30/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The development of noninvasive tests for the early detection of aggressive prostate tumors is a major unmet clinical need. miRNAs are promising noninvasive biomarkers: they play essential roles in tumorigenesis, are stable under diverse analytical conditions, and can be detected in body fluids. METHODS We measured the longitudinal stability of 673 miRNAs by collecting serial urine samples from 10 patients with localized prostate cancer. We then measured temporally stable miRNAs in an independent training cohort (n = 99) and created a biomarker predictive of Gleason grade using machine-learning techniques. Finally, we validated this biomarker in an independent validation cohort (n = 40). RESULTS We found that each individual has a specific urine miRNA fingerprint. These fingerprints are temporally stable and associated with specific biological functions. We identified seven miRNAs that were stable over time within individual patients and integrated them with machine-learning techniques to create a novel biomarker for prostate cancer that overcomes interindividual variability. Our urine biomarker robustly identified high-risk patients and achieved similar accuracy as tissue-based prognostic markers (area under the receiver operating characteristic = 0.72, 95% confidence interval = 0.69 to 0.76 in the training cohort, and area under the receiver operating characteristic curve = 0.74, 95% confidence interval = 0.55 to 0.92 in the validation cohort). CONCLUSIONS These data highlight the importance of quantifying intra- and intertumoral heterogeneity in biomarker development. This noninvasive biomarker may usefully supplement invasive or expensive radiologic- and tissue-based assays.
Collapse
Affiliation(s)
- Jouhyun Jeon
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | | | - Honglei Xie
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Cindy Q Yao
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Fang Zhao
- Lunenfeld-Tannenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Sahar Jahangiri
- Sunnybrook Research Institute and Department of Radiation Oncology, Sunnybrook-Odette Cancer Centre, Toronto, ON, Canada
| | - Carmelle Cuizon
- Lunenfeld-Tannenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Seville Scarcello
- Sunnybrook Research Institute and Department of Radiation Oncology, Sunnybrook-Odette Cancer Centre, Toronto, ON, Canada
| | - Renu Jeyapala
- Lunenfeld-Tannenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - John D Watson
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Michael Fraser
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Jessica Ray
- Sunnybrook Research Institute and Department of Radiation Oncology, Sunnybrook-Odette Cancer Centre, Toronto, ON, Canada
| | - Kristina Commisso
- Sunnybrook Research Institute and Department of Radiation Oncology, Sunnybrook-Odette Cancer Centre, Toronto, ON, Canada
| | - Andrew Loblaw
- Sunnybrook Research Institute and Department of Radiation Oncology, Sunnybrook-Odette Cancer Centre, Toronto, ON, Canada
| | - Neil E Fleshner
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Robert G Bristow
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Manchester Cancer Research Centre, University of Manchester, Manchester, UK
| | | | - Danny Vesprini
- Sunnybrook Research Institute and Department of Radiation Oncology, Sunnybrook-Odette Cancer Centre, Toronto, ON, Canada
| | - Stanley Liu
- Sunnybrook Research Institute and Department of Radiation Oncology, Sunnybrook-Odette Cancer Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Bharati Bapat
- Lunenfeld-Tannenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Paul C Boutros
- Ontario Institute for Cancer Research, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA
- Department of Urology, University of California, Los Angeles, Los Angeles, CA
- Broad Stem Cell Research Centre, University of California, Los Angeles, Los Angeles, CA
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
10
|
Narayan VM. A critical appraisal of biomarkers in prostate cancer. World J Urol 2019; 38:547-554. [PMID: 30993424 DOI: 10.1007/s00345-019-02759-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/04/2019] [Indexed: 12/14/2022] Open
Abstract
PURPOSE A number of urine and blood-based biomarker tests have been described for prostate cancer, although to date there has only been a limited exploration of the methodology behind the validation studies that underpin these tests. METHODS In this review, a selection of commercially available urine and blood-based biomarker tests for prostate cancer are described, and the underlying key validation studies for each test are critically appraised using the Standards for Reporting Diagnostic Accuracy (STARD) 2015 statement. RESULTS The ExoDx Prostate Intelliscore, SelectMDx, Progensa PCA3, Mi-Prostate Score, 4K Score, and Prostate Health Index (PHI) tests were reviewed. Most of the validation studies supporting these tests perform exploratory analyses to determine cut-off values in a post hoc manner, comprise cohorts that are primarily Caucasian, report receiver operating characteristic curves that combine the biomarker's result with established clinical nomograms and are based on a reference standard (prostate biopsy) that lacks central pathology review. Deficiencies in STARD reporting guidelines include frequent failure to provide a published study protocol, prospective study registration in a registry, a flow diagram, justification for sample size determination, a discussion of adverse events with testing, and information on how missing or indeterminate test results should be managed. CONCLUSIONS Key validation studies that support many commercially available urine and blood-based biomarkers for prostate cancers have deficiencies in transparency based on STARD reporting guidelines, and limitations in methodology must be considered when deciding when these tests should be applied in clinical practice.
Collapse
Affiliation(s)
- Vikram M Narayan
- Department of Urology, University of Minnesota, 420 Delaware Street SE, MMC 394, Minneapolis, MN, 55455, USA.
| |
Collapse
|
11
|
Lamy PJ, Allory Y, Gauchez AS, Asselain B, Beuzeboc P, de Cremoux P, Fontugne J, Georges A, Hennequin C, Lehmann-Che J, Massard C, Millet I, Murez T, Schlageter MH, Rouvière O, Kassab-Chahmi D, Rozet F, Descotes JL, Rébillard X. Prognostic Biomarkers Used for Localised Prostate Cancer Management: A Systematic Review. Eur Urol Focus 2018; 4:790-803. [DOI: 10.1016/j.euf.2017.02.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/08/2017] [Accepted: 02/24/2017] [Indexed: 11/28/2022]
|
12
|
García-Perdomo HA, Chaves MJ, Osorio JC, Sanchez A. Association between TMPRSS2:ERG fusion gene and the prostate cancer: systematic review and meta-analysis. Cent European J Urol 2018; 71:410-419. [PMID: 30680235 PMCID: PMC6338815 DOI: 10.5173/ceju.2018.1752] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 09/28/2018] [Accepted: 11/01/2018] [Indexed: 01/03/2023] Open
Abstract
INTRODUCTION To identify the association between the TMPRSS2:ERG fusion gene, their variants and the onset of localized prostate cancer. MATERIAL AND METHODS A systematic search strategy was carried out through MEDLINE, EMBASE, LILACS, CENTRAL and unpublished literature. We included randomized control trials, cohort, case-control and cross-sectional studies that involved patients >18 years-old assessing the association between TMPRSS2 fusion gene, its single nucleotide polymorphisms and prostate cancer. The primary outcome was prostate cancer defined by histology of the tumor coming from transrectal ultrasound guided biopsy, transurethral resection of the prostate or radical prostatectomy. We assessed the risk of bias with QUADAS2 and performed a meta-analysis with Stata 14. RESULTS We found 241 records with the search strategies. After duplicates were removed, 18 studies were included in qualitative analysis and 15 studies in meta-analysis. All included studies that had no applicability concerns and low risk of bias for flow and timing. Nine studies had an unclear risk of bias for index and reference tests, since they did not describe the blinding assessment appropriately. Regarding the association between TMPRSS2:ERG and prostate cancer, we found an odds ratio (OR) 2.24 and a 95% confidence interval (CI) (1.29 to 3.91). Regarding the kind of sample, urine showed an OR 2.79 and a 95% CI (1.12 to 6.98) and when using a DNA molecular template, the OR was 3.55 with a 95% CI (1.08 to 11.65). CONCLUSIONS There was an association between TMPRSS2:ERG fusion gene with the diagnosis of prostate cancer, mainly in urine samples and DNA-based molecular templates. TMPRSS2:ERG might be used as the gold standard biomarker for diagnosis and stratification of PCa.
Collapse
|
13
|
Angeles AK, Bauer S, Ratz L, Klauck SM, Sültmann H. Genome-Based Classification and Therapy of Prostate Cancer. Diagnostics (Basel) 2018; 8:E62. [PMID: 30200539 PMCID: PMC6164491 DOI: 10.3390/diagnostics8030062] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 12/19/2022] Open
Abstract
In the past decade, multi-national and multi-center efforts were launched to sequence prostate cancer genomes, transcriptomes, and epigenomes with the aim of discovering the molecular underpinnings of tumorigenesis, cancer progression, and therapy resistance. Multiple biological markers and pathways have been discovered to be tumor drivers, and a molecular classification of prostate cancer is emerging. Here, we highlight crucial findings of these genome-sequencing projects in localized and advanced disease. We recapitulate the utility and limitations of current clinical practices to diagnosis, prognosis, and therapy, and we provide examples of insights generated by the molecular profiling of tumors. Novel treatment concepts based on these molecular alterations are currently being addressed in clinical trials and will lead to an enhanced implementation of precision medicine strategies.
