1
|
Chen YR, Harel I, Singh PP, Ziv I, Moses E, Goshtchevsky U, Machado BE, Brunet A, Jarosz DF. Tissue-specific landscape of protein aggregation and quality control in an aging vertebrate. Dev Cell 2024; 59:1892-1911.e13. [PMID: 38810654 PMCID: PMC11265985 DOI: 10.1016/j.devcel.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/13/2024] [Accepted: 04/15/2024] [Indexed: 05/31/2024]
Abstract
Protein aggregation is a hallmark of age-related neurodegeneration. Yet, aggregation during normal aging and in tissues other than the brain is poorly understood. Here, we leverage the African turquoise killifish to systematically profile protein aggregates in seven tissues of an aging vertebrate. Age-dependent aggregation is strikingly tissue specific and not simply driven by protein expression differences. Experimental interrogation in killifish and yeast, combined with machine learning, indicates that this specificity is linked to protein-autonomous biophysical features and tissue-selective alterations in protein quality control. Co-aggregation of protein quality control machinery during aging may further reduce proteostasis capacity, exacerbating aggregate burden. A segmental progeria model with accelerated aging in specific tissues exhibits selectively increased aggregation in these same tissues. Intriguingly, many age-related protein aggregates arise in wild-type proteins that, when mutated, drive human diseases. Our data chart a comprehensive landscape of protein aggregation during vertebrate aging and identify strong, tissue-specific associations with dysfunction and disease.
Collapse
Affiliation(s)
- Yiwen R Chen
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Itamar Harel
- The Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Param Priya Singh
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Inbal Ziv
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Eitan Moses
- The Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Uri Goshtchevsky
- The Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Ben E Machado
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Glenn Center for the Biology of Aging, Stanford University, Stanford, CA 94305, USA.
| | - Daniel F Jarosz
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
2
|
Mailloux RJ. The emerging importance of the α-keto acid dehydrogenase complexes in serving as intracellular and intercellular signaling platforms for the regulation of metabolism. Redox Biol 2024; 72:103155. [PMID: 38615490 PMCID: PMC11021975 DOI: 10.1016/j.redox.2024.103155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024] Open
Abstract
The α-keto acid dehydrogenase complex (KDHc) class of mitochondrial enzymes is composed of four members: pyruvate dehydrogenase (PDHc), α-ketoglutarate dehydrogenase (KGDHc), branched-chain keto acid dehydrogenase (BCKDHc), and 2-oxoadipate dehydrogenase (OADHc). These enzyme complexes occupy critical metabolic intersections that connect monosaccharide, amino acid, and fatty acid metabolism to Krebs cycle flux and oxidative phosphorylation (OxPhos). This feature also imbues KDHc enzymes with the heightened capacity to serve as platforms for propagation of intracellular and intercellular signaling. KDHc enzymes serve as a source and sink for mitochondrial hydrogen peroxide (mtH2O2), a vital second messenger used to trigger oxidative eustress pathways. Notably, deactivation of KDHc enzymes through reversible oxidation by mtH2O2 and other electrophiles modulates the availability of several Krebs cycle intermediates and related metabolites which serve as powerful intracellular and intercellular messengers. The KDHc enzymes also play important roles in the modulation of mitochondrial metabolism and epigenetic programming in the nucleus through the provision of various acyl-CoAs, which are used to acylate proteinaceous lysine residues. Intriguingly, nucleosomal control by acylation is also achieved through PDHc and KGDHc localization to the nuclear lumen. In this review, I discuss emerging concepts in the signaling roles fulfilled by the KDHc complexes. I highlight their vital function in serving as mitochondrial redox sensors and how this function can be used by cells to regulate the availability of critical metabolites required in cell signaling. Coupled with this, I describe in detail how defects in KDHc function can cause disease states through the disruption of cell redox homeodynamics and the deregulation of metabolic signaling. Finally, I propose that the intracellular and intercellular signaling functions of the KDHc enzymes are controlled through the reversible redox modification of the vicinal lipoic acid thiols in the E2 subunit of the complexes.
Collapse
Affiliation(s)
- Ryan J Mailloux
- School of Human Nutrition, Faculty of Agricultural and Environmental Sciences, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada.
| |
Collapse
|
3
|
Szabo E, Nagy B, Czajlik A, Komlodi T, Ozohanics O, Tretter L, Ambrus A. Mitochondrial Alpha-Keto Acid Dehydrogenase Complexes: Recent Developments on Structure and Function in Health and Disease. Subcell Biochem 2024; 104:295-381. [PMID: 38963492 DOI: 10.1007/978-3-031-58843-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The present work delves into the enigmatic world of mitochondrial alpha-keto acid dehydrogenase complexes discussing their metabolic significance, enzymatic operation, moonlighting activities, and pathological relevance with links to underlying structural features. This ubiquitous family of related but diverse multienzyme complexes is involved in carbohydrate metabolism (pyruvate dehydrogenase complex), the citric acid cycle (α-ketoglutarate dehydrogenase complex), and amino acid catabolism (branched-chain α-keto acid dehydrogenase complex, α-ketoadipate dehydrogenase complex); the complexes all function at strategic points and also participate in regulation in these metabolic pathways. These systems are among the largest multienzyme complexes with at times more than 100 protein chains and weights ranging up to ~10 million Daltons. Our chapter offers a wealth of up-to-date information on these multienzyme complexes for a comprehensive understanding of their significance in health and disease.
Collapse
Affiliation(s)
- Eszter Szabo
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Balint Nagy
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Andras Czajlik
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Timea Komlodi
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Oliver Ozohanics
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Laszlo Tretter
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Attila Ambrus
- Department of Biochemistry, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
4
|
Lin SJ, Vona B, Lau T, Huang K, Zaki MS, Aldeen HS, Karimiani EG, Rocca C, Noureldeen MM, Saad AK, Petree C, Bartolomaeus T, Abou Jamra R, Zifarelli G, Gotkhindikar A, Wentzensen IM, Liao M, Cork EE, Varshney P, Hashemi N, Mohammadi MH, Rad A, Neira J, Toosi MB, Knopp C, Kurth I, Challman TD, Smith R, Abdalla A, Haaf T, Suri M, Joshi M, Chung WK, Moreno-De-Luca A, Houlden H, Maroofian R, Varshney GK. Evaluating the association of biallelic OGDHL variants with significant phenotypic heterogeneity. Genome Med 2023; 15:102. [PMID: 38031187 PMCID: PMC10688095 DOI: 10.1186/s13073-023-01258-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Biallelic variants in OGDHL, encoding part of the α-ketoglutarate dehydrogenase complex, have been associated with highly heterogeneous neurological and neurodevelopmental disorders. However, the validity of this association remains to be confirmed. A second OGDHL patient cohort was recruited to carefully assess the gene-disease relationship. METHODS Using an unbiased genotype-first approach, we screened large, multiethnic aggregated sequencing datasets worldwide for biallelic OGDHL variants. We used CRISPR/Cas9 to generate zebrafish knockouts of ogdhl, ogdh paralogs, and dhtkd1 to investigate functional relationships and impact during development. Functional complementation with patient variant transcripts was conducted to systematically assess protein functionality as a readout for pathogenicity. RESULTS A cohort of 14 individuals from 12 unrelated families exhibited highly variable clinical phenotypes, with the majority of them presenting at least one additional variant, potentially accounting for a blended phenotype and complicating phenotypic understanding. We also uncovered extreme clinical heterogeneity and high allele frequencies, occasionally incompatible with a fully penetrant recessive disorder. Human cDNA of previously described and new variants were tested in an ogdhl zebrafish knockout model, adding functional evidence for variant reclassification. We disclosed evidence of hypomorphic alleles as well as a loss-of-function variant without deleterious effects in zebrafish variant testing also showing discordant familial segregation, challenging the relationship of OGDHL as a conventional Mendelian gene. Going further, we uncovered evidence for a complex compensatory relationship among OGDH, OGDHL, and DHTKD1 isoenzymes that are associated with neurodevelopmental disorders and exhibit complex transcriptional compensation patterns with partial functional redundancy. CONCLUSIONS Based on the results of genetic, clinical, and functional studies, we formed three hypotheses in which to frame observations: biallelic OGDHL variants lead to a highly variable monogenic disorder, variants in OGDHL are following a complex pattern of inheritance, or they may not be causative at all. Our study further highlights the continuing challenges of assessing the validity of reported disease-gene associations and effects of variants identified in these genes. This is particularly more complicated in making genetic diagnoses based on identification of variants in genes presenting a highly heterogenous phenotype such as "OGDHL-related disorders".
Collapse
Affiliation(s)
- Sheng-Jia Lin
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Barbara Vona
- Institute of Human Genetics, Julius Maximilians University Würzburg, Würzburg, Germany
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Department of Otolaryngology-Head and Neck Surgery, Tübingen Hearing Research Center, Eberhard Karls University, Tübingen, 72076, Germany
| | - Tracy Lau
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Kevin Huang
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Huda Shujaa Aldeen
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Ehsan Ghayoor Karimiani
- Molecular and Clinical Sciences Institute, St. George's, University of London, Cranmer Terrace London, London, UK
| | - Clarissa Rocca
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Mahmoud M Noureldeen
- Department of Pediatrics, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Ahmed K Saad
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Cassidy Petree
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Tobias Bartolomaeus
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | | | | | | | | | - Emalyn Elise Cork
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pratishtha Varshney
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Narges Hashemi
- Department of Pediatrics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Aboulfazl Rad
- Department of Otolaryngology-Head and Neck Surgery, Tübingen Hearing Research Center, Eberhard Karls University, Tübingen, 72076, Germany
| | - Juanita Neira
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA
| | - Mehran Beiraghi Toosi
- Department of Pediatrics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Cordula Knopp
- Institute for Human Genetics and Genomic Medicine, RWTH Aachen University, Pauwelsstr. 30, Aachen, 52074, Germany
| | - Ingo Kurth
- Institute for Human Genetics and Genomic Medicine, RWTH Aachen University, Pauwelsstr. 30, Aachen, 52074, Germany
| | - Thomas D Challman
- Autism & Developmental Medicine Institute, Geisinger, Lewisburg, PA, USA
| | - Rebecca Smith
- Autism & Developmental Medicine Institute, Geisinger, Lewisburg, PA, USA
| | - Asmahan Abdalla
- Department of Pediatric Endocrinology, Gaafar Ibn Auf Children's Tertiary Hospital, Khartoum, Sudan
| | - Thomas Haaf
- Institute of Human Genetics, Julius Maximilians University Würzburg, Würzburg, Germany
| | - Mohnish Suri
- Nottingham Clinical Genetics Service, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Manali Joshi
- Bioinformatics Centre, S. P. Pune University, Pune, India
| | - Wendy K Chung
- Department of Pediatrics, Boston Children's Hospitaland, Harvard Medical School , Boston, MA, USA
| | - Andres Moreno-De-Luca
- Department of Diagnostic Radiology, Kingston Health Sciences Centre, Queen's University, Kingston, ON, Canada
| | - Henry Houlden
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Reza Maroofian
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK.
| | - Gaurav K Varshney
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
5
|
Hrovatin K, Bastidas-Ponce A, Bakhti M, Zappia L, Büttner M, Salinno C, Sterr M, Böttcher A, Migliorini A, Lickert H, Theis FJ. Delineating mouse β-cell identity during lifetime and in diabetes with a single cell atlas. Nat Metab 2023; 5:1615-1637. [PMID: 37697055 PMCID: PMC10513934 DOI: 10.1038/s42255-023-00876-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/26/2023] [Indexed: 09/13/2023]
Abstract
Although multiple pancreatic islet single-cell RNA-sequencing (scRNA-seq) datasets have been generated, a consensus on pancreatic cell states in development, homeostasis and diabetes as well as the value of preclinical animal models is missing. Here, we present an scRNA-seq cross-condition mouse islet atlas (MIA), a curated resource for interactive exploration and computational querying. We integrate over 300,000 cells from nine scRNA-seq datasets consisting of 56 samples, varying in age, sex and diabetes models, including an autoimmune type 1 diabetes model (NOD), a glucotoxicity/lipotoxicity type 2 diabetes model (db/db) and a chemical streptozotocin β-cell ablation model. The β-cell landscape of MIA reveals new cell states during disease progression and cross-publication differences between previously suggested marker genes. We show that β-cells in the streptozotocin model transcriptionally correlate with those in human type 2 diabetes and mouse db/db models, but are less similar to human type 1 diabetes and mouse NOD β-cells. We also report pathways that are shared between β-cells in immature, aged and diabetes models. MIA enables a comprehensive analysis of β-cell responses to different stressors, providing a roadmap for the understanding of β-cell plasticity, compensation and demise.
Collapse
Affiliation(s)
- Karin Hrovatin
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Aimée Bastidas-Ponce
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Medical Faculty, Technical University of Munich, Munich, Germany
| | - Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Luke Zappia
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Mathematics, Technical University of Munich, Garching, Germany
| | - Maren Büttner
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Ciro Salinno
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Medical Faculty, Technical University of Munich, Munich, Germany
| | - Michael Sterr
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Anika Böttcher
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Adriana Migliorini
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- McEwen Stem Cell Institute, University Health Network (UHN), Toronto, Ontario, Canada
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- Medical Faculty, Technical University of Munich, Munich, Germany.
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany.
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany.
- Department of Mathematics, Technical University of Munich, Garching, Germany.
| |
Collapse
|
6
|
Shi J, Miao D, Lv Q, Wang K, Wang Q, Liang H, Yang H, Xiong Z, Zhang X. The m6A modification-mediated OGDHL exerts a tumor suppressor role in ccRCC by downregulating FASN to inhibit lipid synthesis and ERK signaling. Cell Death Dis 2023; 14:560. [PMID: 37626050 PMCID: PMC10457380 DOI: 10.1038/s41419-023-06090-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
Metabolic reprogramming is a hallmark of cancer, and the impact of lipid metabolism as a crucial aspect of metabolic reprogramming on clear cell renal cell carcinoma (ccRCC) progression has been established. However, the regulatory mechanisms underlying the relationship between metabolic abnormalities and ccRCC progression remain unclear. Therefore, this study aimed to identify key regulatory factors of metabolic reprogramming in ccRCC and provide potential therapeutic targets for ccRCC patients. Potential metabolic regulatory factors in ccRCC were screened using bioinformatics analysis. Public databases and patient samples were used to investigate the aberrant expression of Oxoglutarate dehydrogenase-like (OGDHL) in ccRCC. The function of OGDHL in ccRCC growth and metastasis was evaluated through in vitro and in vivo functional experiments. Mechanistic insights were obtained through luciferase reporter assays, chromatin immunoprecipitation, RNA methylation immunoprecipitation, and mutagenesis studies. OGDHL mRNA and protein levels were significantly downregulated in ccRCC tissues. Upregulation of OGDHL expression effectively inhibited ccRCC growth and metastasis both in vitro and in vivo. Furthermore, FTO-mediated OGDHL m6A demethylation suppressed its expression in ccRCC. Mechanistically, low levels of OGDHL promoted TFAP2A expression by inhibiting ubiquitination levels, which then bound to the FASN promoter region and transcriptionally activated FASN expression, thereby promoting lipid accumulation and ERK pathway activation. Our findings demonstrate the impact of OGDHL on ccRCC progression and highlight the role of the FTO/OGDHL/TFAP2A/FASN axis in regulating ccRCC lipid metabolism and progression, providing new targets for ccRCC therapy.
