1
|
Chou RT, Ouattara A, Adams M, Berry AA, Takala-Harrison S, Cummings MP. Positive-unlabeled learning identifies vaccine candidate antigens in the malaria parasite Plasmodium falciparum. NPJ Syst Biol Appl 2024; 10:44. [PMID: 38678051 PMCID: PMC11055854 DOI: 10.1038/s41540-024-00365-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 03/29/2024] [Indexed: 04/29/2024] Open
Abstract
Malaria vaccine development is hampered by extensive antigenic variation and complex life stages of Plasmodium species. Vaccine development has focused on a small number of antigens, many of which were identified without utilizing systematic genome-level approaches. In this study, we implement a machine learning-based reverse vaccinology approach to predict potential new malaria vaccine candidate antigens. We assemble and analyze P. falciparum proteomic, structural, functional, immunological, genomic, and transcriptomic data, and use positive-unlabeled learning to predict potential antigens based on the properties of known antigens and remaining proteins. We prioritize candidate antigens based on model performance on reference antigens with different genetic diversity and quantify the protein properties that contribute most to identifying top candidates. Candidate antigens are characterized by gene essentiality, gene ontology, and gene expression in different life stages to inform future vaccine development. This approach provides a framework for identifying and prioritizing candidate vaccine antigens for a broad range of pathogens.
Collapse
Affiliation(s)
- Renee Ti Chou
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, College Park, MD, USA
| | - Amed Ouattara
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Matthew Adams
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Andrea A Berry
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Shannon Takala-Harrison
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Michael P Cummings
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, College Park, MD, USA.
| |
Collapse
|
2
|
Identification of Toxoplasma gondii adhesins through a machine learning approach. Exp Parasitol 2022; 238:108261. [PMID: 35460696 DOI: 10.1016/j.exppara.2022.108261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 04/10/2022] [Accepted: 04/14/2022] [Indexed: 11/23/2022]
Abstract
Toxoplasma gondii, as other apicomplexa, employs adhesins transmembrane proteins for binding and invasion to host cells. Search and characterization of adhesins is pivotal in understanding Apicomplexa invasion mechanisms and targeting new druggable candidates. This work developed a machine learning software called ApiPredictor UniQE V2.0, based on two approaches: support vector machines and multilayer perceptron, to predict adhesins proteins from amino acid sequences. By using ApiPredictor UniQE V2.0, five SAG-Related Sequences (SRSs) were identified within the Toxoplasma gondii proteome. One of those candidates, TgSRS12B, was cloned in plasmid pEXP5-CT/TOPO and expressed in E. coli BL21 DE3. The resulting recombinant protein was purified via affinity chromatography. Co-precipitation assays in CaCo and Muller cells showed interactions between TgSRS12B-His-tagged and the membrane fractions from both human cell lines. In conclusion, we demonstrated that ApiPredictor UniQE V2.0, a bioinformatic free software, was able to identify TgSRS12B as a new adhesin protein.
Collapse
|
3
|
Patarroyo MA, Arévalo-Pinzón G, Moreno-Pérez DA. From a basic to a functional approach for developing a blood stage vaccine against Plasmodium vivax. Expert Rev Vaccines 2020; 19:195-207. [PMID: 32077349 DOI: 10.1080/14760584.2020.1733421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: Numerous challenges have hampered developing an anti-malarial vaccine against the most widespread malarial parasite worldwide: Plasmodium vivax. Despite the progress achieved in studying proteins in short-term in vitro culture or in experimental models, there is still no clear method for defining which antigens or their regions should be prioritized for including them in a vaccine.Areas covered: The methods used by research groups so far which have focused on the functional analysis of P. vivax blood stage antigens have been reviewed here. A logical strategy orientated toward resolving two of the most commonly occurring problems in designing vaccines against this species has thus been proposed (i.e. the search for candidates and evaluating/ascertaining their functional role in the invasion of such molecules).Expert commentary: Advances in knowledge regarding P. vivax biology have been extremely slow. Only two key receptor-ligand interactions concerning merozoite entry to reticulocytes have been reported during the last 20 years: PvDBP1-DARC and PvRBP2b-CD71. Despite increasing knowledge about the parasite's intimate preference for its host cells, it has yet to be determined which regions of the merozoite molecules characterized to date meet the requirement of inducing protective immune responses effectively blocking heterologous parasite entry to human cells.
Collapse
Affiliation(s)
- Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá D.C., Colombia.,School of Medicine and Health Sciences, Universidad del Rosario, Bogotá D.C., Colombia
| | - Gabriela Arévalo-Pinzón
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá D.C., Colombia.,Receptor-Ligand Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá D.C., Colombia
| | - Darwin A Moreno-Pérez
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá D.C., Colombia.,School of Medicine and Health Sciences, Universidad del Rosario, Bogotá D.C., Colombia.,Livestock Sciences Faculty, Universidad de Ciencias Aplicadas Y Ambientales (U.D.C.A), Bogotá DC, Colombia
| |
Collapse
|
4
|
Wichers JS, Scholz JAM, Strauss J, Witt S, Lill A, Ehnold LI, Neupert N, Liffner B, Lühken R, Petter M, Lorenzen S, Wilson DW, Löw C, Lavazec C, Bruchhaus I, Tannich E, Gilberger TW, Bachmann A. Dissecting the Gene Expression, Localization, Membrane Topology, and Function of the Plasmodium falciparum STEVOR Protein Family. mBio 2019; 10:e01500-19. [PMID: 31363031 PMCID: PMC6667621 DOI: 10.1128/mbio.01500-19] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/02/2019] [Indexed: 01/22/2023] Open
Abstract
During its intraerythrocytic development, the malaria parasite Plasmodium falciparum exposes variant surface antigens (VSAs) on infected erythrocytes to establish and maintain an infection. One family of small VSAs is the polymorphic STEVOR proteins, which are marked for export to the host cell surface through their PEXEL signal peptide. Interestingly, some STEVORs have also been reported to localize to the parasite plasma membrane and apical organelles, pointing toward a putative function in host cell egress or invasion. Using deep RNA sequencing analysis, we characterized P. falciparumstevor gene expression across the intraerythrocytic development cycle, including free merozoites, in detail and used the resulting stevor expression profiles for hierarchical clustering. We found that most stevor genes show biphasic expression oscillation, with maximum expression during trophozoite stages and a second peak in late schizonts. We selected four STEVOR variants, confirmed the expected export of these proteins to the host cell membrane, and tracked them to a secondary location, either to the parasite plasma membrane or the secretory organelles of merozoites in late schizont stages. We investigated the function of a particular STEVOR that showed rhoptry localization and demonstrated its role at the parasite-host interface during host cell invasion by specific antisera and targeted gene disruption. Experimentally determined membrane topology of this STEVOR revealed a single transmembrane domain exposing the semiconserved as well as variable protein regions to the cell surface.IMPORTANCE Malaria claims about half a million lives each year. Plasmodium falciparum, the causative agent of the most severe form of the disease, uses proteins that are translocated to the surface of infected erythrocytes for immune evasion. To circumvent the detection of these gene products by the immune system, the parasite evolved a complex strategy that includes gene duplications and elaborate sequence polymorphism. STEVORs are one family of these variant surface antigens and are encoded by about 40 genes. Using deep RNA sequencing of blood-stage parasites, including free merozoites, we first established stevor expression of the cultured isolate and compared it with published transcriptomes. We reveal a biphasic expression of most stevor genes and confirm this for individual STEVORs at the protein level. The membrane topology of a rhoptry-associated variant was experimentally elucidated and linked to host cell invasion, underlining the importance of this multifunctional protein family for parasite proliferation.
