1
|
Tang J, Xu W, Yu Y, Yin S, Ye BC, Zhou Y. The role of the gut microbial metabolism of sterols and bile acids in human health. Biochimie 2024:S0300-9084(24)00258-X. [PMID: 39542125 DOI: 10.1016/j.biochi.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/31/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Sterols and bile acids are vital signaling molecules that play key roles in systemic functions, influencing the composition of the human gut microbiota, which maintains a symbiotic relationship with the host. Additionally, gut microbiota-encoded enzymes catalyze the conversion of sterols and bile acids into various metabolites, significantly enhancing their diversity and biological activities. In this review, we focus on the microbial transformations of sterols and bile acids in the gut, summarize the relevant bacteria, genes, and enzymes, and review the relationship between the sterols and bile acids metabolism of gut microbiota and human health. This review contributes to a deeper understanding of the crucial roles of sterols and bile acids metabolism by gut microbiota in human health, offering insights for further investigation into the interactions between gut microbiota and the host.
Collapse
Affiliation(s)
- Jiahui Tang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Wenwu Xu
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yangfan Yu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Shengxiang Yin
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Bang-Ce Ye
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Yunyan Zhou
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
2
|
He S, Li L, Yao Y, Su J, Lei S, Zhang Y, Zeng H. Bile acid and its bidirectional interactions with gut microbiota: a review. Crit Rev Microbiol 2024; 50:684-701. [PMID: 37766478 DOI: 10.1080/1040841x.2023.2262020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
Bile acids (BAs) are an important metabolite produced by cholesterol catabolism. It serves important roles in glucose and lipid metabolism and host-microbe interaction. Recent research has shown that different gut-microbiota can secrete different metabolic-enzymes to mediate the deconjugation, dehydroxylation and epimerization of BAs. In addition, microbes mediate BAs transformation and exert physiological functions in metabolic diseases may have a potentially close relationship with diet. Therefore, elaborating the pathways by which gut microbes mediate the transformation of BAs through enzymatic reactions involved are principal to understand the mechanism of effects between dietary patterns, gut microbes and BAs, and to provide theoretical knowledge for the development of functional foods to regulate metabolic diseases. In the present review, we summarized works on the physiological function of BAs, as well as the classification and composition of BAs in different animal models and its organs. In addition, we mainly focus on the bidirectional interactions of gut microbes with BAs transformation, and discuss the effects of diet on microbial transformation of BAs. Finally, we raised the question of further in-depth investigation of the food-gut microbial-BAs relationship, which might contribute to the improvement of metabolic diseases through dietary interventions in the future.
Collapse
Affiliation(s)
- Shuqi He
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lanxin Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yingning Yao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jinhan Su
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Suzhen Lei
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yi Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hongliang Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
3
|
Daniel SL, Ridlon JM. Clostridium scindens : an endocrine keystone species in the mammalian gut. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.609444. [PMID: 39229245 PMCID: PMC11370556 DOI: 10.1101/2024.08.23.609444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Clostridium scindens is a keystone human gut microbial taxonomic group that, while low in abundance, has a disproportionate effect on bile acid and steroid metabolism in the mammalian gut. Numerous studies indicate that the two most studied strains of C. scindens (i.e., ATCC 35704 and VPI 12708) are important for a myriad of physiological processes in the host. We focus on both historical and current microbiological and molecular biology work on the Hylemon-Björkhem pathway and the steroid-17,20-desmolase pathway that were first discovered in C. scindens. Our most recent analysis now calls into question whether strains currently defined as C. scindens represent two separate taxonomic groups. Future directions include developing genetic tools to further explore the physiological role bile acid and steroid metabolism by strains of C. scindens , and the causal role of these pathways in host physiology and disease.
Collapse
|
4
|
Vico-Oton E, Volet C, Jacquemin N, Dong Y, Hapfelmeier S, Meibom KL, Bernier-Latmani R. Strain-dependent induction of primary bile acid 7-dehydroxylation by cholic acid. BMC Microbiol 2024; 24:286. [PMID: 39090543 PMCID: PMC11293179 DOI: 10.1186/s12866-024-03433-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Bile acids (BAs) are steroid-derived molecules with important roles in digestion, the maintenance of host metabolism, and immunomodulation. Primary BAs are synthesized by the host, while secondary BAs are produced by the gut microbiome through transformation of the former. The regulation of microbial production of secondary BAs is not well understood, particularly the production of 7-dehydroxylated BAs, which are the most potent agonists for host BA receptors. The 7-dehydroxylation of cholic acid (CA) is well established and is linked to the expression of a bile acid-inducible (bai) operon responsible for this process. However, little to no 7-dehydroxylation has been reported for other host-derived BAs (e.g., chenodeoxycholic acid, CDCA or ursodeoxycholic acid, UDCA). RESULTS Here, we demonstrate that the 7-dehydroxylation of CDCA and UDCA by the human isolate Clostridium scindens is induced when CA is present, suggesting that CA-dependent transcriptional regulation is required for substantial 7-dehydroxylation of these primary BAs. This is supported by the finding that UDCA alone does not promote expression of bai genes. CDCA upregulates expression of the bai genes but the expression is greater when CA is present. In contrast, the murine isolate Extibacter muris exhibits a distinct response; CA did not induce significant 7-dehydroxylation of primary BAs, whereas BA 7-dehydroxylation was promoted upon addition of germ-free mouse cecal content in vitro. However, E. muris was found to 7-dehydroxylate in vivo. CONCLUSIONS The distinct expression responses amongst strains indicate that bai genes are regulated differently. CA promoted bai operon gene expression and the 7-dehydroxylating activity in C. scindens strains. Conversely, the in vitro activity of E. muris was promoted only after the addition of cecal content and the isolate did not alter bai gene expression in response to CA. The accessory gene baiJ was only upregulated in the C. scindens ATCC 35704 strain, implying mechanistic differences amongst isolates. Interestingly, the human-derived C. scindens strains were also capable of 7-dehydroxylating murine bile acids (muricholic acids) to a limited extent. This study shows novel 7-dehydroxylation activity in vitro resulting from the presence of CA and suggests distinct bai gene expression across bacterial species.
Collapse
Affiliation(s)
- Eduard Vico-Oton
- Environmental Microbiology Laboratory, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Colin Volet
- Environmental Microbiology Laboratory, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Nicolas Jacquemin
- Environmental Microbiology Laboratory, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Yuan Dong
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | | | - Karin Lederballe Meibom
- Environmental Microbiology Laboratory, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Rizlan Bernier-Latmani
- Environmental Microbiology Laboratory, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
- EPFL ENAC IIE EML CH A1 375 (Bâtiment CH), Station 6, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
5
|
Mohanty I, Allaband C, Mannochio-Russo H, El Abiead Y, Hagey LR, Knight R, Dorrestein PC. The changing metabolic landscape of bile acids - keys to metabolism and immune regulation. Nat Rev Gastroenterol Hepatol 2024; 21:493-516. [PMID: 38575682 DOI: 10.1038/s41575-024-00914-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/14/2024] [Indexed: 04/06/2024]
Abstract
Bile acids regulate nutrient absorption and mitochondrial function, they establish and maintain gut microbial community composition and mediate inflammation, and they serve as signalling molecules that regulate appetite and energy homeostasis. The observation that there are hundreds of bile acids, especially many amidated bile acids, necessitates a revision of many of the classical descriptions of bile acids and bile acid enzyme functions. For example, bile salt hydrolases also have transferase activity. There are now hundreds of known modifications to bile acids and thousands of bile acid-associated genes, especially when including the microbiome, distributed throughout the human body (for example, there are >2,400 bile salt hydrolases alone). The fact that so much of our genetic and small-molecule repertoire, in both amount and diversity, is dedicated to bile acid function highlights the centrality of bile acids as key regulators of metabolism and immune homeostasis, which is, in large part, communicated via the gut microbiome.
Collapse
Affiliation(s)
- Ipsita Mohanty
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Celeste Allaband
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Helena Mannochio-Russo
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Yasin El Abiead
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Lee R Hagey
- Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA.
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA.
