1
|
Amsler J, Everts-Graber J, Martin KR, Roccabianca A, Lopes C, Tourneur L, Mocek J, Karras A, Naccache JM, Bonnotte B, Samson M, Hanslik T, Puéchal X, Terrier B, Guillevin L, Néel A, Mouthon L, Witko-Sarsat V. Dysregulation of neutrophil oxidant production and interleukin-1-related cytokines in granulomatosis with polyangiitis. Rheumatology (Oxford) 2024; 63:2249-2258. [PMID: 37947315 DOI: 10.1093/rheumatology/kead578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 11/12/2023] Open
Abstract
OBJECTIVES Neutrophils play a key role in ANCA-associated vasculitis, both as targets of autoimmunity and as facilitators of vascular damage. In granulomatosis with polyangiitis (GPA), the data regarding the production of reactive oxygen species (ROS) in neutrophils are unclear. Further, recent data suggests that ROS production could have an anti-inflammatory effect through the regulation of inflammasomes and IL-1-related cytokines. We aimed to analyse ROS production in neutrophils from patients with GPA and investigate its association with IL-1-related cytokines and the autoantigen PR3. METHODS Seventy-two GPA patients with disease flare were included in the NEUTROVASC prospective cohort study. ROS production in whole blood of patients with active GPA was evaluated and compared with that in the same patients in remission or healthy controls. Associations between ROS production, PR3 membrane expression on neutrophils, serum levels of IL-1-related cytokines as well as inflammasome-related proteins were analysed. RESULTS We observed a robust defect in ROS production by neutrophils from patients with active GPA compared with healthy controls, independent of glucocorticoid treatment. Serum levels of IL-1-related cytokines were significantly increased in GPA patients, particularly in patients with kidney involvement, and levels of these cytokines returned to normal after patients achieved remission. Further, inflammasome-related proteins were significantly dysregulated in the cytosol of neutrophils as well as the serum from GPA patients. CONCLUSION Our data suggests that ROS production and regulation of inflammasomes in neutrophils from patients with GPA are disturbed and may be a potential therapeutic target. TRIAL REGISTRATION ClinicalTrials.gov, https://www.clinicaltrials.gov, NCT01862068.
Collapse
Affiliation(s)
- Jennifer Amsler
- INSERM U1016, Institut Cochin, CNRS UMR 8104, Paris, France
- Université Paris Cité, Paris, France
- Department of Rheumatology and Immunology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Judith Everts-Graber
- INSERM U1016, Institut Cochin, CNRS UMR 8104, Paris, France
- Université Paris Cité, Paris, France
- Department of Rheumatology and Immunology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Katherine R Martin
- INSERM U1016, Institut Cochin, CNRS UMR 8104, Paris, France
- Université Paris Cité, Paris, France
- Inflammation Division, WEHI, and Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Arnaud Roccabianca
- INSERM U1016, Institut Cochin, CNRS UMR 8104, Paris, France
- Université Paris Cité, Paris, France
| | - Chloé Lopes
- INSERM U1016, Institut Cochin, CNRS UMR 8104, Paris, France
- Université Paris Cité, Paris, France
| | - Léa Tourneur
- INSERM U1016, Institut Cochin, CNRS UMR 8104, Paris, France
- Université Paris Cité, Paris, France
| | - Julie Mocek
- INSERM U1016, Institut Cochin, CNRS UMR 8104, Paris, France
- Université Paris Cité, Paris, France
| | - Alexandre Karras
- Department of Nephrology, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Jean-Marc Naccache
- Department of Pulmonology-Allergology-Thoracic Oncology, Groupe Hospitalier Paris Saint Joseph, Paris, France
| | - Bernard Bonnotte
- Service de Médecine Interne et Immunologie Clinique, CHU Dijon, Dijon, France
| | - Maxime Samson
- Service de Médecine Interne et Immunologie Clinique, CHU Dijon, Dijon, France
| | - Thomas Hanslik
- Service de Médecine Interne, Hôpital Ambroise-Paré, AP-HP, Boulogne Billancourt, France
| | - Xavier Puéchal
- INSERM U1016, Institut Cochin, CNRS UMR 8104, Paris, France
- Université Paris Cité, Paris, France
- Department of Internal Medicine, Centre de Référence pour les Maladies Systémiques Autoimmunes Rares d'Ile de France, Cochin Hospital, AP-HP, Paris, France
| | - Benjamin Terrier
- INSERM U1016, Institut Cochin, CNRS UMR 8104, Paris, France
- Université Paris Cité, Paris, France
- Department of Internal Medicine, Centre de Référence pour les Maladies Systémiques Autoimmunes Rares d'Ile de France, Cochin Hospital, AP-HP, Paris, France
| | - Loïc Guillevin
- INSERM U1016, Institut Cochin, CNRS UMR 8104, Paris, France
- Université Paris Cité, Paris, France
- Department of Internal Medicine, Centre de Référence pour les Maladies Systémiques Autoimmunes Rares d'Ile de France, Cochin Hospital, AP-HP, Paris, France
| | - Antoine Néel
- Service de Médecine Interne, CHU Nantes, Nantes, France
- CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes Université, Nantes, France
| | - Luc Mouthon
- INSERM U1016, Institut Cochin, CNRS UMR 8104, Paris, France
- Université Paris Cité, Paris, France
- Department of Internal Medicine, Centre de Référence pour les Maladies Systémiques Autoimmunes Rares d'Ile de France, Cochin Hospital, AP-HP, Paris, France
| | - Véronique Witko-Sarsat
- INSERM U1016, Institut Cochin, CNRS UMR 8104, Paris, France
- Université Paris Cité, Paris, France
| |
Collapse
|
2
|
von Richthofen HJ, Westerlaken GH, Gollnast D, Besteman S, Delemarre EM, Rodenburg K, Moerer P, Stapels DA, Andiappan AK, Rötzschke O, Nierkens S, Leavis HL, Bont LJ, Rooijakkers SH, Meyaard L. Soluble Signal Inhibitory Receptor on Leukocytes-1 Is Released from Activated Neutrophils by Proteinase 3 Cleavage. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:389-397. [PMID: 36637221 PMCID: PMC9915861 DOI: 10.4049/jimmunol.2200169] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 12/05/2022] [Indexed: 01/14/2023]
Abstract
Signal inhibitory receptor on leukocytes-1 (SIRL-1) is an immune inhibitory receptor expressed on human granulocytes and monocytes that dampens antimicrobial functions. We previously showed that sputum neutrophils from infants with severe respiratory syncytial virus (RSV) bronchiolitis have decreased SIRL-1 surface expression compared with blood neutrophils and that SIRL-1 surface expression is rapidly lost from in vitro activated neutrophils. This led us to hypothesize that activated neutrophils lose SIRL-1 by ectodomain shedding. Here, we developed an ELISA and measured the concentration of soluble SIRL-1 (sSIRL-1) in patients with RSV bronchiolitis and hospitalized patients with COVID-19, which are both characterized by neutrophilic inflammation. In line with our hypothesis, sSIRL-1 concentration was increased in sputum compared with plasma of patients with RSV bronchiolitis and in serum of hospitalized patients with COVID-19 compared with control serum. In addition, we show that in vitro activated neutrophils release sSIRL-1 by proteolytic cleavage and that this diminishes the ability to inhibit neutrophilic reactive oxygen species production via SIRL-1. Finally, we found that SIRL-1 shedding is prevented by proteinase 3 inhibition and by extracellular adherence protein from Staphylococcus aureus. Notably, we recently showed that SIRL-1 is activated by PSMα3 from S. aureus, suggesting that S. aureus may counteract SIRL-1 shedding to benefit from preserved inhibitory function of SIRL-1. In conclusion, we report that SIRL-1 is released from activated neutrophils by proteinase 3 cleavage and that endogenous sSIRL-1 protein is present in vivo.
Collapse
Affiliation(s)
- Helen J. von Richthofen
- Center of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands;,Oncode Institute, Utrecht, the Netherlands
| | - Geertje H.A. Westerlaken
- Center of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands;,Oncode Institute, Utrecht, the Netherlands
| | - Doron Gollnast
- Center of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands;,Oncode Institute, Utrecht, the Netherlands
| | - Sjanna Besteman
- Center of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands;,Department of Pediatrics, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Eveline M. Delemarre
- Center of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Karlijn Rodenburg
- Center of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Petra Moerer
- Center of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Daphne A.C. Stapels
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Anand K. Andiappan
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore; and
| | - Olaf Rötzschke
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore; and
| | - Stefan Nierkens
- Center of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Helen L. Leavis
- Center of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands;,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Louis J. Bont
- Center of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands;,Department of Pediatrics, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Suzan H.M. Rooijakkers
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Linde Meyaard
- Center of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands;,Oncode Institute, Utrecht, the Netherlands
| |
Collapse
|
3
|
Aymonnier K, Amsler J, Lamprecht P, Salama A, Witko‐Sarsat V. The neutrophil: A key resourceful agent in immune‐mediated vasculitis. Immunol Rev 2022; 314:326-356. [PMID: 36408947 DOI: 10.1111/imr.13170] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The term "vasculitis" refers to a group of rare immune-mediated diseases characterized by the dysregulated immune system attacking blood vessels located in any organ of the body, including the skin, lungs, and kidneys. Vasculitides are classified according to the size of the vessel that is affected. Although this observation is not specific to small-, medium-, or large-vessel vasculitides, patients show a high circulating neutrophil-to-lymphocyte ratio, suggesting the direct or indirect involvement of neutrophils in these diseases. As first responders to infection or inflammation, neutrophils release cytotoxic mediators, including reactive oxygen species, proteases, and neutrophil extracellular traps. If not controlled, this dangerous arsenal can injure the vascular system, which acts as the main transport route for neutrophils, thereby amplifying the initial inflammatory stimulus and the recruitment of immune cells. This review highlights the ability of neutrophils to "set the tone" for immune cells and other cells in the vessel wall. Considering both their long-established and newly described roles, we extend their functions far beyond their direct host-damaging potential. We also review the roles of neutrophils in various types of primary vasculitis, including immune complex vasculitis, anti-neutrophil cytoplasmic antibody-associated vasculitis, polyarteritis nodosa, Kawasaki disease, giant cell arteritis, Takayasu arteritis, and Behçet's disease.