Collapse
Affiliation(s)
- J Stephan Wichers
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
| | | | - Jan Strauss
- Centre for Structural Systems Biology (CSSB), DESY, and European Molecular Biology Laboratory Hamburg, Hamburg, Germany
| | - Susanne Witt
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Andrés Lill
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
| | | | | | - Benjamin Liffner
- Research Centre for Infectious Diseases, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Renke Lühken
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Michaela Petter
- Institute of Microbiology, University Hospital Erlangen, Erlangen, Germany
| | - Stephan Lorenzen
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Danny W Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- Burnet Institute, Melbourne, Victoria, Australia
| | - Christian Löw
- Centre for Structural Systems Biology (CSSB), DESY, and European Molecular Biology Laboratory Hamburg, Hamburg, Germany
| | | | - Iris Bruchhaus
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Egbert Tannich
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Tim W Gilberger
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Anna Bachmann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
| |
Collapse
|
5
|
Nath A. Prediction and molecular insights into fungal adhesins and adhesin like proteins. Comput Biol Chem 2019; 80:333-340. [PMID: 31078912 DOI: 10.1016/j.compbiolchem.2019.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 04/02/2019] [Accepted: 05/02/2019] [Indexed: 10/26/2022]
Abstract
Adhesion is the foremost step in pathogenesis and biofilm formation and is facilitated by a special class of cell wall proteins known as adhesins. Formation of biofilms in catheters and other medical devices subsequently leads to infections. As compared to bacterial adhesins, there is relatively less work for the characterization and identification of fungal adhesins. Understanding the sequence characterization of fungal adhesins may facilitate a better understanding of its role in pathogenesis. Experimental methods for investigation and characterization of fungal adhesins are labor intensive and expensive. Therefore, there is a need for fast and efficient computational methods for the identification and characterization of fungal adhesins. The aim of the current study is twofold: (i) to develop an accurate predictor for fungal adhesins, (ii) to sieve out the prominent molecular signatures present in fungal adhesins. Of the many supervised learning algorithms implemented in the current study, voting ensembles resulted in enhanced prediction accuracy. The best voting-ensemble consisting of three support vector machines with three different kernels (PolyK, RBF, PuK) achieved an accuracy of 94.9% on leave one out cross validation and 98.0% accuracy on blind testing set. A preference/avoidance list of molecular features as well as human interpretable rules are also extracted giving insights into the general sequence features of fungal adhesins. Fungal adhesins are characterized by high Threonine and Cysteine and avoidance for Phenylalanine and Methionine. They also have avoidance for average hydrophilicity. The current analysis possibly will facilitate the understanding of the mechanism of fungal adhesin function which may further help in designing methods for restricting adhesin mediated pathogenesis.
Collapse
Affiliation(s)
- Abhigyan Nath
- Department of Biochemistry, Pt. Jawahar Lal Nehru Memorial Medical College, Raipur, 492001, India.
| |
Collapse
|
6
|
Pritam M, Singh G, Swaroop S, Singh AK, Singh SP. Exploitation of reverse vaccinology and immunoinformatics as promising platform for genome-wide screening of new effective vaccine candidates against Plasmodium falciparum. BMC Bioinformatics 2019; 19:468. [PMID: 30717656 PMCID: PMC7394322 DOI: 10.1186/s12859-018-2482-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 11/09/2018] [Indexed: 12/14/2022] Open
Abstract
Background In the current scenario, designing of world-wide effective malaria vaccine against Plasmodium falciparum remain challenging despite the significant progress has been made in last few decades. Conventional vaccinology (isolate, inactivate and inject) approaches are time consuming, laborious and expensive; therefore, the use of computational vaccinology tools are imperative, which can facilitate the design of new and promising vaccine candidates. Results In current investigation, initially 5548 proteins of P. falciparum genome were carefully chosen for the incidence of signal peptide/ anchor using SignalP4.0 tool that resulted into 640 surface linked proteins (SLP). Out of these SLP, only 17 were predicted to contain GPI-anchors using PredGPI tool in which further 5 proteins were considered as malarial antigenic adhesins by MAAP and VaxiJen programs, respectively. In the subsequent step, T cell epitopes of 5 genome derived predicted antigenic adhesins (GDPAA) and 5 randomly selected known malarial adhesins (RSKMA) were analysed employing MHC class I and II tools of IEDB analysis resource. Finally, VaxiJen scored T cell epitopes from each antigen were considered for prediction of population coverage (PPC) analysis in the world-wide population including malaria endemic regions. The validation of the present in silico strategy was carried out by comparing the PPC of combined (MHC class I and II) predicted epitope ensemble among GDPAA (99.97%), RSKMA (99.90%) and experimentally known epitopes (EKE) of P. falciparum (97.72%) pertaining to world-wide human population. Conclusions The present study systematically screened 5 potential protective antigens from P. falciparum genome using bioinformatics tools. Interestingly, these GDPAA, RSKMA and EKE of P. falciparum epitope ensembles forecasted to contain highly promiscuous T cell epitopes, which are potentially effective for most of the world-wide human population with malaria endemic regions. Therefore, these epitope ensembles could be considered in near future for novel and significantly effective vaccine candidate against malaria. Electronic supplementary material The online version of this article (10.1186/s12859-018-2482-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Manisha Pritam
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, 226028, India
| | - Garima Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, 226028, India
| | - Suchit Swaroop
- Department of Zoology, University of Lucknow, Lucknow, 226007, India
| | - Akhilesh Kumar Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, 226028, India
| | - Satarudra Prakash Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, 226028, India.
| |
Collapse
|
7
|
Liu Z, Peasley AM, Yang J, Li Y, Guan G, Luo J, Yin H, Brayton KA. The Anaplasma ovis genome reveals a high proportion of pseudogenes. BMC Genomics 2019; 20:69. [PMID: 30665414 PMCID: PMC6341658 DOI: 10.1186/s12864-018-5374-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 12/16/2018] [Indexed: 01/07/2023] Open
Abstract
Background The genus Anaplasma is made up of organisms characterized by small genomes that are undergoing reductive evolution. Anaplasma ovis, one of the seven recognized species in this genus, is an understudied pathogen of sheep and other ruminants. This tick-borne agent is thought to induce only mild clinical disease; however, small deficits may add to larger economic impacts due to the wide geographic distribution of this pathogen. Results In this report we present the first complete genome sequence for A. ovis and compare the genome features with other closely related species. The 1,214,674 bp A. ovis genome encodes 933 protein coding sequences, the split operon arrangement for ribosomal RNA genes, and more pseudogenes than previously recognized for other Anaplasma species. The metabolic potential is similar to other Anaplasma species. Anaplasma ovis has a small repertoire of surface proteins and transporters. Several novel genes are identified. Conclusions Analyses of these important features and significant gene families/genes with potential to be vaccine candidates are presented in a comparative context. The availability of this genome will significantly facilitate research for this pathogen.