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
6
|
Pan Y, Zhang H, Li M, He T, Guo S, Zhu L, Tan J, Wang B. Novel approaches in IBD therapy: targeting the gut microbiota-bile acid axis. Gut Microbes 2024; 16:2356284. [PMID: 38769683 PMCID: PMC11110704 DOI: 10.1080/19490976.2024.2356284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/13/2024] [Indexed: 05/22/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic and recurrent condition affecting the gastrointestinal tract. Disturbed gut microbiota and abnormal bile acid (BA) metabolism are notable in IBD, suggesting a bidirectional relationship. Specifically, the diversity of the gut microbiota influences BA composition, whereas altered BA profiles can disrupt the microbiota. IBD patients often exhibit increased primary bile acid and reduced secondary bile acid concentrations due to a diminished bacteria population essential for BA metabolism. This imbalance activates BA receptors, undermining intestinal integrity and immune function. Consequently, targeting the microbiota-BA axis may rectify these disturbances, offering symptomatic relief in IBD. Here, the interplay between gut microbiota and bile acids (BAs) is reviewed, with a particular focus on the role of gut microbiota in mediating bile acid biotransformation, and contributions of the gut microbiota-BA axis to IBD pathology to unveil potential novel therapeutic avenues for IBD.
Collapse
Affiliation(s)
- Yinping Pan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Haojie Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Minghui Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Tingjing He
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Sihao Guo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Liancai Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological & Chemical engineering, Chongqing University of Education, Chongqing, PR China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| |
Collapse
|
7
|
Meibom KL, Marion S, Volet C, Nass T, Vico-Oton E, Menin L, Bernier-Latmani R. BaiJ and BaiB are key enzymes in the chenodeoxycholic acid 7α-dehydroxylation pathway in the gut microbe Clostridium scindens ATCC 35704. Gut Microbes 2024; 16:2323233. [PMID: 38465624 PMCID: PMC10936602 DOI: 10.1080/19490976.2024.2323233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/21/2024] [Indexed: 03/12/2024] Open
Abstract
Bile acid transformation is a common gut microbiome activity that produces secondary bile acids, some of which are important for human health. One such process, 7α-dehydroxylation, converts the primary bile acids, cholic acid and chenodeoxycholic acid, to deoxycholic acid and lithocholic acid, respectively. This transformation requires a number of enzymes, generally encoded in a bile acid-inducible (bai) operon and consists of multiple steps. Some 7α-dehydroxylating bacteria also harbor additional genes that encode enzymes with potential roles in this pathway, but little is known about their functions. Here, we purified 11 enzymes originating either from the bai operon or encoded at other locations in the genome of Clostridium scindens strain ATCC 35704. Enzyme activity was probed in vitro under anoxic conditions to characterize the biochemical pathway of chenodeoxycholic acid 7α-dehydroxylation. We found that more than one combination of enzymes can support the process and that a set of five enzymes, including BaiJ that is encoded outside the bai operon, is sufficient to achieve the transformation. We found that BaiJ, an oxidoreductase, exhibits an activity that is not harbored by the homologous enzyme from another C. scindens strain. Furthermore, ligation of bile acids to coenzyme A (CoA) was shown to impact the product of the transformation. These results point to differences in the 7α-dehydroxylation pathway among microorganisms and the crucial role of CoA ligation in the process.
Collapse
Affiliation(s)
- Karin Lederballe Meibom
- Environmental Microbiology Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Solenne Marion
- Environmental Microbiology Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Colin Volet
- Environmental Microbiology Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Théo Nass
- Environmental Microbiology Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Eduard Vico-Oton
- Environmental Microbiology Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Laure Menin
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Rizlan Bernier-Latmani
- Environmental Microbiology Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
8
|
Deng C, Pan J, Zhu H, Chen ZY. Effect of Gut Microbiota on Blood Cholesterol: A Review on Mechanisms. Foods 2023; 12:4308. [PMID: 38231771 DOI: 10.3390/foods12234308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
The gut microbiota serves as a pivotal mediator between diet and human health. Emerging evidence has shown that the gut microbiota may play an important role in cholesterol metabolism. In this review, we delve into five possible mechanisms by which the gut microbiota may influence cholesterol metabolism: (1) the gut microbiota changes the ratio of free bile acids to conjugated bile acids, with the former being eliminated into feces and the latter being reabsorbed back into the liver; (2) the gut microbiota can ferment dietary fiber to produce short-chain fatty acids (SCFAs) which are absorbed and reach the liver where SCFAs inhibit cholesterol synthesis; (3) the gut microbiota can regulate the expression of some genes related to cholesterol metabolism through their metabolites; (4) the gut microbiota can convert cholesterol to coprostanol, with the latter having a very low absorption rate; and (5) the gut microbiota could reduce blood cholesterol by inhibiting the production of lipopolysaccharides (LPS), which increases cholesterol synthesis and raises blood cholesterol. In addition, this review will explore the natural constituents in foods with potential roles in cholesterol regulation, mainly through their interactions with the gut microbiota. These include polysaccharides, polyphenolic entities, polyunsaturated fatty acids, phytosterols, and dicaffeoylquinic acid. These findings will provide a scientific foundation for targeting hypercholesterolemia and cardiovascular diseases through the modulation of the gut microbiota.
Collapse
Affiliation(s)
- Chuanling Deng
- School of Food Science and Engineering/National Technical Center (Foshan) for Quality Control of Famous and Special Agricultural Products (CAQS-GAP-KZZX043), Foshan University, Foshan 528011, China
| | - Jingjin Pan
- School of Food Science and Engineering/National Technical Center (Foshan) for Quality Control of Famous and Special Agricultural Products (CAQS-GAP-KZZX043), Foshan University, Foshan 528011, China
| | - Hanyue Zhu
- School of Food Science and Engineering/National Technical Center (Foshan) for Quality Control of Famous and Special Agricultural Products (CAQS-GAP-KZZX043), Foshan University, Foshan 528011, China
| | - Zhen-Yu Chen
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| |
Collapse
|
9
|
Ridlon JM, Daniel SL, Gaskins HR. The Hylemon-Björkhem pathway of bile acid 7-dehydroxylation: history, biochemistry, and microbiology. J Lipid Res 2023; 64:100392. [PMID: 37211250 PMCID: PMC10382948 DOI: 10.1016/j.jlr.2023.100392] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/07/2023] [Accepted: 05/11/2023] [Indexed: 05/23/2023] Open
Abstract
Bile acids are detergents derived from cholesterol that function to solubilize dietary lipids, remove cholesterol from the body, and act as nutrient signaling molecules in numerous tissues with functions in the liver and gut being the best understood. Studies in the early 20th century established the structures of bile acids, and by mid-century, the application of gnotobiology to bile acids allowed differentiation of host-derived "primary" bile acids from "secondary" bile acids generated by host-associated microbiota. In 1960, radiolabeling studies in rodent models led to determination of the stereochemistry of the bile acid 7-dehydration reaction. A two-step mechanism was proposed, which we have termed the Samuelsson-Bergström model, to explain the formation of deoxycholic acid. Subsequent studies with humans, rodents, and cell extracts of Clostridium scindens VPI 12708 led to the realization that bile acid 7-dehydroxylation is a result of a multi-step, bifurcating pathway that we have named the Hylemon-Björkhem pathway. Due to the importance of hydrophobic secondary bile acids and the increasing measurement of microbial bai genes encoding the enzymes that produce them in stool metagenome studies, it is important to understand their origin.
Collapse
Affiliation(s)
- Jason M Ridlon
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA; Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA; Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA; Center for Advanced Study, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| | - Steven L Daniel
- Department of Biological Sciences, Eastern Illinois University, Charleston, IL, USA
| | - H Rex Gaskins
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA; Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA; Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Biomedical and Translational Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
10
|
Wise JL, Cummings BP. The 7-α-dehydroxylation pathway: An integral component of gut bacterial bile acid metabolism and potential therapeutic target. Front Microbiol 2023; 13:1093420. [PMID: 36699589 PMCID: PMC9868651 DOI: 10.3389/fmicb.2022.1093420] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/13/2022] [Indexed: 01/11/2023] Open
Abstract
The gut microbiome plays a significant role in maintaining host metabolic health through the production of metabolites. Comprising one of the most abundant and diverse forms of gut metabolites, bile acids play a key role in blood glucose regulation, insulin sensitivity, obesity, and energy expenditure. A central pathway in gut bacterial bile acid metabolism is the production of secondary bile acids via 7-ɑ-dehydroxylation. Despite the important role of 7-ɑ-dehydroxylation in gut bacterial bile acid metabolism and the pathophysiology of metabolic disease, the regulation of this pathway is not completely understood. This review aims to outline our current understanding of 7-ɑ-dehydroxylation and to identify key knowledge gaps that will be integral in further characterizing gut bacterial bile acid metabolism as a potential therapeutic target for treating metabolic dysregulation.