Collapse
Affiliation(s)
- Jian Shi
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, P.R. China
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, P.R. China
| | - Daojia Miao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, P.R. China
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, P.R. China
| | - Qingyang Lv
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, P.R. China
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, P.R. China
| | - Keshan Wang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, P.R. China
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, P.R. China
| | - Qi Wang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, P.R. China
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, P.R. China
| | - Huageng Liang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, P.R. China
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, P.R. China
| | - Hongmei Yang
- Department of Pathogenic Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, P.R. China.
| | - Zhiyong Xiong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, P.R. China.
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, P.R. China.
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, P.R. China.
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, P.R. China.
| |
Collapse
|
7
|
Bettendorff L. Synthetic Thioesters of Thiamine: Promising Tools for Slowing Progression of Neurodegenerative Diseases. Int J Mol Sci 2023; 24:11296. [PMID: 37511056 PMCID: PMC10379298 DOI: 10.3390/ijms241411296] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Thiamine (vitamin B1) is essential for the brain. This is attributed to the coenzyme role of thiamine diphosphate (ThDP) in glucose and energy metabolism. The synthetic thiamine prodrug, the thioester benfotiamine (BFT), has been extensively studied and has beneficial effects both in rodent models of neurodegeneration and in human clinical studies. BFT has no known adverse effects and improves cognitive outcomes in patients with mild Alzheimer's disease. In cell culture and animal models, BFT has antioxidant and anti-inflammatory properties that seem to be mediated by a mechanism independent of the coenzyme function of ThDP. Recent in vitro studies show that another thiamine thioester, O,S-dibenzoylthiamine (DBT), is even more efficient than BFT, especially with respect to its anti-inflammatory potency, and is effective at lower concentrations. Thiamine thioesters have pleiotropic properties linked to an increase in circulating thiamine concentrations and possibly in hitherto unidentified open thiazole ring derivatives. The identification of the active neuroprotective metabolites and the clarification of their mechanism of action open extremely promising perspectives in the field of neurodegenerative, neurodevelopmental, and psychiatric conditions. The present review aims to summarize existing data on the neuroprotective effects of thiamine thioesters and give a comprehensive account.
Collapse
Affiliation(s)
- Lucien Bettendorff
- Laboratory of Neurophysiology, GIGA Neurosciences, University of Liège, 4000 Liège, Belgium
| |
Collapse
|
8
|
Bunik V. The Therapeutic Potential of Vitamins B1, B3 and B6 in Charcot-Marie-Tooth Disease with the Compromised Status of Vitamin-Dependent Processes. BIOLOGY 2023; 12:897. [PMID: 37508330 PMCID: PMC10376249 DOI: 10.3390/biology12070897] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/11/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023]
Abstract
Understanding the molecular mechanisms of neurological disorders is necessary for the development of personalized medicine. When the diagnosis considers not only the disease symptoms, but also their molecular basis, treatments tailored to individual patients may be suggested. Vitamin-responsive neurological disorders are induced by deficiencies in vitamin-dependent processes. These deficiencies may occur due to genetic impairments of proteins whose functions are involved with the vitamins. This review considers the enzymes encoded by the DHTKD1, PDK3 and PDXK genes, whose mutations are observed in patients with Charcot-Marie-Tooth (CMT) disease. The enzymes bind or produce the coenzyme forms of vitamins B1 (thiamine diphosphate, ThDP) and B6 (pyridoxal-5'-phosphate, PLP). Alleviation of such disorders through administration of the lacking vitamin or its derivative calls for a better introduction of mechanistic knowledge to medical diagnostics and therapies. Recent data on lower levels of the vitamin B3 derivative, NAD+, in the blood of patients with CMT disease vs. control subjects are also considered in view of the NAD-dependent mechanisms of pathological axonal degeneration, suggesting the therapeutic potential of vitamin B3 in these patients. Thus, improved diagnostics of the underlying causes of CMT disease may allow patients with vitamin-responsive disease forms to benefit from the administration of the vitamins B1, B3, B6, their natural derivatives, or their pharmacological forms.
Collapse
Affiliation(s)
- Victoria Bunik
- Belozersky Institute of Physicochemical Biology, Department of Biokinetics, Lomonosov Moscow State University, 119234 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
- Department of Biochemistry, Sechenov University, 119048 Moscow, Russia
| |
Collapse
|
9
|
Shi Y, Niu Y, Zhang P, Luo H, Liu S, Zhang S, Wang J, Li Y, Liu X, Song T, Xu T, He S. Characterization of genome-wide STR variation in 6487 human genomes. Nat Commun 2023; 14:2092. [PMID: 37045857 PMCID: PMC10097659 DOI: 10.1038/s41467-023-37690-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
Short tandem repeats (STRs) are abundant and highly mutagenic in the human genome. Many STR loci have been associated with a range of human genetic disorders. However, most population-scale studies on STR variation in humans have focused on European ancestry cohorts or are limited by sequencing depth. Here, we depicted a comprehensive map of 366,013 polymorphic STRs (pSTRs) constructed from 6487 deeply sequenced genomes, comprising 3983 Chinese samples (~31.5x, NyuWa) and 2504 samples from the 1000 Genomes Project (~33.3x, 1KGP). We found that STR mutations were affected by motif length, chromosome context and epigenetic features. We identified 3273 and 1117 pSTRs whose repeat numbers were associated with gene expression and 3'UTR alternative polyadenylation, respectively. We also implemented population analysis, investigated population differentiated signatures, and genotyped 60 known disease-causing STRs. Overall, this study further extends the scale of STR variation in humans and propels our understanding of the semantics of STRs.
Collapse
Affiliation(s)
- Yirong Shi
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiwei Niu
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peng Zhang
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huaxia Luo
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shuai Liu
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sijia Zhang
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiajia Wang
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanyan Li
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinyue Liu
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tingrui Song
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tao Xu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China.
| | - Shunmin He
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
10
|
Liu S, Kormos BL, Knafels JD, Sahasrabudhe PV, Rosado A, Sommese RF, Reyes AR, Ward J, Roth Flach RJ, Wang X, Buzon LM, Reese MR, Bhattacharya SK, Omoto K, Filipski KJ. Structural studies identify angiotensin II receptor blocker-like compounds as branched-chain ketoacid dehydrogenase kinase inhibitors. J Biol Chem 2023; 299:102959. [PMID: 36717078 PMCID: PMC9976451 DOI: 10.1016/j.jbc.2023.102959] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 01/30/2023] Open
Abstract
The mammalian mitochondrial branched-chain ketoacid dehydrogenase (BCKD) complex is a multienzyme complex involved in the catabolism of branched-chain amino acids. BCKD is regulated by the BCKD kinase, or BCKDK, which binds to the E2 subunit of BCKD, phosphorylates its E1 subunit, and inhibits enzymatic activity. Inhibition of the BCKD complex results in increased levels of branched-chain amino acids and branched-chain ketoacids, and this buildup has been associated with heart failure, type 2 diabetes mellitus, and nonalcoholic fatty liver disease. To find BCKDK inhibitors for potential treatment of these diseases, we performed both NMR and virtual fragment screening and identified tetrazole-bearing fragments that bind BCKDK at multiple sites. Through structure-based virtual screening expanding from these fragments, the angiotensin receptor blocker class antihypertension drugs and angiotensin receptor blocker-like compounds were discovered to be potent BCKDK inhibitors, suggesting potential new avenues for heart failure treatment combining BCKDK inhibition and antihypertension.
Collapse
Affiliation(s)
- Shenping Liu
- Medicine Design, Pfizer Inc, Groton, Connecticut, USA.
| | | | | | | | - Amy Rosado
- Medicine Design, Pfizer Inc, Groton, Connecticut, USA
| | | | - Allan R Reyes
- Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts, USA
| | - Jessica Ward
- Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts, USA
| | | | - Xiaochun Wang
- Medicine Design, Pfizer Inc, Groton, Connecticut, USA
| | | | | | | | - Kiyoyuki Omoto
- Medicine Design, Pfizer Inc, Cambridge, Massachusetts, USA
| | | |
Collapse
|
11
|
Hansen GE, Gibson GE. The α-Ketoglutarate Dehydrogenase Complex as a Hub of Plasticity in Neurodegeneration and Regeneration. Int J Mol Sci 2022; 23:12403. [PMID: 36293260 PMCID: PMC9603878 DOI: 10.3390/ijms232012403] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 07/30/2023] Open
Abstract
Abnormal glucose metabolism is central to neurodegeneration, and considerable evidence suggests that abnormalities in key enzymes of the tricarboxylic acid (TCA) cycle underlie the metabolic deficits. Significant recent advances in the role of metabolism in cancer provide new insight that facilitates our understanding of the role of metabolism in neurodegeneration. Research indicates that the rate-limiting step of the TCA cycle, the α-ketoglutarate dehydrogenase complex (KGDHC) and its substrate alpha ketoglutarate (KG), serve as a signaling hub that regulates multiple cellular processes: (1) is the rate-limiting step of the TCA cycle, (2) is sensitive to reactive oxygen species (ROS) and produces ROS, (3) determines whether KG is used for energy or synthesis of compounds to support growth, (4) regulates the cellular responses to hypoxia, (5) controls the post-translational modification of hundreds of cell proteins in the mitochondria, cytosol, and nucleus through succinylation, (6) controls critical aspects of transcription, (7) modulates protein signaling within cells, and (8) modulates cellular calcium. The primary focus of this review is to understand how reductions in KGDHC are translated to pathologically important changes that underlie both neurodegeneration and cancer. An understanding of each role is necessary to develop new therapeutic strategies to treat neurodegenerative disease.
Collapse
Affiliation(s)
- Grace E. Hansen
- Department of Biology, University of Massachusetts, Lowell, MA 01852, USA
| | - Gary E. Gibson
- Weill Cornell Medicine, Brain and Mind Research Institute, Burke Neurological Institute, White Plains, NY 10605, USA
| |
Collapse
|
12
|
Dai W, Li Y, Sun W, Ji M, Bao R, Chen J, Xu S, Dai Y, Chen Y, Liu W, Ge C, Sun W, Mo W, Guo C, Xu X. Silencing of OGDHL promotes liver cancer metastasis by enhancing hypoxia inducible factor 1 α protein stability. Cancer Sci 2022; 114:1309-1323. [PMID: 36000493 PMCID: PMC10067421 DOI: 10.1111/cas.15540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/07/2022] [Accepted: 07/14/2022] [Indexed: 02/01/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant diseases associated with a high rate of mortality. Frequent intrahepatic spread, extrahepatic metastasis, and tumor invasiveness are the main factors responsible for the poor prognosis of patients with HCC. Hypoxia-inducible factor 1 (HIF-1) has been verified to play a critical role in the metastasis of HCC. HIFs are also known to be modulated by small molecular metabolites, thus highlighting the need to understand the complexity of their cellular regulation in tumor metastasis. In this study, lower expression levels of oxoglutarate dehydrogenase-like (OGDHL) were strongly correlated with aggressive clinicopathologic characteristics, such as metastasis and invasion in three independent cohorts featuring a total of 281 postoperative HCC patients. The aberrant expression of OGDHL reduced cell invasiveness and migration in vitro and HCC metastasis in vivo, whereas the silencing of OGDHL promoted these processes in HCC cells. The pro-metastatic role of OGDHL downregulation is most likely attributed to its upregulation of HIF-1α transactivation activity and the protein stabilization by promoting the accumulation of L-2-HG to prevent the activity of HIF-1α prolyl hydroxylases, which subsequently causes an epithelial-mesenchymal transition process in HCC cells. These results demonstrate that OGDHL is a dominant factor that modulates the metastasis of HCC.
Collapse
Affiliation(s)
- Weiqi Dai
- Department of Gastroenterology, Shidong Hospital, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Yueyue Li
- Department of Gastroenterology, Shidong Hospital, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Weijie Sun
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Meng Ji
- Department of Gastroenterology, Shidong Hospital, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Renjun Bao
- Department of Gastroenterology, Shidong Hospital, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China.,Suzhou Medical College of Soochow University, Suzhou, China
| | - Jianqing Chen
- Department of Gastroenterology, Shidong Hospital, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Shuqi Xu
- Department of Gastroenterology, Shidong Hospital, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Ying Dai
- Department of Gastroenterology, Shidong Hospital, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Yiming Chen
- Department of Gastroenterology, Shidong Hospital, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Wenjing Liu
- Department of Gastroenterology, Shidong Hospital, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Chao Ge
- Department of Gastroenterology, Shidong Hospital, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Wei Sun
- Department of Gastroenterology, Shidong Hospital, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Wenhui Mo
- Department of Gastroenterology, Shidong Hospital, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Chuanyong Guo
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xuanfu Xu
- Department of Gastroenterology, Shidong Hospital, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
13
|
Functional Versatility of the Human 2-Oxoadipate Dehydrogenase in the L-Lysine Degradation Pathway toward Its Non-Cognate Substrate 2-Oxopimelic Acid. Int J Mol Sci 2022; 23:ijms23158213. [PMID: 35897808 PMCID: PMC9367764 DOI: 10.3390/ijms23158213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/23/2022] [Accepted: 07/24/2022] [Indexed: 11/17/2022] Open
Abstract
The human 2-oxoadipate dehydrogenase complex (OADHc) in L-lysine catabolism is involved in the oxidative decarboxylation of 2-oxoadipate (OA) to glutaryl-CoA and NADH (+H+). Genetic findings have linked the DHTKD1 encoding 2-oxoadipate dehydrogenase (E1a), the first component of the OADHc, to pathogenesis of AMOXAD, eosinophilic esophagitis (EoE), and several neurodegenerative diseases. A multipronged approach, including circular dichroism spectroscopy, Fourier Transform Mass Spectrometry, and computational approaches, was applied to provide novel insight into the mechanism and functional versatility of the OADHc. The results demonstrate that E1a oxidizes a non-cognate substrate 2-oxopimelate (OP) as well as OA through the decarboxylation step, but the OADHc was 100-times less effective in reactions producing adipoyl-CoA and NADH from the dihydrolipoamide succinyltransferase (E2o) and dihydrolipoamide dehydrogenase (E3). The results revealed that the E2o is capable of producing succinyl-CoA, glutaryl-CoA, and adipoyl-CoA. The important conclusions are the identification of: (i) the functional promiscuity of E1a and (ii) the ability of the E2o to form acyl-CoA products derived from homologous 2-oxo acids with five, six, and even seven carbon atoms. The findings add to our understanding of both the OADHc function in the L-lysine degradative pathway and of the molecular mechanisms leading to the pathogenesis associated with DHTKD1 variants.
