1
|
He W, Li Y, Liu SB, Chang Y, Han S, Han X, Ma Z, Amin HM, Song YH, Zhou J. From mitochondria to tumor suppression: ACAT1's crucial role in gastric cancer. Front Immunol 2024; 15:1449525. [PMID: 39247186 PMCID: PMC11377227 DOI: 10.3389/fimmu.2024.1449525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/08/2024] [Indexed: 09/10/2024] Open
Abstract
Acetyl CoA acetyltransferase 1 (ACAT1), a mitochondrial enzyme, is mainly involved in the formation and decomposition of ketones, isoleucine, and fatty acids. Previous clinical studies showed that mutations in the ACAT1 gene lead to ketoacidosis, Notably the role of ACAT1 in human cancer' pathogenesis varies depending on cancer type, and its specific role in gastric cancer remains largely unknown. In the current study, we found that the expression of ACAT1 in primary late-stage gastric cancer tumor tissues was significantly lower than in early-stage tumors. This observation was further confirmed in high-grade gastric cancer cell line MKN45. The expression of CD44 and OCT4 was decreased, while CD24 expression was increased by overexpressing ACAT1 in MKN45 gastric cancer cells. Moreover, the ability of gastric cancer cells to form colonies on soft agar was also reduced by ACAT1 overexpression. Likewise, overexpression of ACAT1 inhibited epithelial mesenchymal transition (EMT) in gastric cancer cells evidenced by increased expression of the epithelial marker E-Cadherin, decreased expression of mesenchymal marker vimentin, and decreased expression levels of SNAI 1/3. In addition, ACAT1 overexpression inhibited cell migration and invasion, improved the response to 5-Fluorouracil (5-FU) and etoposide. In contrast, inhibition of ACAT1 activity promoted the proliferation of gastric cancer cells. The xenotransplantation results in nude mice showed that overexpression of ACAT1 in gastric cancer cells inhibited tumor growth in vivo. In addition, the low expression of ACAT1 in gastric cancer was further validated by searching public databases and conducting bioinformatic analyses. Mechanistically, bioinformatic analysis found that the inhibitory effect of ACAT1 in gastric cancer may be related to the Adipocytokine Signaling Pathway, Ppar Signaling Pathway, Propanoate Metabolism and P53 Signaling Pathway. Correlation analysis indicated ACAT1 mRNA expression was correlated with immune infiltrates. Collectively, our data show that ACAT1 induces pronounced inhibitory effects on gastric cancer initiation and development, which may impact future strategies to treat this aggressive cancer.
Collapse
Affiliation(s)
- Wei He
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Yanfang Li
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Song-Bai Liu
- Suzhou Key Laboratory of Medical Biotechnology, Suzhou Vocational Health College, Suzhou, China
| | - Ying Chang
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Shiyuan Han
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Xingyu Han
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Zixin Ma
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Hesham M Amin
- Department of Hematopathology, the University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yao-Hua Song
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Jin Zhou
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
2
|
Huang Y, Zhu T, Li Y, Huang D. Chain Extension of Piperazine in Ethanol: Synthesis of 2-(4-(2-(Phenylthio)ethyl)piperazinyl)acetonitriles and ACAT-1 Inhibitors. Molecules 2024; 29:3723. [PMID: 39202802 PMCID: PMC11356844 DOI: 10.3390/molecules29163723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 09/03/2024] Open
Abstract
A base-induced synthesis of 2-(4-(2-(phenylthio)ethyl)piperazinyl) acetonitriles by reaction of disulfides, 1-(chloromethyl)-4-aza-1-azonia bicyclo[2.2.2]octane chloride and trimethylsilyl cyanide is reported. The scope of the method is demonstrated with 30 examples. The reaction mechanism research indicates that the three-component reaction would be a SN2 reaction. The products exhibit good activities towards advanced synthesis of aqueous soluble acyl-CoA: cholesterol O-acyltransferase-1 (ACAT-1) inhibitors. Our work is superior as it uses less-odor disulfides as carbon sources and EtOH as solvent in a water and dioxygen insensitive reaction system, followed by a simple purification process.
Collapse
Affiliation(s)
- Ying Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350002, China; (Y.H.); (T.Z.)
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, China
| | - Tingyu Zhu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350002, China; (Y.H.); (T.Z.)
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, China
| | - Yinghua Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350002, China; (Y.H.); (T.Z.)
| | - Deguang Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350002, China; (Y.H.); (T.Z.)
| |
Collapse
|
3
|
Li J, Li Y, Sun X, Wei L, Guan J, Fu L, Du J, Zhang X, Cheng M, Ma H, Jiang S, Zheng Q, Wang L. Silencing lncRNA-DARS-AS1 suppresses nonsmall cell lung cancer progression by stimulating miR-302a-3p to inhibit ACAT1 expression. Mol Carcinog 2024; 63:757-771. [PMID: 38289172 DOI: 10.1002/mc.23686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/17/2023] [Accepted: 01/13/2024] [Indexed: 03/16/2024]
Abstract
Long noncoding RNAs (LncRNAs) have been gaining attention as potential therapeutic targets for lung cancer. In this study, we investigated the expression and biological behavior of lncRNA DARS-AS1, its predicted interacting partner miR-302a-3p, and ACAT1 in nonsmall cell lung cancer (NSCLC). The transcript level of DARS-AS1, miR-302a-3p, and ACAT1 was analyzed using qRT-PCR. Endogenous expression of ACAT1 and the expression of-and changes in-AKT/ERK pathway-related proteins were determined using western blotting. MTS, Transwell, and apoptosis experiments were used to investigate the behavior of cells. The subcellular localization of DARS-AS1 was verified using FISH, and its binding site was verified using dual-luciferase reporter experiments. The binding of DARS-AS1 to miR-302a-3p was verified using RNA co-immunoprecipitation. In vivo experiments were performed using a xenograft model to determine the effect of DARS-AS1 knockout on ACAT1 and NSCLC. lncRNA DARS-AS1 was upregulated in NSCLC cell lines and tissues and the expression of lncRNA DARS-AS1 was negatively correlated with survival of patients with NSCLC. Knockdown of DARS-AS1 inhibited the malignant behaviors of NSCLC via upregulating miR-302a-3p. miR-302a-3p induced suppression of malignancy through regulating oncogene ACAT1. This study demonstrates that the DARS-AS1-miR-302a-3p-ACAT1 pathway plays a key role in NSCLC.
Collapse
Affiliation(s)
- Ji Li
- Department of Pathology, The First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Yizhuo Li
- Department of Pathology, The First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Xiaodan Sun
- Postdoctoral Research Workstation, Jilin Cancer Hospital, Changchun, China
| | - Lai Wei
- Department of Pathology, The First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Jingqian Guan
- Department of Pathology, The First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Lin Fu
- Department of Pathology, The First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Jiang Du
- Department of Pathology, The First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Xiupeng Zhang
- Department of Pathology, The First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Ming Cheng
- Department of Pathology, The First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Huan Ma
- Department of Pathology, The First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Siyu Jiang
- Department of Pathology, The First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Qianqian Zheng
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Liang Wang
- Department of Pathology, The First Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| |
Collapse
|
4
|
Zaky MY, Fan C, Zhang H, Sun XF. Unraveling the Anticancer Potential of Statins: Mechanisms and Clinical Significance. Cancers (Basel) 2023; 15:4787. [PMID: 37835481 PMCID: PMC10572000 DOI: 10.3390/cancers15194787] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Statins are an essential medication class in the treatment of lipid diseases because they inhibit 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase. They reduce cholesterol levels and reduce the risk of cardiovascular disease in both primary and secondary prevention. In addition to their powerful pharmacologic suppression of cholesterol production, statins appear to have pleitropic effects in a wide variety of other diseases by modulating signaling pathways. In recent years, statins have seen a large increase in interest due to their putative anticancer effects. Statins appear to cause upregulation or inhibition in key pathways involved in cancer such as inhibition of proliferation, angiogenesis, and metastasis as well as reducing cancer stemness. Further, statins have been found to induce oxidative stress, cell cycle arrest, autophagy, and apoptosis of cancer cells. Interestingly, clinical studies have shown that statin use is associated with a decreased risk of cancer formation, lower cancer grade at diagnosis, reduction in the risk of local reoccurrence, and increasing survival in patients. Therefore, our objective in the present review is to summarize the findings of the publications on the underlying mechanisms of statins' anticancer effects and their clinical implications.
Collapse
Affiliation(s)
- Mohamed Y. Zaky
- Department of Oncology, Linköping University, 581 83 Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Chuanwen Fan
- Department of Oncology, Linköping University, 581 83 Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden
| | - Huan Zhang
- Department of Oncology, Linköping University, 581 83 Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden
| | - Xiao-Feng Sun
- Department of Oncology, Linköping University, 581 83 Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden
| |
Collapse
|
5
|
Buñay J, Kossai M, Damon-Soubeyrant C, De Haze A, Saru JP, Trousson A, de Joussineau C, Bouchareb E, Kocer A, Vialat M, Dallel S, Degoul F, Bost F, Clavel S, Penault-Llorca F, Valli MP, Guy L, Matthews J, Renaud Y, Ittmann M, Jones J, Morel L, Lobaccaro JM, Baron S. Persistent organic pollutants promote aggressiveness in prostate cancer. Oncogene 2023; 42:2854-2867. [PMID: 37587334 DOI: 10.1038/s41388-023-02788-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 08/18/2023]
Abstract
Increasing evidence points towards a causal link between exposure to persistent organic pollutants (POPs) with increased incidence and aggressivity of various cancers. Among these POPs, dioxin and PCB-153 are widely found in our environment and represent a significant source of contamination. Dioxin exposure has already been linked to cancer such as non-Hodgkin's lymphoma, but remains to be more extensively investigated in other cancers. Potential implications of dioxin and PCB-153 in prostate cancer progression spurred us to challenge both ex vivo and in vivo models with low doses of these POPs. We found that dioxin or PCB-153 exposure increased hallmarks of growth and metastasis of prostate cancer cells ex vivo and in grafted NOD-SCID mice. Exposure induced histopathological carcinoma-like patterns in the Ptenpc-/- mice. We identified up-regulation of Acetyl-CoA Acetyltransferase-1 (ACAT1) involved in ketone bodies pathway as a potential target. Mechanistically, genetic inhibition confirmed that ACAT1 mediated dioxin effect on cell migration. Using public prostate cancer datasets, we confirmed the deregulation of ACAT1 and associated gene encoded ketone bodies pathway enzymes such as OXCT1, BDH1 and HMGCL in advanced prostate cancer. To further explore this link between dioxin and ACAT1 deregulation, we analyzed a unique prostate-tumour tissue collection from the USA veterans exposed to agent orange, known to be highly contaminated by dioxin because of industrial production. We found that ACAT1 histoscore is significantly increased in exposed patients. Our studies reveal the implication of dioxin and PCB-153 to induce a prometastatic programme in prostate tumours and identify ACAT1 deregulation as a key event in this process.
Collapse
Affiliation(s)
- Julio Buñay
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
| | - Myriam Kossai
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre Jean Perrin, Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, F-63000, Clermont Ferrand, France
| | - Christelle Damon-Soubeyrant
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
| | - Angélique De Haze
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
| | - Jean-Paul Saru
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
| | - Amalia Trousson
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
| | - Cyrille de Joussineau
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
| | - Erwan Bouchareb
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
| | - Ayhan Kocer
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
| | - Marine Vialat
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
| | - Sarah Dallel
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
- Service d'Endocrinologie, Diabétologie et Maladies Métaboliques, CHU Clermont Ferrand, Hôpital Gabriel Montpied, F-63003, Clermont-Ferrand, France
| | - Françoise Degoul
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
| | - Frédéric Bost
- Université Côte d'Azur, INSERM U1065, C3M, Equipe Labellisée Ligue Nationale contre le Cancer, 2022, F-06204, Nice, France
| | - Stephan Clavel
- Université Côte d'Azur, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), CNRS UMR7275, Sophia-Antipolis, Valbonne, France
| | - Frédérique Penault-Llorca
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre Jean Perrin, Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, F-63000, Clermont Ferrand, France
| | - Marie-Pierre Valli
- Service d'Urologie, CHU Clermont-Ferrand, UMR1240 INSERM, Université Clermont-Auvergne, Clermont Ferrand, France
| | - Laurent Guy
- Service d'Urologie, CHU Clermont-Ferrand, UMR1240 INSERM, Université Clermont-Auvergne, Clermont Ferrand, France
| | - Jason Matthews
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Yoan Renaud
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
| | - Michael Ittmann
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Center for Metabolism and Experimental Therapeutics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, and Michael E. DeBakey VAMC Houston, Houston, TX, 77030, USA
| | - Jeffrey Jones
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Department of Urology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Operative Care Line, Urology Section, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, 77030, USA
| | - Laurent Morel
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
| | - Jean-Marc Lobaccaro
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France
| | - Silvère Baron
- Université Clermont Auvergne, iGReD, CNRS UMR 6293, INSERM U1103, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France.
- Groupe Cancer Clermont Auvergne, 28, place Henri Dunant, BP38, 63001, Clermont-Ferrand, France.