Collapse
Affiliation(s)
- Journey L. Wise
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States
| | - Bethany P. Cummings
- Department of Surgery, Center for Alimentary and Metabolic Sciences, School of Medicine, University of California, Davis, Sacramento, CA, United States
| |
Collapse
|
11
|
Pei N, Sun W, He J, Li Y, Chen X, Liang T, Kristiansen K, Liu W, Li J. Genome-wide association study of Klebsiella pneumoniae identifies variations linked to carbapenems resistance. Front Microbiol 2022; 13:997769. [PMID: 36386631 PMCID: PMC9664935 DOI: 10.3389/fmicb.2022.997769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/10/2022] [Indexed: 01/25/2023] Open
Abstract
Klebsiella pneumoniae (KP) is one of the microorganisms that can acquire carbapenem-resistance (CR), and few antimicrobial therapy options exist for infections caused by Carbapenem-Resistant KP (CRKP). In recent years, with the increase of carbapenem resistance rates, treating CRKP has become a serious public health threat in clinical practice. We have collected 2,035 clinical KP isolates from a tertiary hospital in China. Whole genome sequencing data coupled with their binary antimicrobial susceptibility testing data were obtained to conduct the genome-wide association study using a bayesian-based method, including single nucleotide polymorphisms (SNPs) and genes. We identified 28 and 37 potential maker genes associated with imipenem and meropenem resistance, respectively. Among which 19 of them were selected in both drugs by genome-wide association study (GWAS), 11 genes among them were simultaneously validated in independent datasets. These genes were likely related to biofilm formation, efflux pump, and DNA repairing. Moreover, we identified 13 significant CR related SNPs in imipenem or meropenem, with one SNP located in the non-coding region and validated in the independent datasets. Our study indicates complex mechanisms of carbapenems resistance and further investigation of CRKP-related factors are warranted to better understand their contributions to carbapenems resistance. These identified biomarkers may provide targets for future drug interventions or treatments.
Collapse
Affiliation(s)
- Na Pei
- BGI-Shenzhen, Shenzhen, China,Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Jingxuan He
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Yanming Li
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Xia Chen
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Tianzhu Liang
- BGI-Shenzhen, Shenzhen, China,Shenzhen Key Laboratory of Unknown Pathogen Identification, Shenzhen, China
| | - Karsten Kristiansen
- BGI-Shenzhen, Shenzhen, China,Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Wenen Liu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Junhua Li, ; Wenen Liu,
| | - Junhua Li
- BGI-Shenzhen, Shenzhen, China,Shenzhen Key Laboratory of Unknown Pathogen Identification, Shenzhen, China,*Correspondence: Junhua Li, ; Wenen Liu,
| |
Collapse
|
12
|
Abstract
The metabolism of bile acids (BAs) by gut bacteria plays an important role in human health. This study identified and characterized 7α-dehydroxylating bacteria, which are majorly responsible for converting primary BAs to secondary BAs, in the human gut and investigated their association with human disease. Six 7α-dehydratase (BaiE) clusters were identified from human gut metagenomes through sequence similarity network and genome neighborhood network analyses. Abundance analyses of gut metagenomes and metatranscriptomes identified a cluster of bacteria (cluster 1) harboring baiE genes that may be key 7α-dehydroxylating bacteria in the human gut. The baiE gene abundance of cluster 1 was significantly and positively correlated with the ratio of secondary BAs to primary BAs. Furthermore, the baiE gene abundances of cluster 1 were significantly negatively correlated with inflammatory bowel disease, including Crohn's disease and ulcerative colitis, as well as advanced nonalcoholic fatty liver disease, liver cirrhosis, and ankylosing spondylitis. Phylogenetic and metagenome-assembled genome analyses showed that the 7α-dehydroxylating bacterial clade of cluster 1 was affiliated with the family Oscillospiraceae and may demonstrate efficient BA dehydroxylation ability by harboring both a complete bai operon, for proteins which produce secondary BAs from primary BAs, and a gene for bile salt hydrolase, which deconjugates BAs, in the human gut. IMPORTANCE In this study, we identified a key 7α-dehydroxylating bacterial group predicted to be largely responsible for converting primary bile acids (BAs) to secondary BAs in the human gut through sequence similarity network, genome neighborhood network, and gene abundance analyses using human gut metagenomes. The key bacterial group was phylogenetically quite different from known 7α-dehydroxylating bacteria, and their abundance was highly correlated with the occurrence of diverse diseases associated with bile acid 7α-dehydroxylation. In addition, we characterized the metabolic features of the key bacterial group using their metagenome-assembled genomes. This approach is useful to identify and characterize key gut bacteria highly associated with human health and diseases.
Collapse
|
13
|
Lee JW, Cowley ES, Wolf PG, Doden HL, Murai T, Caicedo KYO, Ly LK, Sun F, Takei H, Nittono H, Daniel SL, Cann I, Gaskins HR, Anantharaman K, Alves JMP, Ridlon JM. Formation of secondary allo-bile acids by novel enzymes from gut Firmicutes. Gut Microbes 2022; 14:2132903. [PMID: 36343662 PMCID: PMC9645264 DOI: 10.1080/19490976.2022.2132903] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/23/2022] [Indexed: 11/09/2022] Open
Abstract
The gut microbiome of vertebrates is capable of numerous biotransformations of bile acids, which are responsible for intestinal lipid digestion and function as key nutrient-signaling molecules. The human liver produces bile acids from cholesterol predominantly in the A/B-cis orientation in which the sterol rings are "kinked", as well as small quantities of A/B-trans oriented "flat" stereoisomers known as "primary allo-bile acids". While the complex multi-step bile acid 7α-dehydroxylation pathway has been well-studied for conversion of "kinked" primary bile acids such as cholic acid (CA) and chenodeoxycholic acid (CDCA) to deoxycholic acid (DCA) and lithocholic acid (LCA), respectively, the enzymatic basis for the formation of "flat" stereoisomers allo-deoxycholic acid (allo-DCA) and allo-lithocholic acid (allo-LCA) by Firmicutes has remained unsolved for three decades. Here, we present a novel mechanism by which Firmicutes generate the "flat" bile acids allo-DCA and allo-LCA. The BaiA1 was shown to catalyze the final reduction from 3-oxo-allo-DCA to allo-DCA and 3-oxo-allo-LCA to allo-LCA. Phylogenetic and metagenomic analyses of human stool samples indicate that BaiP and BaiJ are encoded only in Firmicutes and differ from membrane-associated bile acid 5α-reductases recently reported in Bacteroidetes that indirectly generate allo-LCA from 3-oxo-Δ4-LCA. We further map the distribution of baiP and baiJ among Firmicutes in human metagenomes, demonstrating an increased abundance of the two genes in colorectal cancer (CRC) patients relative to healthy individuals.