Collapse
|
14
|
Boyko AI, Karlina IS, Zavileyskiy LG, Aleshin VA, Artiukhov AV, Kaehne T, Ksenofontov AL, Ryabov SI, Graf AV, Tramonti A, Bunik VI. Delayed Impact of 2-Oxoadipate Dehydrogenase Inhibition on the Rat Brain Metabolism Is Linked to Protein Glutarylation. Front Med (Lausanne) 2022; 9:896263. [PMID: 35721081 PMCID: PMC9198357 DOI: 10.3389/fmed.2022.896263] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/28/2022] [Indexed: 12/19/2022] Open
Abstract
Background The DHTKD1-encoded 2-oxoadipate dehydrogenase (OADH) oxidizes 2-oxoadipate—a common intermediate of the lysine and tryptophan catabolism. The mostly low and cell-specific flux through these pathways, and similar activities of OADH and ubiquitously expressed 2-oxoglutarate dehydrogenase (OGDH), agree with often asymptomatic phenotypes of heterozygous mutations in the DHTKD1 gene. Nevertheless, OADH/DHTKD1 are linked to impaired insulin sensitivity, cardiovascular disease risks, and Charcot-Marie-Tooth neuropathy. We hypothesize that systemic significance of OADH relies on its generation of glutaryl residues for protein glutarylation. Using pharmacological inhibition of OADH and the animal model of spinal cord injury (SCI), we explore this hypothesis. Methods The weight-drop model of SCI, a single intranasal administration of an OADH-directed inhibitor trimethyl adipoyl phosphonate (TMAP), and quantification of the associated metabolic changes in the rat brain employ established methods. Results The TMAP-induced metabolic changes in the brain of the control, laminectomized (LE) and SCI rats are long-term and (patho)physiology-dependent. Increased glutarylation of the brain proteins, proportional to OADH expression in the control and LE rats, represents a long-term consequence of the OADH inhibition. The proportionality suggests autoglutarylation of OADH, supported by our mass-spectrometric identification of glutarylated K155 and K818 in recombinant human OADH. In SCI rats, TMAP increases glutarylation of the brain proteins more than OADH expression, inducing a strong perturbation in the brain glutathione metabolism. The redox metabolism is not perturbed by TMAP in LE animals, where the inhibition of OADH increases expression of deglutarylase sirtuin 5. The results reveal the glutarylation-imposed control of the brain glutathione metabolism. Glutarylation of the ODP2 subunit of pyruvate dehydrogenase complex at K451 is detected in the rat brain, linking the OADH function to the brain glucose oxidation essential for the redox state. Short-term inhibition of OADH by TMAP administration manifests in increased levels of tryptophan and decreased levels of sirtuins 5 and 3 in the brain. Conclusion Pharmacological inhibition of OADH affects acylation system of the brain, causing long-term, (patho)physiology-dependent changes in the expression of OADH and sirtuin 5, protein glutarylation and glutathione metabolism. The identified glutarylation of ODP2 subunit of pyruvate dehydrogenase complex provides a molecular mechanism of the OADH association with diabetes.
Collapse
Affiliation(s)
- Alexandra I Boyko
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Irina S Karlina
- N.V. Sklifosovsky Institute of Clinical Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Lev G Zavileyskiy
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Vasily A Aleshin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Department of Biological Chemistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Artem V Artiukhov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Department of Biological Chemistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Thilo Kaehne
- Institute of Experimental Internal Medicine, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Alexander L Ksenofontov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Sergey I Ryabov
- Russian Cardiology Research and Production Complex, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Anastasia V Graf
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Faculty of Nano-, Bio-, Informational, Cognitive and Socio-Humanistic Sciences and Technologies, Moscow Institute of Physics and Technology, Moscow, Russia.,Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Angela Tramonti
- Institute of Molecular Biology and Pathology, Council of National Research, Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University, Rome, Italy
| | - Victoria I Bunik
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Department of Biological Chemistry, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
15
|
Structural basis for the activity and regulation of human α-ketoglutarate dehydrogenase revealed by Cryo-EM. Biochem Biophys Res Commun 2022; 602:120-126. [PMID: 35272141 DOI: 10.1016/j.bbrc.2022.02.093] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/10/2022] [Accepted: 02/23/2022] [Indexed: 11/21/2022]
Abstract
The human mitochondrial alpha-ketoglutarate (α-KG) dehydrogenase complex (hKGDHc) is a well-studied macromolecular enzyme that converts α-KG to succinyl-CoA and NADH. Abnormalities of the complex lead to several diseases, including neurodegenerative disorders. Despite its importance in human metabolism and diseases, structural information on hKGDHc is not well defined. Here, we report the 2.92 Å resolution cryo-electron microscopy (EM) structure of its E1 component 2-oxoglutarate dehydrogenase (OGDH). The density map comprised residues 129-1,023, which is nearly the full length of OGDH. The structure clearly shows the active site and Ca2+ binding site of OGDH. This structural information will improve our understanding of the structure and function of hKGDHc and benefit pharmaceutical and basic science targeting this enzyme complex.
Collapse
|
16
|
Tang Y, Zhu Y, Lu Y, Yang H, Yang H, Li L, Liu C, Du Y, Yuan J. The Potential of Metabolism-Related Gene OGDHL as a Biomarker for Myocardial Remodeling in Dilated Cardiomyopathy. Front Cardiovasc Med 2022; 9:741920. [PMID: 35463769 PMCID: PMC9021392 DOI: 10.3389/fcvm.2022.741920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
The development of dilated cardiomyopathy (DCM) is accompanied by a series of metabolic disorders, resulting in myocardial remodeling or exacerbation, while the mechanism remains not completely clear. This study was to find out the key metabolism-related genes involved in the onset of DCM, providing new insight into the pathogenesis of this disease. The datasets of GSE57338, GSE116250, and GSE5406 associated with hearts of patients with DCM were downloaded from the Gene Expression Omnibus database. GSE57338 was analyzed to screen out metabolism-related differentially expressed genes (DEGs), while GSE116250 and GSE5406 were utilized to verify the optimal genes through R software. Support vector machine recursive feature elimination algorithm and least absolute shrinkage and selection operator algorithm were used to determine key genes. Finally, 6 of 39 metabolism-related DEGs were screened out and identified as the optimal genes. After quantitative reverse-transcription polymerase chain reaction (qRT-PCR) validation performed on the samples drawn from the left ventricles of human hearts, it showed that only the expression of oxoglutarate dehydrogenase-like (OGDHL) increased while PLA2G2 decreased significantly in patients with DCM compared with non-failing donors, respectively. Furthermore, the higher OGDHL protein expression, except the change of PLA2G2, was also found in DCM hearts, and its mRNA expression was negatively correlated with myocardial Masson’s scores (r = –0.84, P = 0.009) and left ventricular end-diastolic diameter (LVEDd; r = –0.82, P = 0.014), which might be regulated by miR-3925-5p through further bioinformatics prediction and qRT-PCR verification. The data then suggested that the metabolism-related gene OGDHL was associated with myocardial fibrosis of DCM and probably a biomarker for myocardial remodeling in patients with DCM.
Collapse
|
17
|
Yao L, Xu X, Xu Y, Li C, Xie F, Guo M, Liu Z, Liu X. OGDHL ameliorates cognitive impairment and Alzheimer's disease-like pathology via activating Wnt/β-catenin signaling in Alzheimer's disease mice. Behav Brain Res 2022; 418:113673. [PMID: 34798170 DOI: 10.1016/j.bbr.2021.113673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases related to several types of pathophysiological signs, including β-amyloid (Aβ) plaque accumulation, neuroinflammation, and neurofibrillary tangles. Similar to one of the three subunits of α-ketoglutarate dehydrogenase complex (KGDHC), oxoglutarate dehydrogenase-like (OGDHL) appears to be downregulated in triple-transgenic Alzheimer's (3 × Tg-AD) mice. KGDHC activity is specifically reduced in the brains of people with AD. However, the underlying mechanism of OGDHL in the cause of AD is still unknown. Herein, we confirmed the low expression of OGDHL in the brain of 3 × Tg-AD based on real-time quantitative PCR, Western blot, and immunohistochemistry. We also found that the upregulation of OGDHL can reduce the memory deficits of 3 × Tg-AD mice, thereby reminding its nervous system neuroprotective effect in AD. Next, we confirmed that the increase in OGDHL could reduce neuroinflammation, amyloid plaque load, and tau phosphorylation in 3 × Tg-AD mice. Additionally, we showed that the overexpression of OGDHL could activate Wnt/β-catenin signaling based on the expression of Wnt7B in vitro. Taken together, the results show that the rise of OGDHL reasonably improves the cognitive functions according to the activation of the Wnt/β-catenin signaling pathway. Therefore, this enzyme may be a potential strategy for AD treatment.
Collapse
Affiliation(s)
- Li Yao
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xuemin Xu
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yukun Xu
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chunyan Li
- Department of Internal Medicine of Traditional Chinese Medicine, Shizhong District People's Hospital of Jinan, Jinan, China
| | - Fang Xie
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Minghao Guo
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhaoyang Liu
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoming Liu
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
18
|
Pan Z, Tian H, Fang T, Liu Z, Liu X, Dou G, Huang G, Zhang Z, Chen G, Wang W, Zhuo C. OGDHL Variant rs2293239: A Potential Genetic Driver of Chinese Familial Depressive Disorder. Front Psychiatry 2022; 13:771950. [PMID: 35370858 PMCID: PMC8971628 DOI: 10.3389/fpsyt.2022.771950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/21/2022] [Indexed: 12/16/2022] Open
Abstract
Depressive disorders are a severe psychiatric and social problem that affect more than 4% of the global population. Depressive disorders have explicit hereditary characteristics; however, the precise driving genetic force behind these disorders has not yet been clearly illustrated. In the present study, we recruited a three-generation Chinese pedigree in which 5 of 17 members had long-term depression. We conducted whole-exome sequencing to identify the genetic mutation profiles of the family, and a list of susceptible genetic variations that were highly associated with depression onset was revealed via multiple omics analysis. In particular, a non-synonymous single nucleotide variation in the oxoglutarate dehydrogenase-like (OGDHL) gene, rs2293239 (p.Asn725Ser), was identified as one of the major driving genetic forces for depression onset in the family. This variant causes an important conformational change in the transketolase domain of OGDHL, thus reducing its binding affinity with the cofactor thiamine pyrophosphate and eventually resulting in the abnormal accumulation of glutamate in the brain. Brain imaging analysis further linked the rs2293239 variant with an enlarged amygdala and cerebellum in depressive family members. In summary, the present study enhances the current genetic understanding of depressive disorders. It also provides new options for prioritizing better clinical therapeutic regimens, as well as identifying a new protein target for the design of highly specific drugs to treat depressive disorders.
Collapse
Affiliation(s)
- Zhi Pan
- Key Laboratory of Genetic Psychiatry, Wenzhou Seventh People Hospital, Wenzhou, China
| | - Hongjun Tian
- Key Laboratory of Real Time Tracing of Brain Circuits of Neurology and Psychiatry, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Medical University Affiliated Tianjin Fourth Center Hospital, Tianjin Fourth Center Hospital, Tianjin, China
| | - Tao Fang
- Key Laboratory of Real Time Tracing of Brain Circuits of Neurology and Psychiatry, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Medical University Affiliated Tianjin Fourth Center Hospital, Tianjin Fourth Center Hospital, Tianjin, China
| | - Zhidong Liu
- Key Laboratory of Real Time Tracing of Brain Circuits of Neurology and Psychiatry, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Medical University Affiliated Tianjin Fourth Center Hospital, Tianjin Fourth Center Hospital, Tianjin, China
| | - Xiangdong Liu
- Key Laboratory of Real Time Tracing of Brain Circuits of Neurology and Psychiatry, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Medical University Affiliated Tianjin Fourth Center Hospital, Tianjin Fourth Center Hospital, Tianjin, China
| | - Guangqian Dou
- Key Laboratory of Real Time Tracing of Brain Circuits of Neurology and Psychiatry, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Medical University Affiliated Tianjin Fourth Center Hospital, Tianjin Fourth Center Hospital, Tianjin, China
| | - Guoyong Huang
- Key Laboratory of Genetic Psychiatry, Wenzhou Seventh People Hospital, Wenzhou, China
| | - Zhenqing Zhang
- Department of Psychiatry, Xiamen Xianyue Hospital, Xiamen, China
| | - Guangdong Chen
- Key Laboratory of Genetic Psychiatry, Wenzhou Seventh People Hospital, Wenzhou, China
| | - Wenqiang Wang
- Department of Psychiatry, Xiamen Xianyue Hospital, Xiamen, China
| | - Chuanjun Zhuo
- Key Laboratory of Real Time Tracing of Brain Circuits of Neurology and Psychiatry, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Medical University Affiliated Tianjin Fourth Center Hospital, Tianjin Fourth Center Hospital, Tianjin, China.,Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Biological Psychiatry International Joint Laboratory of Henan, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
19
|
Leandro J, Dodatko T, Aten J, Nemeria NS, Zhang X, Jordan F, Hendrickson RC, Sanchez R, Yu C, DeVita RJ, Houten SM. DHTKD1 and OGDH display substrate overlap in cultured cells and form a hybrid 2-oxo acid dehydrogenase complex in vivo. Hum Mol Genet 2021; 29:1168-1179. [PMID: 32160276 DOI: 10.1093/hmg/ddaa037] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/27/2020] [Accepted: 03/04/2020] [Indexed: 11/14/2022] Open
Abstract
Glutaric aciduria type 1 (GA1) is an inborn error of lysine degradation characterized by a specific encephalopathy that is caused by toxic accumulation of lysine degradation intermediates. Substrate reduction through inhibition of DHTKD1, an enzyme upstream of the defective glutaryl-CoA dehydrogenase, has been investigated as a potential therapy, but revealed the existence of an alternative enzymatic source of glutaryl-CoA. Here, we show that loss of DHTKD1 in glutaryl-CoA dehydrogenase-deficient HEK-293 cells leads to a 2-fold decrease in the established GA1 clinical biomarker glutarylcarnitine and demonstrate that oxoglutarate dehydrogenase (OGDH) is responsible for this remaining glutarylcarnitine production. We furthermore show that DHTKD1 interacts with OGDH, dihydrolipoyl succinyltransferase and dihydrolipoamide dehydrogenase to form a hybrid 2-oxoglutaric and 2-oxoadipic acid dehydrogenase complex. In summary, 2-oxoadipic acid is a substrate for DHTKD1, but also for OGDH in a cell model system. The classical 2-oxoglutaric dehydrogenase complex can exist as a previously undiscovered hybrid containing DHTKD1 displaying improved kinetics towards 2-oxoadipic acid.