- Centre de Recherche en Nutrition Humaine d'Auvergne, 58 Boulevard Montalembert, F-63009, Clermont-Ferrand, France.
| |
Collapse
|
6
|
Mao T, Qin F, Zhang M, Li J, Li J, Lai M. Elevated serum β-hydroxybutyrate, a circulating ketone metabolite, accelerates colorectal cancer proliferation and metastasis via ACAT1. Oncogene 2023:10.1038/s41388-023-02700-y. [PMID: 37185457 DOI: 10.1038/s41388-023-02700-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023]
Abstract
Colorectal cancer (CRC) ranks third in incidence and second in mortality worldwide. Metabolic disorders are known to be closely associated with CRC. Functional metabolomics aims to translate metabolomics-derived biomarkers to disease mechanisms. Previous work based on untargeted liquid chromatography identified 30 differential metabolites of CRC. Among them, only β-hydroxybutyrate (BHB) was elevated in CRC. Here, we first confirm the increased level of β-hydroxybutyrate by targeted metabolomic analysis using an independent cohort of 400 serum samples by UPLC-QQQ-MS/MS analysis. Using appropriate cell and animal models, we find that treatment with pathological levels of β-hydroxybutyrate expedites CRC proliferation and metastasis. Out of four major rate-limiting enzymes of ketolysis, only acetyl-coenzyme A acetyltransferase1 (ACAT1) expression is increased in paired human CRC tissues. These findings suggest probable clinical relevance for the functional implications of β-hydroxybutyrate in CRC. We demonstrate that β-hydroxybutyrate may exert its tumorigenic effects via regulation of ACAT1, due to induction of downstream isocitrate dehydrogenase1 (IDH1) acetylation. Genetic silencing of ACAT1 significantly suppresses the progression of CRC and abrogates the effects of β-hydroxybutyrate both in vitro and in vivo. Overall, this study suggests that targeting β-hydroxybutyrate and its major rate-limiting enzyme ACAT1 may provide a new avenue for therapeutic intervention in CRC.
Collapse
Affiliation(s)
- Tianxiao Mao
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210000, China
| | - Fujian Qin
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210000, China
| | - Mengdi Zhang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210000, China
| | - Jing Li
- The Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, 210000, China
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210000, China
| | - Jiankang Li
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Maode Lai
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210000, China.
- Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042); Key Laboratory of Disease Proteomics of Zhejiang Province, Department of Pathology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
7
|
Talapatra J, Reddy MM. Lipid Metabolic Reprogramming in Embryonal Neoplasms with MYCN Amplification. Cancers (Basel) 2023; 15:cancers15072144. [PMID: 37046804 PMCID: PMC10093342 DOI: 10.3390/cancers15072144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Tumor cells reprogram their metabolism, including glucose, glutamine, nucleotide, lipid, and amino acids to meet their enhanced energy demands, redox balance, and requirement of biosynthetic substrates for uncontrolled cell proliferation. Altered lipid metabolism in cancer provides lipids for rapid membrane biogenesis, generates the energy required for unrestricted cell proliferation, and some of the lipids act as signaling pathway mediators. In this review, we focus on the role of lipid metabolism in embryonal neoplasms with MYCN dysregulation. We specifically review lipid metabolic reactions in neuroblastoma, retinoblastoma, medulloblastoma, Wilms tumor, and rhabdomyosarcoma and the possibility of targeting lipid metabolism. Additionally, the regulation of lipid metabolism by the MYCN oncogene is discussed.
Collapse
Affiliation(s)
- Jyotirmayee Talapatra
- The Operation Eyesight Universal Institute for Eye Cancer, L V Prasad Eye Institute, Bhubaneswar 751024, India
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India
| | - Mamatha M Reddy
- The Operation Eyesight Universal Institute for Eye Cancer, L V Prasad Eye Institute, Bhubaneswar 751024, India
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India
| |
Collapse
|
8
|
Hwang CY, Choe W, Yoon KS, Ha J, Kim SS, Yeo EJ, Kang I. Molecular Mechanisms for Ketone Body Metabolism, Signaling Functions, and Therapeutic Potential in Cancer. Nutrients 2022; 14:nu14224932. [PMID: 36432618 PMCID: PMC9694619 DOI: 10.3390/nu14224932] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
The ketone bodies (KBs) β-hydroxybutyrate and acetoacetate are important alternative energy sources for glucose during nutrient deprivation. KBs synthesized by hepatic ketogenesis are catabolized to acetyl-CoA through ketolysis in extrahepatic tissues, followed by the tricarboxylic acid cycle and electron transport chain for ATP production. Ketogenesis and ketolysis are regulated by the key rate-limiting enzymes, 3-hydroxy-3-methylglutaryl-CoA synthase 2 and succinyl-CoA:3-oxoacid-CoA transferase, respectively. KBs participate in various cellular processes as signaling molecules. KBs bind to G protein-coupled receptors. The most abundant KB, β-hydroxybutyrate, regulates gene expression and other cellular functions by inducing post-translational modifications. KBs protect tissues by regulating inflammation and oxidative stress. Recently, interest in KBs has been increasing due to their potential for treatment of various diseases such as neurological and cardiovascular diseases and cancer. Cancer cells reprogram their metabolism to maintain rapid cell growth and proliferation. Dysregulation of KB metabolism also plays a role in tumorigenesis in various types of cancer. Targeting metabolic changes through dietary interventions, including fasting and ketogenic diets, has shown beneficial effects in cancer therapy. Here, we review current knowledge of the molecular mechanisms involved in the regulation of KB metabolism and cellular signaling functions, and the therapeutic potential of KBs and ketogenic diets in cancer.
Collapse
Affiliation(s)
- Chi Yeon Hwang
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wonchae Choe
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyung-Sik Yoon
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joohun Ha
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung Soo Kim
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Eui-Ju Yeo
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
- Correspondence: (E.-J.Y.); (I.K.); Tel.: +82-32-899-6050 (E.-J.Y.); +82-2-961-0922 (I.K.)
| | - Insug Kang
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Correspondence: (E.-J.Y.); (I.K.); Tel.: +82-32-899-6050 (E.-J.Y.); +82-2-961-0922 (I.K.)
| |
Collapse
|
9
|
Alshaker H, Hunter E, Salter M, Ramadass A, Westra W, Winkler M, Green J, Akoulitchev A, Pchejetski D. Monocytes acquire prostate cancer specific chromatin conformations upon indirect co-culture with prostate cancer cells. Front Oncol 2022; 12:990842. [PMID: 36059613 PMCID: PMC9437316 DOI: 10.3389/fonc.2022.990842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Background Three-dimensional chromosome loop conformations are powerful regulators of gene expression. These chromosome conformations can be detected both in tumour and in circulating cells and have significant disease biomarker potential. We have recently detected specific chromosome conformations in circulating cells of patients with prostate cancer (PCa) which were similar to ones found in their primary tumours, however, the possibility of horizontal transfer of chromosome conformations was not studied previously. Methods Human monocytes (U937) were co-cultured in Boyden chambers through 0.4 uM membrane with or without PC-3 human PCa cells or their conditioned media and a custom DNA microarray for 900,000 chromosomal loops covering all coding loci and non-coding RNA genes was performed on each part of the co-culture system. Results We have detected 684 PC-3 cell-specific chromosome conformations across the whole genome that were absent in naïve monocytes but appeared in monocytes co-cultured with PC-3 cells or with PC-3-conditioned media. Comparing PC3-specific conformations to the ones we have previously detected in systemic circulation of high-risk PCa patients revealed 9 positive loops present in both settings. Conclusions Our results demonstrate for the first time a proof of concept for horizontal transfer of chromosome conformations without direct cell-cell contact. This carries high clinical relevance as we have previously observed chromatin conformations in circulating cells of patients with melanoma and PCa similar to ones in their primary tumours. These changes can be used as highly specific biomarkers for diagnosis and prognosis. Further studies are required to elucidate the specific mechanism of chromosome conformations transfer and its clinical significance in particular diseases.
Collapse
Affiliation(s)
- Heba Alshaker
- School of Medicine, University of East Anglia, Norwich, United Kingdom
| | - Ewan Hunter
- Oxford BioDynamics Limited, Oxford, United Kingdom
| | | | | | | | - Mathias Winkler
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Jayne Green
- Oxford BioDynamics Limited, Oxford, United Kingdom
| | | | - Dmitri Pchejetski
- School of Medicine, University of East Anglia, Norwich, United Kingdom
- *Correspondence: Dmitri Pchejetski,
| |
Collapse
|
10
|
Zhang X, Xia B, Zheng H, Ning J, Zhu Y, Shao X, Liu B, Dong B, Gao H. Identification of characteristic metabolic panels for different stages of prostate cancer by 1H NMR-based metabolomics analysis. Lab Invest 2022; 20:275. [PMID: 35715864 PMCID: PMC9205125 DOI: 10.1186/s12967-022-03478-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/11/2022] [Indexed: 12/14/2022]
Abstract
Background Prostate cancer (PCa) is the second most prevalent cancer in males worldwide, yet detecting PCa and its metastases remains a major challenging task in clinical research setups. The present study aimed to characterize the metabolic changes underlying the PCa progression and investigate the efficacy of related metabolic panels for an accurate PCa assessment. Methods In the present study, 75 PCa subjects, 62 PCa patients with bone metastasis (PCaB), and 50 benign prostatic hyperplasia (BPH) patients were enrolled, and we performed a cross-sectional metabolomics analysis of serum samples collected from these subjects using a 1H nuclear magnetic resonance (NMR)-based metabolomics approach. Results Multivariate analysis revealed that BPH, PCa, and PCaB groups showed distinct metabolic divisions, while univariate statistics integrated with variable importance in the projection (VIP) scores identified a differential metabolite series, which included energy, amino acid, and ketone body metabolism. Herein, we identified a series of characteristic serum metabolic changes, including decreased trends of 3-HB and acetone as well as elevated trends of alanine in PCa patients compared with BPH subjects, while increased levels of 3-HB and acetone as well as decreased levels of alanine in PCaB patients compared with PCa. Additionally, our results also revealed the metabolic panels of discriminant metabolites coupled with the clinical parameters (age and body mass index) for discrimination between PCa and BPH, PCaB and BPH, PCaB and PCa achieved the AUC values of 0.828, 0.917, and 0.872, respectively. Conclusions Overall, our study gave successful discrimination of BPH, PCa and PCaB, and we characterized the potential metabolic alterations involved in the PCa progression and its metastases, including 3-HB, acetone and alanine. The defined biomarker panels could be employed to aid in the diagnosis and classification of PCa in clinical practice. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03478-5.
Collapse
Affiliation(s)
- Xi Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Binbin Xia
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Hong Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jie Ning
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yinjie Zhu
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiaoguang Shao
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Binrui Liu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Baijun Dong
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Hongchang Gao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China. .,Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, China. .,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, 325000, China.
| |
Collapse
|
11
|
Fader Kaiser CM, Romano PS, Vanrell MC, Pocognoni CA, Jacob J, Caruso B, Delgui LR. Biogenesis and Breakdown of Lipid Droplets in Pathological Conditions. Front Cell Dev Biol 2022; 9:826248. [PMID: 35198567 PMCID: PMC8860030 DOI: 10.3389/fcell.2021.826248] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/22/2021] [Indexed: 12/17/2022] Open
Abstract
Lipid droplets (LD) have long been considered as mere fat drops; however, LD have lately been revealed to be ubiquitous, dynamic and to be present in diverse organelles in which they have a wide range of key functions. Although incompletely understood, the biogenesis of eukaryotic LD initiates with the synthesis of neutral lipids (NL) by enzymes located in the endoplasmic reticulum (ER). The accumulation of NL leads to their segregation into nanometric nuclei which then grow into lenses between the ER leaflets as they are further filled with NL. The lipid composition and interfacial tensions of both ER and the lenses modulate their shape which, together with specific ER proteins, determine the proneness of LD to bud from the ER toward the cytoplasm. The most important function of LD is the buffering of energy. But far beyond this, LD are actively integrated into physiological processes, such as lipid metabolism, control of protein homeostasis, sequestration of toxic lipid metabolic intermediates, protection from stress, and proliferation of tumours. Besides, LD may serve as platforms for pathogen replication and defense. To accomplish these functions, from biogenesis to breakdown, eukaryotic LD have developed mechanisms to travel within the cytoplasm and to establish contact with other organelles. When nutrient deprivation occurs, LD undergo breakdown (lipolysis), which begins with the LD-associated members of the perilipins family PLIN2 and PLIN3 chaperone-mediated autophagy degradation (CMA), a specific type of autophagy that selectively degrades a subset of cytosolic proteins in lysosomes. Indeed, PLINs CMA degradation is a prerequisite for further true lipolysis, which occurs via cytosolic lipases or by lysosome luminal lipases when autophagosomes engulf portions of LD and target them to lysosomes. LD play a crucial role in several pathophysiological processes. Increased accumulation of LD in non-adipose cells is commonly observed in numerous infectious diseases caused by intracellular pathogens including viral, bacterial, and parasite infections, and is gradually recognized as a prominent characteristic in a variety of cancers. This review discusses current evidence related to the modulation of LD biogenesis and breakdown caused by intracellular pathogens and cancer.