Collapse
Affiliation(s)
- Jae Won Lee
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Elise S. Cowley
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Patricia G. Wolf
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Institute for Health Research and Policy, University of Illinois Chicago, Chicago, IL, USA
- University of Illinois Cancer Center, University of Illinois Chicago, Chicago, IL, USA
| | - Heidi L. Doden
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Tsuyoshi Murai
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Hokkaido, Japan
| | | | - Lindsey K. Ly
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Furong Sun
- Mass Spectrometry Laboratory, School of Chemical Sciences, University of Illinois Urbana-Champaign, IL, USA
| | - Hajime Takei
- Junshin Clinic Bile Acid Institute, Tokyo, Japan
| | | | - Steven L. Daniel
- Department of Biological Sciences, Eastern Illinois University, Charleston, IL, USA
| | - Isaac Cann
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - H. Rex Gaskins
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Cancer Center at Illinois, Urbana, IL, USA
| | | | - João M. P. Alves
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jason M. Ridlon
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Cancer Center at Illinois, Urbana, IL, USA
- Center for Advanced Study, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
14
|
Guzior DV, Quinn RA. Review: microbial transformations of human bile acids. MICROBIOME 2021; 9:140. [PMID: 34127070 PMCID: PMC8204491 DOI: 10.1186/s40168-021-01101-1] [Citation(s) in RCA: 306] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/24/2021] [Indexed: 05/05/2023]
Abstract
Bile acids play key roles in gut metabolism, cell signaling, and microbiome composition. While the liver is responsible for the production of primary bile acids, microbes in the gut modify these compounds into myriad forms that greatly increase their diversity and biological function. Since the early 1960s, microbes have been known to transform human bile acids in four distinct ways: deconjugation of the amino acids glycine or taurine, and dehydroxylation, dehydrogenation, and epimerization of the cholesterol core. Alterations in the chemistry of these secondary bile acids have been linked to several diseases, such as cirrhosis, inflammatory bowel disease, and cancer. In addition to the previously known transformations, a recent study has shown that members of our gut microbiota are also able to conjugate amino acids to bile acids, representing a new set of "microbially conjugated bile acids." This new finding greatly influences the diversity of bile acids in the mammalian gut, but the effects on host physiology and microbial dynamics are mostly unknown. This review focuses on recent discoveries investigating microbial mechanisms of human bile acids and explores the chemical diversity that may exist in bile acid structures in light of the new discovery of microbial conjugations. Video Abstract.
Collapse
Affiliation(s)
- Douglas V. Guzior
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824 USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 USA
| | - Robert A. Quinn
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 USA
| |
Collapse
|
15
|
Manipulating the Microbiome: An Alternative Treatment for Bile Acid Diarrhoea. MICROBIOLOGY RESEARCH 2021. [DOI: 10.3390/microbiolres12020023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bile acid diarrhoea (BAD) is a widespread gastrointestinal disease that is often misdiagnosed as irritable bowel syndrome and is estimated to affect 1% of the United Kingdom (UK) population alone. BAD is associated with excessive bile acid synthesis secondary to a gastrointestinal or idiopathic disorder (also known as primary BAD). Current licensed treatment in the UK has undesirable effects and has been the same since BAD was first discovered in the 1960s. Bacteria are essential in transforming primary bile acids into secondary bile acids. The profile of an individual’s bile acid pool is central in bile acid homeostasis as bile acids regulate their own synthesis. Therefore, microbiome dysbiosis incurred through changes in diet, stress levels and the introduction of antibiotics may contribute to or be the cause of primary BAD. This literature review focuses on primary BAD, providing an overview of bile acid metabolism, the role of the human gut microbiome in BAD and the potential options for therapeutic intervention in primary BAD through manipulation of the microbiome.
Collapse
|
16
|
Microbial Hydroxysteroid Dehydrogenases: From Alpha to Omega. Microorganisms 2021; 9:microorganisms9030469. [PMID: 33668351 PMCID: PMC7996314 DOI: 10.3390/microorganisms9030469] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/08/2021] [Accepted: 02/18/2021] [Indexed: 12/23/2022] Open
Abstract
Bile acids (BAs) and glucocorticoids are steroid hormones derived from cholesterol that are important signaling molecules in humans and other vertebrates. Hydroxysteroid dehydrogenases (HSDHs) are encoded both by the host and by their resident gut microbiota, and they reversibly convert steroid hydroxyl groups to keto groups. Pairs of HSDHs can reversibly epimerize steroids from α-hydroxy conformations to β-hydroxy, or β-hydroxy to ω-hydroxy in the case of ω-muricholic acid. These reactions often result in products with drastically different physicochemical properties than their precursors, which can result in steroids being activators or inhibitors of host receptors, can affect solubility in fecal water, and can modulate toxicity. Microbial HSDHs modulate sterols associated with diseases such as colorectal cancer, liver cancer, prostate cancer, and polycystic ovary syndrome. Although the role of microbial HSDHs is not yet fully elucidated, they may have therapeutic potential as steroid pool modulators or druggable targets in the future. In this review, we explore metabolism of BAs and glucocorticoids with a focus on biotransformation by microbial HSDHs.
Collapse
|
17
|
Contribution of Inhibitory Metabolites and Competition for Nutrients to Colonization Resistance against Clostridioides difficile by Commensal Clostridium. Microorganisms 2021; 9:microorganisms9020371. [PMID: 33673352 PMCID: PMC7918557 DOI: 10.3390/microorganisms9020371] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 12/16/2022] Open
Abstract
Clostridioides difficile is an anaerobic pathogen that causes significant morbidity and mortality. Understanding the mechanisms of colonization resistance against C. difficile is important for elucidating the mechanisms by which C. difficile is able to colonize the gut after antibiotics. Commensal Clostridium play a key role in colonization resistance. They are able to modify bile acids which alter the C. difficile life cycle. Commensal Clostridium also produce other inhibitory metabolites including antimicrobials and short chain fatty acids. They also compete with C. difficile for vital nutrients such as proline. Understanding the mechanistic effects that these metabolites have on C. difficile and other gut pathogens is important for the development of new therapeutics against C. difficile infection (CDI), which are urgently needed.
Collapse
|
18
|
Abstract
Vertebrates synthesize a diverse set of steroids and bile acids that undergo bacterial biotransformations. The endocrine literature has principally focused on the biochemistry and molecular biology of host synthesis and tissue-specific metabolism of steroids. Host-associated microbiota possess a coevolved set of steroid and bile acid modifying enzymes that match the majority of host peripheral biotransformations in addition to unique capabilities. The set of host-associated microbial genes encoding enzymes involved in steroid transformations is known as the sterolbiome. This review focuses on the current knowledge of the sterolbiome as well as its importance in medicine and agriculture.
Collapse
|
19
|
Marion S, Desharnais L, Studer N, Dong Y, Notter MD, Poudel S, Menin L, Janowczyk A, Hettich RL, Hapfelmeier S, Bernier-Latmani R. Biogeography of microbial bile acid transformations along the murine gut. J Lipid Res 2020; 61:1450-1463. [PMID: 32661017 DOI: 10.1194/jlr.ra120001021] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bile acids, which are synthesized from cholesterol by the liver, are chemically transformed along the intestinal tract by the gut microbiota, and the products of these transformations signal through host receptors, affecting overall host health. These transformations include bile acid deconjugation, oxidation, and 7α-dehydroxylation. An understanding of the biogeography of bile acid transformations in the gut is critical because deconjugation is a prerequisite for 7α-dehydroxylation and because most gut microorganisms harbor bile acid transformation capacity. Here, we used a coupled metabolomic and metaproteomic approach to probe in vivo activity of the gut microbial community in a gnotobiotic mouse model. Results revealed the involvement of Clostridium scindens in 7α-dehydroxylation, of the genera Muribaculum and Bacteroides in deconjugation, and of six additional organisms in oxidation (the genera Clostridium, Muribaculum, Bacteroides, Bifidobacterium, Acutalibacter, and Akkermansia). Furthermore, the bile acid profile in mice with a more complex microbiota, a dysbiosed microbiota, or no microbiota was considered. For instance, conventional mice harbor a large diversity of bile acids, but treatment with an antibiotic such as clindamycin results in the complete inhibition of 7α-dehydroxylation, underscoring the strong inhibition of organisms that are capable of carrying out this process by this compound. Finally, a comparison of the hepatic bile acid pool size as a function of microbiota revealed that a reduced microbiota affects host signaling but not necessarily bile acid synthesis. In this study, bile acid transformations were mapped to the associated active microorganisms, offering a systematic characterization of the relationship between microbiota and bile acid composition.