Collapse
Affiliation(s)
- Karen Aymonnier
- INSERM U1016, Institut Cochin, Université Paris Cité, CNRS 8104 Paris France
| | - Jennifer Amsler
- INSERM U1016, Institut Cochin, Université Paris Cité, CNRS 8104 Paris France
| | - Peter Lamprecht
- Department of Rheumatology and Clinical Immunology University of Lübeck Lübeck Germany
| | - Alan Salama
- Department of Renal Medicine, Royal Free Hospital University College London London UK
| | | |
Collapse
|
4
|
Mechanism of negative membrane curvature generation by I-BAR domains. Structure 2021; 29:1440-1452.e4. [PMID: 34520736 DOI: 10.1016/j.str.2021.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/16/2021] [Accepted: 07/22/2021] [Indexed: 11/23/2022]
Abstract
The membrane sculpting ability of BAR domains has been attributed to the intrinsic curvature of their banana-shaped dimeric structure. However, there is often a mismatch between this intrinsic curvature and the diameter of the membrane tubules generated. I-BAR domains are especially mysterious since they are almost flat but generate high negative membrane curvature. Here, we use atomistic implicit-solvent computer modeling to show that the membrane bending of the IRSp53 I-BAR domain is dictated by its higher oligomeric structure, whose curvature is completely unrelated to the intrinsic curvature of the dimer. Two other I-BARs give similar results, whereas a flat F-BAR sheet develops a concave membrane-binding interface, consistent with its observed positive membrane curvature generation. Laterally interacting helical spirals of I-BAR dimers on tube interiors are stable and have an enhanced binding energy that is sufficient for membrane bending to experimentally observed tubule diameters at a reasonable surface density.
Collapse
|
5
|
Robakiewicz S, Bridot C, Serna S, Gimeno A, Echeverria B, Delgado S, Ruyck J, Semwal S, Charro D, Dansercoer A, Verstraete K, Azkargorta M, Noort K, Wilbers R, Savvides SN, Abrescia NGA, Arda A, Reichardt NC, Jiménez-Barbero J, Bouckaert J. Minimal epitope for Mannitou IgM on paucimannose-carrying glycoproteins. Glycobiology 2021; 31:1005-1017. [PMID: 33909073 DOI: 10.1093/glycob/cwab027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/03/2021] [Accepted: 03/30/2021] [Indexed: 11/14/2022] Open
Abstract
Paucimannosidic glycans are restricted to the core structure [Man1-3GlcNAc2Fuc0-1] of N-glycans and are rarely found in mammalian tissues. Yet, especially [Man2-3GlcNAc2Fuc1] have been found significantly upregulated in tumors, including in colorectal and liver cancer. Mannitou IgM is a murine monoclonal antibody that was previously shown to recognise Man3GlcNAc2 with an almost exclusive selectivity. Here, we have sought the definition of the minimal glycan epitope of Mannitou IgM, initiated by screening on a newly designed paucimannosidic glycan microarray. Among the best binders were Man3GlcNAc2 and its α1,6 core-fucosylated variant, Man3GlcNAc2Fuc1. Unexpectedly and in contrast to earlier findings, Man5GlcNAc2-type structures bind equally well and a large tolerance was observed for substitutions on the α1,6 arm. It was confirmed that any substitution on the single α1,3-linked mannose completely abolishes binding. Surface plasmon resonance for kinetic measurements of Mannitou IgM binding, either directly on the glycans or as presented on omega-1 and kappa-5 soluble egg antigens from the helminth parasite Schistosoma mansoni, showed submicromolar affinities. To characterize the epitope in greater and atomic detail, saturation transfer difference nuclear magnetic resonance spectroscopy was performed with the Mannitou antigen-binding fragment. The STD-NMR data demonstrated the strongest interactions with the aliphatic protons H1 and H2 of the α1-3-linked mannose, and weaker imprints on its H3, H4 and H5 protons. In conclusion, Mannitou IgM binding requires a non-substituted α1,3-linked mannose branch of paucimannose also on proteins, making it a highly specific tool for the distinction of concurrent human tumor-associated carbohydrate antigens.
Collapse
Affiliation(s)
- Stefania Robakiewicz
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 du CNRS et Université de Lille, 50 Avenue Halley, 59650 Villeneuve d'Ascq, France
| | - Clarisse Bridot
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 du CNRS et Université de Lille, 50 Avenue Halley, 59650 Villeneuve d'Ascq, France
| | - Sonia Serna
- Glycotechnology Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, 20014 San Sebastian, Spain
| | - Ana Gimeno
- CIC bioGUNE, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - Begoña Echeverria
- Glycotechnology Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, 20014 San Sebastian, Spain
| | - Sandra Delgado
- CIC bioGUNE, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - Jérôme Ruyck
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 du CNRS et Université de Lille, 50 Avenue Halley, 59650 Villeneuve d'Ascq, France
| | - Shubham Semwal
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 du CNRS et Université de Lille, 50 Avenue Halley, 59650 Villeneuve d'Ascq, France
| | - Diego Charro
- CIC bioGUNE, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - Ann Dansercoer
- Unit for Structural Biology, VIB - UGent Center for Inflammation Research, Department of Biochemistry and Microbiology, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
| | - Kenneth Verstraete
- Unit for Structural Biology, VIB - UGent Center for Inflammation Research, Department of Biochemistry and Microbiology, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
| | - Mikel Azkargorta
- CIC bioGUNE, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - Kim Noort
- Laboratory of Nematology, Plant Science Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Ruud Wilbers
- Laboratory of Nematology, Plant Science Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Savvas N Savvides
- Unit for Structural Biology, VIB - UGent Center for Inflammation Research, Department of Biochemistry and Microbiology, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
| | - Nicola G A Abrescia
- CIC bioGUNE, Bizkaia Science and Technology Park, 48160 Derio, Spain.,IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Ana Arda
- CIC bioGUNE, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - Niels C Reichardt
- Glycotechnology Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramón 182, 20014 San Sebastian, Spain
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Bizkaia Science and Technology Park, 48160 Derio, Spain.,IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Julie Bouckaert
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 du CNRS et Université de Lille, 50 Avenue Halley, 59650 Villeneuve d'Ascq, France
| |
Collapse
|
6
|
Moqadam M, Tubiana T, Moutoussamy EE, Reuter N. Membrane models for molecular simulations of peripheral membrane proteins. ADVANCES IN PHYSICS: X 2021. [DOI: 10.1080/23746149.2021.1932589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Mahmoud Moqadam
- Department of Chemistry, University of Bergen, Bergen, Norway
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Thibault Tubiana
- Department of Chemistry, University of Bergen, Bergen, Norway
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Emmanuel E. Moutoussamy
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Nathalie Reuter
- Department of Chemistry, University of Bergen, Bergen, Norway
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| |
Collapse
|
7
|
Khan HM, Souza PCT, Thallmair S, Barnoud J, de Vries AH, Marrink SJ, Reuter N. Capturing Choline-Aromatics Cation-π Interactions in the MARTINI Force Field. J Chem Theory Comput 2020; 16:2550-2560. [PMID: 32096995 PMCID: PMC7175457 DOI: 10.1021/acs.jctc.9b01194] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
Cation−π
interactions play an important
role in biomolecular recognition, including interactions between membrane
phosphatidylcholine lipids and aromatic amino acids of peripheral
proteins. While molecular mechanics coarse grain (CG) force fields
are particularly well suited to simulate membrane proteins in general,
they are not parameterized to explicitly reproduce cation−π
interactions. We here propose a modification of the polarizable MARTINI
coarse grain (CG) model enabling it to model membrane binding events
of peripheral proteins whose aromatic amino acid interactions with
choline headgroups are crucial for their membrane binding. For this
purpose, we first collected and curated a dataset of eight peripheral
proteins from different families. We find that the MARTINI CG model
expectedly underestimates aromatics–choline interactions and
is unable to reproduce membrane binding of the peripheral proteins
in our dataset. Adjustments of the relevant interactions in the polarizable
MARTINI force field yield significant improvements in the observed
binding events. The orientation of each membrane-bound protein is
comparable to reference data from all-atom simulations and experimental
binding data. We also use negative controls to ensure that choline–aromatics
interactions are not overestimated. We finally check that membrane
properties, transmembrane proteins, and membrane translocation potential
of mean force (PMF) of aromatic amino acid side-chain analogues are
not affected by the new parameter set. This new version “MARTINI
2.3P” is a significant improvement over its predecessors and
is suitable for modeling membrane proteins including peripheral membrane
binding of peptides and proteins.