Collapse
Affiliation(s)
- João Leandro
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tetyana Dodatko
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jan Aten
- Department of Pathology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, 1105 AZ The Netherlands
| | - Natalia S Nemeria
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA
| | - Xu Zhang
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA
| | - Frank Jordan
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA
| | - Ronald C Hendrickson
- Microchemistry and Proteomics Core, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Roberto Sanchez
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chunli Yu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Mount Sinai Genomics, Inc., Stamford, CT 06902, USA
| | - Robert J DeVita
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sander M Houten
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
20
|
Nemeria NS, Zhang X, Leandro J, Zhou J, Yang L, Houten SM, Jordan F. Toward an Understanding of the Structural and Mechanistic Aspects of Protein-Protein Interactions in 2-Oxoacid Dehydrogenase Complexes. Life (Basel) 2021; 11:407. [PMID: 33946784 PMCID: PMC8146983 DOI: 10.3390/life11050407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 12/24/2022] Open
Abstract
The 2-oxoglutarate dehydrogenase complex (OGDHc) is a key enzyme in the tricarboxylic acid (TCA) cycle and represents one of the major regulators of mitochondrial metabolism through NADH and reactive oxygen species levels. The OGDHc impacts cell metabolic and cell signaling pathways through the coupling of 2-oxoglutarate metabolism to gene transcription related to tumor cell proliferation and aging. DHTKD1 is a gene encoding 2-oxoadipate dehydrogenase (E1a), which functions in the L-lysine degradation pathway. The potentially damaging variants in DHTKD1 have been associated to the (neuro) pathogenesis of several diseases. Evidence was obtained for the formation of a hybrid complex between the OGDHc and E1a, suggesting a potential cross talk between the two metabolic pathways and raising fundamental questions about their assembly. Here we reviewed the recent findings and advances in understanding of protein-protein interactions in OGDHc and 2-oxoadipate dehydrogenase complex (OADHc), an understanding that will create a scaffold to help design approaches to mitigate the effects of diseases associated with dysfunction of the TCA cycle or lysine degradation. A combination of biochemical, biophysical and structural approaches such as chemical cross-linking MS and cryo-EM appears particularly promising to provide vital information for the assembly of 2-oxoacid dehydrogenase complexes, their function and regulation.
Collapse
Affiliation(s)
- Natalia S. Nemeria
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA; (J.Z.); (L.Y.)
| | - Xu Zhang
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA; (J.Z.); (L.Y.)
| | - Joao Leandro
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (J.L.); (S.M.H.)
| | - Jieyu Zhou
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA; (J.Z.); (L.Y.)
| | - Luying Yang
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA; (J.Z.); (L.Y.)
| | - Sander M. Houten
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (J.L.); (S.M.H.)
| | - Frank Jordan
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA; (J.Z.); (L.Y.)
| |
Collapse
|
21
|
Boyko AI, Artiukhov AV, Kaehne T, di Salvo ML, Bonaccorsi di Patti MC, Contestabile R, Tramonti A, Bunik VI. Isoforms of the DHTKD1-Encoded 2-Oxoadipate Dehydrogenase, Identified in Animal Tissues, Are not Observed upon the Human DHTKD1 Expression in Bacterial or Yeast Systems. BIOCHEMISTRY (MOSCOW) 2021; 85:920-929. [PMID: 33045952 DOI: 10.1134/s0006297920080076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Unlike the OGDH-encoded 2-oxoglutarate dehydrogenase (OGDH), which is an essential enzyme present in all animal tissues, expression of the DHTKD1-encoded isoenzyme, 2-oxoadipate dehydrogenase (OADH), depends on a number of factors, and mutant DHTKD1 phenotypes are rarely manifested. Physiological significance of OADH is also obscured by the fact that both isoenzymes transform 2-oxoglutarate and 2-oxoadipate. By analogy with other members of the 2-oxo acid dehydrogenases family, OADH is assumed to be a component of the multienzyme complex that catalyzes oxidative decarboxylation of 2-oxoadipate. This study aims at molecular characterization of OADH from animal tissues. Phylogenetic analysis of 2-oxo acid dehydrogenases reveals OADH only in animals and Dictyostelium discoideum slime mold, within a common branch with bacterial OGDH. Examination of partially purified animal OADH by immunoblotting and mass spectrometry identifies two OADH isoforms with molecular weights of about 130 and 70 kDa. These isoforms are not observed upon the expression of human DHTKD1 protein in either bacterial or yeast system, where the synthesized OADH is of expected molecular weight (about 100 kDa). Thus, the OADH isoforms present in animal tissues, may result from the animal-specific regulation of the DHTKD1 expression and/or posttranslational modifications of the encoded protein. Mapping of the peptides identified in the OADH preparations, onto the protein structure suggests that the 70-kDa isoform is truncated at the N-terminus, but retains the active site. Since the N-terminal domain of OGDH is required for the formation of the multienzyme complex, it is possible that the 70-kDa isoform catalyzes non-oxidative transformation of dicarboxylic 2-oxo acids that does not require the multienzyme structure. In this case, the ratio of the OADH isoforms in animal tissues may correspond to the ratio between the oxidative and non-oxidative decarboxylation of 2-oxoadipate.
Collapse
Affiliation(s)
- A I Boyko
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia.
| | - A V Artiukhov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - T Kaehne
- Institute of Experimental Internal Medicine, Otto-von-Guericke University, Magdeburg, 39120, Germany
| | - M L di Salvo
- Department of Biological Sciences A. Rossi Fanelli, Sapienza University, Rome, 00185, Italy
| | | | - R Contestabile
- Department of Biological Sciences A. Rossi Fanelli, Sapienza University, Rome, 00185, Italy
| | - A Tramonti
- Department of Biological Sciences A. Rossi Fanelli, Sapienza University, Rome, 00185, Italy.,Institute of Molecular Biology and Pathology, Council of National Research, Rome, 00185, Italy
| | - V I Bunik
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.,Department of Biological Chemistry, Sechenov First Moscow State Medical University, Moscow, 119146, Russia
| |
Collapse
|
22
|
Artiukhov AV, Kazantsev AV, Lukashev NV, Bellinzoni M, Bunik VI. Selective Inhibition of 2-Oxoglutarate and 2-Oxoadipate Dehydrogenases by the Phosphonate Analogs of Their 2-Oxo Acid Substrates. Front Chem 2021; 8:596187. [PMID: 33511099 PMCID: PMC7835950 DOI: 10.3389/fchem.2020.596187] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/10/2020] [Indexed: 11/13/2022] Open
Abstract
Phosphonate analogs of pyruvate and 2-oxoglutarate are established specific inhibitors of cognate 2-oxo acid dehydrogenases. The present work develops application of this class of compounds to specific in vivo inhibition of 2-oxoglutarate dehydrogenase (OGDH) and its isoenzyme, 2-oxoadipate dehydrogenase (OADH). The isoenzymes-enriched preparations from the rat tissues with different expression of OADH and OGDH are used to characterize their interaction with 2-oxoglutarate (OG), 2-oxoadipate (OA) and the phosphonate analogs. Despite a 100-fold difference in the isoenzymes ratio in the heart and liver, similar Michaelis saturations by OG are inherent in the enzyme preparations from these tissues (KmOG = 0.45 ± 0.06 and 0.27 ± 0.026 mM, respectively), indicating no significant contribution of OADH to the OGDH reaction, or similar affinities of the isoenzymes to OG. However, the preparations differ in the catalysis of OADH reaction. The heart preparation, where OADH/OGDH ratio is ≈ 0.01, possesses low-affinity sites to OA (KmOA = 0.55 ± 0.07 mM). The liver preparation, where OADH/OGDH ratio is ≈ 1.6, demonstrates a biphasic saturation with OA: the low-affinity sites (Km,2OA = 0.45 ± 0.12 mM) are similar to those of the heart preparation; the high-affinity sites (Km,1OA = 0.008 ± 0.001 mM), revealed in the liver preparation only, are attributed to OADH. Phosphonate analogs of C5-C7 dicarboxylic 2-oxo acids inhibit OGDH and OADH competitively to 2-oxo substrates in all sites. The high-affinity sites for OA are affected the least by the C5 analog (succinyl phosphonate) and the most by the C7 one (adipoyl phosphonate). The opposite reactivity is inherent in both the low-affinity OA-binding sites and OG-binding sites. The C6 analog (glutaryl phosphonate) does not exhibit a significant preference to either OADH or OGDH. Structural analysis of the phosphonates binding to OADH and OGDH reveals the substitution of a tyrosine residue in OGDH for a serine residue in OADH among structural determinants of the preferential binding of the bulkier ligands to OADH. The consistent kinetic and structural results expose adipoyl phosphonate as a valuable pharmacological tool for specific in vivo inhibition of the DHTKD1-encoded OADH, a new member of mammalian family of 2-oxo acid dehydrogenases, up-regulated in some cancers and associated with diabetes and obesity.
Collapse
Affiliation(s)
- Artem V Artiukhov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia.,Department of Biokinetics, A. N. Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | | | - Marco Bellinzoni
- Unité de Microbiologie Structurale, Institut Pasteur, CNRS, Université de Paris, Paris, France
| | - Victoria I Bunik
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia.,Department of Biokinetics, A. N. Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Department of Biochemistry, Sechenov University, Moscow, Russia
| |
Collapse
|
23
|
Mao M, Huang RZ, Zheng J, Liang HQ, Huang WH, Liu J, Li JH. OGDHL closely associates with tumor microenvironment and can serve as a prognostic biomarker for papillary thyroid cancer. Cancer Med 2021; 10:728-736. [PMID: 33405394 PMCID: PMC7877349 DOI: 10.1002/cam4.3640] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 09/23/2020] [Accepted: 11/04/2020] [Indexed: 12/31/2022] Open
Abstract
Background Papillary thyroid cancer (PTC) is the most common type of thyroid cancer. However, due to the lack of reliable prognostic biomarkers for PTC, overtreatment has been on the rise. Therefore, our research aims to identify new and promising prognostic biomarkers and provide fresh perspectives for clinical decision making. Methods The RNA‐seq data and clinical data of PTC samples were obtained from The Cancer Genome Atlas data portal. GSE64912 and GSE83520 datasets were downloaded through the GEOquery R package. The difference in the expression of oxoglutarate dehydrogenase like (OGDHL) between PTC and normal tissues was explored by the Wilcoxon test. Kaplan–Meier (KM) and Cox regression analyses were used to further explore the prognostic value of OGDHL. The tumor microenvironments of PTC patients were explored based on ssGSEA and Tumor Immune Estimation Resource online database. Gene Set Enrichment Analysis (GSEA) was performed to explore the biological processes associated with OGDHL. Results The expression level of OGDHL in PTC was significantly altered compared to that in normal tissues (p < 0.05). Various biological processes associated with OGDHL were also explored through GSEA. KM analysis suggested that the low‐OGDHL group had a better overall survival [OS, p = 3.49e‐03, hazard ratio (HR) = 4.567]. The receiver operating characteristic curve also indicated the favorable prognostic potential of OGDHL. Moreover, OGDHL was proved to be an independent prognostic indicator in Cox analysis (p = 1.33e‐02, HR = 0.152). In the analysis of the tumor microenvironment, the low‐OGDHL group showed a lower immune score and stromal score, while tumor purity was higher. The expression of OGDHL was also closely correlated with the infiltration of immune cells. Conclusion Our study elucidated the influence of OGDHL on the prognosis of PTC and demonstrated its potential as a novel biomarker, which would provide new insights into the prognosis monitoring and clinical decision making in PTC patients.
Collapse
Affiliation(s)
- Min Mao
- Department of Gastrointestinal Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, The Guangxi Zhuang Autonomous Region, 530021, China.,Guangxi Medical University, Nanning, The Guangxi Zhuang Autonomous Region, 530021, China
| | - Rong-Zhi Huang
- Guangxi Medical University, Nanning, The Guangxi Zhuang Autonomous Region, 530021, China
| | - Jie Zheng
- Guangxi Medical University, Nanning, The Guangxi Zhuang Autonomous Region, 530021, China
| | - Hai-Qi Liang
- Guangxi Medical University, Nanning, The Guangxi Zhuang Autonomous Region, 530021, China
| | - Wen-Hui Huang
- Guangxi Medical University, Nanning, The Guangxi Zhuang Autonomous Region, 530021, China
| | - Jing Liu
- Guangxi Medical University, Nanning, The Guangxi Zhuang Autonomous Region, 530021, China
| | - Jie-Hua Li
- Department of Gastrointestinal Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, The Guangxi Zhuang Autonomous Region, 530021, China.,Guangxi Medical University, Nanning, The Guangxi Zhuang Autonomous Region, 530021, China
| |
Collapse
|
24
|
Wang C, Calcutt MW, Ferguson JF. Knock-Out of DHTKD1 Alters Mitochondrial Respiration and Function, and May Represent a Novel Pathway in Cardiometabolic Disease Risk. Front Endocrinol (Lausanne) 2021; 12:710698. [PMID: 34484123 PMCID: PMC8414881 DOI: 10.3389/fendo.2021.710698] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/26/2021] [Indexed: 01/14/2023] Open
Abstract
Cardiometabolic disease affects the majority of individuals worldwide. The metabolite α-aminoadipic acid (2-AAA) was identified as a biomarker of Type 2 Diabetes (T2D). However, the mechanisms underlying this association remain unknown. DHTKD1, a central gene in the 2-AAA pathway, has been linked to 2-AAA levels and metabolic phenotypes. However, relatively little is known about its function. Here we report that DHTKD1 knock-out (KO) in HAP-1 cells leads to impaired mitochondrial structure and function. Despite impaired mitochondrial respiration and less ATP production, normal cell proliferation rate is maintained, potentially through a series of compensatory mechanisms, including increased mitochondrial content and Akt activation, p38, and ERK signaling. Common variants in DHTKD1 associate with Type 2 Diabetes and cardiometabolic traits in large genome-wide associations studies. These findings highlight the vital role of DHTKD1 in cellular metabolism and establish DHTKD1-mediated mitochondrial dysfunction as a potential novel pathway in cardiometabolic disease.