Collapse
Affiliation(s)
- Claudio M Fader Kaiser
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| | - Patricia S Romano
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| | - M Cristina Vanrell
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| | - Cristian A Pocognoni
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| | - Julieta Jacob
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| | - Benjamín Caruso
- Instituto de Investigaciones Biologicas y Tecnologicas, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Cordoba, Cordoba, Argentina
| | - Laura R Delgui
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| |
Collapse
|
12
|
Raftopulos NL, Washaya TC, Niederprüm A, Egert A, Hakeem-Sanni MF, Varney B, Aishah A, Georgieva ML, Olsson E, Dos Santos DZ, Nassar ZD, Cochran BJ, Nagarajan SR, Kakani MS, Hastings JF, Croucher DR, Rye KA, Butler LM, Grewal T, Hoy AJ. Prostate cancer cell proliferation is influenced by LDL-cholesterol availability and cholesteryl ester turnover. Cancer Metab 2022; 10:1. [PMID: 35033184 PMCID: PMC8760736 DOI: 10.1186/s40170-021-00278-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/24/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Prostate cancer growth is driven by androgen receptor signaling, and advanced disease is initially treatable by depleting circulating androgens. However, prostate cancer cells inevitably adapt, resulting in disease relapse with incurable castrate-resistant prostate cancer. Androgen deprivation therapy has many side effects, including hypercholesterolemia, and more aggressive and castrate-resistant prostate cancers typically feature cellular accumulation of cholesterol stored in the form of cholesteryl esters. As cholesterol is a key substrate for de novo steroidogenesis in prostate cells, this study hypothesized that castrate-resistant/advanced prostate cancer cell growth is influenced by the availability of extracellular, low-density lipoprotein (LDL)-derived, cholesterol, which is coupled to intracellular cholesteryl ester homeostasis. METHODS C4-2B and PC3 prostate cancer cells were cultured in media supplemented with fetal calf serum (FCS), charcoal-stripped FCS (CS-FCS), lipoprotein-deficient FCS (LPDS), or charcoal-stripped LPDS (CS-LPDS) and analyzed by a variety of biochemical techniques. Cell viability and proliferation were measured by MTT assay and Incucyte, respectively. RESULTS Reducing lipoprotein availability led to a reduction in cholesteryl ester levels and cell growth in C4-2B and PC3 cells, with concomitant reductions in PI3K/mTOR and p38MAPK signaling. This reduced growth in LPDS-containing media was fully recovered by supplementation of exogenous low-density lipoprotein (LDL), but LDL only partially rescued growth of cells cultured with CS-LPDS. This growth pattern was not associated with changes in androgen receptor signaling but rather increased p38MAPK and MEK1/ERK/MSK1 activation. The ability of LDL supplementation to rescue cell growth required cholesterol esterification as well as cholesteryl ester hydrolysis activity. Further, growth of cells cultured in low androgen levels (CS-FCS) was suppressed when cholesteryl ester hydrolysis was inhibited. CONCLUSIONS Overall, these studies demonstrate that androgen-independent prostate cancer cell growth can be influenced by extracellular lipid levels and LDL-cholesterol availability and that uptake of extracellular cholesterol, through endocytosis of LDL-derived cholesterol and subsequent delivery and storage in the lipid droplet as cholesteryl esters, is required to support prostate cancer cell growth. This provides new insights into the relationship between extracellular cholesterol, intracellular cholesterol metabolism, and prostate cancer cell growth and the potential mechanisms linking hypercholesterolemia and more aggressive prostate cancer.
Collapse
Affiliation(s)
- Nikki L Raftopulos
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Tinashe C Washaya
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Andreas Niederprüm
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine, Ruprecht Karl University of Heidelberg, Baden-Wuerttemberg, Heidelberg, Germany
| | - Antonia Egert
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Mariam F Hakeem-Sanni
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Bianca Varney
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Atqiya Aishah
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Mariya L Georgieva
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Ellinor Olsson
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Diandra Z Dos Santos
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Biotechnology Program/RENORBIO, Health Sciences Center, Federal University of Espirito Santo, Vitoria, ES, Brazil
| | - Zeyad D Nassar
- Adelaide Medical School and Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, South Australia, Australia.,South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Blake J Cochran
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Shilpa R Nagarajan
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Meghna S Kakani
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Jordan F Hastings
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - David R Croucher
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.,St Vincent's Hospital Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Kerry-Anne Rye
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Lisa M Butler
- Adelaide Medical School and Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, South Australia, Australia.,South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Andrew J Hoy
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
13
|
Epigenetic inactivation of ACAT1 promotes epithelial-mesenchymal transition of clear cell renal cell carcinoma. Genes Genomics 2022; 44:487-497. [PMID: 34985712 DOI: 10.1007/s13258-021-01211-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/20/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Acetyl-CoA acyltransferase 1 (ACAT1) is a key enzyme catalyzing the production of mitochondrial ketone bodies. We have shown that ACAT1 is down-regulated in kidney renal clear cell carcinoma (KIRC) previously. OBJECTIVE To investigate the reasons for downregulation of ACAT1 in KIRC and explore the underlying mechanisms involved in metastatic inhibition regulated by ACAT1. METHODS The Gene Expression Omnibus (GEO) database was queried for meta-analysis of ACAT1 mRNA expression in KIRC. The UALCAN website was used to compare the methylation levels of the ACAT1 promoter region in KIRC and normal tissues. RT-qPCR was used to quantitate ACAT1 transcription levels. The GCBI and Tarbase V.8 databases were used to predict miRNAs that may target the mRNA of ACAT1. The correlation between mRNA expression of ACAT1, MMP7 (matrix metallopeptidase 7), CDH1 (E-cadherin), EpCAM (epithelial cell adhesion molecule), and VIM (vimentin) was analyzed. Extracellular MMP7 protein was quantitated using an ELISA assay. RESULTS The methylation level of the ACAT1 promoter region in KIRC was significantly higher than that in the normal kidney tissues. The ACAT1 mRNA expression in the KIRC cell lines was restored after treatment with 5-aza-dC (p < 0.05). MiR-21-5p is a conserved microRNA targeting ACAT1. It is expressed at a significantly higher level in KIRC than in normal tissues (p < 0.001). MiR-21-5p miRNA expression negatively correlates with ACAT1 mRNA expression. The expression of miR-21-5p is higher at the T3-T4 stages and in the histologic grades G3-G4. Patients with high miR-21-5p expression tended to have lower overall survival, suggesting that miR-21-5p could serve as a potentially valuable diagnostic biomarker for KIRC (AUC = 0.957; p < 0.001). A mimetic of miR-21-5p inhibited the expression of ACAT1 mRNA and protein. In addition, ACAT1 mRNA expression positively correlates with CDH1 and EpCAM but is negatively correlated with VIM. Overexpression of ACAT1 suppresses the secretion of MMP7 in KIRC cells. CONCLUSION Expression of ACAT1 in KIRC is controlled at two levels, firstly by the hypermethylation of the ACAT1 promoter region and secondly by overexpression of miR-21-5p. Downregulation of ACAT1 expression correlates with epithelial-mesenchymal transition (EMT).
Collapse
|
14
|
Lethongsavarn V, Pinault M, Diedhiou A, Guimaraes C, Guibon R, Bruyère F, Mathieu R, Rioux-Leclercq N, Multigner L, Brureau L, Fournier G, Doucet L, Blanchet P, Fromont G. Tissue cholesterol metabolism and prostate cancer aggressiveness: Ethno-geographic variations. Prostate 2021; 81:1365-1373. [PMID: 34516695 DOI: 10.1002/pros.24234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/30/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND Prostate cancer (PCa) is more frequent and more aggressive in populations of African descent than in Caucasians. Since the fatty acid composition of peri-prostatic adipose tissue (PPAT) has been shown to differ according to the ethno-geographic origin and is involved in PCa aggressiveness, we aimed to analyze the cholesterol content of PPAT from Caucasian and African-Caribbean patients, in correlation with markers of disease aggressiveness and cholesterol metabolism in cancer tissues. METHODS The quantification of cholesterol in PPAT was analyzed in 52 Caucasian and 52 African-Caribbean PCa patients, with in each group 26 indolent tumors (ISUP Group1 and pT2) and 26 potentially aggressive tumors (ISUP Group 3-5 and/or pT3). The expression of proteins involved in cholesterol metabolism was analyzed by immunohistochemistry on cancer tissue samples included in tissue microarrays. RESULTS The amount of cholesterol esters was lower in PPAT from African-Caribbean patients compared with Caucasians, without any correlation with markers of disease aggressiveness. In cancer tissues from African-Caribbean patients, the expression of ABCA1 (involved in cholesterol efflux) was decreased, and that of SREBP-2 (involved in cholesterol uptake) was increased. In both groups of patients, SREBP-2 expression was strongly associated with that of Zeb1, a key player in the epithelial-to-mesenchymal transition (EMT) process. CONCLUSION These results suggest that cholesterol metabolism differs according to the ethno-geographic origin, in both PPAT and cancer tissues. In African-Caribbeans, the orientation towards accumulation of cholesterol in cancer cells is associated with a more frequent state of EMT, which may promote PCa aggressiveness in this population.
Collapse
Affiliation(s)
- Vincent Lethongsavarn
- Inserm UMR1069 "Nutrition, Croissance et Cancer", Université de Tours, Tours, France
- Department of Pathology, CHU de la Guadeloupe, Guadeloupe, France
- Department of Urology, Université des Antilles, Pointe-à-Pitre, France
| | - Michèle Pinault
- Inserm UMR1069 "Nutrition, Croissance et Cancer", Université de Tours, Tours, France
| | | | - Cyrille Guimaraes
- Inserm UMR1069 "Nutrition, Croissance et Cancer", Université de Tours, Tours, France
| | - Roseline Guibon
- Inserm UMR1069 "Nutrition, Croissance et Cancer", Université de Tours, Tours, France
- Department of Pathology, CHRU Tours, Tours, France
| | | | - Romain Mathieu
- Department of Urology, CHU Rennes, Rennes, France
- Inserm UMR1085 - IRSET, EHESP, Université de Rennes, Rennes, France
| | - Nathalie Rioux-Leclercq
- Inserm UMR1085 - IRSET, EHESP, Université de Rennes, Rennes, France
- Department of Pathology, CHU Rennes, Rennes, France
| | - Luc Multigner
- Inserm UMR1085 - IRSET, EHESP, Université de Rennes, Rennes, France
| | - Laurent Brureau
- Department of Urology, Université des Antilles, Pointe-à-Pitre, France
- Inserm UMR1085 - IRSET, EHESP, Université de Rennes, Rennes, France
- Department of Urology, CHU de la Guadeloupe, Pointe-à-Pitre, France
| | | | | | - P Blanchet
- Department of Urology, Université des Antilles, Pointe-à-Pitre, France
- Inserm UMR1085 - IRSET, EHESP, Université de Rennes, Rennes, France
- Department of Urology, CHU de la Guadeloupe, Pointe-à-Pitre, France
| | - Gaëlle Fromont
- Inserm UMR1069 "Nutrition, Croissance et Cancer", Université de Tours, Tours, France
- Department of Pathology, CHRU Tours, Tours, France
| |
Collapse
|
15
|
Lu Y, Zhou X, Zhao W, Liao Z, Li B, Han P, Yang Y, Zhong X, Mo Y, Li P, Huang G, Xiao X, Zhang Z, Zhou X. Epigenetic Inactivation of Acetyl-CoA Acetyltransferase 1 Promotes the Proliferation and Metastasis in Nasopharyngeal Carcinoma by Blocking Ketogenesis. Front Oncol 2021; 11:667673. [PMID: 34485115 PMCID: PMC8415477 DOI: 10.3389/fonc.2021.667673] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 07/27/2021] [Indexed: 11/13/2022] Open
Abstract
The dysregulation of epigenetic modification and energy metabolism cooperatively contribute to the tumorigenesis of nasopharyngeal carcinoma (NPC). However, the detailed mechanisms underlying their joint contribution to NPC development and progression remain unclear. Here, we investigate the role of Acy1 Coenzyme A Acyltransferases1 (ACAT1), a key enzyme in the metabolic pathway of ketone bodies, in the proliferation and metastasis of NPC and to elucidate the underlying molecular mechanisms. Ketogenesis, plays a critical role in tumorigenesis. Previously, we reported two enzymes involved in ketone body metabolism mediate epigenetic silencing and act as tumor suppressor genes in NPC. Here, we identify another key enzyme, Acetyl-CoA acetyltransferase 1 (ACAT1), and show that its transcriptional inactivation in NPC is due to promoter hypermethylation. Ectopic overexpression of ACAT1 significantly suppressed the proliferation and colony formation of NPC cells in vitro. The migratory and invasive capacity of NPC cells was inhibited by ACAT1. The tumorigenesis of NPC cells overexpressing ACAT1 was decreased in vivo. Elevated ACAT1 in NPC cells was accompanied by an elevated expression of CDH1 and a reduced expression of vimentin and SPARC, strongly indicating that ACAT1 is involved in regulating epithelial-mesenchymal transition (EMT). We also found that ACAT1 contributes to increased intracellular levels of β-hydroxybutyrate (β-HB). Exogenously supplied β-HB significantly inhibits the growth of NPC cells in a dose-dependent manner. In summary, ACAT1 may function as a tumor suppressor via modulation of ketogenesis and could thus serve as a potential therapeutic target in NPC. In summary, our data suggest that regulation of ketogenesis may serve as adjuvant therapy in NPC.
Collapse
Affiliation(s)
- Yunliang Lu
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaohui Zhou
- Life Science Institute, Guangxi Medical University, Nanning, China
| | - Weilin Zhao
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhipeng Liao
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Bo Li
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Peipei Han
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yanping Yang
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xuemin Zhong
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yingxi Mo
- Department of Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Ping Li
- Department of Pathology, Affiliated Stomatological Hospital of Guangxi Medical University, Nanning, China
| | - Guangwu Huang
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xue Xiao
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhe Zhang
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaoying Zhou
- Life Science Institute, Guangxi Medical University, Nanning, China
| |
Collapse
|
16
|
Jiang W, Hu JW, He XR, Jin WL, He XY. Statins: a repurposed drug to fight cancer. J Exp Clin Cancer Res 2021; 40:241. [PMID: 34303383 PMCID: PMC8306262 DOI: 10.1186/s13046-021-02041-2] [Citation(s) in RCA: 161] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
As competitive HMG-CoA reductase (HMGCR) inhibitors, statins not only reduce cholesterol and improve cardiovascular risk, but also exhibit pleiotropic effects that are independent of their lipid-lowering effects. Among them, the anti-cancer properties of statins have attracted much attention and indicated the potential of statins as repurposed drugs for the treatment of cancer. A large number of clinical and epidemiological studies have described the anticancer properties of statins, but the evidence for anticancer effectiveness of statins is inconsistent. It may be that certain molecular subtypes of cancer are more vulnerable to statin therapy than others. Whether statins have clinical anticancer effects is still an active area of research. Statins appear to enhance the efficacy and address the shortcomings associated with conventional cancer treatments, suggesting that statins should be considered in the context of combined therapies for cancer. Here, we present a comprehensive review of the potential of statins in anti-cancer treatments. We discuss the current understanding of the mechanisms underlying the anti-cancer properties of statins and their effects on different malignancies. We also provide recommendations for the design of future well-designed clinical trials of the anti-cancer efficacy of statins.