Collapse
Affiliation(s)
- Zhijie Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Austin M Peasley
- Program in Genomics, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, 99164-7040, USA
| | - Jifei Yang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Youquan Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Guiquan Guan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Jianxun Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases, Yangzhou, China
| | - Kelly A Brayton
- Program in Genomics, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, 99164-7040, USA.
| |
Collapse
|
8
|
Calarco L, Ellis J. Annotating the ‘hypothetical’ in hypothetical proteins: In-silico analysis of uncharacterised proteins for the Apicomplexan parasite, Neospora caninum. Vet Parasitol 2019; 265:29-37. [DOI: 10.1016/j.vetpar.2018.11.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/30/2018] [Accepted: 11/24/2018] [Indexed: 12/12/2022]
|
9
|
Anderson DC, Lapp SA, Barnwell JW, Galinski MR. A large scale Plasmodium vivax- Saimiri boliviensis trophozoite-schizont transition proteome. PLoS One 2017; 12:e0182561. [PMID: 28829774 PMCID: PMC5567661 DOI: 10.1371/journal.pone.0182561] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 07/20/2017] [Indexed: 11/18/2022] Open
Abstract
Plasmodium vivax is a complex protozoan parasite with over 6,500 genes and stage-specific differential expression. Much of the unique biology of this pathogen remains unknown, including how it modifies and restructures the host reticulocyte. Using a recently published P. vivax reference genome, we report the proteome from two biological replicates of infected Saimiri boliviensis host reticulocytes undergoing transition from the late trophozoite to early schizont stages. Using five database search engines, we identified a total of 2000 P. vivax and 3487 S. boliviensis proteins, making this the most comprehensive P. vivax proteome to date. PlasmoDB GO-term enrichment analysis of proteins identified at least twice by a search engine highlighted core metabolic processes and molecular functions such as glycolysis, translation and protein folding, cell components such as ribosomes, proteasomes and the Golgi apparatus, and a number of vesicle and trafficking related clusters. Database for Annotation, Visualization and Integrated Discovery (DAVID) v6.8 enriched functional annotation clusters of S. boliviensis proteins highlighted vesicle and trafficking-related clusters, elements of the cytoskeleton, oxidative processes and response to oxidative stress, macromolecular complexes such as the proteasome and ribosome, metabolism, translation, and cell death. Host and parasite proteins potentially involved in cell adhesion were also identified. Over 25% of the P. vivax proteins have no functional annotation; this group includes 45 VIR members of the large PIR family. A number of host and pathogen proteins contained highly oxidized or nitrated residues, extending prior trophozoite-enriched stage observations from S. boliviensis infections, and supporting the possibility of oxidative stress in relation to the disease. This proteome significantly expands the size and complexity of the known P. vivax and Saimiri host iRBC proteomes, and provides in-depth data that will be valuable for ongoing research on this parasite’s biology and pathogenesis.
Collapse
Affiliation(s)
- D. C. Anderson
- Bioscience Division, SRI International, Harrisonburg, VA, United States of America
- * E-mail:
| | - Stacey A. Lapp
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States of America
| | - John W. Barnwell
- Malaria Branch, Division of Parasitic Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Mary R. Galinski
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States of America
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, United States of America
| |
Collapse
|
10
|
Zhu X, He Y, Liang Y, Kaneko O, Cui L, Cao Y. Tryptophan-rich domains of Plasmodium falciparum SURFIN 4.2 and Plasmodium vivax PvSTP2 interact with membrane skeleton of red blood cell. Malar J 2017; 16:121. [PMID: 28320404 PMCID: PMC5359885 DOI: 10.1186/s12936-017-1772-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 03/10/2017] [Indexed: 11/13/2022] Open
Abstract
Background Plasmodium falciparum dramatically alters the morphology and properties of the infected red blood cells (iRBCs). A large group of exported proteins participate in these parasite-host interactions occurring at the iRBC membrane skeleton. SURFIN4.2 is one of iRBC surface protein that belongs to surface-associated interspersed protein (SURFIN) family. Although the intracellular tryptophan-rich domain (WRD) was proposed to be important for the translocation of SURFINs from Maurer’s clefts to iRBC surface, the molecular basis of this observation has yet to be defined. The WRDs of P. falciparum SURFIN proteins and their orthologous Plasmodium vivax subtelomeric transmembrane proteins (PvSTPs) show homology to the intracellular regions of PfEMP1 and Pf332, both of which are involved in RBC membrane skeleton interactions, and contribute to malaria pathology. Methods Two transfected lines expressing recombinant SURFINs (NTC-GFP and NTC-4.2WRD2-GFP) of the 3D7 sequence were generated by transfection in P. falciparum. In vitro binding assays were performed by using recombinant WRDs of SURFIN4.2/PvSTP2 and inside-out vesicles (IOVs). The interactions between the recombinant WRDs of SURFIN4.2/PvSTP2 with actin and spectrin were evaluated by the actin spin down assay and an enzyme-linked immunosorbent assay based binding assays, respectively. Results The recombinant SURFINs (NTC-4.2WRD2-GFP), in which the second WRD from SURFIN4.2 was added back to NTC-GFP, show diffused pattern of fluorescence in the iRBC cytosol. Furthermore, WRDs of SURFIN4.2/PvSTP2 were found to directly interact with the IOVs of RBC, with binding affinities ranging from 0.26 to 0.68 μM, values that are comparable to other reported parasite proteins that bind to the RBC membrane skeleton. Further experiments revealed that the second WRD of SURFIN4.2 bound to F-actin (Kd = 5.16 μM) and spectrin (Kd = 0.51 μM). Conclusions Because PfEMP1 and Pf332 also bind to actin and/or spectrin, the authors propose that the interaction between WRD and RBC membrane skeleton might be a common feature of WRD-containing proteins and may be important for the translocation of these proteins from Maurer’s clefts to the iRBC surface. The findings suggest a conserved mechanism of host-parasite interactions and targeting this interaction may disrupt the iRBC surface exposure of Plasmodium virulence-related proteins. Electronic supplementary material The online version of this article (doi:10.1186/s12936-017-1772-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaotong Zhu
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, 110122, Liaoning, China
| | - Yang He
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, 110122, Liaoning, China
| | - Yifan Liang
- 98K 73B Seven-year Programme 127306, China Medical University, Shenyang, 110001, Liaoning, China
| | - Osamu Kaneko
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Liwang Cui
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, 110122, Liaoning, China. .,Department of Entomology, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, 110122, Liaoning, China.
| |
Collapse
|
11
|
In-silico screening, identification and validation of a novel vaccine candidate in the fight against Plasmodium falciparum. Parasitol Res 2017; 116:1293-1305. [DOI: 10.1007/s00436-017-5408-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/08/2017] [Indexed: 12/14/2022]
|
12
|
Chen JH, Chen SB, Wang Y, Ju C, Zhang T, Xu B, Shen HM, Mo XJ, Molina DM, Eng M, Liang X, Gardner MJ, Wang R, Hu W. An immunomics approach for the analysis of natural antibody responses to Plasmodium vivax infection. MOLECULAR BIOSYSTEMS 2016; 11:2354-63. [PMID: 26091354 DOI: 10.1039/c5mb00330j] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High throughput immunomics is a powerful platform to discover potential targets of host immunity and develop diagnostic tests for infectious diseases. We screened the sera of Plasmodium vivax-exposed individuals to profile the antibody response to blood-stage antigens of P. vivax using a P. vivax protein microarray. A total of 1936 genes encoding the P. vivax proteins were expressed, printed and screened with sera from P. vivax-exposed individuals and normal subjects. Total of 151 (7.8% of the 1936 targets) highly immunoreactive antigens were identified, including five well-characterized antigens of P. vivax (ETRAMP11.2, Pv34, SUB1, RAP2 and MSP4). Among the highly immunoreactive antigens, 5 antigens were predicted as adhesins by MAAP, and 11 antigens were predicted as merozoite invasion-related proteins based on homology with P. falciparum proteins. There are 40 proteins that have serodiagnostic potential for antibody surveillance. These novel Plasmodium antigens identified provide the clues for understanding host immune response to P. vivax infection and the development of antibody surveillance tools.