Collapse
Affiliation(s)
- Chuan Wang
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - M. Wade Calcutt
- Department of Biochemistry, Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, United States
| | - Jane F. Ferguson
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- *Correspondence: Jane F. Ferguson,
| |
Collapse
|
25
|
Leandro J, Houten SM. The lysine degradation pathway: Subcellular compartmentalization and enzyme deficiencies. Mol Genet Metab 2020; 131:14-22. [PMID: 32768327 DOI: 10.1016/j.ymgme.2020.07.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 02/07/2023]
Abstract
Lysine degradation via formation of saccharopine is a pathway confined to the mitochondria. The second pathway for lysine degradation, the pipecolic acid pathway, is not yet fully elucidated and known enzymes are localized in the mitochondria, cytosol and peroxisome. The tissue-specific roles of these two pathways are still under investigation. The lysine degradation pathway is clinically relevant due to the occurrence of two severe neurometabolic disorders, pyridoxine-dependent epilepsy (PDE) and glutaric aciduria type 1 (GA1). The existence of three other disorders affecting lysine degradation without apparent clinical consequences opens up the possibility to find alternative therapeutic strategies for PDE and GA1 through pathway modulation. A better understanding of the mechanisms, compartmentalization and interplay between the different enzymes and metabolites involved in lysine degradation is of utmost importance.
Collapse
Affiliation(s)
- João Leandro
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sander M Houten
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
26
|
Leandro J, Khamrui S, Wang H, Suebsuwong C, Nemeria NS, Huynh K, Moustakim M, Secor C, Wang M, Dodatko T, Stauffer B, Wilson CG, Yu C, Arkin MR, Jordan F, Sanchez R, DeVita RJ, Lazarus MB, Houten SM. Inhibition and Crystal Structure of the Human DHTKD1-Thiamin Diphosphate Complex. ACS Chem Biol 2020; 15:2041-2047. [PMID: 32633484 DOI: 10.1021/acschembio.0c00114] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
DHTKD1 is the E1 component of the 2-oxoadipate dehydrogenase complex, which is an enzyme involved in the catabolism of (hydroxy-)lysine and tryptophan. Mutations in DHTKD1 have been associated with 2-aminoadipic and 2-oxoadipic aciduria, Charcot-Marie-Tooth disease type 2Q and eosinophilic esophagitis, but the pathophysiology of these clinically distinct disorders remains elusive. Here, we report the identification of adipoylphosphonic acid and tenatoprazole as DHTKD1 inhibitors using targeted and high throughput screening, respectively. We furthermore elucidate the DHTKD1 crystal structure with thiamin diphosphate bound at 2.25 Å. We also report the impact of 10 disease-associated missense mutations on DHTKD1. Whereas the majority of the DHTKD1 variants displayed impaired folding or reduced thermal stability in combination with absent or reduced enzyme activity, three variants showed no abnormalities. Our work provides chemical and structural tools for further understanding of the function of DHTKD1 and its role in several human pathologies.
Collapse
Affiliation(s)
- João Leandro
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Susmita Khamrui
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Hui Wang
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Chalada Suebsuwong
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Natalia S. Nemeria
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, New Jersey 07102, United States
| | - Khoi Huynh
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Moses Moustakim
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Cody Secor
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - May Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Tetyana Dodatko
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Brandon Stauffer
- Mount Sinai Genomics, Inc, Stamford, Connecticut 06902, United States
| | - Christopher G. Wilson
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, United States
| | - Chunli Yu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Mount Sinai Genomics, Inc, Stamford, Connecticut 06902, United States
| | - Michelle R. Arkin
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, United States
| | - Frank Jordan
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, New Jersey 07102, United States
| | - Roberto Sanchez
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Robert J. DeVita
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Michael B. Lazarus
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Sander M. Houten
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
27
|
Bezerra GA, Foster WR, Bailey HJ, Hicks KG, Sauer SW, Dimitrov B, McCorvie TJ, Okun JG, Rutter J, Kölker S, Yue WW. Crystal structure and interaction studies of human DHTKD1 provide insight into a mitochondrial megacomplex in lysine catabolism. IUCRJ 2020; 7:693-706. [PMID: 32695416 PMCID: PMC7340257 DOI: 10.1107/s205225252000696x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/22/2020] [Indexed: 05/05/2023]
Abstract
DHTKD1 is a lesser-studied E1 enzyme among the family of 2-oxoacid de-hydrogenases. In complex with E2 (di-hydro-lipo-amide succinyltransferase, DLST) and E3 (dihydrolipo-amide de-hydrogenase, DLD) components, DHTKD1 is involved in lysine and tryptophan catabolism by catalysing the oxidative de-carboxyl-ation of 2-oxoadipate (2OA) in mitochondria. Here, the 1.9 Å resolution crystal structure of human DHTKD1 is solved in complex with the thi-amine diphosphate co-factor. The structure reveals how the DHTKD1 active site is modelled upon the well characterized homologue 2-oxoglutarate (2OG) de-hydrogenase but engineered specifically to accommodate its preference for the longer substrate of 2OA over 2OG. A 4.7 Å resolution reconstruction of the human DLST catalytic core is also generated by single-particle electron microscopy, revealing a 24-mer cubic scaffold for assembling DHTKD1 and DLD protomers into a megacomplex. It is further demonstrated that missense DHTKD1 variants causing the inborn error of 2-amino-adipic and 2-oxoadipic aciduria impact on the complex formation, either directly by disrupting the interaction with DLST, or indirectly through destabilizing the DHTKD1 protein. This study provides the starting framework for developing DHTKD1 modulators to probe the intricate mitochondrial energy metabolism.
Collapse
Affiliation(s)
- Gustavo A. Bezerra
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - William R. Foster
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Henry J. Bailey
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Kevin G. Hicks
- Department of Biochemistry, University of Utah School of Medicine, USA
| | - Sven W. Sauer
- Division of Child Neurology and Metabolic Medicine, Centre for Pediatrics and Adolescent Medicine, Clinic I, University Hospital Heidelberg, Germany
| | - Bianca Dimitrov
- Division of Child Neurology and Metabolic Medicine, Centre for Pediatrics and Adolescent Medicine, Clinic I, University Hospital Heidelberg, Germany
| | - Thomas J. McCorvie
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Jürgen G. Okun
- Division of Child Neurology and Metabolic Medicine, Centre for Pediatrics and Adolescent Medicine, Clinic I, University Hospital Heidelberg, Germany
| | - Jared Rutter
- Department of Biochemistry, University of Utah School of Medicine, USA
| | - Stefan Kölker
- Division of Child Neurology and Metabolic Medicine, Centre for Pediatrics and Adolescent Medicine, Clinic I, University Hospital Heidelberg, Germany
| | - Wyatt W. Yue
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| |
Collapse
|
28
|
Dai W, Xu L, Yu X, Zhang G, Guo H, Liu H, Song G, Weng S, Dong L, Zhu J, Liu T, Guo C, Shen X. OGDHL silencing promotes hepatocellular carcinoma by reprogramming glutamine metabolism. J Hepatol 2020; 72:909-923. [PMID: 31899205 DOI: 10.1016/j.jhep.2019.12.015] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 11/20/2019] [Accepted: 12/04/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND & AIMS Mitochondrial dysfunction and subsequent metabolic deregulation are commonly observed in cancers, including hepatocellular carcinoma (HCC). When mitochondrial function is impaired, reductive glutamine metabolism is a major cellular carbon source for de novo lipogenesis to support cancer cell growth. The underlying regulators of reductively metabolized glutamine in mitochondrial dysfunction are not completely understood in tumorigenesis. METHODS We systematically investigated the role of oxoglutarate dehydrogenase-like (OGDHL), one of the rate-limiting components of the key mitochondrial multi-enzyme OGDH complex (OGDHC), in the regulation of lipid metabolism in hepatoma cells and mouse xenograft models. RESULTS Lower expression of OGDHL was associated with advanced tumor stage, significantly worse survival and more frequent tumor recurrence in 3 independent cohorts totaling 681 postoperative HCC patients. Promoter hypermethylation and DNA copy deletion of OGDHL were independently correlated with reduced OGDHL expression in HCC specimens. Additionally, OGDHL overexpression significantly inhibited the growth of hepatoma cells in mouse xenografts, while knockdown of OGDHL promoted proliferation of hepatoma cells. Mechanistically, OGDHL downregulation upregulated the α-ketoglutarate (αKG):citrate ratio by reducing OGDHC activity, which subsequently drove reductive carboxylation of glutamine-derived αKG via retrograde tricarboxylic acid cycling in hepatoma cells. Notably, silencing of OGDHL activated the mTORC1 signaling pathway in an αKG-dependent manner, inducing transcription of enzymes with key roles in de novo lipogenesis. Meanwhile, metabolic reprogramming in OGDHL-negative hepatoma cells provided an abundant supply of NADPH and glutathione to support the cellular antioxidant system. The reduction of reductive glutamine metabolism through OGDHL overexpression or glutaminase inhibitors sensitized tumor cells to sorafenib, a molecular-targeted therapy for HCC. CONCLUSION Our findings established that silencing of OGDHL contributed to HCC development and survival by regulating glutamine metabolic pathways. OGDHL is a promising prognostic biomarker and therapeutic target for HCC. LAY SUMMARY Hepatocellular carcinoma (HCC) is one of the most prevalent tumors worldwide and is correlated with a high mortality rate. In patients with HCC, lower expression of the enzyme OGDHL is significantly associated with worse survival. Herein, we show that silencing of OGDHL induces lipogenesis and influences the chemosensitization effect of sorafenib in liver cancer cells by reprogramming glutamine metabolism. OGDHL is a promising prognostic biomarker and potential therapeutic target in OGDHL-negative liver cancer.
Collapse
Affiliation(s)
- Weiqi Dai
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Ling Xu
- Department of Gastroenterology, Shanghai Tongren Hospital, Jiaotong University of Medicine, Shanghai, P.R. China
| | - Xiangnan Yu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Guangcong Zhang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Hongying Guo
- Department of Severe Hepatitis, Shanghai Public Health Clinical Center, Fudan University, Shanghai, P.R. China
| | - Hailin Liu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Guangqi Song
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Shuqiang Weng
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Ling Dong
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Jimin Zhu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Taotao Liu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Chuanyong Guo
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P.R. China.
| | - Xizhong Shen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, P.R. China; Shanghai Institute of Liver Diseases, Shanghai, P.R. China; Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, Shanghai, P.R. China.
| |
Collapse
|
29
|
Luan CJ, Guo W, Chen L, Wei XW, He Y, Chen Y, Dang SY, Prior R, Li X, Kuang Y, Wang ZG, Van Den Bosch L, Gu MM. CMT2Q-causing mutation in the Dhtkd1 gene lead to sensory defects, mitochondrial accumulation and altered metabolism in a knock-in mouse model. Acta Neuropathol Commun 2020; 8:32. [PMID: 32169121 PMCID: PMC7071680 DOI: 10.1186/s40478-020-00901-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 02/21/2020] [Indexed: 12/30/2022] Open
Abstract
Charcot-Marie-Tooth disease (CMT) is a group of inherited neurological disorders of the peripheral nervous system. CMT is subdivided into two main types: a demyelinating form, known as CMT1, and an axonal form, known as CMT2. Nearly 30 genes have been identified as a cause of CMT2. One of these is the 'dehydrogenase E1 and transketolase domain containing 1' (DHTKD1) gene. We previously demonstrated that a nonsense mutation [c.1455 T > G (p.Y485*)] in exon 8 of DHTKD1 is one of the disease-causing mutations in CMT2Q (MIM 615025). The aim of the current study was to investigate whether human disease-causing mutations in the Dhtkd1 gene cause CMT2Q phenotypes in a mouse model in order to investigate the physiological function and pathogenic mechanisms associated with mutations in the Dhtkd1 gene in vivo. Therefore, we generated a knock-in mouse model with the Dhtkd1Y486* point mutation. We observed that the Dhtkd1 expression level in sciatic nerve of knock-in mice was significantly lower than in wild-type mice. Moreover, a histopathological phenotype was observed, reminiscent of a peripheral neuropathy, including reduced large axon diameter and abnormal myelination in peripheral nerves. The knock-in mice also displayed clear sensory defects, while no abnormalities in the motor performance were observed. In addition, accumulation of mitochondria and an elevated energy metabolic state was observed in the knock-in mice. Taken together, our study indicates that the Dhtkd1Y486* knock-in mice partially recapitulate the clinical phenotypes of CMT2Q patients and we hypothesize that there might be a compensatory effect from the elevated metabolic state in the knock-in mice that enables them to maintain their normal locomotor function.
Collapse
|
30
|
Artiukhov AV, Grabarska A, Gumbarewicz E, Aleshin VA, Kähne T, Obata T, Kazantsev AV, Lukashev NV, Stepulak A, Fernie AR, Bunik VI. Synthetic analogues of 2-oxo acids discriminate metabolic contribution of the 2-oxoglutarate and 2-oxoadipate dehydrogenases in mammalian cells and tissues. Sci Rep 2020; 10:1886. [PMID: 32024885 PMCID: PMC7002488 DOI: 10.1038/s41598-020-58701-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/03/2020] [Indexed: 02/06/2023] Open
Abstract
The biological significance of the DHTKD1-encoded 2-oxoadipate dehydrogenase (OADH) remains obscure due to its catalytic redundancy with the ubiquitous OGDH-encoded 2-oxoglutarate dehydrogenase (OGDH). In this work, metabolic contributions of OADH and OGDH are discriminated by exposure of cells/tissues with different DHTKD1 expression to the synthesized phosphonate analogues of homologous 2-oxodicarboxylates. The saccharopine pathway intermediates and phosphorylated sugars are abundant when cellular expressions of DHTKD1 and OGDH are comparable, while nicotinate and non-phosphorylated sugars are when DHTKD1 expression is order(s) of magnitude lower than that of OGDH. Using succinyl, glutaryl and adipoyl phosphonates on the enzyme preparations from tissues with varied DHTKD1 expression reveals the contributions of OADH and OGDH to oxidation of 2-oxoadipate and 2-oxoglutarate in vitro. In the phosphonates-treated cells with the high and low DHTKD1 expression, adipate or glutarate, correspondingly, are the most affected metabolites. The marker of fatty acid β-oxidation, adipate, is mostly decreased by the shorter, OGDH-preferring, phosphonate, in agreement with the known OGDH dependence of β-oxidation. The longest, OADH-preferring, phosphonate mostly affects the glutarate level. Coupled decreases in sugars and nicotinate upon the OADH inhibition link the perturbation in glucose homeostasis, known in OADH mutants, to the nicotinate-dependent NAD metabolism.