Collapse
Affiliation(s)
- Hanif M Khan
- Department of Biological Sciences, University of Bergen, N-5020 Bergen, Norway.,Computational Biology Unit, Department of Informatics, University of Bergen, N-5020 Bergen, Norway
| | - Paulo C T Souza
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, Netherlands
| | - Sebastian Thallmair
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, Netherlands
| | - Jonathan Barnoud
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, Netherlands
| | - Alex H de Vries
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, Netherlands
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, Netherlands
| | - Nathalie Reuter
- Computational Biology Unit, Department of Informatics, University of Bergen, N-5020 Bergen, Norway.,Department of Chemistry, University of Bergen, N-5020 Bergen, Norway
| |
Collapse
|
8
|
Thieblemont N, Witko-Sarsat V, Ariel A. Regulation of macrophage activation by proteins expressed on apoptotic neutrophils: Subversion towards autoimmunity by proteinase 3. Eur J Clin Invest 2018; 48 Suppl 2:e12990. [PMID: 30039869 DOI: 10.1111/eci.12990] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/27/2018] [Indexed: 12/13/2022]
Abstract
Neutrophils are critically involved in host defence and they also modulate the inflammatory process. Turning the inflammatory response towards a resolutive outcome requires a dialogue between apoptotic neutrophils and proresolving macrophages through complex key molecular interactions controlling efferocytosis, anti-inflammatory reprogramming and ultimately immune regulation. In this review, we will first focus on recent molecular analyses aiming at characterizing the role of proteins expressed on apoptotic neutrophils and their cognate partners expressed on macrophages in the resolution of inflammation. These will include chemokine receptors and their ligands and annexin A1 and its receptor FPR2. We will next depict how the structural and enzymatic properties of proteinase 3 (PR3), the autoantigen in vasculitis, allow its expression on apoptotic neutrophils, which in turn affects efferocytosis and immune response associated with the clearance of apoptotic cells. This example illustrates that the fate of apoptotic neutrophils directly influences the resolution of inflammation and immune responses thereby potentially contributing to systemic and nonresolving inflammation as well as autoimmunity.
Collapse
Affiliation(s)
- Nathalie Thieblemont
- INSERM U1016 Cochin Institute, Paris, France.,CNRS UMR 8104, Paris, France.,Université Paris-Descartes, Paris, France.,Center of Excellence LABEX Inflamex, Paris, France
| | - Véronique Witko-Sarsat
- INSERM U1016 Cochin Institute, Paris, France.,CNRS UMR 8104, Paris, France.,Université Paris-Descartes, Paris, France.,Center of Excellence LABEX Inflamex, Paris, France
| | - Amiram Ariel
- Department of Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
9
|
Tacnet-Delorme P, Gabillet J, Chatfield S, Thieblemont N, Frachet P, Witko-Sarsat V. Proteinase 3 Interferes With C1q-Mediated Clearance of Apoptotic Cells. Front Immunol 2018; 9:818. [PMID: 29755460 PMCID: PMC5932363 DOI: 10.3389/fimmu.2018.00818] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/04/2018] [Indexed: 11/25/2022] Open
Abstract
Proteinase 3 (PR3) is the autoantigen in granulomatosis with polyangiitis, an autoimmune necrotizing vasculitis associated with anti-neutrophil cytoplasmic antibodies (ANCAs). Moreover, PR3 is a serine protease whose membrane expression can potentiate inflammatory diseases such as ANCA-associated vasculitis and rheumatoid arthritis. During apoptosis, PR3 is co-externalized with phosphatidylserine (PS) and is known to modulate the clearance of apoptotic cells through a calreticulin (CRT)-dependent mechanism. The complement protein C1q is one mediator of efferocytosis, the clearance of altered self-cells, particularly apoptotic cells. Since PR3 and C1q are both involved in the clearance of apoptotic cells and immune response modulation and share certain common ligands (i.e., CRT and PS), we examined their possible interaction. We demonstrated that C1q binding was increased on apoptotic rat basophilic leukemia (RBL) cells that expressed PR3, and we demonstrated the direct interaction between purified C1q and PR3 molecules as shown by surface plasmon resonance. To better understand the functional consequence of this partnership, we tested C1q-dependent phagocytosis of the RBL cell line expressing PR3 and showed that PR3 impaired C1q enhancement of apoptotic cell uptake. These findings shed new light on the respective roles of C1q and PR3 in the elimination of apoptotic cells and suggest a novel potential axis to explore in autoimmune diseases characterized by a defect in apoptotic cell clearance and in the resolution of inflammation.
Collapse
Affiliation(s)
| | - Julie Gabillet
- INSERM U1016, Cochin Institute, Paris, France.,CNRS UMR 8104, Paris, France.,Université Paris-Descartes, Sorbonne Paris Cité, Paris, France
| | - Simon Chatfield
- INSERM U1016, Cochin Institute, Paris, France.,CNRS UMR 8104, Paris, France.,Université Paris-Descartes, Sorbonne Paris Cité, Paris, France.,Center of Excellence, LABEX Inflamex, Paris, France
| | - Nathalie Thieblemont
- INSERM U1016, Cochin Institute, Paris, France.,CNRS UMR 8104, Paris, France.,Université Paris-Descartes, Sorbonne Paris Cité, Paris, France.,Center of Excellence, LABEX Inflamex, Paris, France
| | | | - Véronique Witko-Sarsat
- INSERM U1016, Cochin Institute, Paris, France.,CNRS UMR 8104, Paris, France.,Université Paris-Descartes, Sorbonne Paris Cité, Paris, France.,Center of Excellence, LABEX Inflamex, Paris, France
| |
Collapse
|
10
|
Janciauskiene S, Wrenger S, Immenschuh S, Olejnicka B, Greulich T, Welte T, Chorostowska-Wynimko J. The Multifaceted Effects of Alpha1-Antitrypsin on Neutrophil Functions. Front Pharmacol 2018; 9:341. [PMID: 29719508 PMCID: PMC5914301 DOI: 10.3389/fphar.2018.00341] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/23/2018] [Indexed: 01/02/2023] Open
Abstract
Neutrophils are the predominant immune cells in human blood possessing heterogeneity, plasticity and functional diversity. The activation and recruitment of neutrophils into inflamed tissue in response to stimuli are tightly regulated processes. Alpha1-Antitrypsin (AAT), an acute phase protein, is one of the potent regulators of neutrophil activation via both -protease inhibitory and non-inhibitory functions. This review summarizes our current understanding of the effects of AAT on neutrophils, illustrating the interplay between AAT and the key effector functions of neutrophils.
Collapse
Affiliation(s)
- Sabina Janciauskiene
- Department of Respiratory Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Sabine Wrenger
- Department of Respiratory Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Stephan Immenschuh
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Beata Olejnicka
- Department of Medicine, Trelleborg Hospital, Trelleborg, Sweden
| | - Timm Greulich
- Department of Medicine, Pulmonary and Critical Care Medicine, Member of the German Center for Lung Research (DZL), University Hospital of Giessen and Marburg, University of Marburg, Marburg, Germany
| | - Tobias Welte
- Department of Respiratory Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Joanna Chorostowska-Wynimko
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| |
Collapse
|
11
|
Galassi VV, Villarreal MA, Montich GG. Relevance of the protein macrodipole in the membrane-binding process. Interactions of fatty-acid binding proteins with cationic lipid membranes. PLoS One 2018. [PMID: 29518146 PMCID: PMC5843346 DOI: 10.1371/journal.pone.0194154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The fatty acid-binding proteins L-BABP and Rep1-NCXSQ bind to anionic lipid membranes by electrostatic interactions. According to Molecular Dynamics (MD) simulations, the interaction of the protein macrodipole with the membrane electric field is a driving force for protein binding and orientation in the interface. To further explore this hypothesis, we studied the interactions of these proteins with cationic lipid membranes. As in the case of anionic lipid membranes, we found that both proteins, carrying a negative as well as a positive net charge, were bound to the positively charged membrane. Their major axis, those connecting the bottom of the β-barrel with the α-helix portal domain, were rotated about 180 degrees as compared with their orientations in the anionic lipid membranes. Fourier transform infrared (FTIR) spectroscopy of the proteins showed that the positively charged membranes were also able to induce conformational changes with a reduction of the β-strand proportion and an increase in α-helix secondary structure. Fatty acid-binding proteins (FABPs) are involved in several cell processes, such as maintaining lipid homeostasis in cells. They transport hydrophobic molecules in aqueous medium and deliver them into lipid membranes. Therefore, the interfacial orientation and conformation, both shown herein to be electrostatically determined, have a strong correlation with the specific mechanism by which each particular FABP exerts its biological function.
Collapse
Affiliation(s)
- Vanesa V. Galassi
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica “Ranwel Caputto”, Córdoba, Argentina
- CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
| | - Marcos A. Villarreal
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Teórica y Computacional, Córdoba, Argentina
- CONICET, Universidad Nacional de Córdoba. Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Córdoba, Argentina
| | - Guillermo G. Montich
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica “Ranwel Caputto”, Córdoba, Argentina
- CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
- * E-mail:
| |
Collapse
|
12
|
Witko-Sarsat V, Thieblemont N. Granulomatosis with polyangiitis (Wegener granulomatosis): A proteinase-3 driven disease? Joint Bone Spine 2018; 85:185-189. [DOI: 10.1016/j.jbspin.2017.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2017] [Indexed: 10/19/2022]
|
13
|
Tabatabaei-Dakhili SA, Aguayo-Ortiz R, Domínguez L, Velázquez-Martínez CA. Untying the knot of transcription factor druggability: Molecular modeling study of FOXM1 inhibitors. J Mol Graph Model 2018; 80:197-210. [PMID: 29414039 DOI: 10.1016/j.jmgm.2018.01.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 12/15/2017] [Accepted: 01/15/2018] [Indexed: 12/27/2022]
Abstract
The FOXM1 protein is a relevant transcription factor involved in cancer cell proliferation. The direct or indirect inhibition of this protein's transcriptional activity by small molecule drugs correlates well with a potentially significant anti-cancer profile, making this macro molecule a promising drug target. There are a few drug molecules reported to interact with (and inhibit) the FOXM1 DNA binding domain (FOXM1-BD), causing downregulation of protein expression and cancer cell proliferation inhibition. Among these drug molecules are the proteasome inhibitor thiostrepton, the former antidiabetic drug troglitazone, and the new FDI-6 molecule. Despite their structural differences, these drugs exert a similar inhibitory profile, and this observation prompted us to study a possible similar mechanism of action. Using a series of molecular dynamics simulations and docking protocols, we identified essential binding interactions exerted by all three classes of drugs, among which, a π-sulfur interaction (between a His287 and a sulfur-containing heterocycle) was the most important. In this report, we describe the preliminary evidence suggesting the presence of a drug-binding pocket within FOXM1 DNA binding domain, in which inhibitors fit to dissociate the protein-DNA complex. This finding suggests a common mechanism of action and a basic framework to design new FOXM1 inhibitors.