Collapse
Affiliation(s)
- Arlou Kristina Angeles
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), and National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, Heidelberg D-69120, Germany.
| | - Simone Bauer
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), and National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, Heidelberg D-69120, Germany.
| | - Leonie Ratz
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), and National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, Heidelberg D-69120, Germany.
| | - Sabine M Klauck
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), and National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, Heidelberg D-69120, Germany.
| | - Holger Sültmann
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), and National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, Heidelberg D-69120, Germany.
| |
Collapse
|
14
|
Raja N, Russell CM, George AK. Urinary markers aiding in the detection and risk stratification of prostate cancer. Transl Androl Urol 2018; 7:S436-S442. [PMID: 30363496 PMCID: PMC6178315 DOI: 10.21037/tau.2018.07.01] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/04/2018] [Indexed: 01/19/2023] Open
Abstract
The purpose of this review is to highlight the role of existing and promising urinary biomarkers for the detection and prognostication of prostate cancer (PCa). A number of novel urinary biomarkers have been introduced into the clinical space, which in combination with clinical variables, have demonstrated an increased ability to select patients for biopsy and identify men at risk of harboring clinically significant PCa. Though a number of assays require further validation, initial data is promising and forthcoming results will ultimately determine their clinical utility and commercial availability. For the past 30 years, first-line screening for PCa has relied on measurement of serum prostate-specific antigen (PSA) levels and the results from a digital rectal exam (DRE). A large body of evidence from the last 3 decades indicates that these screening methods are problematic, and often inadequate for detecting clinically significant PCa. Extensive efforts have recently been made to identify and commercialize novel PCa biomarkers for more effective detection of PCa, either alone or in combination with current screening methods. This review article highlights problems with current screening standards, and discusses 6 urinary biomarker assays in terms of their ability to detect and risk-stratify PCa: prostate cancer antigen 3 (PCA3), TMPRSS2-ERG, second chromosome locus associated with prostate-1 (SChLAP1), ExoDx, SelectMDx, and Michigan Prostate Score (MiPS).
Collapse
Affiliation(s)
- Nicholas Raja
- Department of Urology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Arvin K. George
- Department of Urology, Michigan Medicine, Ann Arbor, MI, USA
| |
Collapse
|
15
|
Koo KM, Wang J, Richards RS, Farrell A, Yaxley JW, Samaratunga H, Teloken PE, Roberts MJ, Coughlin GD, Lavin MF, Mainwaring PN, Wang Y, Gardiner RA, Trau M. Design and Clinical Verification of Surface-Enhanced Raman Spectroscopy Diagnostic Technology for Individual Cancer Risk Prediction. ACS NANO 2018; 12:8362-8371. [PMID: 30028592 DOI: 10.1021/acsnano.8b03698] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The use of emerging nanotechnologies, such as plasmonic nanoparticles in diagnostic applications, potentially offers opportunities to revolutionize disease management and patient healthcare. Despite worldwide research efforts in this area, there is still a dearth of nanodiagnostics which have been successfully translated for real-world patient usage due to the predominant sole focus on assay analytical performance and lack of detailed investigations into clinical performance in human samples. In a bid to address this pressing need, we herein describe a comprehensive clinical verification of a prospective label-free surface-enhanced Raman scattering (SERS) nanodiagnostic assay for prostate cancer (PCa) risk stratification. This contribution depicts a roadmap of (1) designing a SERS assay for robust and accurate detection of clinically validated PCa RNA targets; (2) employing a relevant and proven PCa clinical biomarker model to test our nanodiagnostic assay; and (3) investigating the clinical performance on independent training ( n = 80) and validation ( n = 40) cohorts of PCa human patient samples. By relating the detection outcomes to gold-standard patient biopsy findings, we established a PCa risk scoring system which exhibited a clinical sensitivity and specificity of 0.87 and 0.90, respectively [area-under-curve of 0.84 (95% confidence interval: 0.81-0.87) for differentiating high- and low-risk PCa] in the validation cohort. We envision that our SERS nanodiagnostic design and clinical verification approach may aid in the individualized prediction of PCa presence and risk stratification and may overall serve as an archetypical strategy to encourage comprehensive clinical evaluation of nanodiagnostic innovations.
Collapse
Affiliation(s)
- Kevin M Koo
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology , University of Queensland , Brisbane , QLD 4072 , Australia
| | - Jing Wang
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology , University of Queensland , Brisbane , QLD 4072 , Australia
| | - Renée S Richards
- The University of Queensland, Centre for Clinical Research , Brisbane , QLD 4029 , Australia
- QIMR Berghofer Medical Research Institute , Brisbane , QLD 4006 , Australia
| | - Aine Farrell
- The University of Queensland, Centre for Clinical Research , Brisbane , QLD 4029 , Australia
| | - John W Yaxley
- The University of Queensland, Centre for Clinical Research , Brisbane , QLD 4029 , Australia
- Department of Urology , Royal Brisbane and Women's Hospital , Brisbane , QLD 4029 , Australia
| | - Hema Samaratunga
- The University of Queensland, Centre for Clinical Research , Brisbane , QLD 4029 , Australia
- Aquesta Specialized Uropathology, Brisbane , QLD 4066 , Australia
- Princess Alexandra Hospital , Brisbane , QLD 4102 , Australia
| | - Patrick E Teloken
- Department of Urology , Royal Brisbane and Women's Hospital , Brisbane , QLD 4029 , Australia
- Princess Alexandra Hospital , Brisbane , QLD 4102 , Australia
| | - Matthew J Roberts
- The University of Queensland, Centre for Clinical Research , Brisbane , QLD 4029 , Australia
- Department of Urology , Royal Brisbane and Women's Hospital , Brisbane , QLD 4029 , Australia
| | - Geoffrey D Coughlin
- Department of Urology , Royal Brisbane and Women's Hospital , Brisbane , QLD 4029 , Australia
| | - Martin F Lavin
- The University of Queensland, Centre for Clinical Research , Brisbane , QLD 4029 , Australia
| | - Paul N Mainwaring
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology , University of Queensland , Brisbane , QLD 4072 , Australia
| | - Yuling Wang
- Department of Molecular Sciences, Faculty of Science and Engineering , Macquarie University , Sydney , NSW 2109 , Australia
| | - Robert A Gardiner
- The University of Queensland, Centre for Clinical Research , Brisbane , QLD 4029 , Australia
- Department of Urology , Royal Brisbane and Women's Hospital , Brisbane , QLD 4029 , Australia
- Edith Cowan University , Perth , WA 6027 , Australia
- Griffith University , Brisbane , QLD 4111 , Australia
| | - Matt Trau
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology , University of Queensland , Brisbane , QLD 4072 , Australia
- School of Chemistry and Molecular Biosciences , University of Queensland , Brisbane , QLD 4072 , Australia
| |
Collapse
|
16
|
Dhondt B, Van Deun J, Vermaerke S, de Marco A, Lumen N, De Wever O, Hendrix A. Urinary extracellular vesicle biomarkers in urological cancers: From discovery towards clinical implementation. Int J Biochem Cell Biol 2018; 99:236-256. [PMID: 29654900 DOI: 10.1016/j.biocel.2018.04.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 04/05/2018] [Accepted: 04/08/2018] [Indexed: 12/31/2022]
Abstract
Urine contains cellular elements, biochemicals, and proteins derived from glomerular filtration of plasma, renal tubule excretion, and urogenital tract secretions that reflect an individual's metabolic and pathophysiologic state. Despite intensive research into the discovery of urinary biomarkers to facilitate early diagnosis, accurate prognosis and prediction of therapy response in urological cancers, none of these markers has reached widespread use. Their implementation into daily clinical practice is hampered by a substantial degree of heterogeneity in performance characteristics and uncertainty about reliability, clinical utility and cost-effectiveness, in addition to several technical limitations. Extracellular vesicles (EV) have raised interest as a potential source of biomarker discovery because of their role in intercellular communication and the resemblance of their molecular content to that of the releasing cells. We review currently used urinary biomarkers in the clinic and attempts that have been made to identify EV-derived biomarkers for urological cancers. In addition, we discuss technical and methodological considerations towards their clinical implementation.
Collapse
Affiliation(s)
- Bert Dhondt
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium; Department of Urology, Ghent University Hospital, Ghent, Belgium
| | - Jan Van Deun
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium
| | - Silke Vermaerke
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium
| | - Ario de Marco
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipava, Slovenia
| | - Nicolaas Lumen
- Cancer Research Institute Ghent, Ghent, Belgium; Department of Urology, Ghent University Hospital, Ghent, Belgium
| | - Olivier De Wever
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium.
| |
Collapse
|
17
|
Chistiakov DA, Myasoedova VA, Grechko AV, Melnichenko AA, Orekhov AN. New biomarkers for diagnosis and prognosis of localized prostate cancer. Semin Cancer Biol 2018; 52:9-16. [PMID: 29360504 DOI: 10.1016/j.semcancer.2018.01.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 01/18/2018] [Indexed: 11/28/2022]
Abstract
The diagnostics and management of localized prostate cancer is complicated because of cancer heterogeneity and differentiated progression in various subgroups of patients. As a prostate cancer biomarker, FDA-approved detection assay for serum prostate specific antigen (PSA) and its derivatives are not potent enough to diagnose prostate cancer, especially high-grade disease (Gleason ≥7). To date, a collection of new biomarkers was developed. Some of these markers are superior for primary screening while others are particularly helpful for cancer risk stratification, detection of high-grade cancer, and prediction of adverse events. Two of those markers such as proPSA (a part of the Prostate Health Index (PHI)) and prostate specific antigen 3 (PCA3) (a part of the PCA3 Progensa test) were recently approved by FDA for clinical use. Other markers are not PDA-approved yet but are available from Clinical Laboratory Improvement Amendment (CLIA)-certified clinical laboratories. In this review, we characterize diagnostic performance of these markers and their diagnostic and prognostic utility for prostate cancer.