Collapse
Affiliation(s)
- Jun-Hu Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, Shanghai 200025, People's Republic of China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Moreno-Pérez DA, Dégano R, Ibarrola N, Muro A, Patarroyo MA. Determining the Plasmodium vivax VCG-1 strain blood stage proteome. J Proteomics 2014; 113:268-280. [PMID: 25316051 DOI: 10.1016/j.jprot.2014.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 09/17/2014] [Accepted: 10/02/2014] [Indexed: 01/31/2023]
Abstract
Plasmodium vivax is the second most prevalent parasite species causing malaria in humans living in tropical and subtropical areas throughout the world. There have been few P. vivax proteomic studies to date and they have focused on using clinical isolates, given the technical difficulties concerning how to maintain an in vitro culture of this species. This study was thus focused on identifying the P. vivax VCG-1 strain proteome during its blood lifecycle through LC-MS/MS; this led to identifying 734 proteins, thus increasing the overall number reported for P. vivax to date. Some of them have previously been related to reticulocyte invasion, parasite virulence and growth and others are new molecules possibly playing a functional role during metabolic processes, as predicted by Database for Annotation, Visualization and Integrated Discovery (DAVID) functional analysis. This is the first large-scale proteomic analysis of a P. vivax strain adapted to a non-human primate model showing the parasite protein repertoire during the blood lifecycle. Database searches facilitated the in silico prediction of proteins proposed for evaluation in further experimental assays regarding their potential as pharmacologic targets or as component of a totally efficient vaccine against malaria caused by P. vivax. BIOLOGICAL SIGNIFICANCE P. vivax malaria continues being a public health problem around world. Although considerable progress has been made in understanding genome- and transcriptome-related P. vivax biology, there are few proteome studies, currently representing only 8.5% of the predicted in silico proteome reported in public databases. A high-throughput proteomic assay was used for discovering new P. vivax intra-reticulocyte asexual stage molecules taken from parasites maintained in vivo in a primate model. The methodology avoided the main problem related to standardising an in vitro culture system to obtain enough samples for protein identification and annotation. This study provides a source of potential information contributing towards a basic understanding of P. vivax biology related to parasite proteins which are of significant importance for the malaria research community.
Collapse
Affiliation(s)
- D A Moreno-Pérez
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26-20, Bogotá, Colombia; Universidad del Rosario, Calle 63D No. 24-31, Bogotá, Colombia; IBSAL-CIETUS (Instituto de Investigación Biomédica de Salamanca-Centro de Investigación en Enfermedades Tropicales de la Universidad de Salamanca), Facultad de Farmacia, Universidad de Salamanca, Salamanca, Spain.
| | - R Dégano
- Unidad de Proteómica, Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.
| | - N Ibarrola
- Unidad de Proteómica, Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.
| | - A Muro
- IBSAL-CIETUS (Instituto de Investigación Biomédica de Salamanca-Centro de Investigación en Enfermedades Tropicales de la Universidad de Salamanca), Facultad de Farmacia, Universidad de Salamanca, Salamanca, Spain.
| | - M A Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No. 26-20, Bogotá, Colombia; Universidad del Rosario, Calle 63D No. 24-31, Bogotá, Colombia.
| |
Collapse
|
14
|
Chaudhuri R, Kulshreshtha D, Raghunandanan MV, Ramachandran S. Integrative immunoinformatics for Mycobacterial diseases in R platform. SYSTEMS AND SYNTHETIC BIOLOGY 2014; 8:27-39. [PMID: 24592289 DOI: 10.1007/s11693-014-9135-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 02/04/2014] [Accepted: 02/05/2014] [Indexed: 11/25/2022]
Abstract
The sequencing of genomes of the pathogenic Mycobacterial species causing pulmonary and extrapulmonary tuberculosis, leprosy and other atypical mycobacterial infections, offer immense opportunities for discovering new therapeutics and identifying new vaccine candidates. Enhanced RV, which uses additional algorithms to Reverse Vaccinology (RV), has increased potential to reduce likelihood of undesirable features including allergenicity and immune cross reactivity to host. The starting point for MycobacRV database construction includes collection of known vaccine candidates and a set of predicted vaccine candidates identified from the whole genome sequences of 22 mycobacterium species and strains pathogenic to human and one non-pathogenic Mycobacterium tuberculosis H37Ra strain. These predicted vaccine candidates are the adhesins and adhesin-like proteins obtained using SPAAN at Pad > 0.6 and screening for putative extracellular or surface localization characteristics using PSORTb v.3.0 at very stringent cutoff. Subsequently, these protein sequences were analyzed through 21 publicly available algorithms to obtain Orthologs, Paralogs, BetaWrap Motifs, Transmembrane Domains, Signal Peptides, Conserved Domains, and similarity to human proteins, T cell epitopes, B cell epitopes, Discotopes and potential Allergens predictions. The Enhanced RV information was analysed in R platform through scripts following well structured decision trees to derive a set of nonredundant 233 most probable vaccine candidates. Additionally, the degree of conservation of potential epitopes across all orthologs has been obtained with reference to the M. tuberculosis H37Rv strain, the most commonly used strain in M. tuberculosis studies. Utilities for the vaccine candidate search and analysis of epitope conservation across the orthologs with reference to M. tuberculosis H37Rv strain are available in the mycobacrvR package in R platform accessible from the "Download" tab of MycobacRV webserver. MycobacRV an immunoinformatics database of known and predicted mycobacterial vaccine candidates has been developed and is freely available at http://mycobacteriarv.igib.res.in.
Collapse
Affiliation(s)
- Rupanjali Chaudhuri
- CSIR-Institute of Genomics and Integrative Biology, Near Jubilee Hall, Mall Road, Delhi, 110 007 India
| | - Deepika Kulshreshtha
- CSIR-Institute of Genomics and Integrative Biology, Near Jubilee Hall, Mall Road, Delhi, 110 007 India
| | | | - Srinivasan Ramachandran
- CSIR-Institute of Genomics and Integrative Biology, Near Jubilee Hall, Mall Road, Delhi, 110 007 India
| |
Collapse
|
15
|
Kangwanrangsan N, Tachibana M, Jenwithisuk R, Tsuboi T, Riengrojpitak S, Torii M, Ishino T. A member of the CPW-WPC protein family is expressed in and localized to the surface of developing ookinetes. Malar J 2013; 12:129. [PMID: 23587146 PMCID: PMC3637178 DOI: 10.1186/1475-2875-12-129] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 04/08/2013] [Indexed: 01/11/2023] Open
Abstract
Background Despite the development of malaria control programs, billions of people are still at risk for this infectious disease. Recently, the idea of the transmission-blocking vaccine, which works by interrupting the infection of mosquitoes by parasites, has gained attention as a promising strategy for malaria control and eradication. To date, a limited number of surface proteins have been identified in mosquito-stage parasites and investigated as potential targets for transmission-blocking vaccines. Therefore, for the development of effective transmission-blocking strategies in epidemic areas, it is necessary to identify novel zygote/ookinete surface proteins as candidate antigens. Methods Since the expression of many zygote/ookinete proteins is regulated post-transcriptionally, proteins that are regulated by well-known translational mediators were focused. Through in silico screening, CPW-WPC family proteins were selected as potential zygote/ookinete surface proteins. All experiments were performed in the rodent malaria parasite, Plasmodium yoelii XNL. mRNA and protein expression profiles were examined by RT-PCR and western blotting, respectively, over the course of the life cycle of the malaria parasite. Protein function was also investigated by the generation of gene-disrupted transgenic parasites. Results The CPW-WPC protein family, named after the unique WxC repeat domains, is highly conserved among Plasmodium species. It is revealed that CPW-WPC mRNA transcripts are transcribed in gametocytes, while CPW-WPC proteins are expressed in zygote/ookinete-stage parasites. Localization analysis reveals that one of the CPW-WPC family members, designated as PyCPW-WPC-1, is a novel zygote/ookinete stage-specific surface protein. Targeted disruption of the pycpw-wpc-1 gene caused no obvious defects during ookinete and oocyst formation, suggesting that PyCPW-WPC-1 is not essential for mosquito-stage parasite development. Conclusions It is demonstrated that PyCPW-WPC-1 can be classified as a novel, post-transcriptionally regulated zygote/ookinete surface protein. Additional studies are required to determine whether all CPW-WPC family members are also present on the ookinete surface and share similar biological roles during mosquito-stage parasite development. Further investigations of CPW-WPC family proteins may facilitate understanding of parasite biology in the mosquito stage and development of transmission-blocking vaccines.