Collapse
Affiliation(s)
| | - Rodrigo Aguayo-Ortiz
- Facultad de Química, Departamento de Fisicoquímica, Universidad Nacional Autónoma de México, CDMX 04510, Mexico
| | - Laura Domínguez
- Facultad de Química, Departamento de Fisicoquímica, Universidad Nacional Autónoma de México, CDMX 04510, Mexico
| | | |
Collapse
|
14
|
Maximova K, Venken T, Reuter N, Trylska J. d-Peptides as inhibitors of PR3-membrane interactions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:458-466. [PMID: 29132840 DOI: 10.1016/j.bbamem.2017.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/02/2017] [Accepted: 11/07/2017] [Indexed: 01/08/2023]
Abstract
Proteinase 3 (PR3) is a neutrophil serine protease present in cytoplasmic granules but also expressed at the neutrophil surface where it mediates proinflammatory effects. Studies of the underlying molecular mechanisms have been hampered by the lack of inhibitors of the PR3 membrane anchorage. Indeed while there exist inhibitors of the catalytic activity of PR3, its membrane interfacial binding site (IBS) is distinct from its catalytic site. The IBS has been characterized both by mutagenesis experiments and molecular modeling. Through docking and molecular dynamics simulations we have designed d-peptides targeting the PR3 IBS. We used surface plasmon resonance to evaluate their effect on the binding of PR3 to phospholipid bilayers. Next, we verified their ability of binding to PR3 via fluorescence spectroscopy and isothermal titration calorimetry. The designed peptides did not affect the catalytic activity of PR3. A few peptides bound to PR3 hydrophobic pockets and inhibited PR3 binding to lipids. While the (KFF)3K d-peptide inconveniently showed a significant affinity for the lipids, another d-peptide (SAKEAFFKLLAS) did not and it inhibited the PR3-membrane binding site with IC50 of about 40μM. Our work puts forward d-peptides as promising inhibitors of peripheral protein-membrane interactions, which remain high-hanging fruits in drug design.
Collapse
Affiliation(s)
- Ksenia Maximova
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Tom Venken
- Department of Molecular Biology, University of Bergen, 5008 Bergen, Norway; Flemish Institute for Technological Research, VITO, B-2400 Mol, Belgium
| | - Nathalie Reuter
- Department of Molecular Biology, University of Bergen, 5008 Bergen, Norway.
| | - Joanna Trylska
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland.
| |
Collapse
|
15
|
Loke I, Østergaard O, Heegaard NHH, Packer NH, Thaysen-Andersen M. Paucimannose-Rich N-glycosylation of Spatiotemporally Regulated Human Neutrophil Elastase Modulates Its Immune Functions. Mol Cell Proteomics 2017; 16:1507-1527. [PMID: 28630087 PMCID: PMC5546201 DOI: 10.1074/mcp.m116.066746] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 06/04/2017] [Indexed: 12/22/2022] Open
Abstract
Human neutrophil elastase (HNE) is an important N-glycosylated serine protease in the innate immune system, but the structure and immune-modulating functions of HNE N-glycosylation remain undescribed. Herein, LC-MS/MS-based glycan, glycopeptide and glycoprotein profiling were utilized to first determine the heterogeneous N-glycosylation of HNE purified from neutrophil lysates and then from isolated neutrophil granules of healthy individuals. The spatiotemporal expression of HNE during neutrophil activation and the biological importance of its N-glycosylation were also investigated using immunoblotting, cell surface capture, native MS, receptor interaction, protease inhibition, and bacteria growth assays. Site-specific HNE glycoprofiling demonstrated that unusual paucimannosidic N-glycans, particularly Manα1,6Manβ1,4GlcNAcβ1,4(Fucα1,6)GlcNAcβ, predominantly occupied Asn124 and Asn173. The equally unusual core fucosylated monoantenna complex-type N-sialoglycans also decorated these two fully occupied sites. In contrast, the mostly unoccupied Asn88 carried nonfucosylated paucimannosidic N-glycans probably resulting from low glycosylation site solvent accessibility. Asn185 was not glycosylated. Subcellular- and site-specific glycoprofiling showed highly uniform N-glycosylation of HNE residing in distinct neutrophil compartments. Stimulation-induced cell surface mobilization demonstrated a spatiotemporal regulation, but not cell surface-specific glycosylation signatures, of HNE in activated human neutrophils. The three glycosylation sites of HNE were located distal to the active site indicating glycan functions other than interference with HNE enzyme activity. Functionally, the paucimannosidic HNE glycoforms displayed preferential binding to human mannose binding lectin compared with the HNE sialoglycoforms, suggesting a glycoform-dependent involvement of HNE in complement activation. The heavily N-glycosylated HNE protease inhibitor, α1-antitrypsin, displayed concentration-dependent complex formation and preferred glycoform-glycoform interactions with HNE. Finally, both enzymatically active HNE and isolated HNE N-glycans demonstrated low micromolar concentration-dependent growth inhibition of clinically-relevant Pseudomonas aeruginosa, suggesting some bacteriostatic activity is conferred by the HNE N-glycans. Taken together, these observations support that the unusual HNE N-glycosylation, here reported for the first time, is involved in modulating multiple immune functions central to inflammation and infection.
Collapse
Affiliation(s)
- Ian Loke
- From the ‡Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Ole Østergaard
- §Department of Autoimmunology and Biomarkers, Statens Serum Institut, DK-2300 Copenhagen, Denmark
| | - Niels H H Heegaard
- §Department of Autoimmunology and Biomarkers, Statens Serum Institut, DK-2300 Copenhagen, Denmark
| | - Nicolle H Packer
- From the ‡Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Morten Thaysen-Andersen
- From the ‡Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia;
| |
Collapse
|
16
|
Martin KR, Witko-Sarsat V. Proteinase 3: the odd one out that became an autoantigen. J Leukoc Biol 2017; 102:689-698. [PMID: 28546501 DOI: 10.1189/jlb.3mr0217-069r] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/07/2017] [Accepted: 04/16/2017] [Indexed: 01/09/2023] Open
Abstract
Neutrophils are critical in the defense against bacterial and fungal pathogens, and they also modulate the inflammatory process. The areas where neutrophils are studied have expanded from the restricted field of antibacterial defense to the modulation of inflammation and finally, to fine-tuning immune responses. As a result, recent studies have shown that neutrophils are implicated in several systemic autoimmune diseases, although exactly how neutrophils contribute to these diseases and the molecular mechanisms responsible are still under investigation. In a group of autoimmune vasculitides associated with anti-neutrophil cytoplasmic antibodies (AAVs), granulomatosis with polyangiitis (GPA) illustrates the concept that autoimmunity can develop against one specific neutrophil protein, namely, proteinase 3 (PR3), one of the four serine protease homologs contained within azurophilic granules. In this review, we will focus on recent molecular analyses combined with functional studies that provide clear evidence that the pathogenic properties of PR3 are not only a result of its enzymatic activity but also mediated by a particular structural element-the hydrophobic patch-which facilitates associations with various proteins and lipids and permits anchorage into the plasma membrane. Furthermore, these unique structural and functional characteristics of PR3 might be key contributors to the systemic inflammation and to the immune dysregulation observed in GPA.
Collapse
Affiliation(s)
- Katherine R Martin
- Institut National de la Santé et de la Recherche Médicale, U1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique-Unité Mixte de Recherche 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France; and.,Center of Excellence, LabEx Inflamex, Paris, France
| | - Véronique Witko-Sarsat
- Institut National de la Santé et de la Recherche Médicale, U1016, Institut Cochin, Paris, France; .,Centre National de la Recherche Scientifique-Unité Mixte de Recherche 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France; and.,Center of Excellence, LabEx Inflamex, Paris, France
| |
Collapse
|
17
|
Characterization of the CD177 interaction with the ANCA antigen proteinase 3. Sci Rep 2017; 7:43328. [PMID: 28240246 PMCID: PMC5327412 DOI: 10.1038/srep43328] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 01/24/2017] [Indexed: 01/13/2023] Open
Abstract
Proteinase 3 is a serine protease found in neutrophil granules and on the extracellular neutrophil membrane (mPR3). mPR3 is a major antigen for anti-neutrophil cytoplasmic antibodies (PR3-ANCAs), autoantibodies causing fatal autoimmune diseases. In most individuals, a subpopulation of neutrophils also produce CD177, proposed to present additional PR3 on the surface, resulting in CD177neg/mPR3low and CD177pos/mPR3high neutrophil subsets. A positive correlation has been shown between mPR3 abundance, disease incidence, and clinical outcome. We present here a detailed investigation of the PR3:CD177 complex, verifying the interaction, demonstrating the effect of binding on PR3 proteolytic activity and explaining the accessibility of major PR3-ANCA epitopes. We observed high affinity PR3:CD177 complex formation by surface plasmon resonance. Using flow cytometry and a PR3-specific FRET assay, we found that CD177 binding reduced the proteolytic activity of PR3 in vitro using purified proteins, in neutrophil degranulation supernatants containing wtPR3 and directly on mPR3high neutrophils and PR3-loaded HEK cells. Finally, CD177pos/mPR3high neutrophils showed no migration advantage in vitro or in vivo when migrating from the blood into the oral cavity. We illuminate details of the PR3:CD177 interaction explaining mPR3 membrane orientation and proteolytic activity with relevance to ANCA activation of the distinct mPR3 neutrophil populations.