Collapse
Affiliation(s)
- Wen Jiang
- Department of General Surgery, The Affiliated Provincial Hospital of Anhui Medical University, Hefei, 230001, P. R. China
| | - Jin-Wei Hu
- Department of General Surgery, The Affiliated Provincial Hospital of Anhui Medical University, Hefei, 230001, P. R. China
| | - Xu-Ran He
- Department of Finance, The First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Hospital), Hefei, 230001, P. R. China
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, P. R. China.
| | - Xin-Yang He
- Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Hospital), Hefei, 230001, P. R. China.
| |
Collapse
|
17
|
Vona R, Iessi E, Matarrese P. Role of Cholesterol and Lipid Rafts in Cancer Signaling: A Promising Therapeutic Opportunity? Front Cell Dev Biol 2021; 9:622908. [PMID: 33816471 PMCID: PMC8017202 DOI: 10.3389/fcell.2021.622908] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
Cholesterol is a lipid molecule that plays an essential role in a number of biological processes, both physiological and pathological. It is an essential structural constituent of cell membranes, and it is fundamental for biosynthesis, integrity, and functions of biological membranes, including membrane trafficking and signaling. Moreover, cholesterol is the major lipid component of lipid rafts, a sort of lipid-based structures that regulate the assembly and functioning of numerous cell signaling pathways, including those related to cancer, such as tumor cell growth, adhesion, migration, invasion, and apoptosis. Considering the importance of cholesterol metabolism, its homeostasis is strictly regulated at every stage: import, synthesis, export, metabolism, and storage. The alterations of this homeostatic balance are known to be associated with cardiovascular diseases and atherosclerosis, but mounting evidence also connects these behaviors to increased cancer risks. Although there is conflicting evidence on the role of cholesterol in cancer development, most of the studies consistently suggest that a dysregulation of cholesterol homeostasis could lead to cancer development. This review aims to discuss the current understanding of cholesterol homeostasis in normal and cancerous cells, summarizing key findings from recent preclinical and clinical studies that have investigated the role of major players in cholesterol regulation and the organization of lipid rafts, which could represent promising therapeutic targets.
Collapse
Affiliation(s)
- Rosa Vona
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità [Italian National Institute of Health], Rome, Italy
| | - Elisabetta Iessi
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità [Italian National Institute of Health], Rome, Italy
| | - Paola Matarrese
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità [Italian National Institute of Health], Rome, Italy
| |
Collapse
|
18
|
Alshaker H, Mills R, Hunter E, Salter M, Ramadass A, Skinner BM, Westra W, Green J, Akoulitchev A, Winkler M, Pchejetski D. Chromatin conformation changes in peripheral blood can detect prostate cancer and stratify disease risk groups. J Transl Med 2021; 19:46. [PMID: 33509203 PMCID: PMC7845038 DOI: 10.1186/s12967-021-02710-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/21/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Current diagnostic blood tests for prostate cancer (PCa) are unreliable for the early stage disease, resulting in numerous unnecessary prostate biopsies in men with benign disease and false reassurance of negative biopsies in men with PCa. Predicting the risk of PCa is pivotal for making an informed decision on treatment options as the 5-year survival rate in the low-risk group is more than 95% and most men would benefit from surveillance rather than active treatment. Three-dimensional genome architecture and chromosome structures undergo early changes during tumourigenesis both in tumour and in circulating cells and can serve as a disease biomarker. METHODS In this prospective study we screened whole blood of newly diagnosed, treatment naïve PCa patients (n = 140) and cancer-free controls (n = 96) for the presence of 14,241 chromosomal loops in the loci of 425 genes. RESULTS We have detected specific chromosome conformation changes in the loci of ETS1, MAP3K14, SLC22A3 and CASP2 genes in peripheral blood from PCa patients yielding PCa detection with 80% sensitivity and 80% specificity. Further analysis between PCa risk groups yielded prognostic validation sets consisting of HSD3B2, VEGFC, APAF1, BMP6, ERG, MSR1, MUC1, ACAT1 and DAPK1 genes that achieved 80% sensitivity and 93% specificity stratifying high-risk category 3 vs low risk category 1 and 84% sensitivity and 89% specificity stratifying high risk category 3 vs intermediate risk category 2 disease. CONCLUSIONS Our results demonstrate specific chromosome conformations in the blood of PCa patients that allow PCa diagnosis and risk stratification with high sensitivity and specificity.
Collapse
Affiliation(s)
- Heba Alshaker
- School of Medicine, University of East Anglia, Norwich, UK
| | - Robert Mills
- Department of Urology, Norfolk and Norwich NHS Trust, Norwich, UK
| | | | | | | | | | | | | | | | - Mathias Winkler
- Department of Surgery and Cancer, Imperial College London, London, UK
| | | |
Collapse
|
19
|
Wang W, Zhong Y, Zhuang Z, Xie J, Lu Y, Huang C, Sun Y, Wu L, Yin J, Yu H, Jiang Z, Wang S, Wang C, Zhang Y, Huang Y, Han C, Zhong Z, Hu J, Ouyang Y, Liu H, Yu M, Wei X, Chen D, Huang L, Hou Y, Lin Z, Liu S, Ling F, Yao X. Multiregion single-cell sequencing reveals the transcriptional landscape of the immune microenvironment of colorectal cancer. Clin Transl Med 2021; 11:e253. [PMID: 33463049 PMCID: PMC7775989 DOI: 10.1002/ctm2.253] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/12/2020] [Accepted: 11/28/2020] [Indexed: 12/31/2022] Open
Abstract
The tumor microenvironment is a complex ecosystem formed by distinct and interacting cell populations, and its composition is related to cancer prognosis and response to clinical treatment. In this study, we have taken the advantage of two single-cell RNA sequencing technologies (Smart-seq2 and DNBelab C4) to generate an atlas of 15,115 immune and nonimmune cells from primary tumors and hepatic metastases of 18 colorectal cancer (CRC) patients. We observed extensive changes in the proportions and functional states of T cells and B cells in tumor tissues, compared to those of paired non-tumor tissues. Importantly, we found that B cells from early CRC tumor were identified to be pre-B like expressing tumor suppressors, whereas B cells from advanced CRC tumors tended to be developed into plasma cells. We also identified the association of IgA+ IGLC2+ plasma cells with poor CRC prognosis, and demonstrated a significant interaction between B-cell and myeloid-cell signaling, and found CCL8+ cycling B cells/CCR5+ T-cell interactions as a potential antitumoral mechanism in advanced CRC tumors. Our results provide deeper insights into the immune infiltration within CRC, and a new perspective for the future research in immunotherapies for CRC.
Collapse
Affiliation(s)
- Wei Wang
- School of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouGuangdongChina
- BGI‐ShenzhenShenzhenChina
- China National GeneBankBGI‐ShenzhenShenzhenChina
| | - Yu Zhong
- School of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouGuangdongChina
- BGI‐ShenzhenShenzhenChina
- China National GeneBankBGI‐ShenzhenShenzhenChina
| | - Zhenkun Zhuang
- School of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouGuangdongChina
- BGI‐ShenzhenShenzhenChina
- China National GeneBankBGI‐ShenzhenShenzhenChina
| | - Jiarui Xie
- School of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouGuangdongChina
- BGI‐ShenzhenShenzhenChina
- China National GeneBankBGI‐ShenzhenShenzhenChina
| | - Yueer Lu
- School of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouGuangdongChina
| | - Chengzhi Huang
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of TechnologyGuangzhouGuangdongChina
| | - Yan Sun
- BGI‐ShenzhenShenzhenChina
- China National GeneBankBGI‐ShenzhenShenzhenChina
| | - Liang Wu
- BGI‐ShenzhenShenzhenChina
- China National GeneBankBGI‐ShenzhenShenzhenChina
| | - Jianhua Yin
- BGI‐ShenzhenShenzhenChina
- China National GeneBankBGI‐ShenzhenShenzhenChina
| | - Hang Yu
- School of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouGuangdongChina
| | - Zhiqiang Jiang
- School of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouGuangdongChina
| | - Shanshan Wang
- BGI‐ShenzhenShenzhenChina
- China National GeneBankBGI‐ShenzhenShenzhenChina
| | - Chunqing Wang
- BGI‐ShenzhenShenzhenChina
- China National GeneBankBGI‐ShenzhenShenzhenChina
| | - Yuanhang Zhang
- BGI‐ShenzhenShenzhenChina
- China National GeneBankBGI‐ShenzhenShenzhenChina
| | - Yilin Huang
- School of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouGuangdongChina
| | - Chongyin Han
- School of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouGuangdongChina
| | - Zhenggang Zhong
- School of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouGuangdongChina
| | - Jialin Hu
- School of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouGuangdongChina
| | - Ying Ouyang
- School of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouGuangdongChina
| | - Huisheng Liu
- School of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouGuangdongChina
| | - Mengya Yu
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of TechnologyGuangzhouGuangdongChina
| | | | | | - Lizhen Huang
- School of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouGuangdongChina
| | - Yong Hou
- BGI‐ShenzhenShenzhenChina
- China National GeneBankBGI‐ShenzhenShenzhenChina
- Shenzhen Key Laboratory of Single‐Cell OmicsShenzhenChina
| | - Zhanglin Lin
- School of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouGuangdongChina
| | - Shiping Liu
- BGI‐ShenzhenShenzhenChina
- China National GeneBankBGI‐ShenzhenShenzhenChina
- Shenzhen Key Laboratory of Single‐Cell OmicsShenzhenChina
- The Guangdong‐Hong Kong Joint Laboratory On Immunological And Genetic Kidney DiseasesGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouGuangdongChina
| | - Fei Ling
- School of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouGuangdongChina
| | - Xueqing Yao
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of TechnologyGuangzhouGuangdongChina
| |
Collapse
|
20
|
Labanca E, Bizzotto J, Sanchis P, Anselmino N, Yang J, Shepherd PDA, Paez A, Antico-Arciuch V, Lage-Vickers S, Hoang AG, Tang X, Raso MG, Titus M, Efstathiou E, Cotignola J, Araujo J, Logothetis C, Vazquez E, Navone N, Gueron G. Prostate cancer castrate resistant progression usage of non-canonical androgen receptor signaling and ketone body fuel. Oncogene 2021; 40:6284-6298. [PMID: 34584218 PMCID: PMC8566229 DOI: 10.1038/s41388-021-02008-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 08/25/2021] [Accepted: 09/06/2021] [Indexed: 02/08/2023]
Abstract
Prostate cancer (PCa) that progresses after androgen deprivation therapy (ADT) remains incurable. The underlying mechanisms that account for the ultimate emergence of resistance to ADT, progressing to castrate-resistant prostate cancer (CRPC), include those that reactivate androgen receptor (AR), or those that are entirely independent or cooperate with androgen signaling to underlie PCa progression. The intricacy of metabolic pathways associated with PCa progression spurred us to develop a metabolism-centric analysis to assess the metabolic shift occurring in PCa that progresses with low AR expression. We used PCa patient-derived xenografts (PDXs) to assess the metabolic changes after castration of tumor-bearing mice and subsequently confirmed main findings in human donor tumor that progressed after ADT. We found that relapsed tumors had a significant increase in fatty acids and ketone body (KB) content compared with baseline. We confirmed that critical ketolytic enzymes (ACAT1, OXCT1, BDH1) were dysregulated after castrate-resistant progression. Further, these enzymes are increased in the human donor tissue after progressing to ADT. In an in silico approach, increased ACAT1, OXCT1, BDH1 expression was also observed for a subset of PCa patients that relapsed with low AR and ERG (ETS-related gene) expression. Further, expression of these factors was also associated with decreased time to biochemical relapse and decreased progression-free survival. Our studies reveal the key metabolites fueling castration resistant progression in the context of a partial or complete loss of AR dependence.