Collapse
Affiliation(s)
- Artem V Artiukhov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Aneta Grabarska
- Department of Biochemistry and Molecular Biology of Medical University of Lublin, Lublin, Poland
| | - Ewelina Gumbarewicz
- Department of Biochemistry and Molecular Biology of Medical University of Lublin, Lublin, Poland
| | - Vasily A Aleshin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Thilo Kähne
- Institute of Experimental Internal Medicine, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Toshihiro Obata
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- Department of Biochemistry, George W. Beadle Center, University of Nebraska-Lincoln, Lincoln, NE, 68588-0664, USA
| | | | | | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology of Medical University of Lublin, Lublin, Poland
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Victoria I Bunik
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia.
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
31
|
OGDHL Expression as a Prognostic Biomarker for Liver Cancer Patients. DISEASE MARKERS 2019; 2019:9037131. [PMID: 31781311 PMCID: PMC6855184 DOI: 10.1155/2019/9037131] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 09/05/2019] [Indexed: 02/07/2023]
Abstract
Background and Objective Liver cancer is a highly malignant tumor, and patients typically have poor prognoses. Metabolic reprogramming is a hallmark of cancer, and downregulation of oxoglutarate dehydrogenase-like (OGDHL) contributes to the onset and progression of several cancers. We examined the role of altered OGDHL expression in liver cancer and determined its value as a diagnostic and prognostic indicator for patients. Material and Methods R (version 3.5.1) and several R extensions were used for data mining of The Cancer Genome Atlas (TCGA) dataset (including RNAseq and clinical information) and statistical analysis. Receiver operating characteristic analysis was used to determine the diagnostic value of OGDHL. The chi-squared test was used to identify the clinical correlates of OGDHL downregulation. Survival analysis (with the log-rank test) and univariate and multivariate Cox analysis were used to evaluate the effect of OGDHL expression on overall survival (OS) and relapse-free survival. TCGA was used for analysis of gene set enrichment. Results OGDHL had lower expression in cancerous liver tissues than noncancerous adjacent tissues, and low expression correlated with more advanced patient age, histologic grade, stage, T classification, and poor survival. Patients with lower OGDHL expression had shorter OS and relapse-free survival. Multivariate Cox regression indicated that low OGDHL expression was an independent risk factor for poor prognosis. Gene set enrichment analysis indicated enrichment of the mitotic spindle, G2M checkpoint, and E2F targets in the OGDHL low expression phenotype. Conclusion OGDHL has potential as a diagnostic and prognostic biomarker for liver cancer.
Collapse
|
32
|
Detailed modeling of positive selection improves detection of cancer driver genes. Nat Commun 2019; 10:3399. [PMID: 31363082 PMCID: PMC6667447 DOI: 10.1038/s41467-019-11284-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 07/02/2019] [Indexed: 01/04/2023] Open
Abstract
Identifying driver genes from somatic mutations is a central problem in cancer biology. Existing methods, however, either lack explicit statistical models, or use models based on simplistic assumptions. Here, we present driverMAPS (Model-based Analysis of Positive Selection), a model-based approach to driver gene identification. This method explicitly models positive selection at the single-base level, as well as highly heterogeneous background mutational processes. In particular, the selection model captures elevated mutation rates in functionally important sites using multiple external annotations, and spatial clustering of mutations. Simulations under realistic evolutionary models demonstrate the increased power of driverMAPS over current approaches. Applying driverMAPS to TCGA data of 20 tumor types, we identified 159 new potential driver genes, including the mRNA methyltransferase METTL3-METTL14. We experimentally validated METTL3 as a tumor suppressor gene in bladder cancer, providing support to the important role mRNA modification plays in tumorigenesis. Finding driver genes sheds lights on the biological mechanisms propelling the development of a tumour, and can suggest therapeutic strategies. Here, the authors develop driverMAPS, a model-based approach to identify driver genes, and apply it to TCGA datasets.
Collapse
|
33
|
Liu Y, Meng F, Wang J, Liu M, Yang G, Song R, Zheng T, Liang Y, Zhang S, Yin D, Wang J, Yang H, Pan S, Sun B, Han J, Sun J, Lan Y, Wang Y, Liu X, Zhu M, Cui Y, Zhang B, Wu D, Liang S, Liu Y, Song X, Lu Z, Yang J, Li M, Liu L. A Novel Oxoglutarate Dehydrogenase-Like Mediated miR-214/TWIST1 Negative Feedback Loop Inhibits Pancreatic Cancer Growth and Metastasis. Clin Cancer Res 2019; 25:5407-5421. [PMID: 31175094 DOI: 10.1158/1078-0432.ccr-18-4113] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 03/12/2019] [Accepted: 06/05/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE As a main rate-limiting subunit of the 2-oxoglutarate dehydrogenase multienzyme complex, oxoglutarate dehydrogenase like (OGDHL) is involved in the tricarboxylic acid cycle, and frequently downregulated in human carcinoma and suppresses tumor growth. However, little is known about the role of OGDHL in human cancer, especially pancreatic cancer. Our goal is to study the underlying mechanism and define a novel signaling pathway controlled by OGDHL modulating pancreatic cancer progression. EXPERIMENTAL DESIGN The expression and functional analysis of OGDHL, miR-214, and TWIST1 in human pancreatic cancer tissues, cell lines, and xenograft tumor model were investigated. The correlations between OGDHL and those markers were analyzed. RESULTS OGDHL was downregulated in human pancreatic cancer and predicted poor prognosis. OGDHL overexpression inhibited migration and invasion of pancreatic cancer cells and suppressed pancreatic cancer tumor growth. OGDHL was shown to be negatively regulated by miR-214. TWIST1 upregulation induced miR-214 expression in pancreatic cancer. OGDHL suppressed TWIST1 expression through promoting ubiquitin-mediated proteasomal degradation of HIF1α and regulating AKT pathways. A combination of OGDHL downregulation and TWIST1 and miR-214 overexpression predicted worse prognosis in patients with pancreatic cancer. CONCLUSIONS We demonstrated the prognostic value of OGDHL, miR-214, and TWIST1 in pancreatic cancer, and elucidated a novel pathway in OGDHL-regulated inhibition of pancreatic cancer tumorigenesis and metastasis. These findings may lead to new targeted therapy for pancreatic cancer through regulating OGDHL, miR-214, and TWIST1.
Collapse
Affiliation(s)
- Yao Liu
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Medicine, Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Fanzheng Meng
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiabei Wang
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mingyang Liu
- Department of Medicine, Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Guangchao Yang
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ruipeng Song
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tongsen Zheng
- Department of Gastrointestinal Medical Oncology, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, China
| | - Yingjian Liang
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shugeng Zhang
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dalong Yin
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jizhou Wang
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Haiyan Yang
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shangha Pan
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bo Sun
- Department of Anesthesia, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, China
| | - Jihua Han
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jing Sun
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yaliang Lan
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yan Wang
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xirui Liu
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mingxi Zhu
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yifeng Cui
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bo Zhang
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dehai Wu
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuhang Liang
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yufeng Liu
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuan Song
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhaoyang Lu
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jingxuan Yang
- Department of Medicine, Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Min Li
- Department of Medicine, Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.
| | - Lianxin Liu
- Department of General Surgery, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
34
|
Bunik VI. Redox-Driven Signaling: 2-Oxo Acid Dehydrogenase Complexes as Sensors and Transmitters of Metabolic Imbalance. Antioxid Redox Signal 2019; 30:1911-1947. [PMID: 30187773 DOI: 10.1089/ars.2017.7311] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SIGNIFICANCE This article develops a holistic view on production of reactive oxygen species (ROS) by 2-oxo acid dehydrogenase complexes. Recent Advances: Catalytic and structural properties of the complexes and their components evolved to minimize damaging effects of side reactions, including ROS generation, simultaneously exploiting the reactions for homeostatic signaling. CRITICAL ISSUES Side reactions of the complexes, characterized in vitro, are analyzed in view of protein interactions and conditions in vivo. Quantitative data support prevalence of the forward 2-oxo acid oxidation over the backward NADH oxidation in feeding physiologically significant ROS production by the complexes. Special focus on interactions between the active sites within 2-oxo acid dehydrogenase complexes highlights the central relevance of the complex-bound thiyl radicals in regulation of and signaling by complex-generated ROS. The thiyl radicals arise when dihydrolipoyl residues of the complexes regenerate FADH2 from the flavin semiquinone coproduced with superoxide anion radical in 1e- oxidation of FADH2 by molecular oxygen. FUTURE DIRECTIONS Interaction of 2-oxo acid dehydrogenase complexes with thioredoxins (TRXs), peroxiredoxins, and glutaredoxins mediates scavenging of the thiyl radicals and ROS generated by the complexes, underlying signaling of disproportional availability of 2-oxo acids, CoA, and NAD+ in key metabolic branch points through thiol/disulfide exchange and medically important hypoxia-inducible factor, mammalian target of rapamycin (mTOR), poly (ADP-ribose) polymerase, and sirtuins. High reactivity of the coproduced ROS and thiyl radicals to iron/sulfur clusters and nitric oxide, peroxynitrite reductase activity of peroxiredoxins and transnitrosylating function of thioredoxin, implicate the side reactions of 2-oxo acid dehydrogenase complexes in nitric oxide-dependent signaling and damage.
Collapse
Affiliation(s)
- Victoria I Bunik
- 1 Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation.,2 Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russian Federation
| |
Collapse
|
35
|
Khalaj-Kondori M, Hosseinnejad M, Hosseinzadeh A, Behroz Sharif S, Hashemzadeh S. Aberrant hypermethylation of OGDHL gene promoter in sporadic colorectal cancer. Curr Probl Cancer 2019; 44:100471. [PMID: 30904169 DOI: 10.1016/j.currproblcancer.2019.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 03/05/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND Aberrant methylation patterns of certain genes including tumor suppressors, a major epigenetic event, contribute mainly to tumorigenesis. Promoter CpG island methylation in Oxoglutarate dehydrogenase like (OGDHL) gene has been reported to reduce gene expression and hence apoptosis induction. This gene has been shown to be involved in colorectal cancer progression. In the present study, we investigated methylation status of OGDHL gene promoter in patients with colorectal cancer and evaluated its potential as a diagnostic biomarker. METHODS AND MATERIAL After collecting clinicopathologic data of patients, tumor and matched tumor free margin samples were obtained from 40 individuals; total genomic DNA was extracted and subjected to bisulfite modification. Methylation status of the gene promoter was studied using quantitative methylation-specific PCR method. Finally, its potential as a diagnostic biomarker was evaluated by receiver operating characteristic curve analysis. RESULTS There was not any significant correlation for clinicopathologic features including tumor stage, grade, size, and location with methylation status of OGDHL promoter. However, a significant high methylation level was observed in tumoral tissues compared with nontumoral marginal samples (P < 0.0001). Moreover, receiver operating characteristic curve analysis revealed 97.5% sensitivity and 95%, specificity for OGDHL promoter methylation in a cut off of 27.37% methylation as a biomarker for colorectal cancer. CONCLUSION The promoter of OGDHL gene is hypermethylated in colorectal cancer and might be considered as a biomarker for its development.
Collapse
Affiliation(s)
- Mohammad Khalaj-Kondori
- Dept. of Genetics, Animal Biology Group, Faculty of Natural Science, University of Tabriz, Tabriz, Iran.
| | - Mina Hosseinnejad
- Department of Biology, Tabriz Branch of Islamic Azad University, Tabriz, Iran
| | - Asghar Hosseinzadeh
- Department of Biology, Tabriz Branch of Islamic Azad University, Tabriz, Iran
| | - Shahin Behroz Sharif
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Molecular Medicine, Pasteur Institute of Iran, Tehran, Iran
| | - Shahriar Hashemzadeh
- Department of General & Vascular Surgery, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
36
|
Plubell DL, Fenton AM, Wilmarth PA, Bergstrom P, Zhao Y, Minnier J, Heinecke JW, Yang X, Pamir N. GM-CSF driven myeloid cells in adipose tissue link weight gain and insulin resistance via formation of 2-aminoadipate. Sci Rep 2018; 8:11485. [PMID: 30065264 PMCID: PMC6068153 DOI: 10.1038/s41598-018-29250-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 07/03/2018] [Indexed: 02/07/2023] Open
Abstract
In a GM-CSF driven myeloid cell deficient mouse model (Csf2−/−) that has preserved insulin sensitivity despite increased adiposity, we used unbiased three-dimensional integration of proteome profiles, metabolic profiles, and gene regulatory networks to understand adipose tissue proteome-wide changes and their metabolic implications. Multi-dimensional liquid chromatography mass spectrometry and extended multiplex mass labeling was used to analyze proteomes of epididymal adipose tissues isolated from Csf2+/+ and Csf2−/− mice that were fed low fat, high fat, or high fat plus cholesterol diets for 8 weeks. The metabolic health (as measured by body weight, adiposity, plasma fasting glucose, insulin, triglycerides, phospholipids, total cholesterol levels, and glucose and insulin tolerance tests) deteriorated with diet for both genotypes, while mice lacking Csf2 were protected from insulin resistance. Regardless of diet, 30 mostly mitochondrial, branch chain amino acids (BCAA), and lysine metabolism proteins were altered between Csf2−/− and Csf2+/+ mice (FDR < 0.05). Lack of GM-CSF driven myeloid cells lead to reduced adipose tissue 2-oxoglutarate dehydrogenase complex (DHTKD1) levels and subsequent increase in plasma 2-aminoadipate (2-AA) levels, both of which are reported to correlate with insulin resistance. Tissue DHTKD1 levels were >4-fold upregulated and plasma 2-AA levels were >2 fold reduced in Csf2−/− mice (p < 0.05). GM-CSF driven myeloid cells link peripheral insulin sensitivity to adiposity via lysine metabolism involving DHTKD1/2-AA axis in a diet independent manner.