Collapse
|
18
|
Aksnes H, Goris M, Strømland Ø, Drazic A, Waheed Q, Reuter N, Arnesen T. Molecular determinants of the N-terminal acetyltransferase Naa60 anchoring to the Golgi membrane. J Biol Chem 2017; 292:6821-6837. [PMID: 28196861 DOI: 10.1074/jbc.m116.770362] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/29/2017] [Indexed: 11/06/2022] Open
Abstract
Nα-Acetyltransferase 60 (Naa60 or NatF) was recently identified as an unconventional N-terminal acetyltransferase (NAT) because it localizes to organelles, in particular the Golgi apparatus, and has a preference for acetylating N termini of the transmembrane proteins. This knowledge challenged the prevailing view of N-terminal acetylation as a co-translational ribosome-associated process and suggested a new mechanistic functioning for the enzymes responsible for this increasingly recognized protein modification. Crystallography studies on Naa60 were unable to resolve the C-terminal tail of Naa60, which is responsible for the organellar localization. Here, we combined modeling, in vitro assays, and cellular localization studies to investigate the secondary structure and membrane interacting capacity of Naa60. The results show that Naa60 is a peripheral membrane protein. Two amphipathic helices within the Naa60 C terminus bind the membrane directly in a parallel position relative to the lipid bilayer via hydrophobic and electrostatic interactions. A peptide corresponding to the C terminus was unstructured in solution and only folded into an α-helical conformation in the presence of liposomes. Computational modeling and cellular mutational analysis revealed the hydrophobic face of two α-helices to be critical for membranous localization. Furthermore, we found a strong and specific binding preference of Naa60 toward membranes containing the phosphatidylinositol PI(4)P, thus possibly explaining the primary residency of Naa60 at the PI(4)P-rich Golgi. In conclusion, we have defined the mode of cytosolic Naa60 anchoring to the Golgi apparatus, most likely occurring post-translationally and specifically facilitating post-translational N-terminal acetylation of many transmembrane proteins.
Collapse
Affiliation(s)
- Henriette Aksnes
- From the Department of Molecular Biology, University of Bergen, N-5020 Bergen
| | - Marianne Goris
- From the Department of Molecular Biology, University of Bergen, N-5020 Bergen
| | - Øyvind Strømland
- From the Department of Molecular Biology, University of Bergen, N-5020 Bergen
| | - Adrian Drazic
- From the Department of Molecular Biology, University of Bergen, N-5020 Bergen
| | - Qaiser Waheed
- From the Department of Molecular Biology, University of Bergen, N-5020 Bergen.,the Computational Biology Unit, Department of Informatics, University of Bergen, N-5020 Bergen, and
| | - Nathalie Reuter
- From the Department of Molecular Biology, University of Bergen, N-5020 Bergen.,the Computational Biology Unit, Department of Informatics, University of Bergen, N-5020 Bergen, and
| | - Thomas Arnesen
- From the Department of Molecular Biology, University of Bergen, N-5020 Bergen, .,the Department of Surgery, Haukeland University Hospital, N-5021 Bergen, Norway
| |
Collapse
|
19
|
Affiliation(s)
- Ralph Kettritz
- Experimental and Clinical Research Center; A joint cooperation between the Charité and the Max-Delbrück Center for Molecular Medicine (MDC) and Department of Nephrology and Intensive Care Medicine; Charité University Health Services; Berlin Germany
| |
Collapse
|
20
|
Loke I, Kolarich D, Packer NH, Thaysen-Andersen M. Emerging roles of protein mannosylation in inflammation and infection. Mol Aspects Med 2016; 51:31-55. [PMID: 27086127 DOI: 10.1016/j.mam.2016.04.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/05/2016] [Accepted: 04/10/2016] [Indexed: 02/07/2023]
Abstract
Proteins are frequently modified by complex carbohydrates (glycans) that play central roles in maintaining the structural and functional integrity of cells and tissues in humans and lower organisms. Mannose forms an essential building block of protein glycosylation, and its functional involvement as components of larger and diverse α-mannosidic glycoepitopes in important intra- and intercellular glycoimmunological processes is gaining recognition. With a focus on the mannose-rich asparagine (N-linked) glycosylation type, this review summarises the increasing volume of literature covering human and non-human protein mannosylation, including their structures, biosynthesis and spatiotemporal expression. The review also covers their known interactions with specialised host and microbial mannose-recognising C-type lectin receptors (mrCLRs) and antibodies (mrAbs) during inflammation and pathogen infection. Advances in molecular mapping technologies have recently revealed novel immuno-centric mannose-terminating truncated N-glycans, termed paucimannosylation, on human proteins. The cellular presentation of α-mannosidic glycoepitopes on N-glycoproteins appears tightly regulated; α-mannose determinants are relative rare glycoepitopes in physiological extracellular environments, but may be actively secreted or leaked from cells to transmit potent signals when required. Simultaneously, our understanding of the molecular basis on the recognition of mannosidic epitopes by mrCLRs including DC-SIGN, mannose receptor, mannose binding lectin and mrAb is rapidly advancing, together with the functional implications of these interactions in facilitating an effective immune response during physiological and pathophysiological conditions. Ultimately, deciphering these complex mannose-based receptor-ligand interactions at the detailed molecular level will significantly advance our understanding of immunological disorders and infectious diseases, promoting the development of future therapeutics to improve patient clinical outcomes.
Collapse
Affiliation(s)
- Ian Loke
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Daniel Kolarich
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Nicolle H Packer
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Morten Thaysen-Andersen
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
21
|
Guarino C, Legowska M, Epinette C, Kellenberger C, Dallet-Choisy S, Sieńczyk M, Gabant G, Cadene M, Zoidakis J, Vlahou A, Wysocka M, Marchand-Adam S, Jenne DE, Lesner A, Gauthier F, Korkmaz B. New selective peptidyl di(chlorophenyl) phosphonate esters for visualizing and blocking neutrophil proteinase 3 in human diseases. J Biol Chem 2014; 289:31777-31791. [PMID: 25288799 DOI: 10.1074/jbc.m114.591339] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The function of neutrophil protease 3 (PR3) is poorly understood despite of its role in autoimmune vasculitides and its possible involvement in cell apoptosis. This makes it different from its structural homologue neutrophil elastase (HNE). Endogenous inhibitors of human neutrophil serine proteases preferentially inhibit HNE and to a lesser extent, PR3. We constructed a single-residue mutant PR3 (I217R) to investigate the S4 subsite preferences of PR3 and HNE and used the best peptide substrate sequences to develop selective phosphonate inhibitors with the structure Ac-peptidyl(P)(O-C6H4-4-Cl)2. The combination of a prolyl residue at P4 and an aspartyl residue at P2 was totally selective for PR3. We then synthesized N-terminally biotinylated peptidyl phosphonates to identify the PR3 in complex biological samples. These inhibitors resisted proteolytic degradation and rapidly inactivated PR3 in biological fluids such as inflammatory lung secretions and the urine of patients with bladder cancer. One of these inhibitors revealed intracellular PR3 in permeabilized neutrophils and on the surface of activated cells. They hardly inhibited PR3 bound to the surface of stimulated neutrophils despite their low molecular mass, suggesting that the conformation and reactivity of membrane-bound PR3 is altered. This finding is relevant for autoantibody binding and the subsequent activation of neutrophils in granulomatosis with polyangiitis (formerly Wegener disease). These are the first inhibitors that can be used as probes to monitor, detect, and control PR3 activity in a variety of inflammatory diseases.
Collapse
Affiliation(s)
- Carla Guarino
- INSERM U-1100/EA-6305 Centre d'Etude des Pathologies Respiratoires and Université François Rabelais, 37032 Tours, France,; Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research (DZL), 81377 Munich and Max Planck Institute of Neurobiology, 82152 Planegg-Martinsried, Germany
| | - Monika Legowska
- Faculty of Chemistry, University of Gdansk, 80-952, Gdansk, Poland
| | - Christophe Epinette
- INSERM U-1100/EA-6305 Centre d'Etude des Pathologies Respiratoires and Université François Rabelais, 37032 Tours, France
| | - Christine Kellenberger
- Architecture et Fonction des Macromolécules Biologiques, CNRS-Unité Mixte de Recherche (UMR),13288 Marseille, France
| | - Sandrine Dallet-Choisy
- INSERM U-1100/EA-6305 Centre d'Etude des Pathologies Respiratoires and Université François Rabelais, 37032 Tours, France
| | - Marcin Sieńczyk
- Wroclaw University of Technology, Faculty of Chemistry, Division of Medicinal Chemistry and Microbiology, 50-370 Wroclaw, Poland
| | - Guillaume Gabant
- Centre de Biophysique Moléculaire, UPR4301 CNRS, 45071 Orléans, France
| | - Martine Cadene
- Centre de Biophysique Moléculaire, UPR4301 CNRS, 45071 Orléans, France
| | - Jérôme Zoidakis
- Biotechnology Division, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece, and
| | - Antonia Vlahou
- Biotechnology Division, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece, and
| | | | - Sylvain Marchand-Adam
- INSERM U-1100/EA-6305 Centre d'Etude des Pathologies Respiratoires and Université François Rabelais, 37032 Tours, France
| | - Dieter E Jenne
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research (DZL), 81377 Munich and Max Planck Institute of Neurobiology, 82152 Planegg-Martinsried, Germany
| | - Adam Lesner
- Faculty of Chemistry, University of Gdansk, 80-952, Gdansk, Poland
| | - Francis Gauthier
- INSERM U-1100/EA-6305 Centre d'Etude des Pathologies Respiratoires and Université François Rabelais, 37032 Tours, France
| | - Brice Korkmaz
- INSERM U-1100/EA-6305 Centre d'Etude des Pathologies Respiratoires and Université François Rabelais, 37032 Tours, France,.
| |
Collapse
|
22
|
Two homologous neutrophil serine proteases bind to POPC vesicles with different affinities: When aromatic amino acids matter. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:3191-202. [PMID: 25218402 DOI: 10.1016/j.bbamem.2014.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 08/29/2014] [Accepted: 09/03/2014] [Indexed: 11/22/2022]
Abstract
Neutrophil serine proteases Proteinase 3 (PR3) and human neutrophil elastase (HNE) are homologous antibiotic serine proteases of the polymorphonuclear neutrophils. Despite sharing a 56% sequence identity they have been shown to have different functions and localizations in the neutrophils. In particular, and in contrast to HNE, PR3 has been detected at the outer leaflet of the plasma membrane and its membrane expression is a risk factor in a number of chronic inflammatory diseases. Although a plethora of studies performed in various cell-based assays have been reported, the mechanism by which PR3, and possibly HNE bind to simple membrane models remains unclear. We used surface plasmon resonance (SPR) experiments to measure and compare the affinity of PR3 and HNE for large unilamellar vesicles composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). We also conducted 500-nanosecond long molecular dynamics simulations of each enzyme at the surface of a POPC bilayer to map the interactions between proteins and lipids and rationalize the difference in affinity observed in the SPR experiment. We find that PR3 binds strongly to POPC large unilamellar vesicles (Kd=9.2×10(-7)M) thanks to the insertion of three phenylalanines, one tryptophan and one leucine beyond the phosphate groups of the POPC lipids. HNE binds in a significantly weaker manner (Kd>10(-5)M) making mostly electrostatic interactions via lysines and arginines and inserting only one leucine between the hydrophobic lipid tails. Our results support the early reports that PR3, unlike HNE, is able to directly and strongly anchor directly to the neutrophil membrane.