Collapse
Affiliation(s)
- Estefania Labanca
- grid.240145.60000 0001 2291 4776Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Juan Bizzotto
- grid.7345.50000 0001 0056 1981Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina ,grid.7345.50000 0001 0056 1981CONICET-Universidad de Buenos Aires. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, CP1428 Argentina
| | - Pablo Sanchis
- grid.7345.50000 0001 0056 1981Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina ,grid.7345.50000 0001 0056 1981CONICET-Universidad de Buenos Aires. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, CP1428 Argentina
| | - Nicolas Anselmino
- grid.240145.60000 0001 2291 4776Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Jun Yang
- grid.240145.60000 0001 2291 4776Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Peter D. A. Shepherd
- grid.240145.60000 0001 2291 4776Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Alejandra Paez
- grid.7345.50000 0001 0056 1981Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina ,grid.7345.50000 0001 0056 1981CONICET-Universidad de Buenos Aires. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, CP1428 Argentina ,grid.7345.50000 0001 0056 1981Unidad de Transferencia Genética, Instituto de Oncología “Angel H Roffo”, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Valeria Antico-Arciuch
- grid.7345.50000 0001 0056 1981Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina ,grid.7345.50000 0001 0056 1981CONICET-Universidad de Buenos Aires. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, CP1428 Argentina
| | - Sofia Lage-Vickers
- grid.7345.50000 0001 0056 1981Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina ,grid.7345.50000 0001 0056 1981CONICET-Universidad de Buenos Aires. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, CP1428 Argentina
| | - Anh G. Hoang
- grid.240145.60000 0001 2291 4776Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Ximing Tang
- grid.240145.60000 0001 2291 4776Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Maria Gabriela Raso
- grid.240145.60000 0001 2291 4776Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Mark Titus
- grid.240145.60000 0001 2291 4776Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Eleni Efstathiou
- grid.240145.60000 0001 2291 4776Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Javier Cotignola
- grid.7345.50000 0001 0056 1981Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina ,grid.7345.50000 0001 0056 1981CONICET-Universidad de Buenos Aires. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, CP1428 Argentina
| | - John Araujo
- grid.240145.60000 0001 2291 4776Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Christopher Logothetis
- grid.240145.60000 0001 2291 4776Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Elba Vazquez
- grid.7345.50000 0001 0056 1981Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina ,grid.7345.50000 0001 0056 1981CONICET-Universidad de Buenos Aires. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, CP1428 Argentina
| | - Nora Navone
- grid.240145.60000 0001 2291 4776Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Geraldine Gueron
- grid.7345.50000 0001 0056 1981Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina ,grid.7345.50000 0001 0056 1981CONICET-Universidad de Buenos Aires. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, CP1428 Argentina
| |
Collapse
|
21
|
Kohrt SE, Awadallah WN, Phillips RA, Case TC, Jin R, Nanda JS, Yu X, Clark PE, Yi Y, Matusik RJ, Anderson PD, Grabowska MM. Identification of Genes Required for Enzalutamide Resistance in Castration-Resistant Prostate Cancer Cells In Vitro. Mol Cancer Ther 2020; 20:398-409. [PMID: 33298586 DOI: 10.1158/1535-7163.mct-20-0244] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 09/11/2020] [Accepted: 11/17/2020] [Indexed: 11/16/2022]
Abstract
Castration-resistant prostate cancer can be treated with the antiandrogen enzalutamide, but responses and duration of response are variable. To identify genes that support enzalutamide resistance, we performed a short hairpin RNA (shRNA) screen in the bone-homing, castration-resistant prostate cancer cell line, C4-2B. We identified 11 genes (TFAP2C, CAD, SPDEF, EIF6, GABRG2, CDC37, PSMD12, COL5A2, AR, MAP3K11, and ACAT1) whose loss resulted in decreased cell survival in response to enzalutamide. To validate our screen, we performed transient knockdowns in C4-2B and 22Rv1 cells and evaluated cell survival in response to enzalutamide. Through these studies, we validated three genes (ACAT1, MAP3K11, and PSMD12) as supporters of enzalutamide resistance in vitro Although ACAT1 expression is lower in metastatic castration-resistant prostate cancer samples versus primary prostate cancer samples, knockdown of ACAT1 was sufficient to reduce cell survival in C4-2B and 22Rv1 cells. MAP3K11 expression increases with Gleason grade, and the highest expression is observed in metastatic castration-resistant disease. Knockdown of MAP3K11 reduced cell survival, and pharmacologic inhibition of MAP3K11 with CEP-1347 in combination with enzalutamide resulted in a dramatic increase in cell death. This was associated with decreased phosphorylation of AR-Serine650, which is required for maximal AR activation. Finally, although PSMD12 expression did not change during disease progression, knockdown of PSMD12 resulted in decreased AR and AR splice variant expression, likely contributing to the C4-2B and 22Rv1 decrease in cell survival. Our study has therefore identified at least three new supporters of enzalutamide resistance in castration-resistant prostate cancer cells in vitro.
Collapse
Affiliation(s)
- Sarah E Kohrt
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Wisam N Awadallah
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio.,Department of Urology, Case Western Reserve University, Cleveland, Ohio
| | | | - Thomas C Case
- Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Renjie Jin
- Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jagpreet S Nanda
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio.,Department of Urology, Case Western Reserve University, Cleveland, Ohio
| | - Xiuping Yu
- Department of Biochemistry, Louisiana State University Health Shreveport, Shreveport, Louisiana
| | - Peter E Clark
- Department of Urology, Levine Cancer Center/Atrium Health, Charlotte, North Carolina
| | - Yajun Yi
- Quality, Safety and Risk Prevention, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Robert J Matusik
- Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | - Magdalena M Grabowska
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio. .,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio.,Department of Urology, Case Western Reserve University, Cleveland, Ohio.,Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
22
|
Fernández LP, Gómez de Cedrón M, Ramírez de Molina A. Alterations of Lipid Metabolism in Cancer: Implications in Prognosis and Treatment. Front Oncol 2020; 10:577420. [PMID: 33194695 PMCID: PMC7655926 DOI: 10.3389/fonc.2020.577420] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/14/2020] [Indexed: 01/06/2023] Open
Abstract
Cancer remains the second leading cause of mortality worldwide. In the course of this multistage and multifactorial disease, a set of alterations takes place, with genetic and environmental factors modulating tumorigenesis and disease progression. Metabolic alterations of tumors are well-recognized and are considered as one of the hallmarks of cancer. Cancer cells adapt their metabolic competences in order to efficiently supply their novel demands of energy to sustain cell proliferation and metastasis. At present, there is a growing interest in understanding the metabolic switch that occurs during tumorigenesis. Together with the Warburg effect and the increased glutaminolysis, lipid metabolism has emerged as essential for tumor development and progression. Indeed, several investigations have demonstrated the consequences of lipid metabolism alterations in cell migration, invasion, and angiogenesis, three basic steps occurring during metastasis. In addition, obesity and associated metabolic alterations have been shown to augment the risk of cancer and to worsen its prognosis. Consequently, an extensive collection of tumorigenic steps has been shown to be modulated by lipid metabolism, not only affecting the growth of primary tumors, but also mediating progression and metastasis. Besides, key enzymes involved in lipid-metabolic pathways have been associated with cancer survival and have been proposed as prognosis biomarkers of cancer. In this review, we will analyze the impact of obesity and related tumor microenviroment alterations as modifiable risk factors in cancer, focusing on the lipid alterations co-occurring during tumorigenesis. The value of precision technologies and its application to target lipid metabolism in cancer will also be discussed. The degree to which lipid alterations, together with current therapies and intake of specific dietary components, affect risk of cancer is now under investigation, and innovative therapeutic or preventive applications must be explored.
Collapse
Affiliation(s)
- Lara P Fernández
- Precision Nutrition and Cancer Program, Molecular Oncology Group, IMDEA Food Institute, Campus of International Excellence (CEI) University Autonomous of Madrid (UAM) + CSIC, Madrid, Spain
| | - Marta Gómez de Cedrón
- Precision Nutrition and Cancer Program, Molecular Oncology Group, IMDEA Food Institute, Campus of International Excellence (CEI) University Autonomous of Madrid (UAM) + CSIC, Madrid, Spain
| | - Ana Ramírez de Molina
- Precision Nutrition and Cancer Program, Molecular Oncology Group, IMDEA Food Institute, Campus of International Excellence (CEI) University Autonomous of Madrid (UAM) + CSIC, Madrid, Spain
| |
Collapse
|
23
|
Guan J, Jiang X, Gai J, Sun X, Zhao J, Li J, Li Y, Cheng M, Du T, Fu L, Li Q. Sirtuin 5 regulates the proliferation, invasion and migration of prostate cancer cells through acetyl-CoA acetyltransferase 1. J Cell Mol Med 2020; 24:14039-14049. [PMID: 33103371 PMCID: PMC7753991 DOI: 10.1111/jcmm.16016] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/01/2020] [Accepted: 10/04/2020] [Indexed: 12/18/2022] Open
Abstract
Sirtuin 5 (SIRT5) is a NAD+‐dependent class III protein deacetylase, and its role in prostate cancer has not yet been reported. Therefore, to explore the diagnosis and treatment of prostate cancer, we investigated the effect of SIRT5 on prostate cancer. Sirtuin 5 was assessed by immunohistochemistry in 57 normal and cancerous prostate tissues. We found that the tissue expression levels of SIRT5 in patients with Gleason scores ≥7 were significantly different from those in patients with Gleason scores <7 (P < .05, R > 0). Further, mass spectrometry and pathway screening experiments showed that SIRT5 regulated the activity of the mitogen‐activated protein kinase (MAPK) pathway, which in turn modulated the expression of MMP9 and cyclin D1. Being a substrate of SIRT5, acetyl‐CoA acetyltransferase 1 (ACAT1) was regulated by SIRT5. SIRT5 also regulated MAPK pathway activity through ACAT1. These results revealed that SIRT5 promoted the activity of the MAPK pathway through ACAT1, increasing the ability of prostate cancer cells to proliferate, migrate and invade. Overall, these results indicate that SIRT5 expression is closely associated with prostate cancer progression. Understanding the underlying mechanism may provide new targets and methods for the diagnosis and treatment of the disease.
Collapse
Affiliation(s)
- Jingqian Guan
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Xizi Jiang
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Junda Gai
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, China.,Department of Pathology, The First Hospital of China Medical University, Shenyang, China
| | | | - Jinming Zhao
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Ji Li
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Yizhuo Li
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Ming Cheng
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Tengjiao Du
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Lin Fu
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, China.,Department of Pathology, The First Hospital of China Medical University, Shenyang, China
| | - Qingchang Li
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, China.,Department of Pathology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
24
|
Zhang M, Xiang Z, Wang F, Shan R, Li L, Chen J, Liu BA, Huang J, Sun LQ, Zhou WB. STARD4 promotes breast cancer cell malignancy. Oncol Rep 2020; 44:2487-2502. [PMID: 33125124 PMCID: PMC7610339 DOI: 10.3892/or.2020.7802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 08/24/2020] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BRCA) is one of the most common malignancies encountered in women worldwide. Lipid metabolism has been found to be involved in cancer progression. Steroidogenic acute regulatory protein-related lipid transfer 4 (STARD4) is an important cholesterol transporter involved in the regulatory mechanism of intracellular cholesterol homeostasis. However, to the best of our knowledge, the molecular functions of STARD4 in BRCA are unclear. Immunohistochemical staining and public dataset analysis were performed to investigate the expression levels of STARD4 in BRCA. In the present study, high expression of STARD4 was identified in BRCA samples and higher STARD4 expression was significantly associated with shorter distant metastasis-free survival time in patients with BRCA, which indicated that STARD4 may be associated with BRCA progression. Cell cytometry system Celigo® analysis, Cell Counting K-8 assays, flow cytometry, wound healing assays and transwell assays were used to investigate the effects of STARD4 knockdown on proliferation, cell cycle, apoptosis and migration in BRCA cells. Loss-of-function assays demonstrated that STARD4 acted as an oncogene to promote proliferation and cell cycle progression, while suppressing apoptosis in BRCA cells in vitro and in vivo. Furthermore, knockdown of STARD4 significantly suppressed BRCA metastasis. To assess the mechanism of action of STARD4, microarray analysis was performed following STARD4 knockdown in MDA-MB-231 cells. The data were analyzed in detail using bioinformatics, and a series of genes, including E74 like ETS transcription factor 1, cAMP responsive element binding protein 1 and p21 (RAC1) activated kinase 2, which have been previously reported to be crucial genes implicated in the malignant phenotype of cancer cells, were identified to be regulated by STARD4. Loss-of function assays demonstrated that knockdown of STARD4 suppressed BRCA proliferation and migration. These findings suggested that STARD4 had an oncogenic effect in human BRCA progression.
Collapse
Affiliation(s)
- Min Zhang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Zhen Xiang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Feng Wang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Rong Shan
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Ling Li
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Juan Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Bao-An Liu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Juan Huang
- Hunan Province Clinic Meditech Research Center for Breast Cancer, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Lun-Quan Sun
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Wei-Bing Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
25
|
The Pivotal Role of the Dysregulation of Cholesterol Homeostasis in Cancer: Implications for Therapeutic Targets. Cancers (Basel) 2020; 12:cancers12061410. [PMID: 32486083 DOI: 10.3390/cancers12061410] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/23/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022] Open
Abstract
Cholesterol plays an important role in cellular homeostasis by maintaining the rigidity of cell membranes, providing a medium for signaling transduction, and being converted into other vital macromolecules, such as sterol hormones and bile acids. Epidemiological studies have shown the correlation between cholesterol content and cancer incidence worldwide. Accumulating evidence has shown the emerging roles of the dysregulation of cholesterol metabolism in cancer development. More specifically, recent reports have shown the distinct role of cholesterol in the suppression of immune cells, regulation of cell survival, and modulation of cancer stem cells in cancer. Here, we provide a comprehensive review of the epidemiological analysis, functional roles, and mechanistic action of cholesterol homeostasis in regard to its contribution to cancer development. Based on the existing data, cholesterol homeostasis is identified to be a new key player in cancer pathogenesis. Lastly, we also discuss the therapeutic implications of natural compounds and cholesterol-lowering drugs in cancer prevention and treatment. In conclusion, intervention in cholesterol metabolism may offer a new therapeutic avenue for cancer treatment.