Collapse
Affiliation(s)
- Niwat Kangwanrangsan
- Department of Molecular Parasitology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Matsuyama, Ehime 791-0295, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Lopez FJ, Bernabeu M, Fernandez-Becerra C, del Portillo HA. A new computational approach redefines the subtelomeric vir superfamily of Plasmodium vivax. BMC Genomics 2013; 14:8. [PMID: 23324551 PMCID: PMC3566924 DOI: 10.1186/1471-2164-14-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 01/02/2013] [Indexed: 01/20/2023] Open
Abstract
Background Subtelomeric multigene families of malaria parasites encode virulent determinants. The published genome sequence of Plasmodium vivax revealed the largest subtelomeric multigene family of human malaria parasites, the vir super-family, presently composed of 346 vir genes subdivided into 12 different subfamilies based on sequence homologies detected by BLAST. Results A novel computational approach was used to redefine vir genes. First, a protein-weighted graph was built based on BLAST alignments. This graph was processed to ensure that edge weights are not exclusively based on the BLAST score between the two corresponding proteins, but strongly dependant on their graph neighbours and their associations. Then the Markov Clustering Algorithm was applied to the protein graph. Next, the Homology Block concept was used to further validate this clustering approach. Finally, proteome-wide analysis was carried out to predict new VIR members. Results showed that (i) three previous subfamilies cannot longer be classified as vir genes; (ii) most previously unclustered vir genes were clustered into vir subfamilies; (iii) 39 hypothetical proteins were predicted as VIR proteins; (iv) many of these findings are supported by a number of structural and functional evidences, sub-cellular localization studies, gene expression analysis and chromosome localization (v) this approach can be used to study other multigene families in malaria. Conclusions This methodology, resource and new classification of vir genes will contribute to a new structural framing of this multigene family and other multigene families of malaria parasites, facilitating the design of experiments to understand their role in pathology, which in turn may help furthering vaccine development.
Collapse
Affiliation(s)
- Francisco Javier Lopez
- Barcelona Centre for International Health Research, CRESIB, Hospital Clínic-Universitat de Barcelona, Roselló 153, 1a planta CEK Building, 08036 Barcelona, Spain
| | | | | | | |
Collapse
|
17
|
Cheeseman IH, Miller BA, Nair S, Nkhoma S, Tan A, Tan JC, Saai SA, Phyo AP, Moo CL, Lwin KM, McGready R, Ashley E, Imwong M, Stepniewska K, Yi P, Dondorp AM, Mayxay M, Newton PN, White NJ, Nosten F, Ferdig MT, Anderson TJ. A major genome region underlying artemisinin resistance in malaria. Science 2012; 336:79-82. [PMID: 22491853 PMCID: PMC3355473 DOI: 10.1126/science.1215966] [Citation(s) in RCA: 314] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Evolving resistance to artemisinin-based compounds threatens to derail attempts to control malaria. Resistance has been confirmed in western Cambodia and has recently emerged in western Thailand, but is absent from neighboring Laos. Artemisinin resistance results in reduced parasite clearance rates (CRs) after treatment. We used a two-phase strategy to identify genome region(s) underlying this ongoing selective event. Geographical differentiation and haplotype structure at 6969 polymorphic single-nucleotide polymorphisms (SNPs) in 91 parasites from Cambodia, Thailand, and Laos identified 33 genome regions under strong selection. We screened SNPs and microsatellites within these regions in 715 parasites from Thailand, identifying a selective sweep on chromosome 13 that shows strong association (P = 10(-6) to 10(-12)) with slow CRs, illustrating the efficacy of targeted association for identifying the genetic basis of adaptive traits.
Collapse
Affiliation(s)
| | - Becky A. Miller
- The Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556
| | - Shalini Nair
- Texas Biomedical Research Institute, San Antonio, Texas 78245
| | | | - Asako Tan
- The Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556
| | - John C. Tan
- The Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556
| | - Salma Al Saai
- Texas Biomedical Research Institute, San Antonio, Texas 78245
| | - Aung Pyae Phyo
- Shoklo Malaria Research Unit (SMRU), Mae Sot, Tak, Thailand
| | - Carit Ler Moo
- Shoklo Malaria Research Unit (SMRU), Mae Sot, Tak, Thailand
| | | | - Rose McGready
- Shoklo Malaria Research Unit (SMRU), Mae Sot, Tak, Thailand
- Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine, Churchill Hospital, Oxford, UK
| | - Elizabeth Ashley
- Shoklo Malaria Research Unit (SMRU), Mae Sot, Tak, Thailand
- Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine, Churchill Hospital, Oxford, UK
| | - Mallika Imwong
- Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kasia Stepniewska
- Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine, Churchill Hospital, Oxford, UK
- Worldwide Antimalarial Resistance Network, Oxford, UK
| | - Poravuth Yi
- The National Center for Parasitology, Entomology, and Malaria Control, Phnom Penh, Cambodia
| | - Arjen M. Dondorp
- Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine, Churchill Hospital, Oxford, UK
| | - Mayfong Mayxay
- Wellcome Trust-Mahosot Hospital-Oxford Tropical Medicine Research Collaboration, Mahosot Hospital, Vientiane, Lao People's Democratic Republic
| | - Paul N. Newton
- Centre for Tropical Medicine, Churchill Hospital, Oxford, UK
- Wellcome Trust-Mahosot Hospital-Oxford Tropical Medicine Research Collaboration, Mahosot Hospital, Vientiane, Lao People's Democratic Republic
| | - Nicholas J. White
- Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine, Churchill Hospital, Oxford, UK
| | - François Nosten
- Shoklo Malaria Research Unit (SMRU), Mae Sot, Tak, Thailand
- Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine, Churchill Hospital, Oxford, UK
| | - Michael T. Ferdig
- The Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556
| | | |
Collapse
|
18
|
Bernabeu M, Lopez FJ, Ferrer M, Martin-Jaular L, Razaname A, Corradin G, Maier AG, Del Portillo HA, Fernandez-Becerra C. Functional analysis of Plasmodium vivax VIR proteins reveals different subcellular localizations and cytoadherence to the ICAM-1 endothelial receptor. Cell Microbiol 2011; 14:386-400. [PMID: 22103402 DOI: 10.1111/j.1462-5822.2011.01726.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The subcellular localization and function of variant subtelomeric multigene families in Plasmodium vivax remain vastly unknown. Among them, the vir superfamily is putatively involved in antigenic variation and in mediating adherence to endothelial receptors. In the absence of a continuous in vitro culture system for P. vivax, we have generated P. falciparum transgenic lines expressing VIR proteins to infer location and function. We chose three proteins pertaining to subfamilies A (VIR17), C (VIR14) and D (VIR10), with domains and secondary structures that predictably traffic these proteins to different subcellular compartments. Here, we showed that VIR17 remained inside the parasite and around merozoites, whereas VIR14 and VIR10 were exported to the membrane of infected red blood cells (iRBCs) in an apparent independent pathway of Maurer's clefts. Remarkably, VIR14 was exposed at the surface of iRBCs and mediated adherence to different endothelial receptors expressed in CHO cells under static conditions. Under physiological flow conditions, however, cytoadherence was only observed to ICAM-1, which was the only receptor whose adherence was specifically and significantly inhibited by antibodies against conserved motifs of VIR proteins. Immunofluorescence studies using these antibodies also showed different subcellular localizations of VIR proteins in P. vivax-infected reticulocytes from natural infections. These data suggest that VIR proteins are trafficked to different cellular compartments and functionally demonstrates that VIR proteins can specifically mediate cytoadherence to the ICAM-1 endothelial receptor.