Collapse
Affiliation(s)
- Dimitry A Chistiakov
- Department of Basic and Applied Neurobiology, Serbsky Federal Medical Research Center for Psychiatry and Narcology, 119991, Moscow, Russia.
| | - Veronika A Myasoedova
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315, Moscow, Russia
| | - Andrey V Grechko
- Federal Scientific Clinical Center for Resuscitation and Rehabilitation, 109240, Moscow, Russia
| | - Alexandra A Melnichenko
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315, Moscow, Russia
| | - Alexander N Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315, Moscow, Russia; Institute for Atherosclerosis Research, Skolkovo Innovative Center, 121609, Moscow, Russia.
| |
Collapse
|
18
|
Zaporozhchenko IA, Ponomaryova AA, Rykova EY, Laktionov PP. The potential of circulating cell-free RNA as a cancer biomarker: challenges and opportunities. Expert Rev Mol Diagn 2018; 18:133-145. [DOI: 10.1080/14737159.2018.1425143] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ivan A. Zaporozhchenko
- Laboratory of Molecular Medicine, Institute of Chemical Biology and Fundamental Medicine of SB RAS, Novosibirsk, Russia
- Laboratory of Biomedical Technologies, Centre of New Surgical Technologies, E.N. Meshalkin Siberian Federal Biomedical Research Center, Novosibirsk, Russia
| | - Anastasia A. Ponomaryova
- Laboratory of Immunology, Tomsk Cancer Research Institute of SB RAMS, Tomsk, Russia
- Department of Applied Physics, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Elena Yu Rykova
- Laboratory of Molecular Medicine, Institute of Chemical Biology and Fundamental Medicine of SB RAS, Novosibirsk, Russia
- Laboratory of Biomedical Technologies, Centre of New Surgical Technologies, E.N. Meshalkin Siberian Federal Biomedical Research Center, Novosibirsk, Russia
| | - Pavel P. Laktionov
- Laboratory of Molecular Medicine, Institute of Chemical Biology and Fundamental Medicine of SB RAS, Novosibirsk, Russia
- Laboratory of Biomedical Technologies, Centre of New Surgical Technologies, E.N. Meshalkin Siberian Federal Biomedical Research Center, Novosibirsk, Russia
| |
Collapse
|
19
|
Preventing clinical progression and need for treatment in patients on active surveillance for prostate cancer. Curr Opin Urol 2017; 28:46-54. [PMID: 29028765 DOI: 10.1097/mou.0000000000000455] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE OF REVIEW Active surveillance is an established treatment option for men with localized, low-risk prostate cancer (CaP). It entails the postponement of immediate therapy with the option of delayed intervention upon disease progression. The rate of clinical progression and need for treatment on active surveillance is approximately 50% over 15 years. The present review summarizes recent data on current methods, attempting to prevent clinical progression. RECENT FINDINGS Patient selection for active surveillance is the first mandatory step required to lower progression. Adherence to active surveillance protocols is critical in making sure patients are monitored well and treated early when progression occurs. Before active surveillance allocation and during active surveillance follow-up, methods involving multiparametric MRI, prostate specific antigen derivatives, biopsy factors, urinary, tissue and genetic markers can be used to prevent clinical progression and/or identify those at risk for progression. Medications such as 5α-reductase inhibitors and others might inhibit disease progression in patients on active surveillance. SUMMARY Active surveillance is required because of overdiagnosis, along with our inability to accurately predict individual CaP behavior. Several methods can potentially reduce the risk of CaP progression in patients with active surveillance. However, a measure of uncertainty and fear of progression will always accompany patients with active surveillance and the physicians treating them.
Collapse
|
20
|
Audenet F, Vertosick EA, Fine SW, Sjoberg DD, Vickers AJ, Reuter VE, Eastham JA, Scardino PT, Touijer KA. Biopsy Core Features are Poor Predictors of Adverse Pathology in Men with Grade Group 1 Prostate Cancer. J Urol 2017; 199:961-968. [PMID: 29030317 DOI: 10.1016/j.juro.2017.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2017] [Indexed: 10/18/2022]
Abstract
PURPOSE Active surveillance is often restricted to patients with low risk prostate cancer who have 3 or fewer positive cores. We aimed to identify predictors of adverse pathology results for low risk prostate cancer treated with radical prostatectomy and determine whether a threshold number of positive cores could help the decision process for active surveillance. MATERIALS AND METHODS A total of 3,359 men with low risk prostate cancer underwent radical prostatectomy between January 2000 and August 2016. We analyzed the relationship between biopsy core features and adverse pathology at radical prostatectomy, defined as Grade Group 3 or greater, seminal vesicle invasion or lymph node involvement. RESULTS Of the 171 cases (5.1%) with adverse pathology findings at radical prostatectomy 144 (4.3%) were upgraded to Grade Group 3 or greater, 31 (0.9%) had seminal vesicle invasion and 15 (0.4%) had lymph node involvement. Prostate specific antigen and patient age were the only predictors of adverse pathology results. There was no significant association with the number of positive cores, the total mm of cancer or the maximum percent of cancer in any core. When we expanded the definition of adverse pathology to include Grade Group 2 and extraprostatic extension, the association between core features and outcome was statistically significant but clinically weak, and with no evidence of threshold effects. CONCLUSIONS There is little basis for excluding patients with otherwise low risk prostate cancer on biopsy from active surveillance based on criteria such as the number of positive cores or the maximum cancer involvement of biopsy cores.
Collapse
Affiliation(s)
- François Audenet
- Department of Urology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Emily A Vertosick
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Samson W Fine
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Daniel D Sjoberg
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Andrew J Vickers
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Victor E Reuter
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - James A Eastham
- Department of Urology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Peter T Scardino
- Department of Urology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Karim A Touijer
- Department of Urology, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
21
|
Wu D, Ni J, Beretov J, Cozzi P, Willcox M, Wasinger V, Walsh B, Graham P, Li Y. Urinary biomarkers in prostate cancer detection and monitoring progression. Crit Rev Oncol Hematol 2017; 118:15-26. [DOI: 10.1016/j.critrevonc.2017.08.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/08/2017] [Accepted: 08/11/2017] [Indexed: 12/21/2022] Open
|
22
|
Sanda MG, Feng Z, Howard DH, Tomlins SA, Sokoll LJ, Chan DW, Regan MM, Groskopf J, Chipman J, Patil DH, Salami SS, Scherr DS, Kagan J, Srivastava S, Thompson IM, Siddiqui J, Fan J, Joon AY, Bantis LE, Rubin MA, Chinnayian AM, Wei JT, Bidair M, Kibel A, Lin DW, Lotan Y, Partin A, Taneja S. Association Between Combined TMPRSS2:ERG and PCA3 RNA Urinary Testing and Detection of Aggressive Prostate Cancer. JAMA Oncol 2017; 3:1085-1093. [PMID: 28520829 DOI: 10.1001/jamaoncol.2017.0177] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Importance Potential survival benefits from treating aggressive (Gleason score, ≥7) early-stage prostate cancer are undermined by harms from unnecessary prostate biopsy and overdiagnosis of indolent disease. Objective To evaluate the a priori primary hypothesis that combined measurement of PCA3 and TMPRSS2:ERG (T2:ERG) RNA in the urine after digital rectal examination would improve specificity over measurement of prostate-specific antigen alone for detecting cancer with Gleason score of 7 or higher. As a secondary objective, to evaluate the potential effect of such urine RNA testing on health care costs. Design, Setting, and Participants Prospective, multicenter diagnostic evaluation and validation in academic and community-based ambulatory urology clinics. Participants were a referred sample of men presenting for first-time prostate biopsy without preexisting prostate cancer: 516 eligible participants from among 748 prospective cohort participants in the developmental cohort and 561 eligible participants from 928 in the validation cohort. Interventions/Exposures Urinary PCA3 and T2:ERG RNA measurement before prostate biopsy. Main Outcomes and Measures Presence of prostate cancer having Gleason score of 7 or higher on prostate biopsy. Pathology testing was blinded to urine assay results. In the developmental cohort, a multiplex decision algorithm was constructed using urine RNA assays to optimize specificity while maintaining 95% sensitivity for predicting aggressive prostate cancer at initial biopsy. Findings were validated in a separate multicenter cohort via prespecified analysis, blinded per prospective-specimen-collection, retrospective-blinded-evaluation (PRoBE) criteria. Cost effects of the urinary testing strategy were evaluated by modeling observed biopsy results and previously reported treatment outcomes. Results Among the 516 men in the developmental cohort (mean age, 62 years; range, 33-85 years) combining testing of urinary T2:ERG and PCA3 at thresholds that preserved 95% sensitivity for detecting aggressive prostate cancer improved specificity from 18% to 39%. Among the 561 men in the validation cohort (mean age, 62 years; range, 27-86 years), analysis confirmed improvement in specificity (from 17% to 33%; lower bound of 1-sided 95% CI, 0.73%; prespecified 1-sided P = .04), while high sensitivity (93%) was preserved for aggressive prostate cancer detection. Forty-two percent of unnecessary prostate biopsies would have been averted by using the urine assay results to select men for biopsy. Cost analysis suggested that this urinary testing algorithm to restrict prostate biopsy has greater potential cost-benefit in younger men. Conclusions and Relevance Combined urinary testing for T2:ERG and PCA3 can avert unnecessary biopsy while retaining robust sensitivity for detecting aggressive prostate cancer with consequent potential health care cost savings.