Collapse
Affiliation(s)
- Deanna L Plubell
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Alexandra M Fenton
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Phillip A Wilmarth
- Proteomics Shared Resource, Oregon Health & Science University, Portland, OR, USA
| | - Paige Bergstrom
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Yuqi Zhao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Jessica Minnier
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Jay W Heinecke
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Nathalie Pamir
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
37
|
Nemeria NS, Gerfen G, Yang L, Zhang X, Jordan F. Evidence for functional and regulatory cross-talk between the tricarboxylic acid cycle 2-oxoglutarate dehydrogenase complex and 2-oxoadipate dehydrogenase on the l-lysine, l-hydroxylysine and l-tryptophan degradation pathways from studies in vitro. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:932-939. [PMID: 29752936 DOI: 10.1016/j.bbabio.2018.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/30/2018] [Accepted: 05/03/2018] [Indexed: 12/22/2022]
Abstract
Herein are reported findings in vitro suggesting both functional and regulatory cross-talk between the human 2-oxoglutarate dehydrogenase complex (hOGDHc), a key regulatory enzyme within the tricarboxylic acid cycle (TCA cycle), and a novel 2-oxoadipate dehydrogenase complex (hOADHc) from the final degradation pathway of l-lysine, l-hydroxylysine and l-tryptophan. The following could be concluded from our studies by using hOGDHc and hOADHc assembled from their individually expressed components in vitro: (i) Different substrate preferences (kcat/Km) were displayed by the two complexes even though they share the same dihydrolipoyl succinyltransferase (hE2o) and dihydrolipoyl dehydrogenase (hE3) components; (ii) Different binding modes were in evidence for the binary hE1o-hE2o and hE1a-hE2o subcomplexes according to fluorescence titrations using site-specifically labeled hE2o-derived proteins; (iii) Similarly to hE1o, the hE1a also forms the ThDP-enamine radical from 2-oxoadipate (electron paramagnetic resonance detection) in the oxidative half reaction; (iv) Both complexes produced superoxide/H2O2 from O2 in the reductive half reaction suggesting that hE1o, and hE1a (within their complexes) could both be sources of reactive oxygen species generation in mitochondria from 2-oxoglutarate and 2-oxoadipate, respectively; (v) Based on our findings, we speculate that hE2o can serve as a trans-glutarylase, in addition to being a trans-succinylase, a role suggested by others; (vi) The glutaryl-CoA produced by hOADHc inhibits hE1o, as does succinyl-CoA, suggesting a regulatory cross-talk between the two complexes on the different metabolic pathways.
Collapse
Affiliation(s)
- Natalia S Nemeria
- Department of Chemistry, Rutgers University, Newark, NJ 07102-1811, USA.
| | - Gary Gerfen
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10641-2304, USA
| | - Luying Yang
- Department of Chemistry, Rutgers University, Newark, NJ 07102-1811, USA
| | - Xu Zhang
- Department of Chemistry, Rutgers University, Newark, NJ 07102-1811, USA
| | - Frank Jordan
- Department of Chemistry, Rutgers University, Newark, NJ 07102-1811, USA.
| |
Collapse
|
38
|
Sherrill JD, Kc K, Wang X, Wen T, Chamberlin A, Stucke EM, Collins MH, Abonia JP, Peng Y, Wu Q, Putnam PE, Dexheimer PJ, Aronow BJ, Kottyan LC, Kaufman KM, Harley JB, Huang T, Rothenberg ME. Whole-exome sequencing uncovers oxidoreductases DHTKD1 and OGDHL as linkers between mitochondrial dysfunction and eosinophilic esophagitis. JCI Insight 2018; 3:99922. [PMID: 29669943 DOI: 10.1172/jci.insight.99922] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/14/2018] [Indexed: 12/20/2022] Open
Abstract
Eosinophilic esophagitis (EoE) is an allergic inflammatory esophageal disorder with a complex underlying genetic etiology often associated with other comorbidities. Using whole-exome sequencing (WES) of 63 patients with EoE and 60 unaffected family members and family-based trio analysis, we sought to uncover rare coding variants. WES analysis identified 5 rare, damaging variants in dehydrogenase E1 and transketolase domain-containing 1 (DHTKD1). Rare variant burden analysis revealed an overabundance of putative, potentially damaging DHTKD1 mutations in EoE (P = 0.01). Interestingly, we also identified 7 variants in the DHTKD1 homolog oxoglutarate dehydrogenase-like (OGDHL). Using shRNA-transduced esophageal epithelial cells and/or patient fibroblasts, we further showed that disruption of normal DHTKD1 or OGDHL expression blunts mitochondrial function. Finally, we demonstrated that the loss of DHTKD1 expression increased ROS production and induced the expression of viperin, a gene previously shown to be involved in production of Th2 cytokines in T cells. Viperin had increased expression in esophageal biopsies of EoE patients compared with control individuals and was upregulated by IL-13 in esophageal epithelial cells. These data identify a series of rare genetic variants implicating DHTKD1 and OGDHL in the genetic etiology of EoE and underscore a potential pathogenic role for mitochondrial dysfunction in EoE.
Collapse
Affiliation(s)
| | - Kiran Kc
- Division of Allergy and Immunology and
| | - Xinjian Wang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center (CCHMC), Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Ting Wen
- Division of Allergy and Immunology and
| | - Adam Chamberlin
- Clinical Genomics, Ambry Genetics, Aliso Viejo, California, USA
| | | | | | | | - Yanyan Peng
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center (CCHMC), Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Qiang Wu
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center (CCHMC), Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | | | | | - Leah C Kottyan
- Center for Autoimmune Genomics and Etiology, CCHMC, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Kenneth M Kaufman
- Center for Autoimmune Genomics and Etiology, CCHMC, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,US Department of Veterans Affairs Medical Center, Cincinnati, Ohio, USA
| | - John B Harley
- Center for Autoimmune Genomics and Etiology, CCHMC, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,US Department of Veterans Affairs Medical Center, Cincinnati, Ohio, USA
| | - Taosheng Huang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center (CCHMC), Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | |
Collapse
|
39
|
Nemeria NS, Gerfen G, Nareddy PR, Yang L, Zhang X, Szostak M, Jordan F. The mitochondrial 2-oxoadipate and 2-oxoglutarate dehydrogenase complexes share their E2 and E3 components for their function and both generate reactive oxygen species. Free Radic Biol Med 2018; 115:136-145. [PMID: 29191460 DOI: 10.1016/j.freeradbiomed.2017.11.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 12/22/2022]
Abstract
Herein are reported unique properties of the novel human thiamin diphosphate (ThDP)-dependent enzyme 2-oxoadipate dehydrogenase (hE1a), known as dehydrogenase E1 and transketolase domain-containing protein 1 that is encoded by the DHTKD1 gene. It is involved in the oxidative decarboxylation of 2-oxoadipate (OA) to glutaryl-CoA on the final degradative pathway of L-lysine and is critical for mitochondrial metabolism. Functionally active recombinant hE1a has been produced according to both kinetic and spectroscopic criteria in our toolbox leading to the following conclusions: (i) The hE1a has recruited the dihydrolipoyl succinyltransferase (hE2o) and the dihydrolipoyl dehydrogenase (hE3) components of the tricarboxylic acid cycle 2-oxoglutarate dehydrogenase complex (OGDHc) for its activity. (ii) 2-Oxoglutarate (OG) and 2-oxoadipate (OA) could be oxidized by hE1a, however, hE1a displays an approximately 49-fold preference in catalytic efficiency for OA over OG, indicating that hE1a is specific to the 2-oxoadipate dehydrogenase complex. (iii) The hE1a forms the ThDP-enamine radical from OA according to electron paramagnetic resonance detection in the oxidative half reaction, and could produce superoxide and H2O2 from decarboxylation of OA in the forward physiological direction, as also seen with the 2-oxoglutarate dehydrogenase hE1o component. (iv) Once assembled to complex with the same hE2o and hE3 components, the hE1o and hE1a display strikingly different regulation: both succinyl-CoA and glutaryl-CoA significantly reduced the hE1o activity, but not the activity of hE1a.
Collapse
Affiliation(s)
- Natalia S Nemeria
- Department of Chemistry, Rutgers University, Newark, NJ 07102-1811, USA.
| | - Gary Gerfen
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461-2304, USA
| | | | - Luying Yang
- Department of Chemistry, Rutgers University, Newark, NJ 07102-1811, USA
| | - Xu Zhang
- Department of Chemistry, Rutgers University, Newark, NJ 07102-1811, USA
| | - Michal Szostak
- Department of Chemistry, Rutgers University, Newark, NJ 07102-1811, USA
| | - Frank Jordan
- Department of Chemistry, Rutgers University, Newark, NJ 07102-1811, USA.
| |
Collapse
|
40
|
Inhibition of mitochondrial 2-oxoglutarate dehydrogenase impairs viability of cancer cells in a cell-specific metabolism-dependent manner. Oncotarget 2018; 7:26400-21. [PMID: 27027236 PMCID: PMC5041988 DOI: 10.18632/oncotarget.8387] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 03/11/2016] [Indexed: 12/31/2022] Open
Abstract
2-Oxoglutarate dehydrogenase (OGDH) of the tricarboxylic acid (TCA) cycle is often implied to be inactive in cancer, but this was not experimentally tested. We addressed the question through specific inhibition of OGDH by succinyl phosphonate (SP). SP action on different cancer cells was investigated using indicators of cellular viability and reactive oxygen species (ROS), metabolic profiling and transcriptomics. Relative sensitivity of various cancer cells to SP changed with increasing SP exposure and could differ in the ATP- and NAD(P)H-based assays. Glioblastoma responses to SP revealed metabolic sub-types increasing or decreasing cellular ATP/NAD(P)H ratio under OGDH inhibition. Cancer cell homeostasis was perturbed also when viability indicators were SP-resistant, e.g. in U87 and N2A cells. The transcriptomics database analysis showed that the SP-sensitive cells, such as A549 and T98G, exhibit the lowest expression of OGDH compared to other TCA cycle enzymes, associated with higher expression of affiliated pathways utilizing 2-oxoglutarate. Metabolic profiling confirmed the dependence of cellular SP reactivity on cell-specific expression of the pathways. Thus, oxidative decarboxylation of 2-oxoglutarate is significant for the interdependent homeostasis of NAD(P)H, ATP, ROS and key metabolites in various cancer cells. Assessment of cell-specific responses to OGDH inhibition is of diagnostic value for anticancer strategies.
Collapse
|
41
|
Bunik VI, Brand MD. Generation of superoxide and hydrogen peroxide by side reactions of mitochondrial 2-oxoacid dehydrogenase complexes in isolation and in cells. Biol Chem 2018; 399:407-420. [DOI: 10.1515/hsz-2017-0284] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/03/2018] [Indexed: 01/06/2023]
Abstract
Abstract
Mitochondrial 2-oxoacid dehydrogenase complexes oxidize 2-oxoglutarate, pyruvate, branched-chain 2-oxoacids and 2-oxoadipate to the corresponding acyl-CoAs and reduce NAD+ to NADH. The isolated enzyme complexes generate superoxide anion radical or hydrogen peroxide in defined reactions by leaking electrons to oxygen. Studies using isolated mitochondria in media mimicking cytosol suggest that the 2-oxoacid dehydrogenase complexes contribute little to the production of superoxide or hydrogen peroxide relative to other mitochondrial sites at physiological steady states. However, the contributions may increase under pathological conditions, in accordance with the high maximum capacities of superoxide or hydrogen peroxide-generating reactions of the complexes, established in isolated mitochondria. We assess available data on the use of modulations of enzyme activity to infer superoxide or hydrogen peroxide production from particular 2-oxoacid dehydrogenase complexes in cells, and limitations of such methods to discriminate specific superoxide or hydrogen peroxide sources in vivo.
Collapse
Affiliation(s)
- Victoria I. Bunik
- A.N. Belozersky Institute of Physicochemical Biology , Lomonosov Moscow State University , 119992 Moscow , Russia
| | - Martin D. Brand
- Buck Institute for Research on Aging , 8001 Redwood Blvd. , Novato, CA 94945 , USA
| |
Collapse
|
42
|
Improvement of pyruvate production based on regulation of intracellular redox state in engineered Escherichia coli. BIOTECHNOL BIOPROC E 2017. [DOI: 10.1007/s12257-017-0061-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
43
|
Tsepkova PM, Artiukhov AV, Boyko AI, Aleshin VA, Mkrtchyan GV, Zvyagintseva MA, Ryabov SI, Ksenofontov AL, Baratova LA, Graf AV, Bunik VI. Thiamine Induces Long-Term Changes in Amino Acid Profiles and Activities of 2-Oxoglutarate and 2-Oxoadipate Dehydrogenases in Rat Brain. BIOCHEMISTRY (MOSCOW) 2017; 82:723-736. [PMID: 28601082 DOI: 10.1134/s0006297917060098] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Molecular mechanisms of long-term changes in brain metabolism after thiamine administration (single i.p. injection, 400 mg/kg) were investigated. Protocols for discrimination of the activities of the thiamine diphosphate (ThDP)-dependent 2-oxoglutarate and 2-oxoadipate dehydrogenases were developed to characterize specific regulation of the multienzyme complexes of the 2-oxoglutarate (OGDHC) and 2-oxoadipate (OADHC) dehydrogenases by thiamine. The thiamine-induced changes depended on the brain-region-specific expression of the ThDP-dependent dehydrogenases. In the cerebral cortex, the original levels of OGDHC and OADHC were relatively high and not increased by thiamine, whereas in the cerebellum thiamine upregulated the OGDHC and OADHC activities, whose original levels were relatively low. The effects of thiamine on each of the complexes were different and associated with metabolic rearrangements, which included (i) the brain-region-specific alterations of glutamine synthase and/or glutamate dehydrogenase and NADP+-dependent malic enzyme, (ii) the brain-region-specific changes of the amino acid profiles, and (iii) decreased levels of a number of amino acids in blood plasma. Along with the assays of enzymatic activities and average levels of amino acids in the blood and brain, the thiamine-induced metabolic rearrangements were assessed by analysis of correlations between the levels of amino acids. The set and parameters of the correlations were tissue-specific, and their responses to the thiamine treatment provided additional information on metabolic changes, compared to that gained from the average levels of amino acids. Taken together, the data suggest that thiamine decreases catabolism of amino acids by means of a complex and long-term regulation of metabolic flux through the tricarboxylic acid cycle, which includes coupled changes in activities of the ThDP-dependent dehydrogenases of 2-oxoglutarate and 2-oxoadipate and adjacent enzymes.