Collapse
Affiliation(s)
- M Bernabeu
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Restrepo-Montoya D, Becerra D, Carvajal-Patiño JG, Mongui A, Niño LF, Patarroyo ME, Patarroyo MA. Identification of Plasmodium vivax proteins with potential role in invasion using sequence redundancy reduction and profile hidden Markov models. PLoS One 2011; 6:e25189. [PMID: 21984903 PMCID: PMC3184965 DOI: 10.1371/journal.pone.0025189] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 08/29/2011] [Indexed: 11/18/2022] Open
Abstract
Background This study describes a bioinformatics approach designed to identify Plasmodium vivax proteins potentially involved in reticulocyte invasion. Specifically, different protein training sets were built and tuned based on different biological parameters, such as experimental evidence of secretion and/or involvement in invasion-related processes. A profile-based sequence method supported by hidden Markov models (HMMs) was then used to build classifiers to search for biologically-related proteins. The transcriptional profile of the P. vivax intra-erythrocyte developmental cycle was then screened using these classifiers. Results A bioinformatics methodology for identifying potentially secreted P. vivax proteins was designed using sequence redundancy reduction and probabilistic profiles. This methodology led to identifying a set of 45 proteins that are potentially secreted during the P. vivax intra-erythrocyte development cycle and could be involved in cell invasion. Thirteen of the 45 proteins have already been described as vaccine candidates; there is experimental evidence of protein expression for 7 of the 32 remaining ones, while no previous studies of expression, function or immunology have been carried out for the additional 25. Conclusions The results support the idea that probabilistic techniques like profile HMMs improve similarity searches. Also, different adjustments such as sequence redundancy reduction using Pisces or Cd-Hit allowed data clustering based on rational reproducible measurements. This kind of approach for selecting proteins with specific functions is highly important for supporting large-scale analyses that could aid in the identification of genes encoding potential new target antigens for vaccine development and drug design. The present study has led to targeting 32 proteins for further testing regarding their ability to induce protective immune responses against P. vivax malaria.
Collapse
Affiliation(s)
- Daniel Restrepo-Montoya
- Bioinformatics and Intelligent Systems Research Laboratory - BIOLISI, Universidad Nacional de Colombia, Bogotá D.C., Colombia
- Research Group on Combinatorial Algorithms - ALGOS-UN, Universidad Nacional de Colombia, Bogotá D.C., Colombia
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá D.C., Colombia
- Fundación Instituto de Inmunología de Colombia - FIDIC, Bogotá D.C., Colombia
| | - David Becerra
- Bioinformatics and Intelligent Systems Research Laboratory - BIOLISI, Universidad Nacional de Colombia, Bogotá D.C., Colombia
- Research Group on Combinatorial Algorithms - ALGOS-UN, Universidad Nacional de Colombia, Bogotá D.C., Colombia
| | - Juan G. Carvajal-Patiño
- Bioinformatics and Intelligent Systems Research Laboratory - BIOLISI, Universidad Nacional de Colombia, Bogotá D.C., Colombia
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá D.C., Colombia
- Fundación Instituto de Inmunología de Colombia - FIDIC, Bogotá D.C., Colombia
| | - Alvaro Mongui
- Fundación Instituto de Inmunología de Colombia - FIDIC, Bogotá D.C., Colombia
| | - Luis F. Niño
- Bioinformatics and Intelligent Systems Research Laboratory - BIOLISI, Universidad Nacional de Colombia, Bogotá D.C., Colombia
- Research Group on Combinatorial Algorithms - ALGOS-UN, Universidad Nacional de Colombia, Bogotá D.C., Colombia
| | - Manuel E. Patarroyo
- Fundación Instituto de Inmunología de Colombia - FIDIC, Bogotá D.C., Colombia
- School of Medicine, Universidad Nacional de Colombia, Bogotá D.C., Colombia
| | - Manuel A. Patarroyo
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá D.C., Colombia
- Fundación Instituto de Inmunología de Colombia - FIDIC, Bogotá D.C., Colombia
- * E-mail:
| |
Collapse
|
20
|
Chen L, Lopaticki S, Riglar DT, Dekiwadia C, Uboldi AD, Tham WH, O'Neill MT, Richard D, Baum J, Ralph SA, Cowman AF. An EGF-like protein forms a complex with PfRh5 and is required for invasion of human erythrocytes by Plasmodium falciparum. PLoS Pathog 2011; 7:e1002199. [PMID: 21909261 PMCID: PMC3164636 DOI: 10.1371/journal.ppat.1002199] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Accepted: 06/24/2011] [Indexed: 11/28/2022] Open
Abstract
Invasion of erythrocytes by Plasmodium falciparum involves a complex cascade of protein-protein interactions between parasite ligands and host receptors. The reticulocyte binding-like homologue (PfRh) protein family is involved in binding to and initiating entry of the invasive merozoite into erythrocytes. An important member of this family is PfRh5. Using ion-exchange chromatography, immunoprecipitation and mass spectroscopy, we have identified a novel cysteine-rich protein we have called P. falciparumRh5 interacting protein (PfRipr) (PFC1045c), which forms a complex with PfRh5 in merozoites. Mature PfRipr has a molecular weight of 123 kDa with 10 epidermal growth factor-like domains and 87 cysteine residues distributed along the protein. In mature schizont stages this protein is processed into two polypeptides that associate and form a complex with PfRh5. The PfRipr protein localises to the apical end of the merozoites in micronemes whilst PfRh5 is contained within rhoptries and both are released during invasion when they form a complex that is shed into the culture supernatant. Antibodies to PfRipr1 potently inhibit merozoite attachment and invasion into human red blood cells consistent with this complex playing an essential role in this process. The malaria parasite invades red blood cells by binding to proteins on the surface of this host cell. A family of proteins called P. falciparum reticulocyte binding-like homologue (PfRh) proteins are important for recognition of the red blood cell and activation of the invasion process. An important member of the PfRh family is PfRh5. We have identified a novel cysteine-rich protein we have called P. falciparumRh5 interacting protein (PfRipr), which forms a complex with PfRh5 in merozoites. PfRipr has 10 epidermal growth factor-like domains and is expressed in mature schizont stages where it is processed into two polypeptides that associate and form a complex with PfRh5. The PfRipr protein localises to the apical end of the merozoites in micronemes whilst PfRh5 is contained within rhoptries and both are released during invasion when they form a complex that is released into the culture supernatant. Antibodies to PfRipr1 can potently inhibit merozoite attachment and invasion into human red blood cells consistent with this complex playing an essential role in this process.