Collapse
|
23
|
Galassi VV, Villarreal MA, Posada V, Montich GG. Interactions of the fatty acid-binding protein ReP1-NCXSQ with lipid membranes. Influence of the membrane electric field on binding and orientation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:910-20. [DOI: 10.1016/j.bbamem.2013.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 11/12/2013] [Accepted: 11/13/2013] [Indexed: 11/17/2022]
|
24
|
Grauffel C, Yang B, He T, Roberts MF, Gershenson A, Reuter N. Cation-π interactions as lipid-specific anchors for phosphatidylinositol-specific phospholipase C. J Am Chem Soc 2013; 135:5740-50. [PMID: 23506313 PMCID: PMC3797534 DOI: 10.1021/ja312656v] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Amphitropic proteins, such as the virulence factor phosphatidylinositol-specific phospholipase C (PI-PLC) from Bacillus thuringiensis , often depend on lipid-specific recognition of target membranes. However, the recognition mechanisms for zwitterionic lipids, such as phosphatidylcholine, which is enriched in the outer leaflet of eukaryotic cells, are not well understood. A 500 ns long molecular dynamics simulation of PI-PLC at the surface of a lipid bilayer revealed a strikingly high number of interactions between tyrosines at the interfacial binding site and lipid choline groups with structures characteristic of cation-π interactions. Membrane affinities of PI-PLC tyrosine variants mostly tracked the simulation results, falling into two classes: (i) those with minor losses in affinity, Kd(mutant)/Kd(wild-type) ≤ 5 and (ii) those where the apparent Kd was 50-200 times higher than wild-type. Estimating ΔΔG for these Tyr/PC interactions from the apparent Kd values reveals that the free energy associated with class I is ~1 kcal/mol, comparable to the value predicted by the Wimley-White hydrophobicity scale. In contrast, removal of class II tyrosines has a higher energy cost: ~2.5 kcal/mol toward pure PC vesicles. These higher energies correlate well with the occupancy of the cation-π adducts throughout the MD simulation. Together, these results strongly indicate that PI-PLC interacts with PC headgroups via cation-π interactions with tyrosine residues and suggest that cation-π interactions at the interface may be a mechanism for specific lipid recognition by amphitropic and membrane proteins.
Collapse
Affiliation(s)
- Cédric Grauffel
- Department of Molecular Biology, University of Bergen, Norway
- Computational Biology Unit, Uni Research, Bergen, Norway
| | - Boqian Yang
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, U.S.A
- Department of Chemistry, Boston College, Chestnut Hill, U.S.A
| | - Tao He
- Department of Chemistry, Boston College, Chestnut Hill, U.S.A
| | - Mary F. Roberts
- Department of Chemistry, Boston College, Chestnut Hill, U.S.A
| | - Anne Gershenson
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, U.S.A
| | - Nathalie Reuter
- Department of Molecular Biology, University of Bergen, Norway
- Computational Biology Unit, Uni Research, Bergen, Norway
| |
Collapse
|
25
|
|
26
|
Yoo J, Cui Q. Three-dimensional stress field around a membrane protein: atomistic and coarse-grained simulation analysis of gramicidin A. Biophys J 2013; 104:117-27. [PMID: 23332064 PMCID: PMC3540266 DOI: 10.1016/j.bpj.2012.11.3812] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 10/29/2012] [Accepted: 11/21/2012] [Indexed: 01/25/2023] Open
Abstract
Using both atomistic and coarse-grained (CG) models, we compute the three-dimensional stress field around a gramicidin A (gA) dimer in lipid bilayers that feature different degrees of negative hydrophobic mismatch. The general trends in the computed stress field are similar at the atomistic and CG levels, supporting the use of the CG model for analyzing the mechanical features of protein/lipid/water interfaces. The calculations reveal that the stress field near the protein-lipid interface exhibits a layered structure with both significant repulsive and attractive regions, with the magnitude of the stress reaching 1000 bar in certain regions. Analysis of density profiles and stress field distributions helps highlight the Trp residues at the protein/membrane/water interface as mechanical anchors, suggesting that similar analysis is useful for identifying tension sensors in other membrane proteins, especially membrane proteins involved in mechanosensation. This work fosters a connection between microscopic and continuum mechanics models for proteins in complex environments and makes it possible to test the validity of assumptions commonly made in continuum mechanics models for membrane mediated processes. For example, using the calculated stress field, we estimate the free energy of membrane deformation induced by the hydrophobic mismatch, and the results for regions beyond the annular lipids are in general consistent with relevant experimental data and previous theoretical estimates using elasticity theory. On the other hand, the assumptions of homogeneous material properties for the membrane and a bilayer thickness at the protein/lipid interface being independent of lipid type (e.g., tail length) appear to be oversimplified, highlighting the importance of annular lipids of membrane proteins. Finally, the stress field analysis makes it clear that the effect of even rather severe hydrophobic mismatch propagates to only about two to three lipid layers, thus putting a limit on the range of cooperativity between membrane proteins in crowded cellular membranes.
Collapse
Affiliation(s)
- Jejoong Yoo
- Graduate Program in Biophysics, University of Wisconsin, Madison, Wisconsin
| | - Qiang Cui
- Graduate Program in Biophysics, University of Wisconsin, Madison, Wisconsin
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
27
|
Cheng J, Karri S, Grauffel C, Wang F, Reuter N, Roberts MF, Wintrode PL, Gershenson A. Does changing the predicted dynamics of a phospholipase C alter activity and membrane binding? Biophys J 2013; 104:185-95. [PMID: 23332071 DOI: 10.1016/j.bpj.2012.11.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 11/02/2012] [Accepted: 11/19/2012] [Indexed: 12/11/2022] Open
Abstract
The enzymatic activity of secreted phosphatidylinositol-specific phospholipase C (PI-PLC) enzymes is associated with bacterial virulence. Although the PI-PLC active site has no obvious lid, molecular-dynamics simulations suggest that correlated loop motions may limit access to the active site, and two Pro residues, Pro(245) and Pro(254), are associated with these correlated motions. Whereas the region containing both Pro residues is quite variable among PI-PLCs, it shows high conservation in virulence-associated, secreted PI-PLCs that bind to the surface of cells. These regions of the protein are also associated with phosphatidylcholine binding, which enhances PI-PLC activity. In silico mutagenesis of Pro(245) disrupts correlated motions between the two halves of Bacillus thuringiensis PI-PLC, and Pro(245) variants show significantly reduced enzymatic activity in all assay systems. PC still enhanced activity, but not to the level of wild-type enzyme. Mutagenesis of Pro(254) appears to stiffen the PI-PLC structure, but experimental mutations had minor effects on activity and membrane binding. With the exception of P245Y, reduced activity was not associated with reduced membrane affinity. This combination of simulations and experiments suggests that correlated motions between the two halves of PI-PLC may be more important for enzymatic activity than for vesicle binding.
Collapse
Affiliation(s)
- Jiongjia Cheng
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Neutrophils are pivotal to host defence during infectious diseases. However, activated neutrophils may also cause undesired tissue damage. Ample examples include small-vessel inflammatory diseases (vasculitis) that are associated with anti-neutrophil cytoplasmic autoantibodies (ANCA) residing in the patients' plasma. In addition to being an important diagnostic tool, convincing evidence shows that ANCA are pathogenic. ANCA-neutrophil interactions induce important cellular responses that result in highly inflammatory necrotizing vascular damage. The interaction begins with ANCA binding to their target antigens on primed neutrophils, proceeds by recruiting transmembrane molecules to initiate intracellular signal transduction and culminates in activation of effector functions that ultimately mediate the tissue damage.