Collapse
Affiliation(s)
- Martin G Sanda
- Department of Urology, Emory University School of Medicine, Atlanta, Georgia
| | - Ziding Feng
- Department of Biostatistics, The University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - David H Howard
- Department of Biostatistics, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Scott A Tomlins
- Department of Urology, University of Michigan, Ann Arbor, Michigan.,Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Lori J Sokoll
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Daniel W Chan
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Meredith M Regan
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | | | - Jonathan Chipman
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Dattatraya H Patil
- Department of Urology, Emory University School of Medicine, Atlanta, Georgia
| | - Simpa S Salami
- Hofstra North Shore-LIJ School of Medicine, The Arthur Smith Institute for Urology, New Hyde Park, New York
| | - Douglas S Scherr
- Department of Urology, Weill-Cornell Medical Center, New York, New York
| | - Jacob Kagan
- Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland
| | - Sudhir Srivastava
- Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland
| | - Ian M Thompson
- University of Texas Health Sciences Center - San Antonio, Texas
| | - Javed Siddiqui
- Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Jing Fan
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, California
| | - Aron Y Joon
- Department of Biostatistics, The University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Leonidas E Bantis
- Department of Biostatistics, The University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Mark A Rubin
- Department of Pathology, Weill-Cornell Medical Center, New York, New York
| | - Arul M Chinnayian
- Department of Urology, University of Michigan, Ann Arbor, Michigan.,Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - John T Wei
- Department of Urology, University of Michigan, Ann Arbor, Michigan
| | | | | | - Adam Kibel
- Brigham and Women's Hospital, Boston, Massachusetts
| | - Daniel W Lin
- University of Washington Medical Center, Seattle
| | - Yair Lotan
- University of Texas Southwestern Medical Center, Dallas
| | | | - Samir Taneja
- New York University School of Medicine, New York
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW Active surveillance has been increasingly utilized as a strategy for the management of favorable-risk, localized prostate cancer. In this review, we describe contemporary management strategies of active surveillance, with a focus on traditional stratification schemes, new prognostic tools, and patient outcomes. RECENT FINDINGS Patient selection, follow-up strategy, and indication for delayed intervention for active surveillance remain centered around PSA, digital rectal exam, and biopsy findings. Novel tools which include imaging, biomarkers, and genetic assays have been investigated as potential prognostic adjuncts; however, their role in active surveillance remains institutionally dependent. Although 30-50% of patients on active surveillance ultimately undergo delayed treatment, the vast majority will remain free of metastasis with a low risk of dying from prostate cancer. The optimal method for patient selection into active surveillance is unknown; however, cancer-specific mortality rates remain excellent. New prognostication tools are promising, and long-term prospective, randomized data regarding their use in active surveillance will be beneficial.
Collapse
|
24
|
Martignano F, Rossi L, Maugeri A, Gallà V, Conteduca V, De Giorgi U, Casadio V, Schepisi G. Urinary RNA-based biomarkers for prostate cancer detection. Clin Chim Acta 2017; 473:96-105. [PMID: 28807541 DOI: 10.1016/j.cca.2017.08.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/10/2017] [Accepted: 08/10/2017] [Indexed: 12/19/2022]
Abstract
Prostate cancer (PCa) is the commonest malignancy in the male population worldwide. Serum prostate specific antigen (PSA) test is the most important biomarker for the detection, follow-up and therapeutic monitoring of PCa. Defects in PSA specificity have elicited research for new biomarkers to improve early diagnosis and avoid false-positive results. This review evaluates urinary RNA-based biomarkers. Urine is a versatile body fluid for non-invasive biomarker detection in case of urological malignancies. The importance of RNA-based biomarkers has been demonstrated by the current use of PCA3, a long non coding RNA biomarker already approved by the Food and Drugs Administration. Through the years, other urinary RNA biomarkers have been evaluated, including the well-known TMPRSS2:ERG transcript, as well as many messenger RNAs, long non coding RNAs and micro-RNA. Validation of a specific urinary RNA-based marker or an algorithm of different biomarkers levels as diagnostic markers for PCa could be useful to avoid unnecessary prostate biopsies.
Collapse
Affiliation(s)
- Filippo Martignano
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, Meldola 47014, Italy
| | - Lorena Rossi
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, Meldola 47014, Italy
| | - Antonio Maugeri
- Oncology Pharmacy Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, Meldola 47014, Italy
| | - Valentina Gallà
- Unit of Biostatistics and Clinical Trials, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, Meldola 47014, Italy; University of Florence, Italy
| | - Vincenza Conteduca
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, Meldola 47014, Italy
| | - Ugo De Giorgi
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, Meldola 47014, Italy
| | - Valentina Casadio
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, Meldola 47014, Italy.
| | - Giuseppe Schepisi
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, Meldola 47014, Italy
| |
Collapse
|
25
|
Stavrinides V, Parker C, Moore C. When no treatment is the best treatment: Active surveillance strategies for low risk prostate cancers. Cancer Treat Rev 2017; 58:14-21. [DOI: 10.1016/j.ctrv.2017.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 05/14/2017] [Accepted: 05/16/2017] [Indexed: 01/02/2023]
|
26
|
Long Non-Coding RNA as Potential Biomarker for Prostate Cancer: Is It Making a Difference? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14030270. [PMID: 28272371 PMCID: PMC5369106 DOI: 10.3390/ijerph14030270] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 02/24/2017] [Indexed: 12/20/2022]
Abstract
Whole genome transcriptomic analyses have identified numerous long non-coding RNA (lncRNA) transcripts that are increasingly implicated in cancer biology. LncRNAs are found to promote essential cancer cell functions such as proliferation, invasion, and metastasis, with the potential to serve as novel biomarkers of various cancers and to further reveal uncharacterized aspects of tumor biology. However, the biological and molecular mechanisms as well as the clinical applications of lncRNAs in diverse diseases are not completely understood, and remain to be fully explored. LncRNAs may be critical players and regulators in prostate cancer carcinogenesis and progression, and could serve as potential biomarkers for prostate cancer. This review focuses on lncRNA biomarkers that are already available for clinical use and provides an overview of lncRNA biomarkers that are under investigation for clinical development in prostate cancer.
Collapse
|
27
|
Hendriks RJ, van Oort IM, Schalken JA. Blood-based and urinary prostate cancer biomarkers: a review and comparison of novel biomarkers for detection and treatment decisions. Prostate Cancer Prostatic Dis 2016; 20:12-19. [DOI: 10.1038/pcan.2016.59] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/26/2016] [Accepted: 10/24/2016] [Indexed: 11/09/2022]
|
28
|
Tonry CL, Leacy E, Raso C, Finn SP, Armstrong J, Pennington SR. The Role of Proteomics in Biomarker Development for Improved Patient Diagnosis and Clinical Decision Making in Prostate Cancer. Diagnostics (Basel) 2016; 6:E27. [PMID: 27438858 PMCID: PMC5039561 DOI: 10.3390/diagnostics6030027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/28/2016] [Accepted: 07/07/2016] [Indexed: 02/06/2023] Open
Abstract
Prostate Cancer (PCa) is the second most commonly diagnosed cancer in men worldwide. Although increased expression of prostate-specific antigen (PSA) is an effective indicator for the recurrence of PCa, its intended use as a screening marker for PCa is of considerable controversy. Recent research efforts in the field of PCa biomarkers have focused on the identification of tissue and fluid-based biomarkers that would be better able to stratify those individuals diagnosed with PCa who (i) might best receive no treatment (active surveillance of the disease); (ii) would benefit from existing treatments; or (iii) those who are likely to succumb to disease recurrence and/or have aggressive disease. The growing demand for better prostate cancer biomarkers has coincided with the development of improved discovery and evaluation technologies for multiplexed measurement of proteins in bio-fluids and tissues. This review aims to (i) provide an overview of these technologies as well as describe some of the candidate PCa protein biomarkers that have been discovered using them; (ii) address some of the general limitations in the clinical evaluation and validation of protein biomarkers; and (iii) make recommendations for strategies that could be adopted to improve the successful development of protein biomarkers to deliver improvements in personalized PCa patient decision making.
Collapse
Affiliation(s)
- Claire L Tonry
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland.
| | - Emma Leacy
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland.
| | - Cinzia Raso
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland.
| | - Stephen P Finn
- School of Medicine, Trinity College Dublin, Dublin 2, Ireland.
| | | | - Stephen R Pennington
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
29
|
Koo KM, Carrascosa LG, Shiddiky MJA, Trau M. Amplification-Free Detection of Gene Fusions in Prostate Cancer Urinary Samples Using mRNA-Gold Affinity Interactions. Anal Chem 2016; 88:6781-8. [PMID: 27299694 DOI: 10.1021/acs.analchem.6b01182] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A crucial issue in present-day prostate cancer (PCa) detection is the lack of specific biomarkers for accurately distinguishing between benign and malignant cancer forms. This is causing a high degree of overdiagnosis and overtreatment of otherwise clinically insignificant cases. As around half of all malignant PCa cases display a detectable gene fusion mutation between the TMPRSS2 promoter sequence and the ERG coding sequence (TMPRSS2:ERG) in urine, noninvasive screening of TMPRSS2:ERG mRNA in patient urine samples could improve the specificity of current PCa diagnosis. However, current gene fusion detection methodologies are largely dependent on RNA enzymatic amplification, which requires extensive sample manipulation, costly labels for detection, and is prone to bias/artifacts. Herein we introduce the first successful amplification-free electrochemical assay for direct detection of TMPRSS2:ERG mRNA in PCa urinary samples by selectively isolating and adsorbing TMPRSS2:ERG mRNA onto bare gold electrodes without requiring any surface modification. We demonstrated excellent limit-of-detection (10 cells) and specificity using PCa cell line models, and showcased clinical utility by accurately detecting TMPRSS2:ERG in a collection of 17 urinary samples obtained from PCa patients. Furthermore, these results were validated with the current gold standard reverse transcription (RT)-PCR approach with 100% concordance.