Collapse
Affiliation(s)
- Lin Chen
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Sash Lopaticki
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - David T. Riglar
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Chaitali Dekiwadia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Sciences and Biotechnology Institute, University of Melbourne, Melbourne, Australia
| | - Alex D. Uboldi
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Wai-Hong Tham
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Matthew T. O'Neill
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Dave Richard
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Jake Baum
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Stuart A. Ralph
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Sciences and Biotechnology Institute, University of Melbourne, Melbourne, Australia
| | - Alan F. Cowman
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
- * E-mail:
| |
Collapse
|
21
|
Valencia SH, Rodríguez DC, Acero DL, Ocampo V, Arévalo-Herrera M. Platform for Plasmodium vivax vaccine discovery and development. Mem Inst Oswaldo Cruz 2011; 106 Suppl 1:179-92. [PMID: 21881773 PMCID: PMC4832982 DOI: 10.1590/s0074-02762011000900023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 06/15/2011] [Indexed: 01/17/2023] Open
Abstract
Plasmodium vivax is the most prevalent malaria parasite on the American continent. It generates a global burden of 80-100 million cases annually and represents a tremendous public health problem, particularly in the American and Asian continents. A malaria vaccine would be considered the most cost-effective measure against this vector-borne disease and it would contribute to a reduction in malaria cases and to eventual eradication. Although significant progress has been achieved in the search for Plasmodium falciparum antigens that could be used in a vaccine, limited progress has been made in the search for P. vivax components that might be eligible for vaccine development. This is primarily due to the lack of in vitro cultures to serve as an antigen source and to inadequate funding. While the most advanced P. falciparum vaccine candidate is currently being tested in Phase III trials in Africa, the most advanced P. vivax candidates have only advanced to Phase I trials. Herein, we describe the overall strategy and progress in P. vivax vaccine research, from antigen discovery to preclinical and clinical development and we discuss the regional potential of Latin America to develop a comprehensive platform for vaccine development.
Collapse
|
22
|
Chaudhuri R, Ansari FA, Raghunandanan MV, Ramachandran S. FungalRV: adhesin prediction and immunoinformatics portal for human fungal pathogens. BMC Genomics 2011; 12:192. [PMID: 21496229 PMCID: PMC3224177 DOI: 10.1186/1471-2164-12-192] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 04/15/2011] [Indexed: 01/11/2023] Open
Abstract
Background The availability of sequence data of human pathogenic fungi generates opportunities to develop Bioinformatics tools and resources for vaccine development towards benefitting at-risk patients. Description We have developed a fungal adhesin predictor and an immunoinformatics database with predicted adhesins. Based on literature search and domain analysis, we prepared a positive dataset comprising adhesin protein sequences from human fungal pathogens Candida albicans, Candida glabrata, Aspergillus fumigatus, Coccidioides immitis, Coccidioides posadasii, Histoplasma capsulatum, Blastomyces dermatitidis, Pneumocystis carinii, Pneumocystis jirovecii and Paracoccidioides brasiliensis. The negative dataset consisted of proteins with high probability to function intracellularly. We have used 3945 compositional properties including frequencies of mono, doublet, triplet, and multiplets of amino acids and hydrophobic properties as input features of protein sequences to Support Vector Machine. Best classifiers were identified through an exhaustive search of 588 parameters and meeting the criteria of best Mathews Correlation Coefficient and lowest coefficient of variation among the 3 fold cross validation datasets. The "FungalRV adhesin predictor" was built on three models whose average Mathews Correlation Coefficient was in the range 0.89-0.90 and its coefficient of variation across three fold cross validation datasets in the range 1.2% - 2.74% at threshold score of 0. We obtained an overall MCC value of 0.8702 considering all 8 pathogens, namely, C. albicans, C. glabrata, A. fumigatus, B. dermatitidis, C. immitis, C. posadasii, H. capsulatum and P. brasiliensis thus showing high sensitivity and specificity at a threshold of 0.511. In case of P. brasiliensis the algorithm achieved a sensitivity of 66.67%. A total of 307 fungal adhesins and adhesin like proteins were predicted from the entire proteomes of eight human pathogenic fungal species. The immunoinformatics analysis data on these proteins were organized for easy user interface analysis. A Web interface was developed for analysis by users. The predicted adhesin sequences were processed through 18 immunoinformatics algorithms and these data have been organized into MySQL backend. A user friendly interface has been developed for experimental researchers for retrieving information from the database. Conclusion FungalRV webserver facilitating the discovery process for novel human pathogenic fungal adhesin vaccine has been developed.
Collapse
Affiliation(s)
- Rupanjali Chaudhuri
- G.N Ramachandran Knowledge Centre for Genome Informatics, Institute of Genomics and Integrative Biology, Delhi 110007, India
| | | | | | | |
Collapse
|
23
|
Roobsoong W, Roytrakul S, Sattabongkot J, Li J, Udomsangpetch R, Cui L. Determination of the Plasmodium vivax schizont stage proteome. J Proteomics 2011; 74:1701-10. [PMID: 21515433 DOI: 10.1016/j.jprot.2011.03.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 03/29/2011] [Accepted: 03/30/2011] [Indexed: 10/18/2022]
Abstract
With the genome of the malaria parasite Plasmodium vivax sequenced, it is important to determine the proteomes of the parasite in order to assist efforts in antigen and drug target discovery. Since a method for continuous culture of P. vivax parasite is not available, we tried to study the proteome of the erythrocytic stages using fresh parasite isolates from patients. In schizont-enriched samples, 316 proteins were confidently identified by tandem mass spectrometry. Almost 50% of the identified proteins were hypothetical, while other major categories include proteins with binding function, protein fate, protein synthesis, metabolism and cellular transport. To identify proteins that are recognized by host humoral immunity, parasite proteins were separated by two-dimensional gel electrophoresis and screened by Western blot using an immune serum from a P. vivax patient. Mass spectrometry analysis of protein spots recognized by the serum identified four potential antigens including PV24. The recombinant protein PV24 was recognized by antibodies from vivax malaria patients even during the convalescent period, indicating that PV24 could elicit long-lasting antibody responses in P. vivax patients.
Collapse
Affiliation(s)
- Wanlapa Roobsoong
- Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | | | | | | | | | | |
Collapse
|
24
|
Arévalo-Pinzón G, Curtidor H, Vanegas M, Vizcaíno C, Patarroyo MA, Patarroyo ME. Conserved high activity binding peptides from the Plasmodium falciparum Pf34 rhoptry protein inhibit merozoites in vitro invasion of red blood cells. Peptides 2010; 31:1987-94. [PMID: 20654670 DOI: 10.1016/j.peptides.2010.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 07/10/2010] [Accepted: 07/12/2010] [Indexed: 11/18/2022]
Abstract
Rhoptries are specialized secretory organelles found in all members of the genus Plasmodium whose proteins have been considered as promising vaccine candidates due to their involvement in cell invasion and the formation of the parasitophorous vacuole (PV). The Plasmodium falciparum Pf34 protein was recently identified as a rhoptry-neck protein located in detergent-resistant microdomains (DRMs) that is expressed in mature intraerythrocytic parasite stages, but its biological function is still unknown. Receptor-ligand assays carried out in this study found that peptides 36,051 ((101)DKKFSESLKAHMDHLKILNN(120)Y), 36,053 ((141)KKYIIKEIQNNKYLNKEKKS(160)), 36,055 ((181)WLESVNNIEEKSNILKNIKS(200)Y) and 36,056 ((201)QLLNNIASLNHTLSEEIKNI(220)Y), located in the central portion of Pf34, were found to establish protease-sensitive interactions of high affinity and specificity with receptors on the surface of red blood cell (RBCs). In vitro assays showed that Pf34 high activity binding peptides (HABPs) inhibit invasion of RBCs by P. falciparum merozoites, therefore suggesting that Pf34 could act as an adhesin during invasion and supporting the inclusion of Pf34 HABPs in further studies to develop antimalarial control methods.