Collapse
Affiliation(s)
- P M Tsepkova
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119234, Russia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Yoon WH, Sandoval H, Nagarkar-Jaiswal S, Jaiswal M, Yamamoto S, Haelterman NA, Putluri N, Putluri V, Sreekumar A, Tos T, Aksoy A, Donti T, Graham BH, Ohno M, Nishi E, Hunter J, Muzny DM, Carmichael J, Shen J, Arboleda VA, Nelson SF, Wangler MF, Karaca E, Lupski JR, Bellen HJ. Loss of Nardilysin, a Mitochondrial Co-chaperone for α-Ketoglutarate Dehydrogenase, Promotes mTORC1 Activation and Neurodegeneration. Neuron 2017; 93:115-131. [PMID: 28017472 PMCID: PMC5242142 DOI: 10.1016/j.neuron.2016.11.038] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 08/21/2016] [Accepted: 11/14/2016] [Indexed: 01/01/2023]
Abstract
We previously identified mutations in Nardilysin (dNrd1) in a forward genetic screen designed to isolate genes whose loss causes neurodegeneration in Drosophila photoreceptor neurons. Here we show that NRD1 is localized to mitochondria, where it recruits mitochondrial chaperones and assists in the folding of α-ketoglutarate dehydrogenase (OGDH), a rate-limiting enzyme in the Krebs cycle. Loss of Nrd1 or Ogdh leads to an increase in α-ketoglutarate, a substrate for OGDH, which in turn leads to mTORC1 activation and a subsequent reduction in autophagy. Inhibition of mTOR activity by rapamycin or partially restoring autophagy delays neurodegeneration in dNrd1 mutant flies. In summary, this study reveals a novel role for NRD1 as a mitochondrial co-chaperone for OGDH and provides a mechanistic link between mitochondrial metabolic dysfunction, mTORC1 signaling, and impaired autophagy in neurodegeneration.
Collapse
Affiliation(s)
- Wan Hee Yoon
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hector Sandoval
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sonal Nagarkar-Jaiswal
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Manish Jaiswal
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Nele A Haelterman
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology and Advanced Technology Core, Baylor College of Medicine, Houston, TX 77030, USA
| | - Vasanta Putluri
- Department of Molecular and Cellular Biology and Advanced Technology Core, Baylor College of Medicine, Houston, TX 77030, USA
| | - Arun Sreekumar
- Department of Molecular and Cellular Biology and Advanced Technology Core, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tulay Tos
- Department of Medical Genetics, Dr. Sami Ulus Research and Training Hospital of Women's and Children's Health and Diseases, Ankara 06080, Turkey
| | - Ayse Aksoy
- Department of Child Neurology, Dr. Sami Ulus Research and Training Hospital of Women's and Children's Health and Diseases, Ankara 06080, Turkey
| | - Taraka Donti
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Brett H Graham
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mikiko Ohno
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan, Baylor College of Medicine, Houston, TX 77030, USA
| | - Eiichiro Nishi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jill Hunter
- Department of Pediatric Radiology, Texas Children's Hospital and Department of Radiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jason Carmichael
- Medical Genetics and Metabolism, Valley Children's Hospital, Madera, CA 93636, USA
| | - Joseph Shen
- Medical Genetics and Metabolism, Valley Children's Hospital, Madera, CA 93636, USA
| | - Valerie A Arboleda
- Departments of Human Genetics and Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Stanley F Nelson
- Departments of Human Genetics and Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Ender Karaca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hugo J Bellen
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
45
|
Bunik V, Aleshin V. Analysis of the Protein Binding Sites for Thiamin and Its Derivatives to Elucidate the Molecular Mechanisms of the Noncoenzyme Action of Thiamin (Vitamin B1). STUDIES IN NATURAL PRODUCTS CHEMISTRY 2017. [DOI: 10.1016/b978-0-444-63930-1.00011-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
46
|
Artiukhov AV, Graf AV, Bunik VI. Directed regulation of multienzyme complexes of 2-oxo acid dehydrogenases using phosphonate and phosphinate analogs of 2-oxo acids. BIOCHEMISTRY (MOSCOW) 2016; 81:1498-1521. [DOI: 10.1134/s0006297916120129] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
47
|
Fujisawa K, Terai S, Takami T, Yamamoto N, Yamasaki T, Matsumoto T, Yamaguchi K, Owada Y, Nishina H, Noma T, Sakaida I. Modulation of anti-cancer drug sensitivity through the regulation of mitochondrial activity by adenylate kinase 4. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:48. [PMID: 26980435 PMCID: PMC4793738 DOI: 10.1186/s13046-016-0322-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 03/08/2016] [Indexed: 01/06/2023]
Abstract
BACKGROUND Adenylate kinase is a key enzyme in the high-energy phosphoryl transfer reaction in living cells. An isoform of this enzyme, adenylate kinase 4 (AK4), is localized in the mitochondrial matrix and is believed to be involved in stress, drug resistance, malignant transformation in cancer, and ATP regulation. However, the molecular basis for the AK4 functions remained to be determined. METHODS HeLa cells were transiently transfected with an AK4 small interfering RNA (siRNA), an AK4 short hairpin RNA (shRNA) plasmid, a control shRNA plasmid, an AK4 expression vector, and a control expression vector to examine the effect of the AK4 expression on cell proliferation, sensitivity to anti-cancer drug, metabolome, gene expression, and mitochondrial activity. RESULTS AK4 knockdown cells treated with short hairpin RNA increased ATP production and showed greater sensitivity to hypoxia and anti-cancer drug, cis-diamminedichloro-platinum (II) (CDDP). Subcutaneous grafting AK4 knockdown cells into nude mice revealed that the grafted cells exhibited both slower proliferation and reduced the tumor sizes in response to CDDP. AK4 knockdown cell showed a increased oxygen consumption rate with FCCP treatment, while AK4 overexpression lowered it. Metabolome analysis showed the increased levels of the tricarboxylic acid cycle intermediates, fumarate and malate in AK4 knockdown cells, while AK4 overexpression lowered them. Electron microscopy detected the increased mitochondrial numbers in AK4 knockdown cells. Microarray analysis detected the increased gene expression of two key enzymes in TCA cycle, succinate dehydrogenase A (SDHA) and oxoglutarate dehydrogenease L (OGDHL), which are components of SDH complex and OGDH complex, supporting the metabolomic results. CONCLUSIONS We found that AK4 was involved in hypoxia tolerance, resistance to anti-tumor drug, and the regulation of mitochondrial activity. These findings provide a new potential target for efficient anticancer therapies by controlling AK4 expression.
Collapse
Affiliation(s)
- Koichi Fujisawa
- Center for Regenerative Medicine, School of Medicine, Yamaguchi University, Ube, Japan.,Department of Gastroenterology and Hepatology, School of Medicine, Yamaguchi University, Ube, Japan
| | - Shuji Terai
- Department of Gastroenterology and Hepatology, School of Medicine, Yamaguchi University, Ube, Japan. .,Division of Gastroenterology and Hepatology, School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachidori, Chuo-Ku, Niigata, 951-8510, Japan.
| | - Taro Takami
- Department of Gastroenterology and Hepatology, School of Medicine, Yamaguchi University, Ube, Japan
| | - Naoki Yamamoto
- Department of Gastroenterology and Hepatology, School of Medicine, Yamaguchi University, Ube, Japan
| | - Takahiro Yamasaki
- Department of Gastroenterology and Hepatology, School of Medicine, Yamaguchi University, Ube, Japan.,Department of Oncology and Laboratory Medicine, School of Medicine, Yamaguchi University, Ube, Japan
| | - Toshihiko Matsumoto
- Department of Gastroenterology and Hepatology, School of Medicine, Yamaguchi University, Ube, Japan.,Department of Oncology and Laboratory Medicine, School of Medicine, Yamaguchi University, Ube, Japan
| | - Kazuhito Yamaguchi
- Department of Organ Anatomy, School of Medicine, Yamaguchi University, Ube, Japan
| | - Yuji Owada
- Department of Organ Anatomy, School of Medicine, Yamaguchi University, Ube, Japan
| | - Hiroshi Nishina
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Takafumi Noma
- Department of Molecular Biology, Institute of Biomedical Sciences, Tokushima University School, Tokushima, Japan
| | - Isao Sakaida
- Center for Regenerative Medicine, School of Medicine, Yamaguchi University, Ube, Japan.,Department of Gastroenterology and Hepatology, School of Medicine, Yamaguchi University, Ube, Japan
| |
Collapse
|
48
|
Calcium-insensitive splice variants of mammalian E1 subunit of 2-oxoglutarate dehydrogenase complex with tissue-specific patterns of expression. Biochem J 2016; 473:1165-78. [PMID: 26936970 DOI: 10.1042/bcj20160135] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/01/2016] [Indexed: 01/17/2023]
Abstract
The 2-oxoglutarate dehydrogenase (OGDH) complex is an important control point in vertebrate mitochondrial oxidative metabolism, including in the citrate cycle and catabolism of alternative fuels including glutamine. It is subject to allosteric regulation by NADH and the ATP/ADP ratio, and by Ca(2+) through binding to the E1 subunit. The latter involves a unique Ca(2+)-binding site which includes D(114)ADLD (site 1). Here, we describe three splice variants of E1 in which either the exon expressing this site is replaced with another exon (loss of site 1, LS1) or an additional exon is expressed leading to the insertion of 15 amino acids just downstream of site 1 (Insert), or both changes occur together (LS1/Insert). We show that all three variants are essentially Ca(2+)-insensitive. Comparison of massive parallel sequence (RNA-Seq) databases demonstrates predominant expression of the Ca(2+)-sensitive archetype form in heart and skeletal muscle, but substantial expression of the Ca(2+)-insensitive variants in brain, pancreatic islets and other tissues. Detailed proteomic and activity studies comparing OGDH complexes from rat heart and brain confirmed the substantial difference in expression between these tissues. The evolution of OGDH variants was explored using bioinformatics, and this indicated that Ca(2+)-sensitivity arose with the emergence of chordates. In all species examined, this was associated with the co-emergence of Ca(2+)-insensitive variants suggesting a retained requirement for the latter in some settings. Tissue-specific expression of OGDH splice variants may thus provide a mechanism that tunes the control of the enzyme to the specialized metabolic and signalling needs of individual cell types.
Collapse
|
49
|
Goncalves RLS, Bunik VI, Brand MD. Production of superoxide/hydrogen peroxide by the mitochondrial 2-oxoadipate dehydrogenase complex. Free Radic Biol Med 2016; 91:247-55. [PMID: 26708453 DOI: 10.1016/j.freeradbiomed.2015.12.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 10/28/2015] [Accepted: 12/16/2015] [Indexed: 01/12/2023]
Abstract
In humans, mutations in dehydrogenase E1 and transketolase domain containing 1 (DHTKD1) are associated with neurological abnormalities and accumulation of 2-oxoadipate, 2-aminoadipate, and reactive oxygen species. The protein encoded by DHTKD1 has sequence and structural similarities to 2-oxoglutarate dehydrogenase, and the 2-oxoglutarate dehydrogenase complex can produce superoxide/H2O2 at high rates. The DHTKD1 enzyme is hypothesized to catalyze the oxidative decarboxylation of 2-oxoadipate, a shared intermediate of the degradative pathways for tryptophan, lysine and hydroxylysine. Here, we show that rat skeletal muscle mitochondria can produce superoxide/H2O2 at high rates when given 2-oxoadipate. We identify the putative mitochondrial 2-oxoadipate dehydrogenase complex as one of the sources and characterize the conditions that favor its superoxide/H2O2 production. Rates increased at higher NAD(P)H/NAD(P)(+) ratios and were higher at each NAD(P)H/NAD(P)(+) ratio when 2-oxoadipate was present, showing that superoxide/H2O2 was produced during the forward reaction from 2-oxoadipate, but not in the reverse reaction from NADH in the absence of 2-oxoadipate. The maximum capacity of the 2-oxoadipate dehydrogenase complex for production of superoxide/H2O2 is comparable to that of site IF of complex I, and seven, four and almost two-fold lower than the capacities of the 2-oxoglutarate, pyruvate and branched-chain 2-oxoacid dehydrogenase complexes, respectively. Regulation by ADP and ATP of H2O2 production driven by 2-oxoadipate was very different from that driven by 2-oxoglutarate, suggesting that site AF of the 2-oxoadipate dehydrogenase complex is a new source of superoxide/H2O2 associated with the NADH isopotential pool in mitochondria.
Collapse
Affiliation(s)
| | - Victoria I Bunik
- A.N. Belozersky Institute of Physico-Chemical Biology and Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Martin D Brand
- The Buck Institute for Research on Aging, Novato, CA 94945, USA
| |
Collapse
|
50
|
Li X, Knight J, Todd Lowther W, Holmes RP. Hydroxyproline metabolism in a mouse model of Primary Hyperoxaluria Type 3. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2700-5. [PMID: 26428388 DOI: 10.1016/j.bbadis.2015.09.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/16/2015] [Accepted: 09/25/2015] [Indexed: 12/29/2022]
Abstract
Primary Hyperoxaluria Type 3 is a recently discovered form of this autosomal recessive disease that results from mutations in the gene coding for 4-hydroxy-2-oxoglutarate aldolase (HOGA1). This enzyme is one of the 2 unique enzymes in the hydroxyproline catabolism pathway. Affected individuals have increased urinary excretions of oxalate, 4-hydroxy-L-glutamate (4-OH-Glu), 4-hydroxy-2-oxoglutarate (HOG), and 2,4-dihydroxyglutarate (DHG). While 4-OH-Glu and HOG are precursor substrates of HOGA1 and increases in their concentrations are expected, how DHG is formed and how HOG to oxalate are unclear. To resolve these important questions and to provide insight into possible therapeutic avenues for treating this disease, an animal model of the disease would be invaluable. We have developed a mouse model of this disease which has null mutations in the Hoga1 gene and have characterized its phenotype. It shares many characteristics of the human disease, particularly when challenged by the inclusion of hydroxyproline in the diet. An increased oxalate excretion is not observed in the KO mice which may be consistent with the recent recognition that only a small fraction of the individuals with the genotype for HOGA deficiency develop PH.
Collapse
Affiliation(s)
- Xingsheng Li
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - John Knight
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - W Todd Lowther
- Department of Biochemistry, Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
| | - Ross P Holmes
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|