Collapse
|
26
|
Ayyagari VN, Wang X, Diaz-Sylvester PL, Groesch K, Brard L. Assessment of acyl-CoA cholesterol acyltransferase (ACAT-1) role in ovarian cancer progression-An in vitro study. PLoS One 2020; 15:e0228024. [PMID: 31978092 PMCID: PMC6980601 DOI: 10.1371/journal.pone.0228024] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 01/06/2020] [Indexed: 02/05/2023] Open
Abstract
Abnormal accumulation of acyl-CoA cholesterol acyltransferase-1 (ACAT-1) mediated cholesterol ester has been shown to contribute to cancer progression in various cancers including leukemia, glioma, breast, pancreatic and prostate cancers. However, the significance of ACAT-1 and cholesterol esters (CE) is relatively understudied in ovarian cancer. In this in vitro study, we assessed the expression and contribution of ACAT-1 in ovarian cancer progression. We observed a significant increase in the expression of ACAT-1 and CE levels in a panel of ovarian cancer cell lines (OC-314, SKOV-3 and IGROV-1) compared to primary ovarian epithelial cells (normal controls). To confirm the tumor promoting capacity of ACAT-1, we inhibited ACAT-1 expression and activity by treating our cell lines with an ACAT inhibitor, avasimibe, or by stable transfection with ACAT-1 specific short hairpin RNA (shRNA). We observed significant suppression of cell proliferation, migration and invasion in ACAT-1 knockdown ovarian cancer cell lines compared to their respective controls (cell lines transfected with scrambled shRNA). ACAT-1 inhibition enhanced apoptosis with a concurrent increase in caspases 3/7 activity and decreased mitochondrial membrane potential. Increased generation of reactive oxygen species (ROS) coupled with increased expression of p53 may be the mechanism(s) underlying pro-apoptotic action of ACAT-1 inhibition. Additionally, ACAT-1 inhibited ovarian cancer cell lines displayed enhanced chemosensitivity to cisplatin treatment. These results suggest ACAT-1 may be a potential new target for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Vijayalakshmi N. Ayyagari
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Southern Illinois University School of Medicine, Springfield, IL, United States America
| | - Xinjia Wang
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Southern Illinois University School of Medicine, Springfield, IL, United States America
| | - Paula L. Diaz-Sylvester
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Southern Illinois University School of Medicine, Springfield, IL, United States America
- Center for Clinical Research, Southern Illinois University School of Medicine, Springfield, IL, United States America
| | - Kathleen Groesch
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Southern Illinois University School of Medicine, Springfield, IL, United States America
- Center for Clinical Research, Southern Illinois University School of Medicine, Springfield, IL, United States America
| | - Laurent Brard
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Southern Illinois University School of Medicine, Springfield, IL, United States America
- Simmons Cancer Institute at Southern Illinois University School of Medicine, Springfield, IL, United States America
- * E-mail:
| |
Collapse
|
27
|
Cui W, Luo W, Zhou X, Lu Y, Xu W, Zhong S, Feng G, Liang Y, Liang L, Mo Y, Xiao X, Huang G, Matskova L, Zhang Z, Li P, Zhou X. Dysregulation of Ketone Body Metabolism Is Associated With Poor Prognosis for Clear Cell Renal Cell Carcinoma Patients. Front Oncol 2019; 9:1422. [PMID: 31921677 PMCID: PMC6928137 DOI: 10.3389/fonc.2019.01422] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 11/29/2019] [Indexed: 12/15/2022] Open
Abstract
Kidney is an important organ for ketone body metabolism. However, the role of abnormal ketone metabolism and its possible function in tumorigenesis of clear cell renal cell carcinoma (ccRCC) have not yet been elucidated. Three differentially expressed key enzymes involved in ketone body metabolism, ACAT1, BDH2, and HMGCL, were screened out between ccRCC and normal kidney tissues using the GEO and TCGA databases.We confirmed that the transcription and protein expression of ACAT1, BDH2, and HMGCL were significantly lower in ccRCC by real-time RT-PCR and IHC assays. Those patients with lower expression of these three genes have a worse outcome. In addition, we demonstrated that ectopic expression of each of these genes inhibited the proliferation of ccRCC cells. The overexpressed ACAT1 and BDH2 genes remarkably impeded the migratory and invasive capacity of ccRCC cells. Furthermore, exogenous β-hydroxybutyrate suppressed the growth of ccRCC cells in vitro in a dose-dependent manner. Our findings suggest that ACAT1, BDH2, and HMGCL are potential tumor suppressor genes, and constitute effective prognostic biomarkers for ccRCC. Ketone body metabolism might thus be a promising target in a process for developing novel therapeutic approaches to treat ccRCC.
Collapse
Affiliation(s)
- Wanmeng Cui
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Ministry of Education, Guangxi Medical University, Nanning, China
| | - Wenqi Luo
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Ministry of Education, Guangxi Medical University, Nanning, China.,Department of Pathology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xiaohui Zhou
- Life Science Institute, Guangxi Medical University, Nanning, China
| | - Yunliang Lu
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Ministry of Education, Guangxi Medical University, Nanning, China
| | - Wenqing Xu
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Ministry of Education, Guangxi Medical University, Nanning, China
| | - Suhua Zhong
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Ministry of Education, Guangxi Medical University, Nanning, China
| | - Guofei Feng
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Ministry of Education, Guangxi Medical University, Nanning, China
| | - Yushan Liang
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Ministry of Education, Guangxi Medical University, Nanning, China
| | - Libin Liang
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Ministry of Education, Guangxi Medical University, Nanning, China
| | - Yingxi Mo
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Ministry of Education, Guangxi Medical University, Nanning, China
| | - Xue Xiao
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Ministry of Education, Guangxi Medical University, Nanning, China
| | - Guangwu Huang
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Ministry of Education, Guangxi Medical University, Nanning, China
| | - Liudmila Matskova
- Institute of Living Systems, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Zhe Zhang
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Ministry of Education, Guangxi Medical University, Nanning, China
| | - Ping Li
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Ministry of Education, Guangxi Medical University, Nanning, China.,Department of Pathology, College & Hospital of Stomatology, Guangxi Medical University, Nanning, China
| | - Xiaoying Zhou
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Ministry of Education, Guangxi Medical University, Nanning, China.,Life Science Institute, Guangxi Medical University, Nanning, China
| |
Collapse
|
28
|
Wallander K, Liu W, von Holst S, Thutkawkorapin J, Kontham V, Forsberg A, Lindblom A, Lagerstedt‐Robinson K. Genetic analyses supporting colorectal, gastric, and prostate cancer syndromes. Genes Chromosomes Cancer 2019; 58:775-782. [PMID: 31334572 PMCID: PMC6771512 DOI: 10.1002/gcc.22786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 12/29/2022] Open
Abstract
Colorectal cancer (CRC), prostate cancer (PrC), and gastric cancer (GC) are common worldwide, and the incidence is to a certain extent dependent on genetics. We have recently shown that in families with more than one case of CRC, the risk of other malignancies is increased. We therefore suggested the presence of not yet described CRC syndromes. In this study, we have searched for genetic susceptibility loci for potential cancer syndromes involving CRC combined with PrC and/or GC. We have performed SNP (single-nucleotide polymorphism)-based linkage analyses in 45 families with CRC, PrC, and GC. In the regions with suggested linkage, we performed exome and association haplotype analyses. Five loci generated a high logarithm of odds (HLOD) score >2, suggestive of linkage, in chromosome bands 1q31-32, 1q24-25, 6q25-26, 18p11-q11, and Xp11. Exome analysis detected no potential pathogenic sequence variants. The haplotype association study showed that one of the top five haplotypes with the lowest P value in the chromosome band 6q25 interestingly was found in the family which contributed the most to the increased HLOD at that locus. This study supports a suggested hereditary cancer syndrome involving CRC and PrC and indicates a location at 6q25. The impact of this locus needs to be confirmed in additional studies.
Collapse
Affiliation(s)
- Karin Wallander
- Department of Molecular Medicine and Surgery, Karolinska Institutet, and Department of Clinical GeneticsKarolinska University HospitalSolnaStockholmSweden
| | - Wen Liu
- Department of Molecular Medicine and SurgeryKarolinska InstitutetStockholmSweden
| | - Susanna von Holst
- Department of Molecular Medicine and SurgeryKarolinska InstitutetStockholmSweden
| | | | - Vinaykumar Kontham
- Department of Molecular Medicine and SurgeryKarolinska InstitutetStockholmSweden
| | - Anna Forsberg
- Department of Medicine SolnaKarolinska InstitutetStockholmSweden
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, and Department of Clinical GeneticsKarolinska University HospitalSolnaStockholmSweden
| | - Kristina Lagerstedt‐Robinson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, and Department of Clinical GeneticsKarolinska University HospitalSolnaStockholmSweden
| |
Collapse
|
29
|
Liu S, Liu X, Wu F, Zhang X, Zhang H, Gao D, Bi D, Qu H, Ge J, Xu Y, Zhao Z. HADHA overexpression disrupts lipid metabolism and inhibits tumor growth in clear cell renal cell carcinoma. Exp Cell Res 2019; 384:111558. [DOI: 10.1016/j.yexcr.2019.111558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 02/07/2023]
|
30
|
Chen L, Peng T, Luo Y, Zhou F, Wang G, Qian K, Xiao Y, Wang X. ACAT1 and Metabolism-Related Pathways Are Essential for the Progression of Clear Cell Renal Cell Carcinoma (ccRCC), as Determined by Co-expression Network Analysis. Front Oncol 2019; 9:957. [PMID: 31649873 PMCID: PMC6795108 DOI: 10.3389/fonc.2019.00957] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 09/10/2019] [Indexed: 12/29/2022] Open
Abstract
Kidney cancer ranks as one of the top 10 causes of cancer death; this cancer is difficult to detect, difficult to treat, and poorly understood. The most common subtype of kidney cancer is clear cell renal cell carcinoma (ccRCC) and its progression is influenced by complex gene interactions. Few clinical studies have investigated the molecular markers associated with the progression of ccRCC. In this study, we collected microarray profiles of 72 ccRCCs and matched normal samples to identify differentially expressed genes (DEGs). Then a weighted gene co-expression network analysis (WGCNA) was conducted to identify co-expressed gene modules. By relating all co-expressed modules to clinical features, we found that the brown module and Fuhrman grade had the highest correlation (r = -0.8, p = 1e-09). Thus, the brown module was regarded as a clinically significant module and subsequently analyzed. Functional annotation showed that the brown module focused on metabolism-related biological processes and pathways, such as fatty acid oxidation and amino acid metabolism. We then performed a protein-protein interaction (PPI) network to identify the hub nodes in the brown module. It is worth noting that only one candidate, acetyl-CoA acetyltransferase (ACAT1), was considered to be the final target most relevant to the Fuhrman grade of ccRCC, by applying the intersection of hub genes in the co-expressed network and the PPI network. ACAT1 was subsequently validated using another two external microarray datasets and the TCGA dataset. Intriguingly, validation results indicated that ACAT1 was negatively correlated with four grades of ccRCC, which was also consistent with our results from qRT-PCR analysis and immunohistochemistry staining of clinical samples. Overexpression of ACAT1 inhibited the proliferation and migration of human ccRCC cells in vitro. In addition, the Kaplan-Meier survival curve showed that patients with a lower expression of ACAT1 showed a significantly lower overall survival rate and disease-free survival rate, indicating that ACAT1 could act as a prognostic and recurrence/progression biomarker of ccRCC. In summary, we found and confirmed that ACAT1 might help to identify the progression of ccRCC, which might have important clinical implications for enhancing risk stratification, therapeutic decision, and prognosis prediction in ccRCC patients.
Collapse
Affiliation(s)
- Liang Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Tianchen Peng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yongwen Luo
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fenfang Zhou
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gang Wang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kaiyu Qian
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu Xiao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
31
|
Goudarzi A. The recent insights into the function of ACAT1: A possible anti-cancer therapeutic target. Life Sci 2019; 232:116592. [PMID: 31228515 DOI: 10.1016/j.lfs.2019.116592] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 12/22/2022]
Abstract
Acetoacetyl-CoA thiolase also known as acetyl-CoA acetyltransferase (ACAT) corresponds to two enzymes, one cytosolic (ACAT2) and one mitochondrial (ACAT1), which is thought to catalyse reversible formation of acetoacetyl-CoA from two molecules of acetyl-CoA during ketogenesis and ketolysis respectively. In addition to this activity, ACAT1 is also involved in isoleucine degradation pathway. Deficiency of ACAT1 is an inherited metabolic disorder, which results from a defect in mitochondrial acetoacetyl-CoA thiolase activity and is clinically characterized with patients presenting ketoacidosis. In this review I discuss the recent findings, which unexpectedly expand the known functions of ACAT1, indicating a role for ACAT1 well beyond its classical activity. Indeed ACAT1 has recently been shown to possess an acetyltransferase activity capable of specifically acetylating Pyruvate DeHydrogenase (PDH), an enzyme involved in producing acetyl-CoA. ACAT1-dependent acetylation of PDH was shown to negatively regulate this enzyme with a consequence in Warburg effect and tumor growth. Finally, the elevated ACAT1 enzyme activity in diverse human cancer cell lines was recently reported. These important novel findings on ACAT1's function and expression in cancer cell proliferation point to ACAT1 as a potential new anti-cancer target.
Collapse
Affiliation(s)
- Afsaneh Goudarzi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
32
|
Naeini MB, Momtazi AA, Jaafari MR, Johnston TP, Barreto G, Banach M, Sahebkar A. Antitumor effects of curcumin: A lipid perspective. J Cell Physiol 2019; 234:14743-14758. [PMID: 30741424 DOI: 10.1002/jcp.28262] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 01/06/2019] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
Lipid metabolism plays an important role in cancer development due to the necessities of rapidly dividing cells to increase structural, energetic, and biosynthetic demands for cell proliferation. Basically, obesity, type 2 diabetes, and other related diseases, and cancer are associated with a common hyperactivated "lipogenic state." Recent evidence suggests that metabolic reprogramming and overproduction of enzymes involved in the synthesis of fatty acids are the new hallmarks of cancer, which occur in an early phase of tumorigenesis. As the first evidence to confirm dysregulated lipid metabolism in cancer cells, the overexpression of fatty acid synthase (FAS) was observed in breast cancer patients and demonstrated the role of FAS in cancer. Other enzymes of fatty acid synthesis have recently been found to be dysregulated in cancer, including ATP-dependent citrate lyase and acetyl-CoA carboxylase, which further underscores the connection of these metabolic pathways with cancer cell survival and proliferation. The degree of overexpression of lipogenic enzymes and elevated lipid utilization in tumors is closely associated with cancer progression. The question that arises is whether the progression of cancer can be suppressed, or at least decelerated, by modulating gene expression related to fatty acid metabolism. Curcumin, due to its effects on the regulation of lipogenic enzymes, might be able to suppress, or even cause regression of tumor growth. This review discusses recent evidence concerning the important role of lipogenic enzymes in the metabolism of cancer cells and whether the inhibitory effects of curcumin on lipogenic enzymes is therapeutically efficacious.