Collapse
|
25
|
Ramana J, Gupta D. FaaPred: a SVM-based prediction method for fungal adhesins and adhesin-like proteins. PLoS One 2010; 5:e9695. [PMID: 20300572 PMCID: PMC2837750 DOI: 10.1371/journal.pone.0009695] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2010] [Accepted: 02/20/2010] [Indexed: 11/19/2022] Open
Abstract
Adhesion constitutes one of the initial stages of infection in microbial diseases and is mediated by adhesins. Hence, identification and comprehensive knowledge of adhesins and adhesin-like proteins is essential to understand adhesin mediated pathogenesis and how to exploit its therapeutic potential. However, the knowledge about fungal adhesins is rudimentary compared to that of bacterial adhesins. In addition to host cell attachment and mating, the fungal adhesins play a significant role in homotypic and xenotypic aggregation, foraging and biofilm formation. Experimental identification of fungal adhesins is labor- as well as time-intensive. In this work, we present a Support Vector Machine (SVM) based method for the prediction of fungal adhesins and adhesin-like proteins. The SVM models were trained with different compositional features, namely, amino acid, dipeptide, multiplet fractions, charge and hydrophobic compositions, as well as PSI-BLAST derived PSSM matrices. The best classifiers are based on compositional properties as well as PSSM and yield an overall accuracy of 86%. The prediction method based on best classifiers is freely accessible as a world wide web based server at http://bioinfo.icgeb.res.in/faap. This work will aid rapid and rational identification of fungal adhesins, expedite the pace of experimental characterization of novel fungal adhesins and enhance our knowledge about role of adhesins in fungal infections.
Collapse
Affiliation(s)
- Jayashree Ramana
- Structural and Computational Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, India
| | - Dinesh Gupta
- Structural and Computational Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, India
- * E-mail:
| |
Collapse
|
26
|
Singh SP, Khan F, Mishra BN. Computational characterization of Plasmodium falciparum proteomic data for screening of potential vaccine candidates. Hum Immunol 2010; 71:136-43. [DOI: 10.1016/j.humimm.2009.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2009] [Revised: 10/09/2009] [Accepted: 11/05/2009] [Indexed: 10/20/2022]
|
27
|
Cunningham D, Lawton J, Jarra W, Preiser P, Langhorne J. The pir multigene family of Plasmodium: antigenic variation and beyond. Mol Biochem Parasitol 2010; 170:65-73. [PMID: 20045030 DOI: 10.1016/j.molbiopara.2009.12.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 12/18/2009] [Accepted: 12/22/2009] [Indexed: 11/15/2022]
Abstract
Multigene families are present on the telomeric and sub-telomeric regions of most chromosomes of the malaria parasite, Plasmodium. The largest gene family identified so far is the Plasmodium interspersed repeat (pir) multigene gene family and is shared by Plasmodium vivax, and simian and rodent malaria species. Most pir genes share a similar structure across the different species; a short first exon, long second exon and a third exon encoding a trans-membrane domain, and some pir genes can be assigned to specific sub-families. Although pir genes can be differentially transcribed in different life cycle stages, suggesting different functions, there is no clear link between sub-family and transcription pattern. Some of the pir genes encode proteins expressed on or near the surface of infected erythrocytes, and therefore could be potential targets of the host's immune response, and involved in antigenic variation and immune evasion. Other functions such as signalling, trafficking and adhesion have been also postulated. The presence of pir in rodent models will allow the investigation of this gene family in vivo and thus their potential as vaccines or in other interventions in human P. vivax infections.
Collapse
Affiliation(s)
- Deirdre Cunningham
- Division of Parasitology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
| | | | | | | | | |
Collapse
|
28
|
Mackinnon MJ, Li J, Mok S, Kortok MM, Marsh K, Preiser PR, Bozdech Z. Comparative transcriptional and genomic analysis of Plasmodium falciparum field isolates. PLoS Pathog 2009; 5:e1000644. [PMID: 19898609 PMCID: PMC2764095 DOI: 10.1371/journal.ppat.1000644] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 10/05/2009] [Indexed: 11/18/2022] Open
Abstract
Mechanisms for differential regulation of gene expression may underlie much of the phenotypic variation and adaptability of malaria parasites. Here we describe transcriptional variation among culture-adapted field isolates of Plasmodium falciparum, the species responsible for most malarial disease. It was found that genes coding for parasite protein export into the red cell cytosol and onto its surface, and genes coding for sexual stage proteins involved in parasite transmission are up-regulated in field isolates compared with long-term laboratory isolates. Much of this variability was associated with the loss of small or large chromosomal segments, or other forms of gene copy number variation that are prevalent in the P. falciparum genome (copy number variants, CNVs). Expression levels of genes inside these segments were correlated to that of genes outside and adjacent to the segment boundaries, and this association declined with distance from the CNV boundary. This observation could not be explained by copy number variation in these adjacent genes. This suggests a local-acting regulatory role for CNVs in transcription of neighboring genes and helps explain the chromosomal clustering that we observed here. Transcriptional co-regulation of physical clusters of adaptive genes may provide a way for the parasite to readily adapt to its highly heterogeneous and strongly selective environment.
Collapse
|
29
|
Chaudhuri R, Ahmed S, Ansari FA, Singh HV, Ramachandran S. MalVac: database of malarial vaccine candidates. Malar J 2008; 7:184. [PMID: 18811938 PMCID: PMC2562390 DOI: 10.1186/1475-2875-7-184] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2008] [Accepted: 09/23/2008] [Indexed: 12/05/2022] Open
Abstract
Background The sequencing of genomes of the Plasmodium species causing malaria, offers immense opportunities to aid in the development of new therapeutics and vaccine candidates through Bioinformatics tools and resources. Methods The starting point of MalVac database is the collection of known vaccine candidates and a set of predicted vaccine candidates identified from the whole proteome sequences of Plasmodium species provided by PlasmoDb 5.4 release (31st October 2007). These predicted vaccine candidates are the adhesins and adhesin-like proteins from Plasmodium species, Plasmodium falciparum, Plasmodium vivax and Plasmodium yoelii. Subsequently, these protein sequences were analysed through 20 publicly available algorithms to obtain Orthologs, Paralogs, BetaWraps, TargetP, TMHMM, SignalP, CDDSearch, BLAST with Human Ref. Proteins, T-cell epitopes, B-cell epitopes, Discotopes, and allergen predictions. All of this information was collected and organized with the ORFids of the protein sequences as primary keys. This information is relevant from the view point of Reverse Vaccinology in facilitating decision making on the most probable choice for vaccine strategy. Results Detailed information on the patterning of the epitopes and other motifs of importance from the viewpoint of reverse vaccinology has been obtained on the most probable protein candidates for vaccine investigation from three major malarial species. Analysis data are available on 161 adhesin proteins from P. falciparum, 137 adhesin proteins from P. vivax and 34 adhesin proteins from P. yoelii. The results are displayed in convenient tabular format and a facility to export the entire data has been provided. The MalVac database is a "community resource". Users are encouraged to export data and further contribute by value addition. Value added data may be sent back to the community either through MalVac or PlasmoDB. Conclusion A web server MalVac for facilitation of the identification of probable vaccine candidates has been developed and can be freely accessed.
Collapse
Affiliation(s)
- Rupanjali Chaudhuri
- GN Ramachandran Knowledge Centre for Genome Informatics, Institute of Genomics and Integrative Biology, Delhi, India.
| | | | | | | | | |
Collapse
|