Collapse
Affiliation(s)
- Kevin M Koo
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland , Brisbane, Queensland 4072, Australia
| | - Laura G Carrascosa
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland , Brisbane, Queensland 4072, Australia
| | - Muhammad J A Shiddiky
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland , Brisbane, Queensland 4072, Australia
| | - Matt Trau
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland , Brisbane, Queensland 4072, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland , Brisbane, Queensland 4072, Australia
| |
Collapse
|
30
|
Gaudreau PO, Stagg J, Soulières D, Saad F. The Present and Future of Biomarkers in Prostate Cancer: Proteomics, Genomics, and Immunology Advancements. BIOMARKERS IN CANCER 2016; 8:15-33. [PMID: 27168728 PMCID: PMC4859450 DOI: 10.4137/bic.s31802] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/16/2015] [Accepted: 11/18/2015] [Indexed: 12/29/2022]
Abstract
Prostate cancer (PC) is the second most common form of cancer in men worldwide. Biomarkers have emerged as essential tools for treatment and assessment since the variability of disease behavior, the cost and diversity of treatments, and the related impairment of quality of life have given rise to a need for a personalized approach. High-throughput technology platforms in proteomics and genomics have accelerated the development of biomarkers. Furthermore, recent successes of several new agents in PC, including immunotherapy, have stimulated the search for predictors of response and resistance and have improved the understanding of the biological mechanisms at work. This review provides an overview of currently established biomarkers in PC, as well as a selection of the most promising biomarkers within these particular fields of development.
Collapse
Affiliation(s)
- Pierre-Olivier Gaudreau
- Hematologist and Medical Oncologist, Notre-Dame Hospital, CHUM Research Center, Montreal, QC, Canada
| | - John Stagg
- Associate Professor, Department of Pharmacy, Cancer Axis—Montreal Cancer Institute, Montreal, QC, Canada
| | - Denis Soulières
- Hematologist and Medical Oncologist, Notre-Dame Hospital, CHUM Research Center, Montreal, QC, Canada
- Associate Professor, Department of Medicine, University of Montreal, QC, Canada
| | - Fred Saad
- Professor and Chief of Urology, CHUM—Pavillon R, Montreal, QC, Canada
| |
Collapse
|
31
|
Salido-Guadarrama AI, Morales-Montor JG, Rangel-Escareño C, Langley E, Peralta-Zaragoza O, Cruz Colin JL, Rodriguez-Dorantes M. Urinary microRNA-based signature improves accuracy of detection of clinically relevant prostate cancer within the prostate-specific antigen grey zone. Mol Med Rep 2016; 13:4549-60. [PMID: 27081843 PMCID: PMC4878542 DOI: 10.3892/mmr.2016.5095] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 02/15/2016] [Indexed: 12/19/2022] Open
Abstract
At present, prostate-specific antigen (PSA) is used as a clinical biomarker for prostate cancer (PCa) diagnosis; however, a large number of patients with benign prostate hyperplasia (BPH) with PSA levels in the ʻgray areaʼ (4–10 ng/ml) are currently subjected to unnecessary biopsy due to overdiagnosis. Certain microRNAs (miRs) have been proven to be useful biomarkers, several of which are detectable in bodily fluids. The present study identified and validated a urinary miR-based signature to enhance the specificity of PCa diagnosis and to reduce the number of patients with benign conditions undergoing biopsy. Seventy-three urine samples from Mexican patients with diagnosis of PCa with a Gleason score ≥7 and 70 patients diagnosed with BPH were collected after digital rectal examination (DRE) of the prostate. miR expression profiles were determined using TaqMan Low Density Array experiments, and normalized Ct values for the miRs were compared between PCa and BPH groups. Receiver operating characteristic (ROC) curve analysis was performed to evaluate whether miR detection in urine is suitable for distinguishing patients with PCa from those with BPH. The identified miR-100/200b signature was significantly correlated with PCa. Using a multivariable logistic regression approach, a base model including the clinical variables age, prostate-specific antigen (PSA), the percentage of free PSA and DRE was generated, and a second base model additionally contained the miR-100/200b signature. ROC analysis demonstrated that the combined model significantly outperformed the capacity of PSA (P<0.001) and the base model (P=0.01) to discriminate between PCa and BPH patients. In terms of evaluation of the sub-group of patients in the gray zone of PSA levels, the performance of the combined model for predicting PCa cases was significantly superior to PSA level determination (P<0.001) and the base model (P=0.009). In addition, decision curve analysis demonstrated that the use of the combined model increased the clinical benefit for patients and produced a substantial reduction in unnecessary biopsies across a range of reasonable threshold probabilities (10–50%). Detection of the urinary miR signature identified in the present study as part of clinical diagnostic procedures will enhance the accuracy of PCa diagnosis and provide a clinical benefit for patients with BPH by sparing them from undergoing invasive biopsy. To the best of our knowledge, the present study was the first to describe the profiling of urinary miR100 and miR-200b levels for the clinical diagnosis of PCa.
Collapse
Affiliation(s)
| | | | - Claudia Rangel-Escareño
- Computational Genomics, The National Institute of Genomic Medicine, Mexico City 14610, Mexico
| | - Elizabeth Langley
- Department of Basic Research, National Institute of Cancerology, Mexico City 14080, Mexico
| | - Oscar Peralta-Zaragoza
- Division of Chronic Infections and Cancer, Research Center in Infection Diseases, National Institute of Public Health, Cuernavaca 62100, Mexico
| | - Jose Luis Cruz Colin
- Oncogenomics Laboratory, The National Institute of Genomic Medicine, Mexico City 14610, Mexico
| | | |
Collapse
|
32
|
Tosoian JJ, Carter HB, Lepor A, Loeb S. Active surveillance for prostate cancer: current evidence and contemporary state of practice. Nat Rev Urol 2016; 13:205-15. [PMID: 26954332 DOI: 10.1038/nrurol.2016.45] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Prostate cancer remains one of the most commonly diagnosed malignancies worldwide. Early diagnosis and curative treatment seem to improve survival in men with unfavourable-risk cancers, but significant concerns exist regarding the overdiagnosis and overtreatment of men with lower-risk cancers. To this end, active surveillance (AS) has emerged as a primary management strategy in men with favourable-risk disease, and contemporary data suggest that use of AS has increased worldwide. Although published surveillance cohorts differ by protocol, reported rates of metastatic disease and prostate-cancer-specific mortality are exceedingly low in the intermediate term (5-10 years). Such outcomes seem to be closely associated with programme-specific criteria for selection, monitoring, and intervention, suggesting that AS--like other management strategies--could be individualized based on the level of risk acceptable to patients in light of their personal preferences. Additional data are needed to better establish the risks associated with AS and to identify patient-specific characteristics that could modify prognosis.
Collapse
Affiliation(s)
- Jeffrey J Tosoian
- Brady Urological Institute, Johns Hopkins Medical Institutions, 600 N. Wolfe Street, Baltimore, Maryland 21287-2101, USA
| | - H Ballentine Carter
- Brady Urological Institute, Johns Hopkins Medical Institutions, 600 N. Wolfe Street, Baltimore, Maryland 21287-2101, USA
| | - Abbey Lepor
- Department of Urology, New York University, 550 1st Avenue (VZ30 #612), New York, New York 10016, USA
| | - Stacy Loeb
- Department of Urology, New York University, 550 1st Avenue (VZ30 #612), New York, New York 10016, USA.,Depatment of Population Health, New York University. 550 1st Avenue (VZ30 #612), New York, New York 10016, USA.,The Laura &Isaac Perlmutter Cancer Center, New York University, 550 1st Avenue (VZ30 #612), New York, New York 10016, USA
| |
Collapse
|
33
|
Okihara K, Ochiai A, Kamoi K, Fujizuka Y, Miki T, Ito K. Comprehensive assessment for novel prostate cancer markers in the prostate-specific antigen era: focusing on Asians and Asian countries. Int J Urol 2016; 22:334-41. [PMID: 25827049 DOI: 10.1111/iju.12701] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 11/17/2014] [Accepted: 12/03/2014] [Indexed: 11/27/2022]
Abstract
We reviewed the current evidence for three novel prostate tumor markers (PCA3, TMPRSS2:ERG and proPSA) that have been recently reported predominantly in Western countries. We focus our attention on Asian men in both clinical and basic research studies. There have been no reports on the clinical usefulness of these three markers for Asians living in Western countries. In Asian countries, evidence for the clinical usefulness of PCA3 and proPSA-related indices including Prostate Health Index is being accumulated, mainly in Japan. The process for how a novel marker is approved in the clinical setting is also discussed.
Collapse
Affiliation(s)
- Koji Okihara
- Department of Urology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Abstract
BACKGROUND The use of biomarkers for prostate cancer screening, diagnosis and prognosis has the potential to improve the clinical management of the patients. Owing to inherent limitations of the biomarker prostate-specific antigen (PSA), intensive efforts are currently directed towards a search for alternative prostate cancer biomarkers, particularly those that can predict disease aggressiveness and drive better treatment decisions. METHODS A literature search of Medline articles focused on recent and emerging advances in prostate cancer biomarkers was performed. The most promising biomarkers that have the potential to meet the unmet clinical needs in prostate cancer patient management and/or that are clinically implemented were selected. CONCLUSIONS With the advent of advanced genomic and proteomic technologies, we have in recent years seen an enormous spurt in prostate cancer biomarker research with several promising alternative biomarkers being discovered that show an improved sensitivity and specificity over PSA. The new generation of biomarkers can be tested via serum, urine, or tissue-based assays that have either received regulatory approval by the US Food and Drug Administration or are available as Clinical Laboratory Improvement Amendments-based laboratory developed tests. Additional emerging novel biomarkers for prostate cancer, including circulating tumor cells, microRNAs and exosomes, are still in their infancy. Together, these biomarkers provide actionable guidance for prostate cancer risk assessment, and are expected to lead to an era of personalized medicine.
Collapse
Affiliation(s)
- Sharanjot Saini
- Department of Urology, Urology Research (112J), Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA, 94121, USA.