Collapse
Affiliation(s)
- Solenne Marion
- Environmental Microbiology Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Lyne Desharnais
- Environmental Microbiology Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Nicolas Studer
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Yuan Dong
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Matheus D Notter
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Suresh Poudel
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Laure Menin
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Andrew Janowczyk
- Bioinformatics Core Facility, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Robert L Hettich
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | | | - Rizlan Bernier-Latmani
- Environmental Microbiology Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
20
|
Funabashi M, Grove TL, Wang M, Varma Y, McFadden ME, Brown LC, Guo C, Higginbottom S, Almo SC, Fischbach MA. A metabolic pathway for bile acid dehydroxylation by the gut microbiome. Nature 2020; 582:566-570. [PMID: 32555455 PMCID: PMC7319900 DOI: 10.1038/s41586-020-2396-4] [Citation(s) in RCA: 298] [Impact Index Per Article: 74.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 03/18/2020] [Indexed: 12/12/2022]
Abstract
The gut microbiota synthesize hundreds of molecules, many of which influence host physiology. Among the most abundant metabolites are the secondary bile acids deoxycholic acid (DCA) and lithocholic acid (LCA), which accumulate at concentrations of around 500 μM and are known to block the growth of Clostridium difficile1, promote hepatocellular carcinoma2 and modulate host metabolism via the G-protein-coupled receptor TGR5 (ref. 3). More broadly, DCA, LCA and their derivatives are major components of the recirculating pool of bile acids4; the size and composition of this pool are a target of therapies for primary biliary cholangitis and nonalcoholic steatohepatitis. Nonetheless, despite the clear impact of DCA and LCA on host physiology, an incomplete knowledge of their biosynthetic genes and a lack of genetic tools to enable modification of their native microbial producers limit our ability to modulate secondary bile acid levels in the host. Here we complete the pathway to DCA and LCA by assigning and characterizing enzymes for each of the steps in its reductive arm, revealing a strategy in which the A-B rings of the steroid core are transiently converted into an electron acceptor for two reductive steps carried out by Fe-S flavoenzymes. Using anaerobic in vitro reconstitution, we establish that a set of six enzymes is necessary and sufficient for the eight-step conversion of cholic acid to DCA. We then engineer the pathway into Clostridium sporogenes, conferring production of DCA and LCA on a nonproducing commensal and demonstrating that a microbiome-derived pathway can be expressed and controlled heterologously. These data establish a complete pathway to two central components of the bile acid pool.
Collapse
Affiliation(s)
- Masanori Funabashi
- Department of Bioengineering and ChEM-H, Stanford University, Stanford, CA, USA
- Translational Research Department, Daiichi Sankyo RD Novare Co. Ltd, Tokyo, Japan
| | - Tyler L Grove
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Min Wang
- Department of Bioengineering and ChEM-H, Stanford University, Stanford, CA, USA
| | - Yug Varma
- Department of Bioengineering and ChEM-H, Stanford University, Stanford, CA, USA
| | - Molly E McFadden
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - Laura C Brown
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - Chunjun Guo
- Department of Bioengineering and ChEM-H, Stanford University, Stanford, CA, USA
| | - Steven Higginbottom
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Steven C Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Michael A Fischbach
- Department of Bioengineering and ChEM-H, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
21
|
Reed AD, Nethery MA, Stewart A, Barrangou R, Theriot CM. Strain-Dependent Inhibition of Clostridioides difficile by Commensal Clostridia Carrying the Bile Acid-Inducible ( bai) Operon. J Bacteriol 2020; 202:e00039-20. [PMID: 32179626 PMCID: PMC7221253 DOI: 10.1128/jb.00039-20] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/06/2020] [Indexed: 12/18/2022] Open
Abstract
Clostridioides difficile is one of the leading causes of antibiotic-associated diarrhea. Gut microbiota-derived secondary bile acids and commensal Clostridia that carry the bile acid-inducible (bai) operon are associated with protection from C. difficile infection (CDI), although the mechanism is not known. In this study, we hypothesized that commensal Clostridia are important for providing colonization resistance against C. difficile due to their ability to produce secondary bile acids, as well as potentially competing against C. difficile for similar nutrients. To test this hypothesis, we examined the abilities of four commensal Clostridia carrying the bai operon (Clostridium scindens VPI 12708, C. scindens ATCC 35704, Clostridium hiranonis, and Clostridium hylemonae) to convert cholate (CA) to deoxycholate (DCA) in vitro, and we determined whether the amount of DCA produced was sufficient to inhibit the growth of a clinically relevant C. difficile strain. We also investigated the competitive relationships between these commensals and C. difficile using an in vitro coculture system. We found that inhibition of C. difficile growth by commensal Clostridia supplemented with CA was strain dependent, correlated with the production of ∼2 mM DCA, and increased the expression of bai operon genes. We also found that C. difficile was able to outcompete all four commensal Clostridia in an in vitro coculture system. These studies are instrumental in understanding the relationship between commensal Clostridia and C. difficile in the gut, which is vital for designing targeted bacterial therapeutics. Future studies dissecting the regulation of the bai operon in vitro and in vivo and how this affects CDI will be important.IMPORTANCE Commensal Clostridia carrying the bai operon, such as C. scindens, have been associated with protection against CDI; however, the mechanism for this protection is unknown. Herein, we show four commensal Clostridia that carry the bai operon and affect C. difficile growth in a strain-dependent manner, with and without the addition of cholate. Inhibition of C. difficile by commensals correlated with the efficient conversion of cholate to deoxycholate, a secondary bile acid that inhibits C. difficile germination, growth, and toxin production. Competition studies also revealed that C. difficile was able to outcompete the commensals in an in vitro coculture system. These studies are instrumental in understanding the relationship between commensal Clostridia and C. difficile in the gut, which is vital for designing targeted bacterial therapeutics.
Collapse
Affiliation(s)
- A D Reed
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - M A Nethery
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - A Stewart
- Molecular Education, Technology and Research Innovation Center, North Carolina State University, Raleigh, North Carolina, USA
| | - R Barrangou
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - C M Theriot
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
22
|
Ridlon JM, Devendran S, Alves JM, Doden H, Wolf PG, Pereira GV, Ly L, Volland A, Takei H, Nittono H, Murai T, Kurosawa T, Chlipala GE, Green SJ, Hernandez AG, Fields CJ, Wright CL, Kakiyama G, Cann I, Kashyap P, McCracken V, Gaskins HR. The ' in vivo lifestyle' of bile acid 7α-dehydroxylating bacteria: comparative genomics, metatranscriptomic, and bile acid metabolomics analysis of a defined microbial community in gnotobiotic mice. Gut Microbes 2020; 11:381-404. [PMID: 31177942 PMCID: PMC7524365 DOI: 10.1080/19490976.2019.1618173] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The formation of secondary bile acids by gut microbes is a current topic of considerable biomedical interest. However, a detailed understanding of the biology of anaerobic bacteria in the genus Clostridium that are capable of generating secondary bile acids is lacking. We therefore sought to determine the transcriptional responses of two prominent secondary bile acid producing bacteria, Clostridium hylemonae and Clostridium hiranonis to bile salts (in vitro) and the cecal environment of gnotobiotic mice. The genomes of C. hylemonae DSM 15053 and C. hiranonis DSM 13275 were closed, and found to encode 3,647 genes (3,584 protein-coding) and 2,363 predicted genes (of which 2,239 are protein-coding), respectively, and 1,035 orthologs were shared between C. hylemonae and C. hiranonis. RNA-Seq analysis was performed in growth medium alone, and in the presence of cholic acid (CA) and deoxycholic acid (DCA). Growth with CA resulted in differential expression (>0.58 log2FC; FDR < 0.05) of 197 genes in C. hiranonis and 118 genes in C. hylemonae. The bile acid-inducible operons (bai) from each organism were highly upregulated in the presence of CA but not DCA. We then colonized germ-free mice with human gut bacterial isolates capable of metabolizing taurine-conjugated bile acids. This consortium included bile salt hydrolase-expressing Bacteroides uniformis ATCC 8492, Bacteroides vulgatus ATCC 8482, Parabacteroides distasonis DSM 20701, as well as taurine-respiring Bilophila wadsworthia DSM 11045, and deoxycholic/lithocholic acid generating Clostridium hylemonae DSM 15053 and Clostridium hiranonis DSM 13275. Butyrate and iso-bile acid-forming Blautia producta ATCC 27340 was also included. The Bacteroidetes made up 84.71% of 16S rDNA cecal reads, B. wadsworthia, constituted 14.7%, and the clostridia made up <.75% of 16S rDNA cecal reads. Bile acid metabolomics of the cecum, serum, and liver indicate that the synthetic community were capable of functional bile salt deconjugation, oxidation/isomerization, and 7α-dehydroxylation of bile acids. Cecal metatranscriptome analysis revealed expression of genes involved in metabolism of taurine-conjugated bile acids. The in vivo transcriptomes of C. hylemonae and C. hiranonis suggest fermentation of simple sugars and utilization of amino acids glycine and proline as electron acceptors. Genes predicted to be involved in trimethylamine (TMA) formation were also expressed.