Collapse
Affiliation(s)
- Mehri Bemani Naeini
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Abbas Momtazi
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri
| | - George Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C, Colombia.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Maciej Banach
- Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
33
|
Shibuya K, Kawamine K, Ozaki C, Ohgiya T, Edano T, Yoshinaka Y, Tsunenari Y. Discovery of Clinical Candidate 2-(4-(2-((1H-Benzo[d]imidazol-2-yl)thio)ethyl)piperazin-1-yl)-N-(6-methyl-2,4-bis(methylthio)pyridin-3-yl)acetamide Hydrochloride [K-604], an Aqueous-Soluble Acyl-CoA:Cholesterol O-Acyltransferase-1 Inhibitor. J Med Chem 2018; 61:10635-10650. [DOI: 10.1021/acs.jmedchem.8b01256] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Kimiyuki Shibuya
- Tokyo New Drug Research Laboratories, Pharmaceutical Division, Kowa Company, Ltd., 2-17-43, Noguchicho,
Higashimurayama, Tokyo 189-0022, Japan
| | - Katsumi Kawamine
- Tokyo New Drug Research Laboratories, Pharmaceutical Division, Kowa Company, Ltd., 2-17-43, Noguchicho,
Higashimurayama, Tokyo 189-0022, Japan
| | - Chiyoka Ozaki
- Tokyo New Drug Research Laboratories, Pharmaceutical Division, Kowa Company, Ltd., 2-17-43, Noguchicho,
Higashimurayama, Tokyo 189-0022, Japan
| | - Tadaaki Ohgiya
- Tokyo New Drug Research Laboratories, Pharmaceutical Division, Kowa Company, Ltd., 2-17-43, Noguchicho,
Higashimurayama, Tokyo 189-0022, Japan
| | - Toshiyuki Edano
- Tokyo New Drug Research Laboratories, Pharmaceutical Division, Kowa Company, Ltd., 2-17-43, Noguchicho,
Higashimurayama, Tokyo 189-0022, Japan
| | - Yasunobu Yoshinaka
- Tokyo New Drug Research Laboratories, Pharmaceutical Division, Kowa Company, Ltd., 2-17-43, Noguchicho,
Higashimurayama, Tokyo 189-0022, Japan
| | - Yoshihiko Tsunenari
- Tokyo New Drug Research Laboratories, Pharmaceutical Division, Kowa Company, Ltd., 2-17-43, Noguchicho,
Higashimurayama, Tokyo 189-0022, Japan
| |
Collapse
|
34
|
Milone MR, Lombardi R, Roca MS, Bruzzese F, Addi L, Pucci B, Budillon A. Novel pathways involved in cisplatin resistance identified by a proteomics approach in non‐small‐cell lung cancer cells. J Cell Physiol 2018; 234:9077-9092. [DOI: 10.1002/jcp.27585] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/18/2018] [Indexed: 01/13/2023]
Affiliation(s)
- Maria Rita Milone
- Experimental Pharmacology Unit, Laboratori di Mercogliano, Istituto Nazionale Tumori, IRCCS‐Fondazione G. Pascale Napoli Italy
| | - Rita Lombardi
- Experimental Pharmacology Unit, Laboratori di Mercogliano, Istituto Nazionale Tumori, IRCCS‐Fondazione G. Pascale Napoli Italy
| | - Maria Serena Roca
- Experimental Pharmacology Unit, Laboratori di Mercogliano, Istituto Nazionale Tumori, IRCCS‐Fondazione G. Pascale Napoli Italy
| | - Francesca Bruzzese
- Experimental Pharmacology Unit, Laboratori di Mercogliano, Istituto Nazionale Tumori, IRCCS‐Fondazione G. Pascale Napoli Italy
| | - Laura Addi
- Experimental Pharmacology Unit, Laboratori di Mercogliano, Istituto Nazionale Tumori, IRCCS‐Fondazione G. Pascale Napoli Italy
| | - Biagio Pucci
- Experimental Pharmacology Unit, Laboratori di Mercogliano, Istituto Nazionale Tumori, IRCCS‐Fondazione G. Pascale Napoli Italy
| | - Alfredo Budillon
- Experimental Pharmacology Unit, Laboratori di Mercogliano, Istituto Nazionale Tumori, IRCCS‐Fondazione G. Pascale Napoli Italy
| |
Collapse
|
35
|
Chanyshev MD, Razumova YV, Ovchinnikov VY, Gulyaeva LF. MiR-21 regulates the ACAT1 gene in MCF-7 cells. Life Sci 2018; 209:173-178. [PMID: 30092298 DOI: 10.1016/j.lfs.2018.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/19/2018] [Accepted: 08/04/2018] [Indexed: 12/28/2022]
Abstract
AIMS The purpose of the present study was to determine whether miR-21 regulates the human ACAT1 gene. We also assessed whether transfection of MCF-7 cells with miR-21 mimic/inhibitor leads to changes in ACAT1 mRNA/protein levels, cell proliferation rate, or apoptosis. MAIN METHODS Regulation of ACAT1 3'UTR by miR-21 was evaluated using a dual-luciferase reporter assay. The effect of miR-21 on mRNA/protein levels of ACAT1 and PTEN (confirmed as an important target of miR-21 for comparison) was measured by qPCR/western blot analysis and immunostaining. Proliferation rate was determined by cell counting. Percentage of cells undergoing late apoptosis was determined by staining with Hoechst 33342/propidium iodide. KEY FINDINGS Dual-luciferase reporter assay confirmed the regulation of ACAT1 3'UTR by miR-21. Furthermore, transfection of MCF-7 cells with miR-21 mimic decreased mRNA and protein levels of ACAT1 and PTEN genes. In contrast, miR-21 inhibition increased the mRNA and protein levels of both genes studied. Finally, we observed an increase in cell proliferation and decrease in the percentage of cells in late apoptosis in MCF-7 cells transfected with miR-21 mimic, whereas transfection with miR-21 inhibitor led to the opposite effect. SIGNIFICANCE Our data confirm the hypothesis that miR-21 regulates the human ACAT1 gene. As the expression of this microRNA is altered in many types of cancers, the discovery of novel targets for miR-21 is of particular interest for diagnosis and treatment.
Collapse
Affiliation(s)
- M D Chanyshev
- Federal Research Center of Fundamental and Translational Medicine, Novosibirsk 630117, Russia; Novosibirsk State University, Novosibirsk 630090, Russia.
| | - Y V Razumova
- Novosibirsk State University, Novosibirsk 630090, Russia
| | - V Y Ovchinnikov
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia
| | - L F Gulyaeva
- Federal Research Center of Fundamental and Translational Medicine, Novosibirsk 630117, Russia; Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
36
|
Shibuya K, Kawamine K, Miura T, Ozaki C, Edano T, Mizuno K, Yoshinaka Y, Tsunenari Y. Design, synthesis and pharmacology of aortic-selective acyl-CoA: Cholesterol O-acyltransferase (ACAT/SOAT) inhibitors. Bioorg Med Chem 2018; 26:4001-4013. [DOI: 10.1016/j.bmc.2018.06.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/14/2018] [Accepted: 06/16/2018] [Indexed: 10/28/2022]
|
37
|
Cheng C, Geng F, Cheng X, Guo D. Lipid metabolism reprogramming and its potential targets in cancer. Cancer Commun (Lond) 2018; 38:27. [PMID: 29784041 PMCID: PMC5993136 DOI: 10.1186/s40880-018-0301-4] [Citation(s) in RCA: 453] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/12/2018] [Indexed: 12/13/2022] Open
Abstract
Reprogramming of lipid metabolism is a newly recognized hallmark of malignancy. Increased lipid uptake, storage and lipogenesis occur in a variety of cancers and contribute to rapid tumor growth. Lipids constitute the basic structure of membranes and also function as signaling molecules and energy sources. Sterol regulatory element-binding proteins (SREBPs), a family of membrane-bound transcription factors in the endoplasmic reticulum, play a central role in the regulation of lipid metabolism. Recent studies have revealed that SREBPs are highly up-regulated in various cancers and promote tumor growth. SREBP cleavage-activating protein is a key transporter in the trafficking and activation of SREBPs as well as a critical glucose sensor, thus linking glucose metabolism and de novo lipid synthesis. Targeting altered lipid metabolic pathways has become a promising anti-cancer strategy. This review summarizes recent progress in our understanding of lipid metabolism regulation in malignancy, and highlights potential molecular targets and their inhibitors for cancer treatment.
Collapse
Affiliation(s)
- Chunming Cheng
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, Columbus, OH, 43210, USA
| | - Feng Geng
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, Columbus, OH, 43210, USA
| | - Xiang Cheng
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, Columbus, OH, 43210, USA
| | - Deliang Guo
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, Columbus, OH, 43210, USA.
| |
Collapse
|
38
|
Snaebjornsson MT, Schulze A. Non-canonical functions of enzymes facilitate cross-talk between cell metabolic and regulatory pathways. Exp Mol Med 2018; 50:1-16. [PMID: 29657328 PMCID: PMC5938058 DOI: 10.1038/s12276-018-0065-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 12/25/2022] Open
Abstract
The metabolic rewiring that occurs during cell transformation is a hallmark of cancer. It is diverse in different cancers as it reflects different combinations of oncogenic drivers, tumor suppressors, and the microenvironment. Metabolic rewiring is essential to cancer as it enables uncontrolled proliferation and adaptation to the fluctuating availability of nutrients and oxygen caused by poor access to the vasculature due to tumor growth and a foreign microenvironment encountered during metastasis. Increasing evidence now indicates that the metabolic state in cancer cells also plays a causal role in tumor growth and metastasis, for example through the action of oncometabolites, which modulate cell signaling and epigenetic pathways to promote malignancy. In addition to altering the metabolic state in cancer cells, some multifunctional enzymes possess non-metabolic functions that also contribute to cell transformation. Some multifunctional enzymes that are highly expressed in cancer, such as pyruvate kinase M2 (PKM2), have non-canonical functions that are co-opted by oncogenic signaling to drive proliferation and inhibit apoptosis. Other multifunctional enzymes that are frequently downregulated in cancer, such as fructose-bisphosphatase 1 (FBP1), are tumor suppressors, directly opposing mitogenic signaling via their non-canonical functions. In some cases, the enzymatic and non-canonical roles of these enzymes are functionally linked, making the modulation of non-metabolic cellular processes dependent on the metabolic state of the cell.
Collapse
Affiliation(s)
- Marteinn T Snaebjornsson
- Department of Biochemistry and Molecular Biology, Theodor-Boveri-Institute, Biocenter, Am Hubland, 97074, Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, Josef-Schneider Strasse 6, 97080, Würzburg, Germany
| | - Almut Schulze
- Department of Biochemistry and Molecular Biology, Theodor-Boveri-Institute, Biocenter, Am Hubland, 97074, Würzburg, Germany. .,Comprehensive Cancer Center Mainfranken, Josef-Schneider Strasse 6, 97080, Würzburg, Germany.
| |
Collapse
|
39
|
Chanyshev MD, Ushakov DS, Gulyaeva LF. Expression of miR-21 and its Acat1, Armcx1, and Pten target genes in liver of female rats treated with DDT and benzo[a]pyrene. Mol Biol 2017. [DOI: 10.1134/s0026893317040082] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
40
|
Identification of specific biomarkers for gastric adenocarcinoma by ITRAQ proteomic approach. Sci Rep 2016; 6:38871. [PMID: 27941907 PMCID: PMC5150883 DOI: 10.1038/srep38871] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 11/14/2016] [Indexed: 12/18/2022] Open
Abstract
The aim of this study was to identify biomarkers for gastric cancer (GC) by iTRAQ. Using proteins extracted from a panel of 4 pairs of gastric adenocarcinoma samples (stage III-IV, Her-2 negative), we identified 10 up regulated and 9 down regulated proteins in all four pairs of GC samples compared to adjacent normal gastric tissue. The up regulated proteins are mainly involved in cell motility, while the down regulated proteins are mitochondrial enzymes involved in energy metabolism. The expression of three up regulated proteins (ANXA1, NNMT, fibulin-5) and one of the down regulated proteins (UQCRC1) was validated by Western Blot in 97 GC samples. ANXA1 was up regulated in 61.36% of stage I/II GC samples compared to matched adjacent normal gastric tissue, and its expression increased further in stage III/IV samples. Knockdown of ANXA1 by siRNA significantly inhibited GC cell migration and invasion, whereas over expression of ANXA1 promoted migration and invasion. We found decreased expression of UQCRC1 in all stages of GC samples. Our data suggest that increased cell motility and decreased mitochondrial energy metabolism are important hallmarks during the development of GC.
Collapse
|
41
|
Fan J, Lin R, Xia S, Chen D, Elf SE, Liu S, Pan Y, Xu H, Qian Z, Wang M, Shan C, Zhou L, Lei QY, Li Y, Mao H, Lee BH, Sudderth J, DeBerardinis RJ, Zhang G, Owonikoko T, Gaddh M, Arellano ML, Khoury HJ, Khuri FR, Kang S, Doetsch PW, Lonial S, Boggon TJ, Curran WJ, Chen J. Tetrameric Acetyl-CoA Acetyltransferase 1 Is Important for Tumor Growth. Mol Cell 2016; 64:859-874. [PMID: 27867011 DOI: 10.1016/j.molcel.2016.10.014] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/26/2016] [Accepted: 10/11/2016] [Indexed: 12/30/2022]
Abstract
Mitochondrial acetyl-CoA acetyltransferase 1 (ACAT1) regulates pyruvate dehydrogenase complex (PDC) by acetylating pyruvate dehydrogenase (PDH) and PDH phosphatase. How ACAT1 is "hijacked" to contribute to the Warburg effect in human cancer remains unclear. We found that active, tetrameric ACAT1 is commonly upregulated in cells stimulated by EGF and in diverse human cancer cells, where ACAT1 tetramers, but not monomers, are phosphorylated and stabilized by enhanced Y407 phosphorylation. Moreover, we identified arecoline hydrobromide (AH) as a covalent ACAT1 inhibitor that binds to and disrupts only ACAT1 tetramers. The resultant AH-bound ACAT1 monomers cannot reform tetramers. Inhibition of tetrameric ACAT1 by abolishing Y407 phosphorylation or AH treatment results in decreased ACAT1 activity, leading to increased PDC flux and oxidative phosphorylation with attenuated cancer cell proliferation and tumor growth. These findings provide a mechanistic understanding of how oncogenic events signal through distinct acetyltransferases to regulate cancer metabolism and suggest ACAT1 as an anti-cancer target.