- University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
36
|
Sanguedolce F, Cormio A, Brunelli M, D'Amuri A, Carrieri G, Bufo P, Cormio L. Urine TMPRSS2: ERG Fusion Transcript as a Biomarker for Prostate Cancer: Literature Review. Clin Genitourin Cancer 2015; 14:117-21. [PMID: 26774207 DOI: 10.1016/j.clgc.2015.12.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 11/25/2015] [Accepted: 12/09/2015] [Indexed: 11/25/2022]
Abstract
Prostate cancer (PCa) is one of the most common male malignancies. Serum prostate-specific antigen (PSA) is one of the most valuable biomarkers in tumor biology and remains the standard marker in detecting and monitoring PCa. However, the high number of serum PSA false positive and false negative results make the identification of novel biomarkers extremely welcome to improve our diagnostic accuracy in detecting PCa and distinguishing the aggressive from the indolent ones. In this study, we analyzed the current role of urinary gene fusion transcripts involving v-ets erythroblastosis virus E26 oncogene homolog, commonly known as ERG, and the androgen-regulated gene transmembrane protease, serine 2 (TMPRSS2), as a biomarker for PCa. Used as a single marker, urinary TMPRSS2:ERG has low sensitivity but high specificity. However, its combination with the other urinary marker PCa antigen 3 (PCA3) has been reported to provide high specificity and sensitivity. Finally, a commercially available assay combining serum PSA with urinary PCA3 and TMPRSS2:ERG provides a 90% specificity and 80% sensitivity in diagnosing PCa. Urinary TMPRSS2:ERG also seems to be indicative of PCa aggressiveness upon biopsy. Should these findings be confirmed in larger studies, urinary TMPRSS2:ERG might become a valuable test not only for diagnosing PCa but also for distinguishing the aggressive tumors from the indolent ones.
Collapse
Affiliation(s)
| | - Antonella Cormio
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, Bari, Italy
| | - Matteo Brunelli
- Department of Pathology and Diagnostic, University of Verona, Verona, Italy
| | | | - Giuseppe Carrieri
- Department of Urology and Renal Transplantation, University of Foggia, Foggia, Italy
| | - Pantaleo Bufo
- Department of Pathology, University of Foggia, Foggia, Italy
| | - Luigi Cormio
- Department of Urology and Renal Transplantation, University of Foggia, Foggia, Italy
| |
Collapse
|
37
|
Merdan S, Tomlins SA, Barnett CL, Morgan TM, Montie JE, Wei JT, Denton BT. Assessment of long-term outcomes associated with urinary prostate cancer antigen 3 and TMPRSS2:ERG gene fusion at repeat biopsy. Cancer 2015; 121:4071-9. [PMID: 26280815 PMCID: PMC5657150 DOI: 10.1002/cncr.29611] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 07/01/2015] [Accepted: 07/06/2015] [Indexed: 11/09/2022]
Abstract
BACKGROUND In men with clinically localized prostate cancer who have undergone at least 1 previous negative biopsy and have elevated serum prostate-specific antigen (PSA) levels, long-term health outcomes associated with the assessment of urinary prostate cancer antigen 3 (PCA3) and the transmembrane protease, serine 2 (TMPRSS2):v-ets erythroblastosis virus E26 oncogene homolog (avian) (ERG) gene fusion (T2:ERG) have not been investigated previously in relation to the decision to recommend a repeat biopsy. METHODS The authors performed a decision analysis using a decision tree for men with elevated PSA levels. The probability of cancer was estimated using the Prostate Cancer Prevention Trial Risk Calculator (version 2.0). The use of PSA alone was compared with the use of PCA3 and T2:ERG scores, with each evaluated independently, in combination with PSA to trigger a repeat biopsy. When PCA3 and T2:ERG score evaluations were used, predefined thresholds were established to determine whether the patient should undergo a repeat biopsy. Biopsy outcomes were defined as either positive (with a Gleason score of <7, 7, or >7) or negative. Probabilities and estimates of 10-year overall survival and 15-year cancer-specific survival were derived from previous studies and a literature review. Outcomes were defined as age-dependent and Gleason score-dependent 10-year overall and 15-year cancer-specific survival rates and the percentage of biopsies avoided. RESULTS Incorporating the PCA3 score (biopsy threshold, 25; generated based on the urine PCA3 level normalized to the amount of PSA messenger RNA) or the T2:ERG score (biopsy threshold, 10; based on the urine T2:ERG level normalized to the amount of PSA messenger RNA) into the decision to recommend repeat biopsy would have avoided 55.4% or 64.7% of repeat biopsies for the base-case patient, respectively, and changes in the 10-year survival rate were only 0.93% or 1.41%, respectively. Multi-way sensitivity analyses suggested that these results were robust with respect to the model parameters. CONCLUSIONS The use of PCA3 or T2:ERG testing for repeat biopsy decisions can substantially reduce the number of biopsies without significantly affecting 10-year survival.
Collapse
Affiliation(s)
- Selin Merdan
- Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, Michigan
| | - Scott A Tomlins
- Michigan Center for Translational Pathology, Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Urology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Christine L Barnett
- Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, Michigan
| | - Todd M Morgan
- Department of Urology, University of Michigan Medical School, Ann Arbor, Michigan
| | - James E Montie
- Department of Urology, University of Michigan Medical School, Ann Arbor, Michigan
| | - John T Wei
- Department of Urology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Brian T Denton
- Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, Michigan
- Department of Urology, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
38
|
Pal RP, Kockelbergh RC, Pringle JH, Cresswell L, Hew R, Dormer JP, Cooper C, Mellon JK, Barwell JG, Hollox EJ. Immunocytochemical detection of ERG expression in exfoliated urinary cells identifies with high specificity patients with prostate cancer. BJU Int 2015; 117:686-96. [DOI: 10.1111/bju.13184] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Raj P. Pal
- Department of Cancer Studies and Molecular Medicine; University of Leicester; Leicester UK
- Department of Urology; University Hospitals of Leicester NHS Trust; Leicester UK
| | - Roger C. Kockelbergh
- Department of Urology; University Hospitals of Leicester NHS Trust; Leicester UK
| | - John Howard Pringle
- Department of Cancer Studies and Molecular Medicine; University of Leicester; Leicester UK
| | - Lara Cresswell
- Department of Cytogenetics; University Hospitals of Leicester NHS Trust; Leicester UK
| | - Roger Hew
- Department of Cellular Pathology; University Hospitals of Leicester NHS Trust; Leicester UK
| | - John P. Dormer
- Department of Cellular Pathology; University Hospitals of Leicester NHS Trust; Leicester UK
| | - Colin Cooper
- Department of Cancer Genetics; University of East Anglia; Norwich UK
| | - John Kilian Mellon
- Department of Urology; University Hospitals of Leicester NHS Trust; Leicester UK
| | | | | |
Collapse
|
39
|
Cantiello F, Russo GI, Cicione A, Ferro M, Cimino S, Favilla V, Perdonà S, De Cobelli O, Magno C, Morgia G, Damiano R. PHI and PCA3 improve the prognostic performance of PRIAS and Epstein criteria in predicting insignificant prostate cancer in men eligible for active surveillance. World J Urol 2015; 34:485-93. [PMID: 26194612 DOI: 10.1007/s00345-015-1643-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/11/2015] [Indexed: 11/29/2022] Open
Abstract
PURPOSE To assess the performance of prostate health index (PHI) and prostate cancer antigen 3 (PCA3) when added to the PRIAS or Epstein criteria in predicting the presence of pathologically insignificant prostate cancer (IPCa) in patients who underwent radical prostatectomy (RP) but eligible for active surveillance (AS). METHODS An observational retrospective study was performed in 188 PCa patients treated with laparoscopic or robot-assisted RP but eligible for AS according to Epstein or PRIAS criteria. Blood and urinary specimens were collected before initial prostate biopsy for PHI and PCA3 measurements. Multivariate logistic regression analyses and decision curve analysis were carried out to identify predictors of IPCa using the updated ERSPC definition. RESULTS At the multivariate analyses, the inclusion of both PCA3 and PHI significantly increased the accuracy of the Epstein multivariate model in predicting IPCa with an increase of 17 % (AUC = 0.77) and of 32 % (AUC = 0.92), respectively. The inclusion of both PCA3 and PHI also increased the predictive accuracy of the PRIAS multivariate model with an increase of 29 % (AUC = 0.87) and of 39 % (AUC = 0.97), respectively. DCA revealed that the multivariable models with the addition of PHI or PCA3 showed a greater net benefit and performed better than the reference models. In a direct comparison, PHI outperformed PCA3 performance resulting in higher net benefit. CONCLUSIONS In a same cohort of patients eligible for AS, the addition of PHI and PCA3 to Epstein or PRIAS models improved their prognostic performance. PHI resulted in greater net benefit in predicting IPCa compared to PCA3.