Collapse
Affiliation(s)
- Jason M. Ridlon
- Microbiome Metabolic Engineering Theme, Carl R. Woese Institute for Genomic Biology, Urbana, IL, USA,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, USA,Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA,CONTACT Jason M. Ridlon, Microbiome Metabolic Engineering Theme, Carl R. Woese Institute for Genomic Biology
| | - Saravanan Devendran
- Microbiome Metabolic Engineering Theme, Carl R. Woese Institute for Genomic Biology, Urbana, IL, USA,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - João Mp Alves
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Heidi Doden
- Microbiome Metabolic Engineering Theme, Carl R. Woese Institute for Genomic Biology, Urbana, IL, USA,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Patricia G. Wolf
- Microbiome Metabolic Engineering Theme, Carl R. Woese Institute for Genomic Biology, Urbana, IL, USA,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Gabriel V. Pereira
- Microbiome Metabolic Engineering Theme, Carl R. Woese Institute for Genomic Biology, Urbana, IL, USA,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Lindsey Ly
- Microbiome Metabolic Engineering Theme, Carl R. Woese Institute for Genomic Biology, Urbana, IL, USA,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Alyssa Volland
- Microbiome Metabolic Engineering Theme, Carl R. Woese Institute for Genomic Biology, Urbana, IL, USA,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hajime Takei
- Junshin Clinic Bile Acid Institute, Meguro-Ku, Tokyo, Japan
| | | | - Tsuyoshi Murai
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Takao Kurosawa
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - George E. Chlipala
- UIC Research Resources Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Stefan J. Green
- UIC Research Resources Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Alvaro G. Hernandez
- Keck Center for Biotechnology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Christopher J. Fields
- Keck Center for Biotechnology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Christy L. Wright
- Keck Center for Biotechnology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Genta Kakiyama
- Department of Internal Medicine, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Isaac Cann
- Microbiome Metabolic Engineering Theme, Carl R. Woese Institute for Genomic Biology, Urbana, IL, USA,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA,Keck Center for Biotechnology, University of Illinois at Urbana-Champaign, Urbana, IL, USA,Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Purna Kashyap
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA,Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Vance McCracken
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA,Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, USA
| | - H. Rex Gaskins
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
23
|
Jia B, Jeon CO. Promotion and induction of liver cancer by gut microbiome-mediated modulation of bile acids. PLoS Pathog 2019; 15:e1007954. [PMID: 31487329 PMCID: PMC6728016 DOI: 10.1371/journal.ppat.1007954] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Baolei Jia
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
- * E-mail: (BJ); (COJ)
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
- * E-mail: (BJ); (COJ)
| |
Collapse
|
24
|
Clostridium scindens ATCC 35704: Integration of Nutritional Requirements, the Complete Genome Sequence, and Global Transcriptional Responses to Bile Acids. Appl Environ Microbiol 2019; 85:AEM.00052-19. [PMID: 30737348 DOI: 10.1128/aem.00052-19] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 01/30/2019] [Indexed: 01/13/2023] Open
Abstract
In the human gut, Clostridium scindens ATCC 35704 is a predominant bacterium and one of the major bile acid 7α-dehydroxylating anaerobes. While this organism is well-studied relative to bile acid metabolism, little is known about the basic nutrition and physiology of C. scindens ATCC 35704. To determine the amino acid and vitamin requirements of C. scindens, the leave-one-out (one amino acid group or vitamin) technique was used to eliminate the nonessential amino acids and vitamins. With this approach, the amino acid tryptophan and three vitamins (riboflavin, pantothenate, and pyridoxal) were found to be required for the growth of C. scindens In the newly developed defined medium, C. scindens fermented glucose mainly to ethanol, acetate, formate, and H2. The genome of C. scindens ATCC 35704 was completed through PacBio sequencing. Pathway analysis of the genome sequence coupled with transcriptome sequencing (RNA-Seq) under defined culture conditions revealed consistency with the growth requirements and end products of glucose metabolism. Induction with bile acids revealed complex and differential responses to cholic acid and deoxycholic acid, including the expression of potentially novel bile acid-inducible genes involved in cholic acid metabolism. Responses to toxic deoxycholic acid included expression of genes predicted to be involved in DNA repair, oxidative stress, cell wall maintenance/metabolism, chaperone synthesis, and downregulation of one-third of the genome. These analyses provide valuable insight into the overall biology of C. scindens which may be important in treatment of disease associated with increased colonic secondary bile acids.IMPORTANCE C. scindens is one of a few identified gut bacterial species capable of converting host cholic acid into disease-associated secondary bile acids such as deoxycholic acid. The current work represents an important advance in understanding the nutritional requirements and response to bile acids of the medically important human gut bacterium, C. scindens ATCC 35704. A defined medium has been developed which will further the understanding of bile acid metabolism in the context of growth substrates, cofactors, and other metabolites in the vertebrate gut. Analysis of the complete genome supports the nutritional requirements reported here. Genome-wide transcriptomic analysis of gene expression in the presence of cholic acid and deoxycholic acid provides a unique insight into the complex response of C. scindens ATCC 35704 to primary and secondary bile acids. Also revealed are genes with the potential to function in bile acid transport and metabolism.
Collapse
|
25
|
Marion S, Studer N, Desharnais L, Menin L, Escrig S, Meibom A, Hapfelmeier S, Bernier-Latmani R. In vitro and in vivo characterization of Clostridium scindens bile acid transformations. Gut Microbes 2018; 10:481-503. [PMID: 30589376 PMCID: PMC6748637 DOI: 10.1080/19490976.2018.1549420] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The human gut hosts trillions of microorganisms that exert a profound influence on human biology. Gut bacteria communicate with their host by secreting small molecules that can signal to distant organs in the body. Bile acids are one class of these signaling molecules, synthesized by the host and chemically transformed by the gut microbiota. Among bile acid metabolizers, bile acid 7-dehydroxylating bacteria are commensals of particular importance as they carry out the 7-dehydroxylation of liver-derived primary bile acids to 7-dehydroxylated bile acids. The latter represents a major fraction of the secondary bile acid pool. The microbiology of this group of gut microorganisms is understudied and warrants more attention. Here, we detail the bile acid transformations carried out by the 7-dehydroxylating bacterium Clostridium scindens in vitro and in vivo. In vitro, C. scindens exhibits not only 7α-dehydroxylating capabilities but also, the ability to oxidize other hydroxyl groups and reduce ketone groups in primary and secondary bile acids. This study revealed 12-oxolithocholic acid as a major transient product in the 7α-dehydroxylation of cholic acid. Furthermore, the in vivo study included complementing a gnotobiotic mouse line (devoid of the ability to 7-dehydroxylate bile acids) with C. scindens and investigating its colonization dynamics and bile acid transformations. Using NanoSIMS (Nanoscale Secondary Ion Mass Spectrometry), we demonstrate that the large intestine constitutes a niche for C. scindens, where it efficiently 7-dehydroxylates cholic acid to deoxycholic acid. Overall, this work reveals a novel transient species during 7-dehydroxylation as well as provides direct evidence for the colonization and growth of 7-dehydroxylating bacteria in the large intestine.
Collapse
Affiliation(s)
- Solenne Marion
- Environmental Microbiology Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Nicolas Studer
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Lyne Desharnais
- Environmental Microbiology Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Laure Menin
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Stéphane Escrig
- Laboratory for Biological Geochemistry, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Anders Meibom
- Laboratory for Biological Geochemistry, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland,Center for Advanced Surface Analysis, Université de Lausanne, Lausanne, Switzerland
| | | | - Rizlan Bernier-Latmani
- Environmental Microbiology Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland,CONTACT Rizlan Bernier-Latmani Environmental Microbiology Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
26
|
Xu JH, Jiang Z, Solania A, Chatterjee S, Suzuki B, Lietz CB, Hook VYH, O’Donoghue AJ, Wolan DW. A Commensal Dipeptidyl Aminopeptidase with Specificity for N-Terminal Glycine Degrades Human-Produced Antimicrobial Peptides in Vitro. ACS Chem Biol 2018; 13:2513-2521. [PMID: 30085657 DOI: 10.1021/acschembio.8b00420] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Proteases within the C1B hydrolase family are encoded by many organisms. We subjected a putative C1B-like cysteine protease secreted by the human gut commensal Parabacteroides distasonis to mass spectrometry-based substrate profiling to find preferred peptide substrates. The P. distasonis protease, which we termed Pd_dinase, has a sequential diaminopeptidase activity with strong specificity for N-terminal glycine residues. Using the substrate sequence information, we verified the importance of the P2 glycine residue with a panel of fluorogenic substrates and calculated kcat and KM for the dipeptide glycine-arginine-AMC. A potent and irreversible dipeptide inhibitor with a C-terminal acyloxymethyl ketone warhead, glycine-arginine- AOMK, was then synthesized and demonstrated that the Pd_dinase active site requires a free N-terminal amine for potent and rapid inhibition. We next determined the homohexameric Pd_dinase structure in complex with glycine-arginine- AOMK and uncovered unexpected active site features that govern the strict substrate preferences and differentiate this protease from members of the C1B and broader papain-like C1 protease families. We finally showed that Pd_dinase hydrolyzes several human antimicrobial peptides and therefore posit that this P. distasonis enzyme may be secreted into the extracellular milieu to assist in gut colonization by inactivation of host antimicrobial peptides.