Collapse
Affiliation(s)
- R Kettritz
- Nephrologie und Internistische Intensivmedizin Charité Virchow Klinikum and Experimental and Clinical Research Center, a joint co-operation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin-Buch, Berlin, Germany.
| |
Collapse
|
29
|
Kantari C, Millet A, Gabillet J, Hajjar E, Broemstrup T, Pluta P, Reuter N, Witko-Sarsat V. Molecular analysis of the membrane insertion domain of proteinase 3, the Wegener's autoantigen, in RBL cells: implication for its pathogenic activity. J Leukoc Biol 2011; 90:941-50. [PMID: 21821719 DOI: 10.1189/jlb.1210695] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PR3, also called myeloblastin, is a neutrophil serine protease that promotes myeloid cell proliferation by cleaving the cyclin-dependent kinase inhibitor p21(cip1/waf1). In addition, it is the target of ANCA in GPA, a necrotizing vasculitis. Anti-PR3 ANCA binding to membrane-expressed PR3 triggers neutrophil activation, potentiating vascular inflammation. This study performed in RBL cells identifies the structural motifs of PR3 membrane anchorage and examines its impact on PR3 proinflammatory and proliferative functions. With the use of MD simulations and mutagenesis, we demonstrate that the mutations of four hydrophobic (F180, F181, L228, F229) or four basic (R193, R194, K195, R227) amino acids abrogated PR3 membrane anchorage. The hydrophobic patch-deficient PR3 mutant (PR34H4A) was still able to cleave the synthetic substrate Boc-Ala-Pro-Val in cell lysates. However, in contrast to WT PR3, PR34H4A was not expressed at the plasma membrane after degranulation and failed to cleave extracellular fibronectin, was not externalized after apoptosis and did not impair macrophage phagocytosis of apoptotic cells, did not promote myeloid cell proliferation and failed to cleave p21/waf1. PR3 membrane insertion appears to be pivotal for its proinflammatory activities, such as extracellular proteolysis and impairment of apoptotic cell clearance, but also for myeloid cell proliferation. Targeting membrane-associated PR3 might constitute a novel, anti-inflammatory therapeutic strategy in inflammatory disease especially in vasculitis, but this approach has to be validated in mature neutrophils.
Collapse
|
30
|
Silva F, Hummel AM, Jenne DE, Specks U. Discrimination and variable impact of ANCA binding to different surface epitopes on proteinase 3, the Wegener's autoantigen. J Autoimmun 2011; 35:299-308. [PMID: 20810247 DOI: 10.1016/j.jaut.2010.06.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 06/03/2010] [Accepted: 06/07/2010] [Indexed: 11/28/2022]
Abstract
Proteinase 3 (PR3)-specific antineutrophil cytoplasmic antibodies (ANCA) are highly specific for the autoimmune small vessel vasculitis, Wegener's granulomatosis (WG). PR3-ANCA have proven diagnostic value but their pathogenic potential and utility as a biomarker for disease activity remain unclear. PR3-ANCA recognize conformational epitopes, and epitope-specific PR3-ANCA subsets with variable impact on biological functions of PR3 have been postulated. The aims of this study were to identify specific PR3 surface epitopes recognized by monoclonal antibodies (moAbs) and to determine whether the findings can be used to measure the functional impact of epitope-specific PR3-ANCA and their potential relationship to disease activity. We used a novel flow cytometry assay based on TALON-beads coated with recombinant human (H) and murine (M) PR3 and 10 custom-designed chimeric human/mouse rPR3-variants (Hm1-5/Mh1-5) identifying 5 separate non-conserved PR3 surface epitopes. Anti-PR3 moAbs recognize 4 major surface epitopes, and we identified the specific surface location of 3 of these with the chimeric rPR3-variants. The ability of PR3-ANCA to inhibit the enzymatic activity of PR3 was measured indirectly using a capture-ELISA system based on the different epitopes recognized by capturing moAbs. Epitope-specific PR3-ANCA capture-ELISA results obtained from patient plasma (n=27) correlated with the inhibition of enzymatic activity of PR3 by paired IgG preparations (r=0.7, P<0.01). The capture-ELISA results also seem to reflect disease activity. In conclusion, insights about epitopes recognized by anti-PR3 moAbs can be applied to separate PR3-ANCA subsets with predictable functional qualities. The ability of PR3-ANCA to inhibit the enzymatic activity of PR3, a property linked to disease activity, can now be gauged using a simple epitope-based capture-ELISA system.
Collapse
Affiliation(s)
- Francisco Silva
- Thoracic Diseases Research Unit, Stabile Bldg. 8-56, Division of Pulmonary and Critical Care Medicine, Mayo Clinic and Foundation, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
31
|
Korkmaz B, Horwitz MS, Jenne DE, Gauthier F. Neutrophil elastase, proteinase 3, and cathepsin G as therapeutic targets in human diseases. Pharmacol Rev 2011; 62:726-59. [PMID: 21079042 DOI: 10.1124/pr.110.002733] [Citation(s) in RCA: 604] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Polymorphonuclear neutrophils are the first cells recruited to inflammatory sites and form the earliest line of defense against invading microorganisms. Neutrophil elastase, proteinase 3, and cathepsin G are three hematopoietic serine proteases stored in large quantities in neutrophil cytoplasmic azurophilic granules. They act in combination with reactive oxygen species to help degrade engulfed microorganisms inside phagolysosomes. These proteases are also externalized in an active form during neutrophil activation at inflammatory sites, thus contributing to the regulation of inflammatory and immune responses. As multifunctional proteases, they also play a regulatory role in noninfectious inflammatory diseases. Mutations in the ELA2/ELANE gene, encoding neutrophil elastase, are the cause of human congenital neutropenia. Neutrophil membrane-bound proteinase 3 serves as an autoantigen in Wegener granulomatosis, a systemic autoimmune vasculitis. All three proteases are affected by mutations of the gene (CTSC) encoding dipeptidyl peptidase I, a protease required for activation of their proform before storage in cytoplasmic granules. Mutations of CTSC cause Papillon-Lefèvre syndrome. Because of their roles in host defense and disease, elastase, proteinase 3, and cathepsin G are of interest as potential therapeutic targets. In this review, we describe the physicochemical functions of these proteases, toward a goal of better delineating their role in human diseases and identifying new therapeutic strategies based on the modulation of their bioavailability and activity. We also describe how nonhuman primate experimental models could assist with testing the efficacy of proposed therapeutic strategies.
Collapse
Affiliation(s)
- Brice Korkmaz
- INSERM U-618 Protéases et Vectorisation Pulmonaires, Université François Rabelais, Faculté de médecine, 10 Boulevard Tonnellé, Tours, France.
| | | | | | | |
Collapse
|
32
|
Broemstrup T, Reuter N. How does proteinase 3 interact with lipid bilayers? Phys Chem Chem Phys 2010; 12:7487-96. [PMID: 20532386 DOI: 10.1039/b924117e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Proteinase 3 (PR3) is a serine protease of the neutrophils whose membrane expression is relevant in a number of inflammatory pathologies. It has been shown to strongly interact with reconstituted bilayers containing dimyristoylphosphatidylcholine (DMPC), dimyristoylphosphatidylglycerol (DMPG) or mixtures of both phospholipids. Here we present the results of molecular dynamics simulations of PR3 anchored at three different phospholipid bilayers: DMPC, DMPG and an equimolar mixture of DMPC/DMPG. We present for the first time a detailed model of membrane-bound PR3. A thorough inventory of the interaction between the lipids and the enzyme reveals three types of interactions contributing to the anchorage of PR3. Basic residues (R177, R186A, R186B, K187 and R222) interact via hydrogen bonds with the lipid headgroups to stabilize PR3 at the interfacial membrane region. Hydrophobic amino acids (V163, F165, F166, I217, L223, and F224) insert into the hydrophobic core below the carbonyl groups of the bilayers and six aromatic amino acids (F165, F192, F215, W218, F224, and F227) contribute electrostatic interaction via cation-pi interactions with the choline groups of DMPC. PR3 presents all the characteristics of a peripheral membrane protein with an ability to bind negative phospholipids. Although the catalytic triad remains unperturbed by the presence of the membrane, the ligand binding sites are located in close proximity to the membrane and amino acids K99 and I217 interact significantly with the lipids. We expect the binding of long ligands to be modified by the presence of the lipids.
Collapse
Affiliation(s)
- Torben Broemstrup
- Department of Informatics, University of Bergen, 5008, Bergen, Norway.
| | | |
Collapse
|
33
|
Hajjar E, Broemstrup T, Kantari C, Witko-Sarsat V, Reuter N. Structures of human proteinase 3 and neutrophil elastase--so similar yet so different. FEBS J 2010; 277:2238-54. [PMID: 20423453 DOI: 10.1111/j.1742-4658.2010.07659.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Proteinase 3 and neutrophil elastase are serine proteinases of the polymorphonuclear neutrophils, which are considered to have both similar localization and ligand specificity because of their high sequence similarity. However, recent studies indicate that they might have different and yet complementary physiologic roles. Specifically, proteinase 3 has intracellular specific protein substrates resulting in its involvement in the regulation of intracellular functions such as proliferation or apoptosis. It behaves as a peripheral membrane protein and its membrane expression is a risk factor in chronic inflammatory diseases. Moreover, in contrast to human neutrophil elastase, proteinase 3 is the preferred target antigen in Wegener's granulomatosis, a particular type of vasculitis. We review the structural basis for the different ligand specificities and membrane binding mechanisms of both enzymes, as well as the putative anti-neutrophil cytoplasm autoantibody epitopes on human neutrophil elastase 3. We also address the differences existing between murine and human enzymes, and their consequences with respect to the development of animal models for the study of human proteinase 3-related pathologies. By integrating the functional and the structural data, we assemble many pieces of a complicated puzzle to provide a new perspective on the structure-function relationship of human proteinase 3 and its interaction with membrane, partner proteins or cleavable substrates. Hence, precise and meticulous structural studies are essential tools for the rational design of specific proteinase 3 substrates or competitive ligands that modulate its activities.