Collapse
Affiliation(s)
- Francesco Cantiello
- Urology Unit, Doctorate Research Program, Magna Græcia University of Catanzaro, Viale Europa, Germaneto, Catanzaro, 88100, Italy.
| | - Giorgio Ivan Russo
- Urology Section, Department of Surgery, University of Catania, Catania, Italy
| | - Antonio Cicione
- Urology Unit, Doctorate Research Program, Magna Græcia University of Catanzaro, Viale Europa, Germaneto, Catanzaro, 88100, Italy
| | - Matteo Ferro
- Department of Urology, European Institute of Oncology, Milan, Italy
| | - Sebastiano Cimino
- Urology Section, Department of Surgery, University of Catania, Catania, Italy
| | - Vincenzo Favilla
- Urology Section, Department of Surgery, University of Catania, Catania, Italy
| | - Sisto Perdonà
- Department of Urology, National Cancer Institute of Naples, Naples, Italy
| | | | - Carlo Magno
- Department of Urology, University of Messina, Messina, Italy
| | - Giuseppe Morgia
- Urology Section, Department of Surgery, University of Catania, Catania, Italy
| | - Rocco Damiano
- Urology Unit, Doctorate Research Program, Magna Græcia University of Catanzaro, Viale Europa, Germaneto, Catanzaro, 88100, Italy
| |
Collapse
|
40
|
Sorokin I, Mian BM. Risk calculators and updated tools to select and plan a repeat biopsy for prostate cancer detection. Asian J Androl 2015; 17:864-9. [PMID: 26112489 PMCID: PMC4814963 DOI: 10.4103/1008-682x.156859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Millions of men each year are faced with a clinical suspicion of prostate cancer (PCa) but the prostate biopsy fails to detect the disease. For the urologists, how to select the appropriate candidate for repeat biopsy is a significant clinical dilemma. Traditional risk-stratification tools in this setting such as prostate-specific antigen (PSA) related markers and histopathology findings have met with limited correlation with cancer diagnosis or with significant disease. Thus, an individualized approach using predictive models such as an online risk calculator (RC) or updated biomarkers is more suitable in counseling men about their risk of harboring clinically significant prostate cancer. This review will focus on the available risk-stratification tools in the population of men with prior negative biopsies and persistent suspicion of PCa. The underlying methodology and platforms of the available tools are reviewed to better understand the development and validation of these models. The index patient is then assessed with different RCs to determine the range of heterogeneity among various RCs. This should allow the urologists to better incorporate these various risk-stratification tools into their clinical practice and improve patient counseling.
Collapse
Affiliation(s)
| | - Badar M Mian
- Department of Urology, Albany Medical College, Albany, NY, USA
| |
Collapse
|
41
|
Tomlins SA, Day JR, Lonigro RJ, Hovelson DH, Siddiqui J, Kunju LP, Dunn RL, Meyer S, Hodge P, Groskopf J, Wei JT, Chinnaiyan AM. Urine TMPRSS2:ERG Plus PCA3 for Individualized Prostate Cancer Risk Assessment. Eur Urol 2015; 70:45-53. [PMID: 25985884 DOI: 10.1016/j.eururo.2015.04.039] [Citation(s) in RCA: 268] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 04/29/2015] [Indexed: 01/08/2023]
Abstract
BACKGROUND TMPRSS2:ERG (T2:ERG) and prostate cancer antigen 3 (PCA3) are the most advanced urine-based prostate cancer (PCa) early detection biomarkers. OBJECTIVE Validate logistic regression models, termed Mi-Prostate Score (MiPS), that incorporate serum prostate-specific antigen (PSA; or the multivariate Prostate Cancer Prevention Trial risk calculator version 1.0 [PCPTrc]) and urine T2:ERG and PCA3 scores for predicting PCa and high-grade PCa on biopsy. DESIGN, SETTING, AND PARTICIPANTS T2:ERG and PCA3 scores were generated using clinical-grade transcription-mediated amplification assays. Pretrained MiPS models were applied to a validation cohort of whole urine samples prospectively collected after digital rectal examination from 1244 men presenting for biopsy. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Area under the curve (AUC) was used to compare the performance of serum PSA (or the PCPTrc) alone and MiPS models. Decision curve analysis (DCA) was used to assess clinical benefit. RESULTS AND LIMITATIONS Among informative validation cohort samples (n=1225 [98%], 80% from patients presenting for initial biopsy), models incorporating T2:ERG had significantly greater AUC than PSA (or PCPTrc) for predicting PCa (PSA: 0.693 vs 0.585; PCPTrc: 0.718 vs 0.639; both p<0.001) or high-grade (Gleason score >6) PCa on biopsy (PSA: 0.729 vs 0.651, p<0.001; PCPTrc: 0.754 vs 0.707, p=0.006). MiPS models incorporating T2:ERG score had significantly greater AUC (all p<0.001) than models incorporating only PCA3 plus PSA (or PCPTrc or high-grade cancer PCPTrc [PCPThg]). DCA demonstrated net benefit of the MiPS_PCPTrc (or MiPS_PCPThg) model compared with the PCPTrc (or PCPThg) across relevant threshold probabilities. CONCLUSIONS Incorporating urine T2:ERG and PCA3 scores improves the performance of serum PSA (or PCPTrc) for predicting PCa and high-grade PCa on biopsy. PATIENT SUMMARY Incorporation of two prostate cancer (PCa)-specific biomarkers (TMPRSS2:ERG and PCA3) measured in the urine improved on serum prostate-specific antigen (or a multivariate risk calculator) for predicting the presence of PCa and high-grade PCa on biopsy. A combined test, Mi-Prostate Score, uses models validated in this study and is clinically available to provide individualized risk estimates.
Collapse
Affiliation(s)
- Scott A Tomlins
- Michigan Center for Translational Pathology, Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Urology, University of Michigan Medical School, Ann Arbor, MI, USA; Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - John R Day
- Hologic/Gen-Probe Inc., San Diego, CA, USA
| | - Robert J Lonigro
- Michigan Center for Translational Pathology, Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA; Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Daniel H Hovelson
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Javed Siddiqui
- Michigan Center for Translational Pathology, Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - L Priya Kunju
- Michigan Center for Translational Pathology, Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Rodney L Dunn
- Department of Urology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | | | | | - John T Wei
- Department of Urology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Urology, University of Michigan Medical School, Ann Arbor, MI, USA; Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA; Howard Hughes Medical Institute, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
42
|
Zhang W, Ren SC, Shi XL, Liu YW, Zhu YS, Jing TL, Wang FB, Chen R, Xu CL, Wang HQ, Wang HF, Wang Y, Liu B, Li YM, Fang ZY, Guo F, Lu X, Shen D, Gao X, Hou JG, Sun YH. A novel urinary long non-coding RNA transcript improves diagnostic accuracy in patients undergoing prostate biopsy. Prostate 2015; 75:653-61. [PMID: 25597901 DOI: 10.1002/pros.22949] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 11/20/2014] [Indexed: 02/01/2023]
Abstract
BACKGROUND Long non-coding RNA (LncRNA) PCA3 has been a well-established urine biomarker for the detection of prostate cancer (PCa). Our previous study showed a novel LncRNA FR0348383 is up-regulated in over 70% of PCa compared with matched benign tissues. The aim of this study was to evaluate the diagnostic value of urinary FR0348383 for men undergoing prostate biopsy due to elevated PSA (PSA > 4.0 ng/ml) and/or abnormal digital rectal examination (DRE). METHODS Post-DRE first-catch urine specimens prior to prostate biopsies were prospectively collected. After the whole transcriptome amplification, quantitative real time polymerase chain reaction was applied to quantify urine FR0348383 and PSA levels. The FR0348383 score was calculated as the ratio of PSA and FR0348383 mRNA (PSA mRNA/FR0348383 mRNA × 1000). The diagnostic value of FR0348383 score was evaluated by logistic regression and decision curve analysis. RESULTS 213 cases with urine samples containing sufficient mRNA were included, 94 cases had serum PSA level 4.0-10.0 ng/ml. PCa was identified in 72 cases. An increasing FR0348383 score was correlated with an increasing probability of a positive biopsy (P < 0.001). Multivariable logistic analysis indicated FR0348383 score (P < 0.001), PSA (P = 0.004), age (P = 0.007), prostate volume (P < 0.001) were independent predictors of PCa. ROC analysis demonstrated FR0348383 score outperformed PSA, %free PSA, and PSA Density in the prediction of PCa in the subgroup of patients with grey area PSA (AUC: 0.815 vs. 0.562 vs. 0.599 vs. 0.645). When using a probability threshold of 30% in the grey zone cohort, The FR0348383 score would save 52.0% of avoidable biopsies without missing any high grade cancers. CONCLUSIONS FR0348383 transcript in post-DRE urine may be a novel biomarker for detection of PCa with great diagnostic value, especially in the grey zone cohort. The application of FR0348383 score in clinical practice might avoid unnecessary prostate biopsies and increase the specificity of PCa diagnosis.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Urology, Changhai Hospital, The Second Military Medical University, Shanghai, P.R.China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Rozet F, Bastide C, Beuzeboc P, Cormier L, Fromont G, Hennequin C, Mongiat-Artus P, Peyromaure M, Renard-Penna R, Richaud P, Salomon L, Soulié M. Prise en charge des tumeurs de la prostate à faible risque évolutif. Prog Urol 2015; 25:1-10. [DOI: 10.1016/j.purol.2014.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 10/10/2014] [Accepted: 10/18/2014] [Indexed: 11/15/2022]
|
44
|
Circulating biomarkers for discriminating indolent from aggressive disease in prostate cancer active surveillance. Curr Opin Urol 2014; 24:293-302. [PMID: 24710054 DOI: 10.1097/mou.0000000000000050] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW To review research on the use of circulating biomarkers to predict unfavorable tumor pathology in the setting of active surveillance, or in clinical contexts that are informative for active surveillance, such as men with low-risk prostate cancer evaluated for upgrading or upstaging at surgery. RECENT FINDINGS Biomarkers have been evaluated in serum, plasma, urine, and expressed prostatic secretions. Only a small number of biomarkers have been evaluated in multiple studies: %free prostate-specific antigen (PSA), PSA velocity, PSA doubling time, proPSA, PCA3, TMPRSS2-ERG. Single studies with relevance to active surveillance have evaluated microRNAs, circulating tumor cells, and exosomes. The most consistent significant associations with unfavorable tumor pathology have been with %free PSA. Associations with [-2]proPSA and Prostate Health Index have also been consistent; however, three of four studies come from the same active surveillance patient cohort. SUMMARY Circulating biomarkers represent a promising approach to identify men with apparently low-risk biopsy pathology, but who harbor potentially aggressive tumors unsuitable for active surveillance. Research is still at an early stage; existing biomarkers need rigorous validation with consistent methodology, and additional biomarkers need to be evaluated. Successful clinical translation would reduce the frequency of surveillance biopsies, and may enhance acceptance of active surveillance.