Collapse
Affiliation(s)
- Janice H. Xu
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Zhenze Jiang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Angelo Solania
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Sandip Chatterjee
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Brian Suzuki
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Christopher B. Lietz
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Vivian Y. H. Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Anthony J. O’Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Dennis W. Wolan
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
27
|
Harris SC, Devendran S, Méndez- García C, Mythen SM, Wright CL, Fields CJ, Hernandez AG, Cann I, Hylemon PB, Ridlon JM. Bile acid oxidation by Eggerthella lenta strains C592 and DSM 2243 T. Gut Microbes 2018; 9:523-539. [PMID: 29617190 PMCID: PMC6287680 DOI: 10.1080/19490976.2018.1458180] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Strains of Eggerthella lenta are capable of oxidation-reduction reactions capable of oxidizing and epimerizing bile acid hydroxyl groups. Several genes encoding these enzymes, known as hydroxysteroid dehydrogenases (HSDH) have yet to be identified. It is also uncertain whether the products of E. lenta bile acid metabolism are further metabolized by other members of the gut microbiota. We characterized a novel human fecal isolate identified as E. lenta strain C592. The complete genome of E. lenta strain C592 was sequenced and comparative genomics with the type strain (DSM 2243) revealed high conservation, but some notable differences. E. lenta strain C592 falls into group III, possessing 3α, 3β, 7α, and 12α-hydroxysteroid dehydrogenase (HSDH) activity, as determined by mass spectrometry of thin layer chromatography (TLC) separated metabolites of primary and secondary bile acids. Incubation of E. lenta oxo-bile acid and iso-bile acid metabolites with whole-cells of the high-activity bile acid 7α-dehydroxylating bacterium, Clostridium scindens VPI 12708, resulted in minimal conversion of oxo-derivatives to lithocholic acid (LCA). Further, Iso-chenodeoxycholic acid (iso-CDCA; 3β,7α-dihydroxy-5β-cholan-24-oic acid) was not metabolized by C. scindens. We then located a gene encoding a novel 12α-HSDH in E. lenta DSM 2243, also encoded by strain C592, and the recombinant purified enzyme was characterized and substrate-specificity determined. Genomic analysis revealed genes encoding an Rnf complex (rnfABCDEG), an energy conserving hydrogenase (echABCDEF) complex, as well as what appears to be a complete Wood-Ljungdahl pathway. Our prediction that by changing the gas atmosphere from nitrogen to hydrogen, bile acid oxidation would be inhibited, was confirmed. These results suggest that E. lenta is an important bile acid metabolizing gut microbe and that the gas atmosphere may be an important and overlooked regulator of bile acid metabolism in the gut.
Collapse
Affiliation(s)
- Spencer C. Harris
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA,McGuire Veterans Affairs, Richmond, VA, USA
| | - Saravanan Devendran
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA,Microbiome Metabolic Engineering Theme, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | - Sean M. Mythen
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA,Microbiome Metabolic Engineering Theme, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Chris L. Wright
- Keck Center for Biotechnology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Christopher J. Fields
- Keck Center for Biotechnology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Alvaro G. Hernandez
- Keck Center for Biotechnology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Isaac Cann
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA,Microbiome Metabolic Engineering Theme, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA,Energy Biosciences Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Phillip B. Hylemon
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA,McGuire Veterans Affairs, Richmond, VA, USA
| | - Jason M. Ridlon
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA,Microbiome Metabolic Engineering Theme, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA,Cancer Center of Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, USA,CONTACT Jason M. Ridlon Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL USA
| |
Collapse
|
28
|
Metabolism of Oxo-Bile Acids and Characterization of Recombinant 12α-Hydroxysteroid Dehydrogenases from Bile Acid 7α-Dehydroxylating Human Gut Bacteria. Appl Environ Microbiol 2018; 84:AEM.00235-18. [PMID: 29549099 DOI: 10.1128/aem.00235-18] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/06/2018] [Indexed: 12/31/2022] Open
Abstract
Bile acids are important cholesterol-derived nutrient signaling hormones, synthesized in the liver, that act as detergents to solubilize dietary lipids. Bile acid 7α-dehydroxylating gut bacteria generate the toxic bile acids deoxycholic acid and lithocholic acid from host bile acids. The ability of these bacteria to remove the 7-hydroxyl group is partially dependent on 7α-hydroxysteroid dehydrogenase (HSDH) activity, which reduces 7-oxo-bile acids generated by other gut bacteria. 3α-HSDH has an important enzymatic activity in the bile acid 7α-dehydroxylation pathway. 12α-HSDH activity has been reported for the low-activity bile acid 7α-dehydroxylating bacterium Clostridium leptum; however, this activity has not been reported for high-activity bile acid 7α-dehydroxylating bacteria, such as Clostridium scindens, Clostridium hylemonae, and Clostridium hiranonis Here, we demonstrate that these strains express bile acid 12α-HSDH. The recombinant enzymes were characterized from each species and shown to preferentially reduce 12-oxolithocholic acid to deoxycholic acid, with low activity against 12-oxochenodeoxycholic acid and reduced activity when bile acids were conjugated to taurine or glycine. Phylogenetic analysis suggests that 12α-HSDH is widespread among Firmicutes, Actinobacteria in the Coriobacteriaceae family, and human gut ArchaeaIMPORTANCE 12α-HSDH activity has been established in the medically important bile acid 7α-dehydroxylating bacteria C. scindens, C. hiranonis, and C. hylemonae Experiments with recombinant 12α-HSDHs from these strains are consistent with culture-based experiments that show a robust preference for 12-oxolithocholic acid over 12-oxochenodeoxycholic acid. Phylogenetic analysis identified novel members of the gut microbiome encoding 12α-HSDH. Future reengineering of 12α-HSDH enzymes to preferentially oxidize cholic acid may provide a means to industrially produce the therapeutic bile acid ursodeoxycholic acid. In addition, a cholic acid-specific 12α-HSDH expressed in the gut may be useful for the reduction in deoxycholic acid concentration, a bile acid implicated in cancers of the gastrointestinal (GI) tract.