Collapse
Affiliation(s)
- Eric Hajjar
- Dipartimento di Fisica, University of Cagliari (CA), Italy
| | | | | | | | | |
Collapse
|
34
|
Abdgawad M, Gunnarsson L, Bengtsson AA, Geborek P, Nilsson L, Segelmark M, Hellmark T. Elevated neutrophil membrane expression of proteinase 3 is dependent upon CD177 expression. Clin Exp Immunol 2010; 161:89-97. [PMID: 20491791 DOI: 10.1111/j.1365-2249.2010.04154.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Proteinase 3 (PR3) is a major autoantigen in anti-neutrophil cytoplasmic antibodies (ANCA)-associated systemic vasculitis (AASV), and the proportion of neutrophils expressing PR3 on their membrane (mPR3+) is increased in AASV. We have shown recently that mPR3 and CD177 are expressed on the same cells in healthy individuals. In this study we try to elucidate mechanisms behind the increased mPR3 expression in AASV and its relationship to CD177. All neutrophils in all individuals were either double-positive or double-negative for mPR3 and CD177. The proportion of double-positive neutrophils was increased significantly in AASV and systemic lupus erythematosus patients. The proportion of mPR3+/CD177+ cells was not correlated to general inflammation, renal function, age, sex, drug treatment and levels of circulating PR3. AASV patients had normal levels of granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor. Pro-PR3 was found to constitute 10% of circulating PR3 but none of the mPR3. We found increased mRNA levels of both PR3 and CD177 in AASV, but they did not correlate with the proportion of double-positive cells. In cells sorted based on membrane expression, CD177-mRNA was several-fold higher in mPR3+ cells. When exogenous PR3 was added to CD177-transfected U937 cells, only CD177+ cells bound PR3 to their membrane. In conclusion, the increased membrane expression of PR3 found in AASV is not linked directly to circulating PR3 or PR3 gene transcription, but is dependent upon CD177 expression and correlated with the transcription of the CD177 gene.
Collapse
Affiliation(s)
- M Abdgawad
- Department of Nephrology, Lund University, Lund, Sweden.
| | | | | | | | | | | | | |
Collapse
|
35
|
Choi M, Eulenberg C, Rolle S, von Kries JP, Luft FC, Kettritz R. The use of small molecule high-throughput screening to identify inhibitors of the proteinase 3-NB1 interaction. Clin Exp Immunol 2010; 161:389-96. [PMID: 20456416 DOI: 10.1111/j.1365-2249.2010.04174.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Anti-neutrophil cytoplasmic antibodies (ANCA) to proteinase 3 (PR3) are found in patients with small-vessel vasculitis. PR3-ANCA bind strongly to membrane PR3 (mPR3) that is presented by the NB1 receptor. We performed high-throughput screening using a small molecule library to identify compounds that inhibit PR3-NB1 binding. We established a human embryonic kidney (HEK293) cell-based system, where approximately 95 +/- 2% of the NB1-transfected cells expressed the NB1 receptor on the cell surface. Addition of 0.1 microg/ml human PR3 to 10(4) NB1-expressing HEK293 cells resulted in PR3 binding that was detected by immunofluorescence using a fluorescence plate reader assay. We identified 13 of 20 000 molecules that inhibited PR3 binding by >70%. Seven of 13 substances showed reproducible inhibition in four additional validation experiments. Two selected compounds (27519 and 27549) demonstrated a dose-dependent inhibition over a range from 6.25 to 100 microM as measured by the plate reader assay. We used flow cytometry as a second assay, and found that both compounds reproducibly inhibited PR3 binding to NB1-transfected HEK293 cells at 50 microM (inhibition to 42 +/- 4% with compound 27519 and to 47 +/- 6% with compound 27549 compared to the dimethylsulphoxide control). Furthermore, compounds 27519 and 27549 also inhibited binding of exogenous PR3 to human neutrophils. In contrast, the compounds did not decrease mPR3 expression on resting neutrophils, but reduced the tumour necrosis factor-alpha-mediated mPR3 increase on NB1(pos) neutrophils when present continuously during the assay. The findings suggest that small inhibitory compounds provide a potential therapeutic tool to reduce mPR3 by preventing its binding to NB1.
Collapse
Affiliation(s)
- M Choi
- Experimental and Clinical Research Center, Max-Delbrück Center for Molecular Medicine and Charité Medical Faculty, Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
36
|
Current World Literature. Curr Opin Rheumatol 2010; 22:97-105. [DOI: 10.1097/bor.0b013e328334b3e8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Interaction of proteinase 3 with its associated partners: implications in the pathogenesis of Wegener's granulomatosis. Curr Opin Rheumatol 2010; 22:1-7. [DOI: 10.1097/bor.0b013e3283331594] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Korkmaz B, Jaillet J, Jourdan ML, Gauthier A, Gauthier F, Attucci S. Catalytic activity and inhibition of wegener antigen proteinase 3 on the cell surface of human polymorphonuclear neutrophils. J Biol Chem 2009; 284:19896-902. [PMID: 19447886 DOI: 10.1074/jbc.m901471200] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteinase 3 (Pr3), the main target of anti-neutrophil cytoplasmic antibodies, is a neutrophil serine protease that may be constitutively expressed at the surface of quiescent circulating neutrophils. This raises the question of the simultaneous presence in the circulation of constitutive membrane-bound Pr3 (mPr3) and its plasma inhibitor alpha1-protease inhibitor (alpha1-Pi). We have looked at the fate of constitutive mPr3 at the surface of circulating blood neutrophils and of induced mPr3 on triggered neutrophils. We found significant Pr3 activity at the surface of activated neutrophils but not at the surface of quiescent neutrophils whatever the constitutive expression. This suggests that constitutive mPr3 is enzymatically inactive or its active site is not accessible to the substrate. Supporting this conclusion, we have not been able to demonstrate any interaction between constitutive mPr3 and alpha1-Pi, whereas induced mPr3 is cleared from the cell surface when activated cells are incubated with this inhibitor. But, unlike membrane-bound elastase that is also cleared from the surface of activated cells, mPr3 remained bound to the membrane when inhibited by elafin or by a low molecular weight chloromethyl ketone inhibitor, which shows that it binds more tightly to the neutrophil membrane. mPr3 may thus be present at the surface of circulating neutrophils in an environment replete with alpha1-Pi. The permanent presence of inactive Pr3 at the surface of quiescent neutrophils may explain why Pr3 is a major target of anti-neutrophil cytoplasmic antibodies, whose binding activates neutrophils and triggers inflammation, as in Wegener granulomatosis.
Collapse
Affiliation(s)
- Brice Korkmaz
- INSERM U618, Protéases et Vectorisation Pulmonaires, Faculté de Médecine, 37032 Tours Cedex, France
| | | | | | | | | | | |
Collapse
|
39
|
Hu N, Westra J, Huitema MG, Bijl M, Brouwer E, Stegeman CA, Heeringa P, Limburg PC, Kallenberg CGM. Coexpression of CD177 and membrane proteinase 3 on neutrophils in antineutrophil cytoplasmic autoantibody-associated systemic vasculitis: Anti-proteinase 3-mediated neutrophil activation is independent of the role of CD177-expressing neutrophils. ACTA ACUST UNITED AC 2009; 60:1548-57. [DOI: 10.1002/art.24442] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
40
|
Hu N, Westra J, Kallenberg CGM. Membrane-bound proteinase 3 and its receptors: relevance for the pathogenesis of Wegener's Granulomatosis. Autoimmun Rev 2009; 8:510-4. [PMID: 19185066 DOI: 10.1016/j.autrev.2008.01.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Accepted: 01/13/2009] [Indexed: 12/01/2022]
Abstract
Wegener's Granulomatosis (WG) is a life-threatening autoimmune disease. A pathogenic role for anti-neutrophil cytoplasmic autoantibodies (ANCAs) by inducing necrotizing damage to the vessel wall has been strongly suggested by in vitro and in vivo experimental data. Proteinase 3 (PR3), a serine protease mainly stored in the azurophilic granules of neutrophils, has been identified as a major ANCA-antigen in WG. Elevated expression levels of membrane-bound PR3 (mPR3) has been observed in WG and some other chronic inflammatory diseases, suggesting a pathogenic role of mPR3 by allowing interaction with PR3-ANCA. Recent studies revealed CD177 as a receptor for mPR3 on the neutrophil membrane. However, we recently showed that CD177 negative neutrophils also express mPR3 and are susceptible to PR3-ANCA induced neutrophil activation. Therefore, it is of interest to further investigate the functional consequences of binding of mPR3 to CD177, to explore other binding partners for mPR3 on the neutrophil membrane, and to study the relevance of colocalization of these molecules for disease pathogenesis. This review gives updated information on the mechanism of mPR3 expression and the relevance of colocalization of mPR3 with other molecules on the neutrophil membrane for the pathophysiological events occurring in WG.
Collapse
Affiliation(s)
- Nan Hu
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, Groningen, The Netherlands
| | | | | |
Collapse
|
41
|
Korkmaz B, Kuhl A, Bayat B, Santoso S, Jenne DE. A hydrophobic patch on proteinase 3, the target of autoantibodies in Wegener granulomatosis, mediates membrane binding via NB1 receptors. J Biol Chem 2008; 283:35976-82. [PMID: 18854317 DOI: 10.1074/jbc.m806754200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteinase 3 (PR3), the target antigen of antineutrophil cytoplasm autoantibodies, which are found in patients with Wegener granulomatosis, is a neutrophil serine protease localized within cytoplasmic granules. Recently, the human neutrophil antigen NB1 was identified as a specific neutrophil cell surface receptor of PR3. We hypothesized that the unique hydrophobic cluster of PR3 that is not present on human neutrophil elastase and cathepsin G and presumably is also missing in other human PR3 homologs accounts for its binding to the NB1 receptor expressed on the cellular surface of NB1 cells. Instead of generating and testing various artificial human PR3 mutants, we cloned and expressed the very closely related gibbon (Hylobates pileatus) PR3 homolog, which did not bind to the human NB1 receptor. Moreover, a human-gibbon hybrid constructed from the N- and C-terminal half of the human and gibbon PR3, respectively, also did not interact with human NB1. The C-terminal half of gibbon PR3 differs only by 9 residues from human PR3, among which four closely spaced hydrophobic residues are substituted in a nonconservative manner (F166L, W218R, G219A, and L223H). The NB1-bound PR3 was active and was cleared from the surface by alpha-1-protease inhibitor. Conformational distortion of the hydrophobic 217-225 loop by alpha-1-protease inhibitor most likely triggers rapid solubilization.
Collapse
Affiliation(s)
- Brice Korkmaz
- Department of Neuroimmunology, Max-Planck-Institute of Neurobiology, D-82152 Planegg-Martinsried, Germany
| | | | | | | | | |
Collapse
|