Collapse
|
45
|
Schalken J, Dijkstra S, Baskin-Bey E, van Oort I. Potential utility of cancer-specific biomarkers for assessing response to hormonal treatments in metastatic prostate cancer. Ther Adv Urol 2014; 6:245-52. [PMID: 25435918 DOI: 10.1177/1756287214545328] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Prostate cancer is the second leading cause of cancer death in men and there is an urgent clinical need to improve its detection and treatment. The introduction of prostate-specific antigen (PSA) as a biomarker for prostate cancer several decades ago represented an important step forward in our ability to diagnose this disease and offers the potential for earlier and more effective treatment. PSA measurements are now routinely conducted alongside digital rectal examination, with raised PSA levels leading to biopsy. PSA is also used to monitor disease and assess therapeutic response. However, there are some important limitations to its use, not least its lack of specificity for prostate cancer, and increased PSA screening may have resulted in overdiagnosis and overtreatment of early, low-risk prostate cancer. Therefore, there is a need for more specific and sensitive biomarkers for the diagnosis and monitoring of prostate cancer and treatment response; in particular, biomarkers of response to hormonal treatments in prostate cancer and predictive biomarkers to identify who is most likely to respond to these treatments. Here we review the current utilization of PSA and data on potentially more specific and sensitive biomarkers for the diagnosis and monitoring of prostate cancer: prostate cancer antigen 3 (PCA3) and the TMPRSS2-ERG fusion gene. A description of the design of an ongoing study of the 6-month extended release formulation of leuprorelin acetate (Eligard(®) 45 mg) will provide preliminary data on the potential utility of these new biomarkers for detecting therapeutic response after hormonal therapy.
Collapse
Affiliation(s)
- Jack Schalken
- Department of Urology, Radboud University Medical Centre, Postbus 9101, 6500 HB, Nijmegen, The Netherlands
| | - Siebren Dijkstra
- Department of Urology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | - Inge van Oort
- Department of Urology, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW This review is intended to provide an overview of the current state of biomarkers for prostate cancer (PCa), with a focus on biomarkers approved by the US Food and Drug Administration (FDA) as well as biomarkers available from Clinical Laboratory Improvement Amendment (CLIA)-certified clinical laboratories within the last 1-2 years. RECENT FINDINGS During the past 2 years, two biomarkers have been approved by the US FDA. These include proPSA as part of the Prostate Health Index (phi) by Beckman Coulter, Inc and PCA3 as Progensa by Gen Probe, Inc. With the advances in genomic and proteomic technologies, several new CLIA-based laboratory-developed tests have become available. Examples are Oncotype DX from Genomics Health, Inc, and Prolaris from Myriad Genetics, Inc. In most cases, these new tests are based on a combination of multiple genomic or proteomic biomarkers. SUMMARY Several new tests, as discussed in this review, have become available during the last 2 years. Although the intended use of most of these tests is to distinguish PCa from benign prostatic conditions with better sensitivity and specificity than prostate-specific antigen, studies have shown that some of them may also be useful in the differentiation of aggressive from nonaggressive forms of PCa.
Collapse
|
47
|
Loeb S, Bruinsma SM, Nicholson J, Briganti A, Pickles T, Kakehi Y, Carlsson SV, Roobol MJ. Active surveillance for prostate cancer: a systematic review of clinicopathologic variables and biomarkers for risk stratification. Eur Urol 2014; 67:619-26. [PMID: 25457014 DOI: 10.1016/j.eururo.2014.10.010] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 10/03/2014] [Indexed: 11/29/2022]
Abstract
CONTEXT Active surveillance (AS) is an important strategy to reduce prostate cancer overtreatment. However, the optimal criteria for eligibility and predictors of progression while on AS are debated. OBJECTIVE To review primary data on markers, genetic factors, and risk stratification for patient selection and predictors of progression during AS. EVIDENCE ACQUISITION Electronic searches were conducted in PubMed, Embase, and the Cochrane Central Register of Controlled Trials (CENTRAL) from inception to April 2014 for original articles on biomarkers and risk stratification for AS. EVIDENCE SYNTHESIS Patient factors associated with AS outcomes in some studies include age, race, and family history. Multiple studies provide consistent evidence that a lower percentage of free prostate-specific antigen (PSA), a higher Prostate Health Index (PHI), a higher PSA density (PSAD), and greater biopsy core involvement at baseline predict a greater risk of progression. During follow-up, serial measurements of PHI and PSAD, as well as repeat biopsy results, predict later biopsy progression. While some studies have suggested a univariate relationship between urinary prostate cancer antigen 3 (PCA3) and transmembrane protease, serine 2-v-ets avian erythroblastosis virus E26 oncogene homolog gene fusion (TMPRSS2:ERG) with adverse biopsy features, these markers have not been consistently shown to independently predict AS outcomes. No conclusive data support the use of genetic tests in AS. Limitations of these studies include heterogeneous definitions of progression and limited follow-up. CONCLUSIONS There is a growing body of literature on patient characteristics, biopsy features, and biomarkers with potential utility in AS. More data are needed on practical applications such as combining these tests into multivariable clinical algorithms and long-term outcomes to further improve AS in the future. PATIENT SUMMARY Several PSA-based tests (free PSA, PHI, PSAD) and the extent of cancer on biopsy can help to stratify the risk of progression during active surveillance. Investigation of several other markers is under way.
Collapse
Affiliation(s)
- Stacy Loeb
- Department of Urology, New York University and the Manhattan Veterans Affairs Hospital, New York, NY, USA
| | - Sophie M Bruinsma
- Department of Urology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | | | - Alberto Briganti
- Division of Oncology, Unit of Urology, Urological Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Tom Pickles
- BC Cancer Agency Radiation Therapy Program, BC Cancer Agency, Vancouver Centre, Vancouver, Canada; University of British Columbia, Vancouver, BC, Canada
| | - Yoshiyuki Kakehi
- Department of Urology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Kagawa, Japan
| | - Sigrid V Carlsson
- Department of Urology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden; Department of Surgery (Urology Service), Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Monique J Roobol
- Department of Urology, Erasmus Medical Centre, Rotterdam, The Netherlands.
| |
Collapse
|
48
|
The C-terminal fragment of prostate-specific antigen, a 2331 Da peptide, as a new urinary pathognomonic biomarker candidate for diagnosing prostate cancer. PLoS One 2014; 9:e107234. [PMID: 25233230 PMCID: PMC4169392 DOI: 10.1371/journal.pone.0107234] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 08/08/2014] [Indexed: 12/21/2022] Open
Abstract
Background and Objectives Prostate cancer (PCa) is one of the most common cancers and leading cause of cancer-related deaths in men. Mass screening has been carried out since the 1990s using prostate-specific antigen (PSA) levels in the serum as a PCa biomarker. However, although PSA is an excellent organ-specific marker, it is not a cancer-specific marker. Therefore, the aim of this study was to discover new biomarkers for the diagnosis of PCa. Materials and Methods We focused on urine samples voided following prostate massage (digital rectal examination [DRE]) and conducted a peptidomic analysis of these samples using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MSn). Urinary biomaterials were concentrated and desalted using CM-Sepharose prior to the following analyses being performed by MALDI-TOF/MSn: 1) differential analyses of mass spectra; 2) determination of amino acid sequences; and 3) quantitative analyses using a stable isotope-labeled internal standard. Results Multivariate analysis of the MALDI-TOF/MS mass spectra of urinary extracts revealed a 2331 Da peptide in urine samples following DRE. This peptide was identified as a C-terminal PSA fragment composed of 19 amino acid residues. Moreover, quantitative analysis of the relationship between isotope-labeled synthetic and intact peptides using MALDI-TOF/MS revealed that this peptide may be a new pathognomonic biomarker candidate that can differentiate PCa patients from non-cancer subjects. Conclusion The results of the present study indicate that the 2331 Da peptide fragment of PSA may become a new pathognomonic biomarker for the diagnosis of PCa. A further large-scale investigation is currently underway to assess the possibility of using this peptide in the early detection of PCa.
Collapse
|
49
|
TMPRSS2–ERG fusion transcripts expression in patients referred for prostate biopsy: combining detection in urine and needle rinse material. World J Urol 2014; 33:807-11. [DOI: 10.1007/s00345-014-1359-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 06/25/2014] [Indexed: 01/05/2023] Open
|
50
|
Falzarano SM, Magi-Galluzzi C. ERG protein expression as a biomarker of prostate cancer. Biomark Med 2014; 7:851-65. [PMID: 24266818 DOI: 10.2217/bmm.13.105] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
TMPRSS2-ERG is a recurrent rearrangement specific for prostate cancer, leading to the overexpression of a truncated ERG protein product that is amenable to immunohistochemical detection. Two monoclonal anti-ERG antibodies have currently been validated, with comparable sensitivity and specificity for detecting ERG rearrangement. ERG immunostaining has been applied in different settings to elucidate the role of ERG rearrangement and overexpression in prostate cancer tumorigenesis and progression, as well as to investigate potential diagnostic and prognostic applications. In this article we review the literature on the topic and suggest potential future applications.
Collapse
Affiliation(s)
- Sara Moscovita Falzarano
- R.T. Pathology & Laboratory Medicine Institute, Cleveland Clinic, 9500 Euclid Avenue, L25, Cleveland, OH 44195, USA
| | | |
Collapse
|