Collapse
|
29
|
Targeted Synthesis and Characterization of a Gene Cluster Encoding NAD(P)H-Dependent 3α-, 3β-, and 12α-Hydroxysteroid Dehydrogenases from Eggerthella CAG:298, a Gut Metagenomic Sequence. Appl Environ Microbiol 2018; 84:AEM.02475-17. [PMID: 29330189 DOI: 10.1128/aem.02475-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/07/2018] [Indexed: 01/11/2023] Open
Abstract
Gut metagenomic sequences provide a rich source of microbial genes, the majority of which are annotated by homology or unknown. Genes and gene pathways that encode enzymes catalyzing biotransformation of host bile acids are important to identify in gut metagenomic sequences due to the importance of bile acids in gut microbiome structure and host physiology. Hydroxysteroid dehydrogenases (HSDHs) are pyridine nucleotide-dependent enzymes with stereospecificity and regiospecificity for bile acid and steroid hydroxyl groups. HSDHs have been identified in several protein families, including medium-chain and short-chain dehydrogenase/reductase families as well as the aldo-keto reductase family. These protein families are large and contain diverse functionalities, making prediction of HSDH-encoding genes difficult and necessitating biochemical characterization. We located a gene cluster in Eggerthella sp. CAG:298 predicted to encode three HSDHs (CDD59473, CDD59474, and CDD59475) and synthesized the genes for heterologous expression in Escherichia coli We then screened bile acid substrates against the purified recombinant enzymes. CDD59475 is a novel 12α-HSDH, and we determined that CDD59474 (3α-HSDH) and CDD59473 (3β-HSDH) constitute novel enzymes in an iso-bile acid pathway. Phylogenetic analysis of these HSDHs with other gut bacterial HSDHs and closest homologues in the database revealed predictable clustering of HSDHs by function and identified several likely HSDH sequences from bacteria isolated or sequenced from diverse mammalian and avian gut samples.IMPORTANCE Bacterial HSDHs have the potential to significantly alter the physicochemical properties of bile acids, with implications for increased/decreased toxicity for gut bacteria and the host. The generation of oxo-bile acids is known to inhibit host enzymes involved in glucocorticoid metabolism and may alter signaling through nuclear receptors such as farnesoid X receptor and G-protein-coupled receptor TGR5. Biochemical or similar approaches are required to fill in many gaps in our ability to link a particular enzymatic function with a nucleic acid or amino acid sequence. In this regard, we have identified a novel 12α-HSDH and a novel set of genes encoding an iso-bile acid pathway (3α-HSDH and 3β-HSDH) involved in epimerization and detoxification of harmful secondary bile acids.
Collapse
|
30
|
Harris SC, Devendran S, Alves JMP, Mythen SM, Hylemon PB, Ridlon JM. Identification of a gene encoding a flavoprotein involved in bile acid metabolism by the human gut bacterium Clostridium scindens ATCC 35704. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1863:276-283. [PMID: 29217478 DOI: 10.1016/j.bbalip.2017.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 11/28/2017] [Accepted: 12/01/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND The multi-step bile acid 7α-dehydroxylating pathway by which a few species of Clostridium convert host primary bile acids to toxic secondary bile acids is of great importance to gut microbiome structure and host physiology and disease. While genes in the oxidative arm of the 7α-dehydroxylating pathway have been identified, genes in the reductive arm of the pathway are still obscure. METHODS We identified a candidate flavoprotein-encoding gene predicted to metabolize steroids. This gene was cloned and overexpressed in E. coli and affinity purified. Reaction substrate and product were separated by thin layer chromatography and identified by liquid chromatograph mass spectrometry-ion trap-time of flight (LCMS-IT-TOF). Phylogenetic analysis of the amino acid sequence was performed. RESULTS We report the identification of a gene encoding a flavoprotein (EDS08212.1) involved in secondary bile acid metabolism by Clostridium scindens ATCC 35704 and related species. Purified rEDS08212.1 catalyzed formation of a product from 3-dehydro-deoxycholic acid that UPLC-IT-TOF-MS analysis suggests loses 4amu. Our phylogeny identified this gene in other bile acid 7α-dehydroxylating bacteria. CONCLUSIONS These data suggest formation of a product, 3-dehydro-4,6-deoxycholic acid, a recognized intermediate in the reductive arm of bile acid 7α-dehydroxylation pathway and the first report of a gene in the reductive arm of the bile acid 7α-dehydroxylating pathway.
Collapse
Affiliation(s)
- Spencer C Harris
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Saravanan Devendran
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Microbiome Metabolic Engineering Theme, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - João M P Alves
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Sean M Mythen
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Microbiome Metabolic Engineering Theme, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Phillip B Hylemon
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Jason M Ridlon
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA; Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Microbiome Metabolic Engineering Theme, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
31
|
Ridlon JM, Harris SC, Bhowmik S, Kang DJ, Hylemon PB. Consequences of bile salt biotransformations by intestinal bacteria. Gut Microbes 2016; 7:22-39. [PMID: 26939849 PMCID: PMC4856454 DOI: 10.1080/19490976.2015.1127483] [Citation(s) in RCA: 656] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Emerging evidence strongly suggest that the human "microbiome" plays an important role in both health and disease. Bile acids function both as detergents molecules promoting nutrient absorption in the intestines and as hormones regulating nutrient metabolism. Bile acids regulate metabolism via activation of specific nuclear receptors (NR) and G-protein coupled receptors (GPCRs). The circulating bile acid pool composition consists of primary bile acids produced from cholesterol in the liver, and secondary bile acids formed by specific gut bacteria. The various biotransformation of bile acids carried out by gut bacteria appear to regulate the structure of the gut microbiome and host physiology. Increased levels of secondary bile acids are associated with specific diseases of the GI system. Elucidating methods to control the gut microbiome and bile acid pool composition in humans may lead to a reduction in some of the major diseases of the liver, gall bladder and colon.
Collapse
Affiliation(s)
- Jason M. Ridlon
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Spencer C. Harris
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Shiva Bhowmik
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Dae-Joong Kang
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Phillip B. Hylemon
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
32
|
Bhowmik S, Chiu HP, Jones DH, Chiu HJ, Miller MD, Xu Q, Farr CL, Ridlon JM, Wells JE, Elsliger MA, Wilson IA, Hylemon PB, Lesley SA. Structure and functional characterization of a bile acid 7α dehydratase BaiE in secondary bile acid synthesis. Proteins 2016; 84:316-31. [PMID: 26650892 DOI: 10.1002/prot.24971] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 11/12/2015] [Accepted: 11/30/2015] [Indexed: 01/10/2023]
Abstract
Conversion of the primary bile acids cholic acid (CA) and chenodeoxycholic acid (CDCA) to the secondary bile acids deoxycholic acid (DCA) and lithocholic acid (LCA) is performed by a few species of intestinal bacteria in the genus Clostridium through a multistep biochemical pathway that removes a 7α-hydroxyl group. The rate-determining enzyme in this pathway is bile acid 7α-dehydratase (baiE). In this study, crystal structures of apo-BaiE and its putative product-bound [3-oxo-Δ(4,6) -lithocholyl-Coenzyme A (CoA)] complex are reported. BaiE is a trimer with a twisted α + β barrel fold with similarity to the Nuclear Transport Factor 2 (NTF2) superfamily. Tyr30, Asp35, and His83 form a catalytic triad that is conserved across this family. Site-directed mutagenesis of BaiE from Clostridium scindens VPI 12708 confirm that these residues are essential for catalysis and also the importance of other conserved residues, Tyr54 and Arg146, which are involved in substrate binding and affect catalytic turnover. Steady-state kinetic studies reveal that the BaiE homologs are able to turn over 3-oxo-Δ(4) -bile acid and CoA-conjugated 3-oxo-Δ(4) -bile acid substrates with comparable efficiency questioning the role of CoA-conjugation in the bile acid metabolism pathway.
Collapse
Affiliation(s)
- Shiva Bhowmik
- Joint Center for Structural Genomics, (http://www.jcsg.org).,Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, 92037
| | - Hsien-Po Chiu
- Genomics Institute of Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California, 92121
| | - David H Jones
- Genomics Institute of Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California, 92121
| | - Hsiu-Ju Chiu
- Joint Center for Structural Genomics, (http://www.jcsg.org).,Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, MS 9, Menlo Park, California, 94025
| | - Mitchell D Miller
- Joint Center for Structural Genomics, (http://www.jcsg.org).,Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, MS 9, Menlo Park, California, 94025
| | - Qingping Xu
- Joint Center for Structural Genomics, (http://www.jcsg.org).,Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, MS 9, Menlo Park, California, 94025
| | - Carol L Farr
- Joint Center for Structural Genomics, (http://www.jcsg.org).,Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, 92037
| | - Jason M Ridlon
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, 23298.,McGuire VA Medical Center, Richmond, Virginia, 23298
| | - James E Wells
- USDA ARS, US Meat Animal Research Center, Clay Center, Nebraska, 68933
| | - Marc-André Elsliger
- Joint Center for Structural Genomics, (http://www.jcsg.org).,Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, 92037
| | - Ian A Wilson
- Joint Center for Structural Genomics, (http://www.jcsg.org).,Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, 92037
| | - Phillip B Hylemon
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, 23298.,McGuire VA Medical Center, Richmond, Virginia, 23298
| | - Scott A Lesley
- Joint Center for Structural Genomics, (http://www.jcsg.org).,Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, 92037.,Genomics Institute of Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California, 92121
| |
Collapse
|