Collapse
Affiliation(s)
- Jun Fan
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Ruiting Lin
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Siyuan Xia
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Dong Chen
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Shannon E Elf
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Shuangping Liu
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yaozhu Pan
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Haidong Xu
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zhiyu Qian
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Mei Wang
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Changliang Shan
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Lu Zhou
- Fudan University, Shanghai 201203, China
| | | | - Yuancheng Li
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hui Mao
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Benjamin H Lee
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Jessica Sudderth
- Children's Research Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ralph J DeBerardinis
- Children's Research Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Guojing Zhang
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Taofeek Owonikoko
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Manila Gaddh
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Martha L Arellano
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hanna J Khoury
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Fadlo R Khuri
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sumin Kang
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Paul W Doetsch
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sagar Lonial
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Titus J Boggon
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Walter J Curran
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jing Chen
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
42
|
Ye K, Wu Y, Sun Y, Lin J, Xu J. TLR4 siRNA inhibits proliferation and invasion in colorectal cancer cells by downregulating ACAT1 expression. Life Sci 2016; 155:133-9. [DOI: 10.1016/j.lfs.2016.05.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 04/28/2016] [Accepted: 05/07/2016] [Indexed: 12/20/2022]
|
43
|
Ge J, Cheng B, Qi B, Peng W, Wen H, Bai L, Liu Y, Zhai W. Cloning and functional analysis of human acyl coenzyme A: Cholesterol acyltransferase1 gene P1 promoter. Mol Med Rep 2016; 14:831-8. [PMID: 27220725 DOI: 10.3892/mmr.2016.5295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 04/13/2016] [Indexed: 11/05/2022] Open
Abstract
Acyl-coenzyme A: cholesterol acyltransferase 1 (ACAT1) catalyzes the conversion of free cholesterol (FC) to cholesterol ester. The human ACAT1 gene P1 promoter has been cloned. However, the activity and specificity of the ACAT1 gene P1 promoter in diverse cell types remains unclear. The P1 promoter fragment was digested with KpnI/XhoI from a P1 promoter cloning vector, and was subcloned into the multiple cloning site of the Firefly luciferase vector pGL3‑Enhancer to obtain the construct P1E‑1. According to the analysis of biological information, the P1E‑1 plasmid was used to generate deletions of the ACAT1 gene P1 promoter with varying 5' ends and an identical 3' end at +65 by polymerase chain reaction (PCR). All the 5'‑deletion constructs of the P1 promoter were identified by PCR, restriction enzyme digestion mapping and DNA sequencing. The transcriptional activity of each construct was detected after transient transfection into THP‑1, HepG2, HEK293 and Hela cells using DEAE‑dextran and Lipofectamine 2000 liposome transfection reagent. Results showed that the transcriptional activity of the ACAT1 gene P1 promoter and deletions of P1 promoter in THP‑1 and HepG2 cells was higher than that in HEK293 and HeLa cells. Moreover, the transcriptional activity of P1E‑9 was higher compared with those of other deletions in THP‑1, HepG2, HEK293 and HeLa cells. These findings indicate that the transcriptional activity of the P1 promoter and the effects of deletions vary with different cell lines. Thus, the P1 promoter may drive ACAT1 gene expression with cell‑type specificity. In addition, the core sequence of ACAT1 gene P1 promoter was suggested to be between -125 and +65 bp.
Collapse
Affiliation(s)
- Jing Ge
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Bei Cheng
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Benling Qi
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Wen Peng
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Hui Wen
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Lijuan Bai
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yun Liu
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Wei Zhai
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
44
|
Ren S, Shao Y, Zhao X, Hong CS, Wang F, Lu X, Li J, Ye G, Yan M, Zhuang Z, Xu C, Xu G, Sun Y. Integration of Metabolomics and Transcriptomics Reveals Major Metabolic Pathways and Potential Biomarker Involved in Prostate Cancer. Mol Cell Proteomics 2015; 15:154-63. [PMID: 26545398 DOI: 10.1074/mcp.m115.052381] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Indexed: 12/16/2022] Open
Abstract
Prostate cancer is a highly prevalent tumor affecting millions of men worldwide, but poor understanding of its pathogenesis has limited effective clinical management of patients. In addition to transcriptional profiling or transcriptomics, metabolomics is being increasingly utilized to discover key molecular changes underlying tumorigenesis. In this study, we integrated transcriptomics and metabolomics to analyze 25 paired human prostate cancer tissues and adjacent noncancerous tissues, followed by further validation of our findings in an additional cohort of 51 prostate cancer patients and 16 benign prostatic hyperplasia patients. We found several altered pathways aberrantly expressed at both metabolic and transcriptional levels, including cysteine and methionine metabolism, nicotinamide adenine dinucleotide metabolism, and hexosamine biosynthesis. Additionally, the metabolite sphingosine demonstrated high specificity and sensitivity for distinguishing prostate cancer from benign prostatic hyperplasia, particularly for patients with low prostate specific antigen level (0-10 ng/ml). We also found impaired sphingosine-1-phosphate receptor 2 signaling, downstream of sphingosine, representing a loss of tumor suppressor gene and a potential key oncogenic pathway for therapeutic targeting. By integrating metabolomics and transcriptomics, we have provided both a broad picture of the molecular perturbations underlying prostate cancer and a preliminary study of a novel metabolic signature, which may help to discriminate prostate cancer from normal tissue and benign prostatic hyperplasia.
Collapse
Affiliation(s)
- Shancheng Ren
- From the ‡Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yaping Shao
- §Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, China
| | - Xinjie Zhao
- §Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, China
| | - Christopher S Hong
- ¶Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Fubo Wang
- From the ‡Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xin Lu
- §Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, China
| | - Jia Li
- §Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, China
| | - Guozhu Ye
- §Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, China
| | - Min Yan
- §Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, China
| | - Zhengping Zhuang
- ¶Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Chuanliang Xu
- From the ‡Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Guowang Xu
- §Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, China,
| | - Yinghao Sun
- From the ‡Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China,
| |
Collapse
|
45
|
Labbé DP, Zadra G, Ebot EM, Mucci LA, Kantoff PW, Loda M, Brown M. Role of diet in prostate cancer: the epigenetic link. Oncogene 2015; 34:4683-91. [PMID: 25531313 PMCID: PMC4476943 DOI: 10.1038/onc.2014.422] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/28/2014] [Accepted: 11/03/2014] [Indexed: 12/12/2022]
Abstract
Diet is hypothesized to be a critical environmentally related risk factor for prostate cancer (PCa) development, and specific diets and dietary components can also affect PCa progression; however, the mechanisms underlying these associations remain elusive. As for a maturing organism, PCa's epigenome is plastic and evolves from the pre-neoplastic to the metastatic stage. In particular, epigenetic remodeling relies on substrates or cofactors obtained from the diet. Here we review the evidence that bridges dietary modulation to alterations in the prostate epigenome. We propose that such diet-related effects offer a mechanistic link between the impact of different diets and the course of PCa development and progression.
Collapse
Affiliation(s)
- D P Labbé
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - G Zadra
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - E M Ebot
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
| | - L A Mucci
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
- Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - P W Kantoff
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - M Loda
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - M Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
46
|
Rogers MA, Liu J, Song BL, Li BL, Chang CCY, Chang TY. Acyl-CoA:cholesterol acyltransferases (ACATs/SOATs): Enzymes with multiple sterols as substrates and as activators. J Steroid Biochem Mol Biol 2015; 151:102-7. [PMID: 25218443 PMCID: PMC4851438 DOI: 10.1016/j.jsbmb.2014.09.008] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/13/2014] [Accepted: 09/06/2014] [Indexed: 01/18/2023]
Abstract
Cholesterol is essential to the growth and viability of cells. The metabolites of cholesterol include: steroids, oxysterols, and bile acids, all of which play important physiological functions. Cholesterol and its metabolites have been implicated in the pathogenesis of multiple human diseases, including: atherosclerosis, cancer, neurodegenerative diseases, and diabetes. Thus, understanding how cells maintain the homeostasis of cholesterol and its metabolites is an important area of study. Acyl-coenzyme A:cholesterol acyltransferases (ACATs, also abbreviated as SOATs) converts cholesterol to cholesteryl esters and play key roles in the regulation of cellular cholesterol homeostasis. ACATs are most unusual enzymes because (i) they metabolize diverse substrates including both sterols and certain steroids; (ii) they contain two different binding sites for steroidal molecules. In mammals, there are two ACAT genes that encode two different enzymes, ACAT1 and ACAT2. Both are allosteric enzymes that can be activated by a variety of sterols. In addition to cholesterol, other sterols that possess the 3-beta OH at C-3, including PREG, oxysterols (such as 24(S)-hydroxycholesterol and 27-hydroxycholesterol, etc.), and various plant sterols, could all be ACAT substrates. All sterols that possess the iso-octyl side chain including cholesterol, oxysterols, various plant sterols could all be activators of ACAT. PREG can only be an ACAT substrate because it lacks the iso-octyl side chain required to be an ACAT activator. The unnatural cholesterol analogs epi-cholesterol (with 3-alpha OH in steroid ring B) and ent-cholesterol (the mirror image of cholesterol) contain the iso-octyl side chain but do not have the 3-beta OH at C-3. Thus, they can only serve as activators and cannot serve as substrates. Thus, within the ACAT holoenzyme, there are site(s) that bind sterol as substrate and site(s) that bind sterol as activator; these sites are distinct from each other. These features form the basis to further pursue ACAT structure-function analysis, and can be explored to develop novel allosteric ACAT inhibitors for therapeutic purposes. This article is part of a Special Issue entitled 'Steroid/Sterol signaling'.
Collapse
Affiliation(s)
- Maximillian A Rogers
- Department of Biochemistry, Geisel School of Medicine, Dartmouth HB7200, Hanover, NH 03755, United States; Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Jay Liu
- Department of Biochemistry, Geisel School of Medicine, Dartmouth HB7200, Hanover, NH 03755, United States
| | - Bao-Liang Song
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Bo-Liang Li
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Catherine C Y Chang
- Department of Biochemistry, Geisel School of Medicine, Dartmouth HB7200, Hanover, NH 03755, United States.
| | - Ta-Yuan Chang
- Department of Biochemistry, Geisel School of Medicine, Dartmouth HB7200, Hanover, NH 03755, United States.
| |
Collapse
|
47
|
Label-free quantitative proteomic analysis reveals potential biomarkers and pathways in renal cell carcinoma. Tumour Biol 2014; 36:939-51. [PMID: 25315187 DOI: 10.1007/s13277-014-2694-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 09/30/2014] [Indexed: 01/22/2023] Open
Abstract
Renal cell carcinoma (RCC) is one of the most common malignancies in adults, and there is still no acknowledged biomarker for its diagnosis, prognosis, recurrence monitoring, and treatment stratification. Besides, little is known about the post-translational modification (PTM) of proteins in RCC. Here, we performed quantitative proteomic analysis on 12 matched pairs of clear cell RCC (ccRCC) and adjacent kidney tissues using liquid chromatography-tandem mass spectrometry (nanoLCMS/MS) and Progenesis LC-MS software (label-free) to identify and quantify the dysregulated proteins. A total of 1872 and 1927 proteins were identified in ccRCC and adjacent kidney tissues, respectively. Among these proteins, 1037 proteins were quantified by Progenesis LC-MS, and 213 proteins were identified as dysregulated proteins between ccRCC and adjacent tissues. Pathway analysis using IPA, STRING, and David tools was performed, which demonstrated the enrichment of cancer-related signaling pathways and biological processes such as mitochondrial dysfunction, metabolic pathway, cell death, and acetylation. Dysregulation of two mitochondrial proteins, acetyl-CoA acetyltransferase 1 (ACAT1) and manganese superoxide dismutase (MnSOD) were selected and confirmed by Western blotting and immunohistochemistry assays using another 6 pairs of ccRCC and adjacent tissues. Further mass spectrometry analysis indicated that both ACAT1 and MnSOD had characterized acetylation at lysine residues, which is the first time to identify acetylation of ACAT1 and MnSOD in ccRCC. Collectively, these data revealed a number of dysregulated proteins and signaling pathways by label-free quantitative proteomic approach in RCC, which shed light on potential diagnostic or prognostic biomarkers and therapeutic molecular targets for clinical intervention of RCC.
Collapse
|
48
|
Liu SM, Chen W, Wang J. Distinguishing between cancer cell differentiation and resistance induced by all-trans retinoic acid using transcriptional profiles and functional pathway analysis. Sci Rep 2014; 4:5577. [PMID: 24993014 PMCID: PMC4894425 DOI: 10.1038/srep05577] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 06/18/2014] [Indexed: 11/03/2022] Open
Abstract
All-trans retinoic acid (ATRA) induces differentiation in various cell types and has been investigated extensively for its effective use in cancer prevention and treatment. Relapsed or refractory disease that is resistant to ATRA is a clinically significant problem. To identify the molecular mechanism that bridges ATRA differentiation and resistance in cancer, we selected the multidrug-resistant leukemia cell line HL-60[R] by exposing it to ATRA, followed by sequential increases of one-half log concentration. A cytotoxicity analysis revealed that HL-60[R] cells were highly resistant to ATRA, doxorubicin, and etoposide. A comparative genome hybridization analysis of HL-60[R] cells identified gains of 4q34, 9q12, and 19q13 and a loss of Yq12 compared with in the parental HL-60 cell line. Transcriptional profiles and functional pathway analyses further demonstrated that 7 genes (FEN1, RFC5, EXO1, XRCC5, PARP1, POLR2F, and GTF2H3) that were relatively up-regulated in HL-60[R] cells and repressed in cells with ATRA-induced differentiation were related to mismatch repair in eukaryotes, DNA double-strand break repair, and nucleotide excision repair pathways. Our results suggest that transcriptional time series profiles and a functional pathway analysis of drug resistance and ATRA-induced cell differentiation will be useful for identifying promyelocytic leukemia patients who are eligible for new therapeutic strategies.
Collapse
Affiliation(s)
- Song-Mei Liu
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Weiping Chen
- Microarray Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jin Wang
- Department of Translational Molecular Pathology, The University of Texas, M.D. Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|